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Abstract: Sequences of parametrized Lyapunov equations can be encountered in many
application settings. Moreover, solutions of such equations are often intermediate steps
of an overall procedure whose main goal is the computation of quantities of the form
f(X) where X denotes the solution of a Lyapunov equation. We are interested in ad-
dressing problems where the parameter dependency of the coefficient matrix is encoded
as a low-rank modification to a seed, fixed matrix. We propose two novel numerical
procedures that fully exploit such a common structure. The first one builds upon recy-
cling Krylov techniques, and it is well-suited for small dimensional problems as it makes
use of dense numerical linear algebra tools. The second algorithm can instead address
large-scale problems by relying on state-of-the-art projection techniques based on the
extended Krylov subspace. We test the new algorithms on several problems arising in
the study of damped vibrational systems and the analyses of output synchronization
problems for multi-agent systems. Our results show that the algorithms we propose
are superior to state-of-the-art techniques as they are able to remarkably speed up the
computation of accurate solutions.

Keywords: Parametrized Lyapunov equations, Recycling Krylov methods, Extended
Krylov methods, Vibrational systems, Multi-agent systems.

Mathematics subject classification: MSC1, MSC2, MSC3

Novelty statement: Novel, efficient methods for solving sequences of parametrized
Lyapunov equations have been designed. By taking full advantage of the parameter
dependency structure we are able to tackle both small-scale and large-scale problems.
The numerical results show the superiority of the proposed methods when compared
to state-of-the-art routines, especially in terms of computational time.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-12-14

ar
X

iv
:2

31
2.

08
20

1v
1 

 [
m

at
h.

N
A

] 
 1

3 
D

ec
 2

02
3

mailto:davide.palitta@unibo.it
https://orcid.org/0000-0002-6987-4430
mailto:ztomljan@mathos.hr
https://orcid.org/0000-0002-3239-760X
mailto:nakic@math.hr
https://orcid.org/0000-0001-6549-7220
mailto:saak@mpi-magdeburg.mpg.de
https://orcid.org/0000-0001-5567-9637
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1 Introduction and setting

The main goal of this study is the design of efficient numerical procedures for solving sequences of
parameter-dependent Lyapunov equations of the form

A(v)X +XA(v)
T
= −Q, (1)

where A(v) has the form
A(v) = A0 −BlD(v)B

T
r . (2)

Here A0,Q ∈ Rn×n, Bl,Br ∈ Rn×kare fixed matrices and the matrix D(v) = diag (v1, v2, . . . , vk) con-

tains parameters vi ∈ R∖{0}, for i = 1 . . . , k, encoded in the parameter vector v = [v1, v2, . . . , vk]
T
∈

(R ∖ {0})k 1. Note that, without loss of generality, we assume that the parameters in v are nonzero.
Indeed, if some parameters were equal to zero, this would be equivalent to a structured update of
smaller rank.
Structured equations of the form (1) arise in many problem settings. Indeed, let bil, b

i
r, i = 1, . . . , k,

be the columns of the matrices Bl and Br, respectively. Then A(v) = A0 − ∑
k
i=1 vib

i
l(b

i
r)

T
=∶

A0 +∑
k
i=1 viAi, and hence matrices of the form (2) can describe a class of parameter-dependent

matrices with an affine dependency on the parameters. Lyapunov equations with such coefficient
matrices naturally arise in the study of vibrational systems [46], parametric model reduction [39],
in the design of low gain feedback [55], and the analysis of multi-agent systems [19, 42]. The
applications we are going to study more closely are optimal damping of vibrational systems and
output-synchronization problems for multi-agent systems.
We are especially interested in devising efficient procedures for calculating f(X(v)) for a large

number of different parameter vectors v, for a given function f that is assumed to be additive, i.e.
f(X+Y ) = f(X)+f(Y ). Indeed, f(X(v)) often corresponds to the target value we are interested in
computing, with calculating X(v) only being an intermediate step. For instance, when computing
the H2-norm of a linear system, one is often interested in computing f(X(v)) = trace(X(v)) or
f(X(v)) = trace(EX(v)) for some matrix E. An efficient computation of f(X(v)), and thus
the fast solution of (1), are crucial to obtain competitive numerical schemes in terms of both
computational performance and memory requirements for the applications mentioned above.
Naturally, one can solve (1) from scratch for any v. For instance, if the problem dimension

allows, one can apply the Bartels-Stewart algorithm [1] to each instance of (1). However, this
naive procedure does not exploit the attractive structure of (1) and requires the computation of
the Schur decomposition of A(v) any time v changes. This approach is not affordable in terms
of computational cost if v varies a lot and f(X(v)) needs to be evaluated many times. More so-
phisticated schemes for (1) can be found in the literature. For instance, the algorithms presented
in [24,46] do exploit the structure of A(v) in (2). Even though these schemes are more performing
than a naive application of the Bartels-Stewart algorithm, they are not designed to capitalize on
a possible slow variation in v as it often happens within, e.g., an optimization routine. More-
over, they can be applied to small dimensional problems only. Various approaches for solving the
parameter-dependent Lyapunov equations can be found in the literature, including those based on
the conjugate gradient method [22], low-rank updates [21], interpolation on manifolds [18], and
low-rank reduced basis method [36, 40]. On the other hand, they are not well-suited for solving
sequences of numerous parameter-dependent equations.
Leveraging the structure of the coefficient matrix A(v) — A(v) is an affine function in v —

we propose two different schemes which are able to fully separate the parameter-independent
calculations from the v-dependent computations. The former will be performed once and for all in
an offline step, whereas the latter operations take place online, namely every time v changes.
The first procedure we suggest in this paper builds upon the work in [24,46], which we enhance

with a recycling Krylov technique. This routine makes use of dense linear algebra tools so that
it is well suited for small dimensional problems, i.e., in the case of moderate values of the matrix
dimension n. The second routine addresses the large-scale case employing projection methods for
linear matrix equations.

1For the sake of simplicity, we assume the data of our problem to be real. Our algorithms can handle complex
data by applying straightforward modifications.
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Both our algorithms take inspiration from the low-rank update scheme presented in [21], for
which the following assumption is needed.

Assumption 1. The solution X0 to the Lyapunov equation A0X +XAT
0 = −Q can be computed

efficiently.

Synopsis of the paper: In Section 2 we present the main contribution of this work. In particular,
a recycling Krylov-like method, which is able to efficiently deal with small dimensional problems,
is illustrated in Section 2.1. As already mentioned, this scheme employs dense numerical linear
algebra tools, e.g., the full eigenvalue decomposition of A0 is required, so that it cannot be applied
in the large-scale setting. We address the latter scenario in Section 2.2, where a sophisticated pro-
jection technique, based on the extended Krylov subspace (17), is illustrated. Some details about
two application settings where equations of the form (1) are encountered are reported in Section 3.
In particular, damped vibrational systems are treated in Section 3.1, whereas in Section 3.2 multi-
agent systems are considered. A panel of diverse numerical experiments displaying the effectiveness
of our methodology is presented in Section 4, while Section 5 collects our conclusions.
Throughout the paper we adopt the following notation. The symbol ⊗ denotes the Kronecker

product and ○ denotes the Hadamard (component-wise) product. Capital letters, both in roman
(A) and italic (A), denote matrices with no particular structure whereas capital bold letters (A)
denote matrices having a Kronecker structure. Given a matrix X ∈ Rm×n, vec(X) ∈ Rmn denotes
the vector obtained by stacking the columns of X on top of each other. The matrix In is the n×n
identity matrix; the subscript is omitted whenever the dimension of I is clear from the context.
The symbol ei denotes the i-th canonical basis vector of Rs where s is either specified in the text
or clear from the context. The symbol δi,j denotes the Kronecker delta, i.e., δi,j = 1 if i = j and
zero otherwise.

2 Computing f(X(v))
Equation (1) can be written as

(A0 −BlD(v)B
T
r )X(v) +X(v)(A0 −BlD(v)B

T
r )

T
= −Q.

By exploiting the low rank of BlD(v)B
T
r and using the low-rank update approach presented in [21],

we can also rewrite X as the sum of a fixed matrix and a low-rank update term, i.e.,

X(v) =X0 +Xδ(v), (3)

where X0 and Xδ(v) are as follows. The matrix X0 is independent of the parameter vector v, and
it solves the Lyapunov equation

A0X0 +X0A
T
0 = −Q, (4)

whereas Xδ(v) is such that

A(v)Xδ(v) +Xδ(v)A(v)
T
= BlD(v)B

T
rX0 +X0BrD(v)B

T
l . (5)

Assumption 1 implies that X0 can be efficiently calculated.
We notice that the right-hand side in (5) can be written as

BlD(v)B
T
rX0 +X0BrD(v)B

T
l = [X0Br,Bl] [

0 D(v)
D(v) 0

] [X0Br,Bl]
T
= P (I2 ⊗D(v))PT, (6)

where P = [X0Br,Bl] has rank 2k, and I2 = [
0 1
1 0
]. This formulation of the right-hand side will

be crucial for the projection-based method we design for large-scale problems in Section 2.2.
In the next sections we show how to efficiently compute Xδ(v). In particular, it turns out

that many of the required operations do not depend on v so that they can be carried out in the
offline stage. Therefore, we split the solution process into offline and online phases, where only the
operations that actually depend on v are performed online.
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2.1 Small-scale setting: recycling Krylov methods

In this section we address the numerical solution of the Lyapunov equation (5) assuming the
problem dimension n to be small, namely it is such that dense linear algebra operations costing
up to O(n3) flops are feasible.
Even though there are many efficient methods for solving Lyapunov equations of moderate

dimensions, see, e.g., [20] and references therein, we want to efficiently solve (5) for a sequence of
parameter vectors v.
The strategy proposed in this section builds upon the work in [24,46]. We extend their approach

to the more general class of problems of the form (1), and we allow for more than one parameter.
The scheme we are going to present relies on the computation of the full eigenvalue decomposition
of A0, namely A0 = Q0Λ0Q

−1
0 with Q0 ∈ Cn×n and Λ0 = diag(λ1, . . . , λn), λi ∈ C, i = 1, . . . , n.

Considering the notation introduced in (6), the Kronecker form of (5) reads as follows

(I ⊗A0 +A0 ⊗ I − I ⊗ (BlD(v)B
T
r ) − (BlD(v)B

T
r )⊗ I)vec(Xδ(v)) = (P ⊗ P )vec (I2 ⊗D(v)) .

If A0 = Q0Λ0Q
−1
0 , Λ0 = diag(λ1, . . . , λn), we can write

(Q0 ⊗Q0) (L0 − I ⊗ (Q
−1
0 BlD(v)B

T
rQ0) − (Q

−1
0 BlD(v)B

T
rQ0)⊗ I) (Q−10 ⊗Q−10 )vec(Xδ(v)) =

(P ⊗ P )vec (I2 ⊗D(v)) ,

where L0 ∶= I ⊗Λ0 +Λ0 ⊗ I, so that we obtain

(L0 − [Q
−1
0 Bl ⊗ I, I ⊗Q−10 Bl]D(v)[Q

T
0Br ⊗ I, I ⊗QT

0Br]
T
)vec(Q−10 Xδ(v)Q

−T
0 ) =

(Q−10 P ⊗Q−10 P )vec (I2 ⊗D(v)) ,

with D(v) = [
D(v)⊗ I

I ⊗D(v)
].

By denoting M ∶= [Q−10 Bl ⊗ I, I ⊗Q−10 Bl], and N ∶= [QT
0Br ⊗ I, I ⊗QT

0Br],
the Sherman–Morrison–Woodbury formula (see, e.g., [15]) implies that

vec(Xδ(v)) =(Q0 ⊗Q0)(L
−1
0 (Q

−1
0 P ⊗Q−10 P )vec (I2 ⊗D(v))+

L−10 M(D(v)
−1
−NTL−10 M)

−1
NTL−10 (Q

−1
0 P ⊗Q−10 P)vec (I2 ⊗D(v))). (7)

We now show how to compute the two terms in the right-hand side of (7). The main goal here
is to divide the operations that depend on v from those that do not, as much as possible, such that
the v-independent calculations can be performed offline.
We first focus on the term (Q0 ⊗Q0) (L

−1
0 (Q

−1
0 P ⊗Q−10 P )vec (I2 ⊗D(v))). The computation

of
z(v) = (Q0 ⊗Q0) (L

−1
0 (Q

−1
0 P ⊗Q−10 P )vec (I2 ⊗D(v))) ,

is equivalent to solving the Lyapunov equation

Λ0Z̃(v) + Z̃(v)Λ
T
0 = Q

−1
0 P (I2 ⊗D(v))PTQ−T0 ,

where z(v) = vec(Z(v)), and Z(v) ∶= Q0Z̃(v)Q
T
0 . Since Λ0 = diag(λ1, . . . , λn), by defining the

Cauchy matrix L ∈ Cn×n whose (i, j)-th entry is given by Li,j = 1/(λi + λj), we can write

Z(v) = Q0 (L ○ (Q
−1
0 P (I2 ⊗D(v))PTQ−T0 ))Q

T
0 . (8)

The matrix I2 ⊗D(v) can be written as

I2 ⊗D(v) =
k

∑
i=1

vi(ek+ie
T
i + eie

T
k+i),
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and by plugging this expression into (8), we get

Z(v) =
k

∑
i=1

viZi =
k

∑
i=1

viQ0Z̃iQ
T
0 , Z̃i ∶= L ○ (Q

−1
0 P (ek+ie

T
i + eie

T
k+i)P

TQ−T0 ) . (9)

We can thus compute the matrices Zi before any change in the parameters v takes place. Whenever
we need Z(v), we just compute the linear combination in (9).
The second term in (7) can be written as

(Q0 ⊗Q0)L
−1
0 M(D(v)

−1
−NTL−10 M)

−1
NTL−10 (Q

−1
0 P ⊗Q−10 P )vec (I2 ⊗D(v)) =

(Q0 ⊗Q0)L
−1
0 M(D(v)

−1
−NTL−10 M)

−1
NT
(

k

∑
i=1

vi vec (Z̃i)) . (10)

Recalling that N ∶= [QT
0Br ⊗ I, I ⊗QT

0Br], we have

NT vec (Z̃i) = [
vec (Z̃iQ

T
0Br)

vec (BT
rQ0Z̃i)

] , so that NT
(

k

∑
i=1

vi vec (Z̃i)) =
k

∑
i=1

vi [
vec (Z̃iQ

T
0Br)

vec (BT
rQ0Z̃i)

] .

We now focus on the solution of the 2nk × 2nk linear system with D(v)
−1
−NTL−10 M. We first

show how to efficiently assemble the coefficient matrix itself.

While D(v)
−1
= [

D(v)
−1
⊗ I

I ⊗D(v)
−1] is a diagonal matrix, the structure of NTL−10 M is

more involved. A first study of its structure can be found in [46]. Unlike what is done in [46],
here we exploit the diagonal pattern of L−10 which leads to a useful representation of the blocks of
NTL−10 M when the latter is viewed as a 2 × 2 block matrix. Such a block structure will help us to
design efficient preconditioners for the solution of the linear system in (10) as well.
Let M1 = Q

−1
0 Bl ⊗ I, M2 = I ⊗Q−10 Bl, N1 = Q

T
0Br ⊗ I, and N2 = I ⊗QT

0Br. Then we can write

NTL−10 M = [
NT

1L
−1
0 M1 NT

1L
−1
0 M2

NT
2L
−1
0 M1 NT

2L
−1
0 M2

] .

We first focus on the (1,1)-block, namely NT
1L
−1
0 M1 ∈ Cnk×nk. By recalling that the h-th basis

vector of Cnk can be written as eh = vec(ese
T
t ), with es and et being the canonical vectors in Cn

and Ck, respectively, and h = (t−1)n+ s, we can write the (i, j)-th entry of NT
1L
−1
0 M1 ∈ Cnk×nk as

eTi N
T
1L
−1
0 M1ej =vec(ese

T
t )

T
NT

1L
−1
0 M1 vec(eqe

T
p),

where i = (t − 1)n + s and j = (p − 1)n + q. Since N1 and M1 have a Kronecker structure, we have

eTi N
T
1L
−1
0 M1ej =vec(ese

T
tB

T
rQ0)

T
L−10 vec(eqe

T
pB

T
l Q
−T
0 ) = vec(ese

T
tB

T
rQ0)

T
vec(L ○(eqe

T
pB

T
l Q
−T
0 ))

= trace (QT
0Brete

T
s(L ○(eqe

T
pB

T
l Q
−T
0 ))) = e

T
s(L ○(eqe

T
pB

T
l Q
−T
0 ))Q

T
0Bret,

where the last equality holds thanks to the cyclic property of the trace operator. Now, by applying
the following property of the Hadamard product

xT(A ○B)y = trace (diag(x)Adiag(y)BT
),

we get

eTi N
T
1L
−1
0 M1ej = trace (diag(es)Ldiag(Q

T
0Bret)Q

−1
0 Blepe

T
q) = e

T
q diag(es)Ldiag(Q

T
0Bret)Q

−1
0 Blep

=eTqese
T
sLdiag(Q

T
0Bret)Q

−1
0 Blep = δq,s ⋅ e

T
sLdiag(Q

T
0Bret)Q

−1
0 Blep

=δq,s ⋅ e
T
s (L ((Q

T
0Bret) ○(Q

−1
0 Blep))) , (11)

where δq,s denotes the Kronecker delta. The relation in (11) shows that NT
1L
−1
0 M1 is a k×k block

matrix whose blocks are all diagonal. In particular, the block in the (t, p) position is given by
matrix diag (L ((QT

0Bret) ○(Q
−1
0 Blep))).

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-12-14
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We now derive the structure of the (2,2)-block NT
2L
−1
0 M2. Following the same reasoning as

before, we have

eTi N
T
2L
−1
0 M2ej =vec(Q

T
0Brete

T
s)

T
L−10 vec(Q−10 Blepe

T
q ) = vec(Q

T
0Brete

T
s)

T
vec(L ○(Q−10 Blepe

T
q ))

= trace (ese
T
tB

T
rQ0(L ○(Q

−1
0 Blepe

T
q ))) = e

T
tB

T
rQ0(L ○(Q

−1
0 Blepe

T
q ))es.

Notice that in the expression above we wrote ei = vec(ete
T
s), with et, es canonical vectors in Ck

and Cn respectively, so that i = (s − 1)k + t. Similarly, j = (q − 1)k + p. As before, we can write

eTi N
T
2L
−1
0 M2ej = trace (diag(Q

T
0Bret)Ldiag(es)eqe

T
pB

T
l Q
−T
0 ) = e

T
pB

T
l Q
−T
0 diag(QT

0Bret)Lese
T
seq

=δs,q ⋅ e
T
pB

T
l Q
−T
0 diag(QT

0Bret)Les = δs,q ⋅ ((Q
−1
0 Blep) ○(Q

T
0Bret))

T
Les.

Therefore, NT
2L
−1
0 M2 is a block diagonal matrix with n diagonal blocks of order k. In particular,

the (t, p)-th entry of the s-th diagonal block is given by ((Q−10 Blep) ○(Q
T
0Bret))

T
Les.

Unlike its diagonal blocks, the off-diagonal blocks ofNTL−10 M, namelyNT
2L
−1
0 M1, andNT

1L
−1
0 M2,

do not possess a structured sparsity pattern. Nevertheless, we can still apply the same strategy we
employed above to construct NT

2L
−1
0 M1, and NT

1L
−1
0 M2 while avoiding the explicit computation

of M1, M2, N1, and N2. If i = (s − 1)k + t and j = (p − 1)n + q, we have

eTi N
T
2L
−1
0 M1ej =vec (Q

T
0Brete

T
s)

T
L−10 vec(eqe

T
pB

T
l Q
−T
0 ) = vec (Q

T
0Brete

T
s)

T
vec(L ○(eqe

T
pB

T
l Q
−T
0 ))

= trace (ese
T
tB

T
rQ0(L ○(eqe

T
pB

T
l Q
−T
0 ))) = e

T
tB

T
rQ0(L ○(eqe

T
pB

T
l Q
−T
0 ))es

= trace (diag(QT
0Bret)Ldiag(es)Q

−1
0 Blepe

T
q) = e

T
q diag(Q

T
0Bret)Ldiag(es)Q

−1
0 Blep

=(eTqQ
T
0Bret)(e

T
qLes)(e

T
sQ
−1
0 Blep). (12)

Similarly, if i = (t − 1)n + s and j = (q − 1)k + p, it holds

eTi N
T
1L
−1
0 M2ej =vec(ese

T
tB

T
rQ0)

T
L−10 vec(Q−10 Blepe

T
q ) = vec(ese

T
tB

T
rQ0)

T
vec(L ○(Q−10 Blepe

T
q ))

= trace (QT
0Brete

T
s(L ○(Q

−1
0 Blepe

T
q ))) = e

T
s(L ○(Q

−1
0 Blepe

T
q ))Q

T
0Bret

= trace (diag(es)Ldiag(Q
T
0Bret)eqe

T
pB

T
l Q
−T
0 ) = e

T
pB

T
l Q
−T
0 diag(es)Ldiag(Q

T
0Bret)eq

=(eTpB
T
l Q
−T
0 es)(e

T
sLeq)(e

T
qQ

T
0Bret). (13)

The construction of NTL−10 M can be carried out before starting changing v. Once this task is

accomplished, we have to solve a 2nk × 2nk linear system with D(v)
−1
−NTL−10 M every time we

have to solve (1) for a different v.
We want to efficiently compute the vector w(v) ∈ C2nk such that

(D(v)
−1
−NTL−10 M)w(v) =

k

∑
i=1

vi [
vec (Z̃iQ

T
0Br)

vec (BT
rQ0Z̃i)

] . (14)

We assume the coefficient matrix and the right-hand side in (14) to slowly change with v. For in-

stance, if (1) is embedded in a parameter optimization procedure, the parameters vℓ = [v
(ℓ)
1 , . . . , v

(ℓ)
k ]

T

in one step do not dramatically differ from the ones used in the previous step, namely vℓ−1 =

[v
(ℓ−1)
1 , . . . , v

(ℓ−1)
k ]

T
, especially in the later steps of the adopted optimization procedure. For a se-

quence of linear systems of this nature, recycling Krylov techniques represent one of the most valid
families of solvers available in the literature. See, e.g., [13, 33] and the recent survey paper [41].
We employ the GCRO-DRmethod proposed in [33] to solve the sequence of linear systems in (14).

See [34, 35] for a Matlab implementation and a thorough discussion on certain computational
aspects of this algorithm.
Once the (ℓ−1)-th linear system is solved, GCRO-DR uses the space spanned by sℓ approximate

eigenvectors of D(vℓ−1)
−1
−NTL−10 M to enhance the solution of the ℓ-th linear system

(D(vℓ)
−1
−NTL−10 M)w(vℓ) =

k

∑
i=1

v
(ℓ)
i [

vec (Z̃iQ
T
0Br)

vec (BT
rQ0Z̃i)

] .
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We employ the sℓ eigenvectors corresponding to the sℓ eigenvalues of smallest magnitude2, but
different approximate eigenvectors can be used as well, see [33, Section 2.4].
GCRO-DR allows for restarting and preconditioning. In particular, thanks to the structure of

D(v)
−1
−NTL−10 M we are able to design efficient preconditioning operators, which can be cheaply

tuned to address the variation in the parameters.
We have

D(v)
−1
−NTL−10 M = [

D(v)
−1
⊗ I −NT

1L
−1
0 M1 NT

1L
−1
0 M2

NT
2L
−1
0 M1 I ⊗D(v)

−1
−NT

2L
−1
0 M2

] ,

and we want to maintain the (2 × 2)-block structure in the preconditioner as well.

InD(v)
−1
−NTL−10 M, only the diagonal blocksD(v)

−1
⊗I−NT

1L
−1
0 M1 and I⊗D(v)

−1
−NT

2L
−1
0 M2

depend on the current parameters. Moreover, both D(v)
−1
⊗I and I⊗D(v)

−1
are diagonal matrices

so that the sparsity pattern of NT
1L
−1
0 M1 and NT

2L
−1
0 M2 is preserved. In particular, D(v)

−1
⊗ I −

NT
1L
−1
0 M1 is still a k×k block matrix with diagonal blocks whereas I⊗D(v)

−1
−NT

2L
−1
0 M2 is block

diagonal with k×k blocks on the diagonal. By exploiting such a significant sparsity pattern, we are
thus able to efficiently solve linear systems with D(v)

−1
⊗I−NT

1L
−1
0 M1 and I⊗D(v)

−1
−NT

2L
−1
0 M2

by a sparse direct method, regardless of the change in v.
The off-diagonal blocks of D(v)

−1
−NTL−10 M, namely NT

1L
−1
0 M2 and NT

2L
−1
0 M1, are dense in

general. We approximate these blocks by means of their truncated SVD (TSVD) of order p, for
a user-defined p > 0. Notice that these TSVD can be computed once and for all since neither
NT

1L
−1
0 M2 nor NT

2L
−1
0 M1 depend on v. We denote the results of the TSVD by N1M2

T and
N2M1

T where Ni,Mi ∈ Cnk×p, i = 1,2, and N1M2
T
≈NT

1L
−1
0 M2 whereas N2M1

T
≈NT

2L
−1
0 M1.

Consequently, the preconditioning operator we employ is

P(v) = [
D(v)

−1
⊗ I −NT

1L
−1
0 M1 N1M2

T

N2M1
T I ⊗D(v)

−1
−NT

2L
−1
0 M2

] ≈D(v)
−1
−NTL−10 M. (15)

We use right preconditioning within GCRO-DR so that at each iteration a linear system with P(v)
needs to be solved. However, such a task is particularly cheap. Indeed, thanks to the 2 × 2 block
structure of P(v), we define its Schur complement

S(v) =D(v)
−1
⊗ I −NT

1L
−1
0 M1 −N1M2

T
(I ⊗D(v)

−1
−NT

2L
−1
0 M2)

−1
N2M1

T,

and, since N1M2
T
(I ⊗D(v)

−1
−NT

2L
−1
0 M2)

−1
N2M1

T has rank p, we can employ the Sherman-

Morrison-Woodbury formula to efficiently solve linear systems with S(v). We, thus, have

P(v)−1 [
v1
v2
] =

⎡
⎢
⎢
⎢
⎢
⎣

S(v)−1 (v1 −N1M
T
2(I ⊗D(v)−1 −NT

2L
−1
0 M2)

−1
v2)

(I ⊗D(v)−1 −NT
2L
−1
0 M2)

−1
(N2M

T
1S(v)

−1
(N1M

T
2(I ⊗D(v)−1 −NT

2L
−1
0 M2)

−1
v2 − v1) + v2)

⎤
⎥
⎥
⎥
⎥
⎦

.

Once the linear system in (14) is solved and the vector w(v) ∈ C2nk is computed, we proceed
with the remaining operations in (10). We can write

(Q0 ⊗Q0)L
−1
0 Mw(v) = (Q0 ⊗Q0)L

−1
0 [Q

−1
0 Bl ⊗ I, I ⊗Q−10 Bl] [

w1(v)
w2(v)

]

= (Q0 ⊗Q0)L
−1
0 (vec (W1(v)B

T
l Q
−T
0 +Q

−1
0 BlW2(v)))

=vec (Q0 (L ○ (W1(v)B
T
l Q
−T
0 +Q

−1
0 BlW2(v)))Q

T
0) = vec (W (v)) ,

where W1(v) ∈ Cn×k and W2(v) ∈ Ck×n are such that vec(W1(v)) = w1(v) and vec(W2(v)) = w2(v).
To conclude, the solution X(v) to (1), in case of moderate n, can be computed as follows

X(v) =X0 +Xδ(v) =X0 +Z(v) +W (v)

=X0 +
k

∑
i=1

v
(ℓ)
i Zi +Q0 (L ○ (W1(v)B

T
l Q
−T
0 +Q

−1
0 BlW2(v)))Q

T
0 , (16)

2This is the default strategy in [34].
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Offline Online
Operation Flops Operation Flops

Compute X0 and P O(n3) Compute Z(v) O(kn2)

Eig A0 = Q0Λ0Q
−1
0 O(n3) Solve (14) O(mk2n2)

Assemble NTL−10 M O(k2n2) Compute W (v) O(n3)

TSVD NT
1M2, N

T
2M1 O(n3)

Compute Z̃i, Zi, i = 1, . . . , k O(n3)

Table 1: Offline and online operations involved in the computation of the solution X(v) to (1) for
a moderate n. m denotes the number of iterations needed by GCRO-DR to converge.
Depending on the properties of f , the cost of computing W (v) reduces to O(n2) flops.

so that

f(X(v)) = f(X0) +
k

∑
i=1

v
(ℓ)
i f(Zi) + f(Q0 (L ○ (W1(v)B

T
l Q
−T
0 +Q

−1
0 BlW2(v)))Q

T
0).

In Table 1 we summarize the operations that can be performed offline and online. Notice that the
O(n3) flops needed to compute W (v) come from the final matrix-matrix multiplications by Q0 and
QT

0 in (16). These operations can be avoided for certain f , thus reducing the cost of computing
W (v) to O(n2) flops.

2.2 Large-scale setting: a projection framework

In this section we address the numerical solution of problems of large dimensions. In particular,
due to a too large value of n, we assume that many of the operations described in the previous
section, e.g., the computation of the eigenvalue decomposition of A0, are not affordable. On the
other hand, we assume we can compute the LU factorization of A0 efficiently.

Assumption 2. The LU factorization of the matrix A0, A0 = LU , can be efficiently computed
and stored, potentially after previous fill-in reducing permutation of A0 and the remaining equation
data.

Taking inspiration from well-established projection methods for large-scale Lyapunov equations,
we design a novel scheme for (5). As before, the main goal is to reuse the information we already
have at hand, as much as possible, every time (5) has to be solved for a new v.

We employ the extended Krylov subspace method presented in [38], and in this section we
illustrate how to fully exploit its properties for our purposes.
We first briefly present the classic projection scheme for parameter independent equations and

then show how to adapt it to solving (1). In the case of a parameter independent Lyapunov
equation of the form (4) with Z = PPT the extended Krylov subspace

EK◻m(A0, P ) = Range([P,A
−1
0 P,A0P,A

−2
0 P, . . . ,Am−1

0 P,A−m0 P ])

=K◻m(A0, P ) +K
◻
m(A

−1
0 ,A−10 P ),

(17)

can be employed as approximation space. In (17), K◻m(A0, P ) denotes the standard, polynomial
(block) Krylov subspace generated byA0 and P , namelyK◻m(A0, P ) = Range([P,A0P, . . . ,A

m−1
0 P ]).

If Vm ∈ Rn×2mk, k = rank(P ), has orthonormal columns and it is such that Range(Vm) =

EK◻m(A0, P ), the extended Krylov subspace method computes an approximate solution of the
form Xm = VmYmV T

m. The square matrix Ym ∈ R2mk×2mk is usually computed by imposing a
Galerkin condition on the residual matrix Rm = A0Xm +XmAT

0 +PPT, namely V T
mRmVm = 0. It is

easy to show that such a condition is equivalent to computing Ym by solving the reduced Lyapunov
equation

TmY + Y TT
m = −E1GGTET

1 ,

where Tm = V
T
mA0Vm, G ∈ R2k×k is such that P = V1G, and E1 = e1 ⊗ I2k. To assess the quality of

the computed solution, the backward error ∆m can be checked and computed as follows

∆m =
∥Rm∥F

2∥A0∥F ∥Xm∥F + ∥PPT∥F
=

√
2∥ET

mTmYm∥F

2∥A0∥F ∥Ym∥F + ∥GGT∥F
, (18)
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where Tm = V T
m+1A0Vm and Em = em ⊗ I2k. Whenever this value is sufficiently small, we stop

the process, otherwise the space is expanded. Note that as long as 2mk ≪ n the quantities Ym

and ET
mTmYm are small and their norms are cheap to evaluate, while the data norms (∥A0∥F and

∥GGT∥F ) are constant and can be computed once before the iteration starts. Note further that
Assumption 2 implies that also ∥A0∥F can be computed in O(n) effort, and G ∈ Rk×k anyway.
Thus, ∆m is cheap to evaluate.
A very similar scheme could be employed also for (5). However, both the right-hand side and

the coefficient matrix in (5) depend on v so that, at a first glance, a new extended Krylov subspace
has to be computed for each v. This would be too expensive from a computational point of view.

We show that only one extended Krylov subspace can be constructed and employed for solving
all the necessary Lyapunov equations (5) regardless of the change in v. In particular, we suggest
the use of EK◻m(A0, P ) as approximation space, where P is defined as in (6). This selection is
motivated by the following reasoning.
As reported in (6), the right-hand side of (5) can be written in factorized form as

P (I2 ⊗D(v))PT, P = [X0Br, Bl] ∈ Rn×2k, I2 = [
0 1
1 0
] .

Therefore, we can use only P as the starting block for the construction of the approximation space
for every v. See, e.g., [25, Section 3.2].
The argument to justify the use of A0 in place of A(v) is a little more involved. We first observe

that we can write
A(v)P = (A0 −BlD(v)B

T
r )P = A0P −Bl(D(v)B

T
rP ),

and since Range(Bl) ⊆ Range(P ) by definition, we have Range(A(v)P ) ⊆ Range(A0P )+Range(P ).
Similarly, we can show that

Range(A(v)
j
P ) ⊆ Range(Aj

0P ) +Range(P ),

for all j > 0. This implies that K◻m(A(v), P ) ⊆ K◻m(A0, P ). We now show that also the Krylov

subspaces for the inverses are nested, i.e. K◻m(A(v)
−1
,A(v)

−1
P ) ⊆ K◻m(A

−1
0 ,A−10 P ), so that

EK◻m(A(v), P ) ⊆ EK◻m(A0, P ) and the use of the non-parametric space EK◻m(A0, P ) is thus
justified.
Thanks to the Sherman–Morrison–Woodbury formula, we have

A(v)
−1
P = (A0 −BlD(v)B

T
r )
−1
P = A−10 P +A−10 Bl(D(v)

−1
−BT

rA
−1
0 Bl)

−1
BT

rA
−1
0 P,

and once again, since Range(A−10 Bl) ⊆ Range(A
−1
0 P ), it holds Range(A(v)

−1
P ) ⊆ Range(A−10 P ).

Similarly, Range(A(v)
−j
P ) ⊆ Range(A−j0 P ) for all j > 0. Therefore, we can use EK◻m(A0, P ) for

the computation of X(v).
If Vm ∈ Rn×4mk has orthonormal columns, and it is such that Range(Vm) = EK◻m(A0, P ), we

seek an approximate solution Xδ,m(v) = VmYm(v)V
T
m to (5). As in the nonparametric case, the

matrix Ym(v) ∈ R4mk×4mk is computed by imposing a Galerkin condition on the residual, namely
it is the solution of the projected equation

(Tm −Bl,mD(v)BT
r,m)Y (v) + Y (v)(Tm −Bl,mD(v)BT

r,m)
T
= E1G(I2 ⊗D(v))GTET

1 , (19)

where Tm = V
T
mA0Vm can be cheaply computed as suggested in [38], Bl,m = V

T
mBl and Br,m = V

T
mBr

can be updated on the fly by performing 4k inner products, whereas G ∈ R4k×2k is such that
P = V1G. Notice that Bl can be exactly represented in EK◻m(A0, P ), namely Bl = VmBl,m, as it is
part of the initial block P = [X0Br,Bl]. This does not hold for Br.
Since the Galerkin method is structure preserving, the small-dimensional equation (19) can be

solved by the procedure presented in Section 2.1.
Once Ym(v) has been computed, we need to decide whether the corresponding numerical solution

Xδ,m(v) = VmYm(v)V
T
m is sufficiently accurate. To this end, we still use the backward error (18).

For the Lyapunov equation (5), the backward error can be computed as shown in the following
proposition.
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Proposition 2.1. The backward error ∆m,v =
∥Rm(v)∥F

2∥A(v)∥F ∥Xδ,m(v)∥F+∥P (I2⊗D(v))PT∥F provided by the

approximate solution Xδ,m(v) = VmYm(v)V
T
m to (5) is such that

∆m,v =

√
2∥ET

mTmYm(v)∥F

2
√

∥A0∥
2
F + v

T((BT
rBl) ○(BT

rBl))v − 2aTv ⋅ ∥Ym(v)∥F + ∥G(I2 ⊗D(v))GT∥F

, (20)

where a = diag(BT
rA0Bl).

Proof. The expression for the residual matrix

Rm = A(v)Xm(v) +Xm(v)A(v)
T
− P (I2 ⊗D(v))PT,

directly comes from the Arnoldi relation

A0Vm = VmTm + Vm+1E
T
mTm,

where Vm+1 ∈ Rn×4k is the (m + 1)-th basis block, namely Vm+1 = [Vm,Vm+1]. We can write

Rm(v) =A(v)Xδ,m(v) +Xδ,m(v)A(v)
T
− P (I2 ⊗D(v))PT

=A(v)VmYm(v)V
T
m + VmYm(v)V

T
mA(v)

T
− P (I2 ⊗D(v))PT

=(A0 −BlD(v)B
T
r )VmYm(v)V

T
m + VmYm(v)V

T
m(A0 −BlD(v)B

T
r ) − P (I2 ⊗D(v))PT.

Recalling that Bl = VmBl,m, P = VmE1G, and plugging the Arnoldi relation above, we get

Rm(v) =Vm((Tm −Bl,mD(v)BT
r,m)Y (v) + Y (v)(Tm −Bl,mD(v)BT

r,m)
T

−E1G(I2 ⊗D(v))GTET
1 )V

T
m + Vm+1E

T
mTmYm(v)V

T
m + VmYm(v)T

T
mEmV

T
m+1

=Vm+1E
T
mTmYm(v)V

T
m + VmYm(v)T

T
mEmV

T
m+1.

Therefore, thanks to the orthogonality of Vm and Vm+1, we have

∥Rm(v)∥
2
F = 2∥E

T
mTmYm(v)∥

2

F .

Similarly, since P = V1G,

∥P (I2 ⊗D(v))PT
∥F = ∥G(I2 ⊗D(v))GT

∥F .

We now focus on ∥A(v)∥F . By exploiting the cyclic property of the trace operator, and recalling
that D(v) is diagonal, we have

∥A(v)∥
2
F =∥A0 −BlD(v)B

T
r ∥

2

F = ∥A0∥
2
F + ∥BlD(v)B

T
r ∥

2

F − 2 trace (BlD(v)B
T
rA0)

=∥A0∥
2
F + trace (BlD(v)B

T
rBlD(v)B

T
r ) − 2 trace (D(v)B

T
rA0Bl)

=∥A0∥
2
F + trace (D(v)(B

T
rBl)D(v)(B

T
rBl)) − 2a

Tv

=∥A0∥
2
F + v

T
((BT

rBl) ○(B
T
rBl))v − 2a

Tv,

where a = diag(BT
rA0Bl).

Proposition 2.1 shows that even though the computation of ∆m,v depends on the current pa-
rameter v, its evaluation can be carried out at low cost. In fact, quantities involving the full
problem dimension n, like ∥A0∥F , (B

T
rBl) ○(B

T
rBl), and a, can be computed in the offline stage.

On the other hand, the computational effort for the remaining parameter-dependent terms is only
quadratic in the dimension k of the parameter space. Thus, as long as k2 stays well below n, this
procedure is cheap. If the accuracy provided by Ym(v) is not adequate, we expand the space.
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Algorithm 1: Extended Krylov subspace method for calculating trace of a structured,
parameter dependent Lyapunov equation.

input : A0 ∈ Rn×n, V: the set of parameter vectors, (BT
rBl) ○(B

T
rBl) ∈ Rk×k,

a = diag(BT
rA0Bl) ∈ Rk, P ∈ Rn×2k, ∥A0∥F

max. iteration count mmax, backward error bound ϵ > 0.
output: f(Xδ,m(v)) for all v ∈ V.

1 Compute a skinny QR factorization of [P,A−10 P ] = V1[γ, θ]
2 Set m = 1, V0 = V
3 while m <mmax do
4 Compute next basis block Vm+1, set Vm+1 = [Vm,Vm+1], and update Tm = V

T
mA0Vm as

in [38]

5 Update Bl,m = V
T
mBl, Br,m = V

T
mBr

6 Compute the offline quantities in Table 1 for solving equation (19)
7 for all v ∈ V0 do
8 Perform the online steps in Table 1 and compute Ym(v)
9 Compute ∆m,v as in (20)

10 if ∆m,v ⩽ ϵ then
11 Compute f(VmYm(v)V

T
m)

12 V0 = V ∖ {v}

13 else
14 break and go to line 15

15 Set m =m + 1

With the corresponding Ym(v) at hand, we can compute f(Xδ,m(v)) = f(VmYm(v)V
T
m). Notice

that, depending on the nature of f , the structure of Xδ,m(v) can be further exploited. For instance,
we can cheaply evaluate trace (Xδ,m(v)), as

trace (Xδ,m(v)) = trace (VmYm(v)V
T
m) = trace (Ym(v)),

thanks again to the cyclic property of the trace and the orthogonality of Vm. Thus, the basis Vm

is not necessary to compute trace (Xδ,m(v)).
The overall procedure is summarized in Algorithm 1. Note that Algorithm 1 can be easily

modified to be used in optimization procedures, having instead of the set of parameter vectors V
a starting vector v0 and using Algorithm 1 to calculate f(VmYm(vℓ)V

T
m) for each new vℓ in the

iterative optimization scheme while keeping, and possibly expanding, the computed subspace.
We recall that the solution of the linear systems with A0 needed in the construction of the basis

of EK◻m(A0, P ) can be efficiently carried out thanks to Assumption 2.

3 Applications

In this section we illustrate two important problem settings where (1) needs to be solved several
times, for many parameters v. The large number of equations in these scenarios makes our novel
solvers very appealing, especially if compared to state-of-the-art procedures which are not able to
fully capitalize on the structure of the problem; see also Section 4.

3.1 Damped vibrational systems

We consider linear vibrational systems described by

Mẍ +C(v)ẋ +Kx = 0,

x(0) = x0, ẋ(0) = ẋ0,
(21)

where M denotes the mass matrix, C(v) denotes the parameter dependent damping matrix, K
denotes the stiffness matrix, and x0 and ẋ0 are initial data. We assume that M and K are
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real, symmetric positive definite matrices of order m. The damping matrix is defined as C(v) =
Cint +Cext(v).
We assume that

Cext(v) = BD(v)BT, (22)

where the matrixB ∈ Rm×k describes the dampers’ geometry and the matrixD(v) = diag (v1, v2, . . . , vk)
contains the damping viscosities vi > 0, for i = 1 . . . , k. The viscosities will be encoded in the pa-

rameter vector v = [v1, v2, . . . , vk]
T
∈ Rk

>0.
The internal damping Cint can be modeled in different ways. It is usually modeled as a Rayleigh

damping matrix, which means that

Cint = αM + βK, with α,β ⩾ 0, α2
+ β2

> 0, (23)

or as a small multiple of the critical damping, that is,

Cint = αM
1/2
√

M−1/2KM−1/2M1/2, where α > 0. (24)

See, e.g., [6, 23,51] for further details.
Vibrations arise in a wide range of systems, such as mechanical, electrical or civil engineering

structures. Vibrations are a mostly unwanted phenomenon in vibrational structures, since they
can lead to many undesired effects such as creation of noise, oscillatory loads or waste of energy
that may produce damaging effects on the considered structures. Therefore, in order to attenuate
or minimize unwanted vibrations, an important problem is to determine the damping matrix in
such a way that the vibrations of the system are as small as possible. This is usually achieved
through optimization of the external damping matrix Cext(v). Within this framework, we will
focus on the optimization of the damping parameter vector v defining Cext(v) as in (22). While
damping optimization is a widely studied topic, there are still many challenging tasks that require
efficient approaches. There is a vast literature in this field of research. For further details we
list only a few references that address the minimization of dangerous vibrations with different
applications [2, 11,14,28,43,51,57].
The problem of vibrations minimization requires a proper optimization criterion. A whole class

of criteria are based on eigenvalues; see, e.g. [9, 12, 16, 27, 44, 53]. Another important criterion is
based on the total average energy of the system. This has been intensely considered in the last two
decades; see, e.g., [7,8,29,47,48,51]. Since our approach is also based on the total average energy,
in the following we provide more details and set the stage for the application of our framework.
Several approaches trying to fully exploit the structure and accelerate the optimization process

have been proposed in the literature about damping systems. In more details, in [45, 49, 50] the
authors considered approaches that allowed derivation of explicit formulas for the total average
energy, but they are adequate only for certain case studies. Furthermore, in [4, 5] the authors
employed dimension reduction techniques in order to obtain efficient approaches for the calculation
of the total average energy. However, these approaches require specific system configurations and
they cannot be applied efficiently for general system matrices.
If we write (21) as a first-order ODE in phase space ẏ = A(v)y, the solution is given by y(t) =

eA(v)ty0, where y0 denotes the vector of initial data. The average total energy of the system is
given by

∫
∥y0∥=1

∫

∞

0
y(t)

T
y(t)dtdσ = ∫

∥y0∥=1
∫

∞

0
yT0 e

A(v)TteA(v)ty0 dtdσ,

where σ is a given non-negative measure on the unit sphere. From [51, Proposition 21.1] it follows
that one can calculate the average total energy as trace(X(v)), where X(v) solves the Lyapunov
equation

A(v)X(v) +X(v)A(v)
T
= −Z. (25)

Here Z is the unique positive semidefinite matrix determined by σ. We will show that A(v) has
the form (2) and that Assumptions 1 is satisfied for both types of internal damping mentioned
above and for typical choices of σ.

Using the linearization y1 = x, y2 = ẋ, the differential equation (21) in phase space can be written
as

ẏ = A(v)y, where A(v) = [
0 I

−M−1K −M−1C(v)
] . (26)
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In the case of internal Rayleigh damping (23), it is easy to see that A(v) has the form (2) with

A0 = [
0 I

−M−1K −αI − βM−1K
] , Bl = [

0
M−1B

] , Br = [
0
B
] .

It can be shown that A(v) is a Hurwitz matrix (the eigenvalues of A are in the open left half of
the complex plane) if α2 + β2 > 0. Moreover, by using the appropriate permutation matrix, A0

can be written as a block diagonal matrix with 2 × 2 blocks on its diagonal so that its eigenvalues
can be directly calculated. Assume Z = diag(K−1,M−1), which corresponds to the choice of the

surface measure σ generated by the energy norm ∥y∥ = 1√
2

√
yT1Ky1 + yT2My2 on R2m. Then, one

can calculate the corresponding X0 as

X0 = [
(αK + βKM−1K)

−1
+ αK−1M−1K−1 + β K−1 − 1

2
K−1

− 1
2
K−1 (αK + βKM−1K)

−1] , (27)

hence Assumption 1 is satisfied. It can be shown that the eigenvalues of A0 are given by

1

2
(−α − βλi ±

√

(α + βλi)
2
− 4λi) ,

where λi > 0, i = 1, . . . ,m, are the eigenvalues of the matrix pair (K,M) and that the corresponding
eigenvectors can be constructed from the eigenvectors of the pair (K,M). Hence, Assumption 2
is satisfied.
In the case of internal damping of the form (24), a different kind of linearization is more conve-

nient. From the assumptions onM andK it follows that there exists a matrix Φ that simultaneously
diagonalizes M and K, i.e.,

ΦTKΦ = Ω2 and ΦTMΦ = I, (28)

where Ω = diag(ω1, . . . , ωm) contains the square roots of the eigenvalues of (K,M), which are
eigenfrequencies of the corresponding undamped (C(v) = 0) vibrational system. We assume that
they are ordered in ascending order, 0 < ω1 ⩽ ω2 ⩽ ⋯ ⩽ ωm. It holds that the matrix Φ diagonalizes
Cint as well, that is,

ΦTCintΦ = αΩ,

for more details see, e.g., [51].
Using the linearization y1 = L

T
Kx, y2 = L

T
M ẋ, where LK , LM are the Cholesky factors of K and

M , respectively, the matrix A(v) can be written as

A(v) = [
0 Ω
−Ω −ΦTC(v)Φ

] , (29)

where Ω and Φ are given by (28). The matrix A(v) from (29) is Hurwitz if α > 0; see, e.g., [51].
Since in this case the matrix A0 is given by

A0 = [
0 Ω
−Ω −αΩ

] ,

all its eigenvalues of A0 are non-real for α < 2.
Let n = 2m. Typical choices for the matrix Z in this case are Z = 1

n
I, which corresponds to the

case when σ is generated by the Lebesgue measure on Rn×n, and, for s <m,

Z =
1

2s

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Is 0 0 0
0 0 0 0
0 0 Is 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (30)

which corresponds to the case when σ is generated by the Lebesgue measure on the subspace

spanned by the vectors [xi,0]
T
and [0, xi]

T
, i = 1, . . . , s, where xi are the eigenvectors of the first

s ωi’s and on the rest of Rn it corresponds to the Dirac measure concentrated at zero.
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For both choices of the matrix Z mentioned above, Assumption 1 is satisfied. Indeed, if Z = 1
n
I,

we have

X0 =
1

n
[
3α
2
Ω−1 − 1

2
Ω−1

− 1
2
Ω−1 1

α
Ω−1
] ,

and if Z is given by (30), then a direct calculation shows that

X0 =
1

2s

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3α
2
Ω−1s 0 − 1

2
Ω−1s 0

0 0 0 0
− 1

2
Ω−1s 0 1

α
Ω−1s 0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where Ωs = diag(ω1, . . . , ωs).

3.2 Multi-agent systems

The second application concerns the analysis of parameter variation in output synchronization for
heterogeneous multi-agent systems. In a nutshell, multi-agent systems are a class of dynamical
systems on networks, consisting of a number of dynamical systems (agents) connected in a network,
where the agents can exchange information with the neighboring agents through a given interaction
protocol, with the communication topology being specified through a (combinatorial) graph. Agent
dynamics can be rather complex; see, e.g., [31]. Examples of systems that can be modelled as
multi-agent systems are, e.g., wireless sensor networks, power grids, and social networks. Common
protocols are those for which the systems achieve consensus or output synchronization, and those
for which the systems achieve desired formation or flocking state. The design and analyses of
multi-agent systems have been a widely investigated field in recent years and for more details see,
e.g., [26, 52,54] and references therein.
The problem of output synchronization is how to design / control a system in such a way that

the outputs of the agents converge to the same state. The general setting of output synchronization
problems for heterogeneous multi-agent systems was considered, e.g., in [10,17,19,31].
An important aspect in heterogeneous multi-agent systems is studying the impact that one agent

has, or a subset of agents has, on the whole system. This will, of course, depend on the dynamics
of these agents and their location in the communication graph. The goal of this subsection is to
analyze this impact with a high computational efficiency in the case of the output synchronization
protocol. We will analyze how one or more agents influence the entire system by using the H2-
norm (see, e.g. [56]) of the corresponding multi-agent system as performance measure. By using
this information, the system designer can modify / control the heterogeneous multi-agent system
in order to achieve a target behavior.
To understand why equations of the form (1) arise in this setting, we first need to briefly introduce

the bigger picture. Motivated by work from [30,32,37], we consider m agents with their dynamics
described by

ξ̇i = Aiξi +Biui + ωi,

ζi = Ciξi.
(31)

Here the function ξi represents the state of the agent i, the function ui represents the input of
the agent i, the function ζi represents the output of the agent i, and the function ωi represents
the exogenous disturbance of the agent i, i ∈ {1,2, . . . ,m}. The matrices Ai, Bi and Ci are called
state, input, and output matrices, of the agent i, respectively. We assume that all matrices Ai have
the same size, and that the same holds for the matrices Bi and Ci. Let G be the corresponding
communication graph, which models the connections of the agents from (31), with nodes {1, . . . ,m}.
This means that (i, j) is an edge in the graph G if the agents i and j exchange information through
the common protocol. A protocol we are going to study is the following

ui(t) = −Ki ∑
j∈Ni

(ζi(t) − ζj(t)), i = 1, . . . ,m. (32)

Here Ni denotes the set of neighboring agents of the agent i (described by G) and Ki is a so-called
gain matrix of appropriate dimension [37].
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We define the stack vector ξ = (ξ1, . . . , ξm). Let n be the size of the matrices Ai, hence nm
is the size of the vector ξ. As we want to treat scenarios in which the disturbances ωi need not
all be independent, let us suppose that among the exogenous disturbances {ω1, . . . , ωm} there are
k ∈ {1, . . . ,m} different ones {ωi1 , . . . , ωik} (e.g., the same ocean waves or wind gusts concurrently

disturb several agents). Then [ω1 ⋯ ωm]
⊺
= H [ωi1 ⋯ ωik]

⊺
, where the matrix H ∈ Rm×k is

given by

Hjl =

⎧⎪⎪
⎨
⎪⎪⎩

1, ωj = ωil

0, otherwise
, j = 1, . . . ,m, l = 1, . . . , k.

With E =H ⊗ In we denote the corresponding disturbance matrix. Let ω = (ωi1 , . . . , ωik). With C
we denote the overall output matrix C = diag(C1, . . . ,Cm).
The closed-loop dynamic equation of the system described by (31) and (32) can be represented

as
ξ̇(t) =Aξ(t) +Eω(t),

ζ(t) =Cξ(t),
(33)

where the system matrix A ∈ Rnm×nm in (33) can be seen as a block matrix whose (i, j)-th block
Aij is given by

Aij = δi,jAi − ℓijBiKiCj , i, j ∈ {1, . . . ,m} ,

where ℓij , i, j = 1,2, . . . ,m, are the entries of the Laplacian matrix L of the graph G, see, e.g., [32].
Note, however, that the model in [32] has delays, while our model has no delays.
By calculating theH2-norm of the system (33), we are calculating the norm of the mapping ω ↦ ζ,

thus measuring how the disturbance ω is influencing the multi-agent system. This boils down to
the calculation of trace(EETX), where X solves the Lyapunov equation ATX +XA = −CTC. If
we were interested in measuring the influence of the disturbance to a part of the system, i.e. to a
subset of agents, instead of the matrix C in (33), we would use the matrix PC, where P has the
form P = P ⊗ I, with P being an orthogonal projector to the subspace spanned by the canonical
vectors corresponding to the subset of agents we are interested in.
We want to study the impact that a variation of dynamics in one or a subset of agents has on

the H2-norm of the resulting system. To this end, we need to compute trace(EETX(v)) where
now X(v) denotes the solution to a Lyapunov equation of the form (1) with Z = CTC. In this
framework, the low-rank modification BlD(v)Br

T in the coefficient matrix (2) is meant to take
into account the variation in the dynamics of the agents of interest. In particular, Bl and Br will
encode the location of the agents to be modified whereas D(v) amounts to the parameter variation
to be applied to those agents.
In the numerical examples in Section 4 we choose symmetric matrices Ai and Ki, and we will

also take Bi = C
T
i , i = 1, . . . ,m. Hence the matrix A will be symmetric and therefore Assumptions 1

and 2 will be satisfied.

4 Numerical examples

We now illustrate the advantages of the proposed methods for the two applications described
in the previous section. Firstly, we consider an example including the analysis of the influence
of damping parameters in a mechanical system. Secondly, we study the impact that variation of
agents’ dynamics has on a couple of different multi-agent systems. To this end, we employ our novel
schemes to efficiently compute the H2-norm of the underlying linear time-invariant system (33).

Example 4.1. We consider a mechanical system of 2d+1 masses consisting of two main rows of d
masses connected with springs; see, e.g., [3,5]. The springs in the first row of masses have stiffness
k1 and those in the second row have stiffness k2. The first masses, on the left edge, (i.e., masses m1

and md+1) are connected to a fixed boundary, while, on the other side of the rows, the last masses
(md and m2d) are connected to the mass m2d+1 which, via a spring with stiffness k3, is connected
to a fixed boundary.
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Figure 1: Example 4.1, illustration of the mechanical system.

The model is given by (21) where the mass matrix is M = diag (m1,m2, . . . ,m2d+1) and the
stiffness matrix K is given by

K =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K11 −κ1

K22 −κ2

−κT1 −κT2 k1 + k2 + k3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Kii = ki

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
−1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with κi = [0 . . . 0 ki] for i = 1,2.
Each row has d masses and we consider systems with 2d + 1 masses including

mi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
10
(2d + 1 − 2i), i = 1, . . . ,500,

1
10
(i − 500) + 100, i = 501, . . . ,1000,

160, i = 1000, . . . ,2d,
(34)

m2d+1 = 175.

The stiffness values are chosen as k1 = 40, k2 = 20, and k3 = 30. We assume that the internal
damping is modeled as a small multiple of the critical damping (24) with α = 0.04. We would like
to remind the reader that, for a given d, the coefficient matrix A(v) in (1) has dimension n = 4d+2.

We consider viscosity optimization over three dampers (k = 3) with viscosities v1, v2 and v3 with
their positions encoded in

Bl = Br = [ ei1 , ei1+ d
10
− ei1+ d

10+d
, ei2 ] , 1 ⩽ i1 ⩽ d, d + 1 ⩽ i2 ⩽ 2d, (35)

where ei is the ith canonical vector and the indices i1 and i2 determine the damping positions. The
first damping positions will damp the first row of masses (using a grounded damper). Similarly,
the third damps the second row of masses, while the second damper connects both rows of masses
of the considered mechanical system.
We will optimize the viscosity parameters with respect to the average total energy measure

introduced in Section 3.1. The optimization problems were solved by using Matlab’s built-in
fminsearch with the starting point v0 = (100,100,100). The stopping tolerance for this routine
was set to 10−4.
The performance of our new approaches will be illustrated on two damping configurations with

different features.

a) In the first case we consider a small dimensional problem with d = 400, so we have a system
with 801 masses. Here we damp the 9 lowest undamped eigenfrequencies, i.e., s = 9 in (30).
The damping geometry is determined by (35) and 20 different damping positions will be
considered. These are determined by the following indices:

i1 ∈ {50,130,210,290}, and i2 ∈ {460,540,620,700,780}.
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Figure 2: Example 4.1, the case a). Relative errors in the total average energy (squares) and in
the viscosity (circles) at optimal gains for the recycling Krylov method.

Due to the small problem dimension (n = 1602), we employ the recycling Krylov technique
presented in Section 2.1 to solve this problem. In particular, we use the following parame-
ters for the GCRO-DR method. The threshold on the relative residual norm is 10−10, the
maximum number of iterations allowed is 300, and the number of eigenvectors sℓ used in the
recycling technique is sℓ = 10 for all ℓ. In the preconditioner (15), the rank p̄ of N1M

T
1 and

N2M
T
2 coming from the TSVD of NT

1L
−1
0 M1 and NT

2L
−1
0 M2, respectively, is 50.

b) In the second case we increase the problem dimension by considering d = 1000, thus here we
have a system with 2001 masses and n = 4002. In this case, we damp the 21 lowest undamped
eigenfrequencies, i.e., s = 21 in (30). Here we consider 25 damping positions determined by
the following indices:

i1 ∈ {50,250,450,650,850}, and i2 ∈ {1150,1350,1550,1750,1950}.

We apply the projection framework illustrated in Section 2.2 for the solution of this larger
problem. We would like to mention that a Lyapunov equation whose coefficient matrix is of
dimension 4002 as in this case is usually not considered to be large-scale in the matrix equation
community. On the other hand, the huge number of Lyapunov equations we need to solve
within the optimization procedure makes our novel projection framework very appealing. In
Algorithm 1 we employ ϵ = 10−8 and mmax = 120. The projected equations (19) are solved by
means of our recycling Krylov approach adopting the same parameters as in case a) above.

We first focus on case a) described above and in Figure 2 we report the relative errors obtained
by our recycling Krylov method. The relative errors in the optimal viscosities were calculated by
∥v∗−v∥/∥v∥, where v and v∗ denote the optimal viscosity vectors calculated by the recycling Krylov
method and the Matlab’s function lyap, respectively. Similarly, the relative errors in the average
total energy are calculated by ∣ trace(X(v)

∗
) − trace(X(v))∣/ trace(X(v)

∗
), where trace(X(v)

∗
) is

once again the optimal trace for the given configuration obtained by the Matlab’s function lyap,
and trace(X(v)) is the optimal trace calculated by our recycling Krylov scheme.
From the results reported in Figure 2 we can notice that our novel recycling Krylov approach

leads to a solution process able to achieve very small errors in the average total energy. Also the
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Figure 3: Example 4.1, case a). Acceleration factors in the overall minimization procedure attained
by employing our novel recycling Krylov approach.

computed optimal viscosities turn out to be rather accurate attaining an error of the same order
of the threshold used for fminsearch. Moreover, our novel recycling Krylov strategy is very effi-
cient. In particular, in this example, it accelerated the overall optimization process approximately
2.7 times (in the average case). Figure 3 shows a precise acceleration ratio for each considered
configuration. The displayed time ratio is the ratio between the total time needed for the direct
calculation of the average total energy by using Matlab’s function lyap and the total time needed
for the viscosity optimization by using the recycling Krylov method.
We would like to mention that, for this example, we tried to use also GCRO-DR with no

preconditioning within our recycling Krylov technique. In the best case scenarios, plain GCRO-DR
managed to converge by performing a larger number of iterations: O(102) iterations to be compared
to the O(101) iterations performed in the preconditioned case. Such large number of iterations
remarkably worsened the overall performance in terms of computational time. In some other cases,
unpreconditioned GCRO-DR did not achieve the prescribed level of accuracy thus jeopardizing the
convergence of the outer minimization procedure. This shows that the preconditioning operator
P described in (15) works well even though more performing preconditioners can certainly be
designed.
We now turn our attention to case b). As already mentioned, having coefficient matrices of

dimension 4002 is often considered as working in the small-scale setting in the matrix equation
literature so that dense linear algebra solvers may be preferred in this case. In this example we
would like to show that employing a projection framework is largely beneficial also in this scenario.
To this end, we compare our fresh projection framework with the recycling Krylov technique we
propose in Section 2.1. Indeed, we showed above that the latter method is able to achieve small
errors while accelerating the overall solution process. Figure 4 shows the relative errors achieved
by our projection framework with respect to the recycling Krylov method. We can notice that
the error in the optimal viscosities is still of the same order of magnitude of the threshold used
within fminsearch whereas the relative errors in the optimal average total energy norm are a
little higher than the ones reported in Figure 2, even though still satisfactory. Moreover, the
projection framework method accelerated the optimization process by approximately 23.3 times
and Figure 5 showcases a precise acceleration time ratio for all the 25 configurations, compared
to the recycling Krylov method. The main reason why our novel projection method performs so
well in terms of computational time lies in the fact that we basically use the same approximation
subspace for every vℓ. In particular, once we construct a sufficiently large EK◻m(A0, P ) for the
first equation, namely ∆m,v0 meets our accuracy demand, we keep using the same approximation
subspace for all the subsequent equations, by expanding it very few times instead of computing a
new subspace from scratch. For most of the damping configurations we considered, EK◻m(A0, P )
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Figure 4: Example 4.1, case b). Relative errors in the total average energy (squares) and in the
viscosity (circles) at optimal gains for the projection framework.
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Figure 5: Example 4.1, case b). Acceleration factors in the overall minimization procedure attained
by employing our new projection framework.

does not need to be expanded at all after its construction during the solution of the first equation.
Only for three configurations – (i1, i2) ∈ {(250,1750), (450,1550), (450,1950)} – EK◻m(A0, P )
needed to be expanded a couple of times during the optimization procedure. In particular, for
(i1, i2) = (250,1750), the dimension of EK◻m(A0, P ) after the solution of the first equation was
708. This space has been expanded twice during the online optimization step getting a space
of dimension 720 and then 732. Similarly, for (i1, i2) = (450,1950) we started the online phase
with a space of dimension 780, which got expanded twice getting a space of dimension 792 first,
and 804 later. For (i1, i2) = (450,1550), EK◻m(A0, P ) was expanded only once passing from a
space of dimension 768 to a space of dimension 780. In general, for this example, the dimension
of EK◻m(A0, P ) averaged over all the configurations is about 749 with a minimum and maximum
dimensions equal to 708 and 852, respectively.

In the next numerical examples we are going to illustrate the following two cases of analysis of
multi-agent systems that are of interest:
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• For each agent i we choose H = ei. Then we study the influence of the variation of the
dynamics of the agent i by calculating the H2-norm of the corresponding systems. By
applying this procedure to all agents, we can study the structural importance of each agent
in the system.

• We choose H = Im. For a given set of subsets of agents {J1, . . . , Jq}, Ji ⊂ {1, . . . ,m}, and
a given set of parameters of agents in Ji, we study the influence of these parameters to the
dynamics of the overall system. By calculating the corresponding H2-norms we can study
the influence of these parameters on the dynamics of the whole system when all agents are
exposed to independent external disturbances.

See Examples 4.2 and 4.3 for further details.

Example 4.2. For the sake of simplicity, here we investigate agent dynamics that are defined by
2 × 2 state matrices. We consider m = 196 agents. The state matrices of all agents are given by

Ai = [
−10 5
5 −8

] , for i = 1, . . . ,m.

By following the notation of Section 3.2, the other components of the system are

Ki = [
0.3 0
0 0.2

] , Bi = C
T
i = [

1 1
−1 1

] , for i = 1, . . . ,m.

Therefore, the 2 × 2 blocks of the system matrix A ∈ R2m×2m are given by

Aij = δi,jAi − ℓijBiKiCj , i, j ∈ {1, . . . ,m} .

An illustration of the underlying topology can be seen in Figure 6.
We would like to analyze the influence of parameter variations in different agents. This means

that for a fixed k-th agent to be altered, we consider a low-rank update of A aimed at modifying
only its k-th diagonal 2 × 2 block. In particular, given the parameters v = (v1, v2, v3), the matrix
A(k)(v) corresponds to a low-rank update of A of the following form

A(k)(v) =A −Bl diag(v1, v2, v2, v3)Br, (36)

where Bl,Br ∈ Rm×4 are determined by the agent index k. It holds

Bl(2(k − 1) + 1 ∶ 2k,1 ∶ 4) = [
1 1 0 0
0 0 1 1

] , Br(2(k − 1) + 1 ∶ 2k,1 ∶ 4) = [
1 0 1 0
0 1 0 1

] ,

whereas all other entries of Bl and Br are zero. In this example we considered the influence of the
variation of the dynamics of one agent by calculating the H2-norm of a corresponding system when
only this agent is externally disturbed. Thus, in the case of the matrix A(k) (that corresponds to
analyzing the k-th agent), the corresponding matrix E is given by E = ek ⊗ In, for k = 1, . . . ,m.
For all different agents, we will analyze the dependence of the system to the parameter variation

v1, v2, and v3 of the k-th agent, k = 1, . . . ,m. In particular, the low-rank update of the system
matrix given by (36) influences the k-th block in the following way. The diagonal elements are
altered by the parameters v1 and v3, while the off-diagonal elements are symmetrically modified
by the parameter v2. All the parameters v1, v2, and v3 will be varied between -9.9 and 10.1 with
step 1.
In this example we will modify all the agents, namely we consider all agent’s indices k = 1, . . . ,m.
We note that some of the instances of A(k)(v) turned out to be non stable. We have discarded

those instances in our analysis. By doing so, for this particular example, the total number of
considered parameters is equal to 1 400 328. This means that we needed to calculate the H2-norm,
and thus solve a Lyapunov equation, a significant number of times. In particular, for fixed v1, v2,
v3, we are interested in identifying for which k, k = 1, . . . ,m, the H2-norm of the underlying system
over described parameter variations is maximal. This provides an insight on the importance of the
considered agent.
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average required time (s) average relative error

lyap 625.02 -

rec. Krylov 678.05 3.575 ⋅ 10−12

proj. framework 17.48 3.675 ⋅ 10−12

Table 2: Example 4.2. Computational time and relative errors.

Figure 6: Example 4.2. Maximal H2-norm for different agents with respect to the parameter varia-
tions we performed. Darker colors correspond to the agents where the maximal H2-norm
is larger.

Table 2 presents the average computational time needed by different methods to perform the
task described above. We report the average required time by our novel solvers, namely the
recycling Krylov method and the projection framework (denoted in the table by rec. Krylov and
proj. framework, respectively). The computational parameters of our recycling Krylov method are
as in Example 4.1. The only exceptions are in the GCRO-DR threshold and the rank p̄ of the
TSVD N1M

T
1 and N2M

T
2 used in the preconditioner. Here we use 10−8 and p̄ = 5, respectively.

For Algorithm 1 we used ϵ = 10−10 and mmax = 200. The projected equations are solved by our
recycling Krylov method with the same setting we have just described above.
In the same table, we also document the relative errors achieved by the different algorithms.

To this end, we considered the results obtained by using lyap as exact. As we can see, all the
approaches achieve a very small relative error. On the other hand, the projection framework
outperforms all other approaches in terms of computational time; being one order of magnitude
faster than all the other algorithms we tested. Also in the multi-agent system framework, reusing
the same subspace EK◻m(A0, P ) is key for our projection method to be successful. For this example,
the extended Krylov subspace generated by our routine is very small for all the configurations we
tested. In particular, the space dimensions range from 8 to 56 with an average value equals to
29.08.
Figure 6 illustrates the topology of the problem and provides information regarding the maximal

H2-norm we computed by varying the parameter of the system. This latter aspect is illustrated by
the node colors. In particular, darker colors correspond to the agents where the maximal H2-norm
turns out to be larger. It can be seen that certain groups of agents result in much larger H2-norms.
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Algorithm 2: Construction of the Laplacian matrix L in Example 4.3.

input : number of agents m
output: the Laplacian matrix L

1 r = [m/20+m/50 ∶m/10, m/4+m/20 ∶m/4+m/10, m/2+m/20+ 2 ∶m/2+m/20+m/50, . . .

m/2 +m/10 + 2 ∶m/2 +m/10 +m/20, m −m/10 ∶m −m/20] ∈ Rir

2 h = [1 ∶m/20, m/10 +m/40 ∶m/10 +m/20, m/2 ∶m/2 +m/20, m − 1] ∈ Rih

3 for i = 1 ∶m − 2 do
4 L(i, i + 1) = −1; L(i,m) = −1;

5 L(1,m − 1) = −1; L(m − 1,m) = −1;
6 for i = 1 ∶ ir do
7 if r(i) == (m − 1) then
8 L(1,m − 1) = 0;

9 else
10 L(r(i), r(i) + 1) = 0;

11 L(h,m) = 0; L = L +LT ;
12 for i = 1 ∶m do
13 L(i, i) = −∑

m
j=1(L(i, j));

Therefore, they are much more important for the considered multi-agent system as altering those
agents may lead to an (almost) unstable system. Thanks to our novel solvers, this kind of analysis
can now be accurately carried out at acceptable cost.

Example 4.3. In this example, we still consider agent dynamics defined by 2×2 state matrices of
dimension m. We aim at analyzing the parameter variation in off-diagonal elements of consecutive
agents. The system matrices Ai, Bi, Ci, Ki, Ci, and A are defined as in Example 4.2 but here we
consider m = 200.
The Laplacian matrix L of the underlying graph is given by Algorithm 2 and the corresponding

matrices Bl and Br determining the low-rank perturbation are defined in the following way. For a
given odd index 1 ⩽ k ⩽ 2m − 3, Bl,Br ∈ Rm×4 are

Bl(k ∶ k + 3,1 ∶ 4) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Br(k ∶ k + 3,1 ∶ 4) = I4,

and all other entries of Bl and Br are zero.
The modified system matrix will depend on two parameters v1 and v2 and it is defined as

A(k)(v) =A −Bl diag(v1, v1, v2, v2)Br.

This means that for a fixed index k, the off-diagonal elements of the diagonal blocks determined
by k and k + 1 are modified by v1 and v2, respectively. The parameters v1 and v2 vary between
-4.9 and 14.6 with step 0.5. As before, we only consider the stable instances of the matrices A(k)

for our purposes.
We will study the behavior of the H2-norm of the underlying system by varying the parameter

k ∈ {61,141,221,301}. The total number of parameter configurations v = (v1, v2) for which Ak(v)
is stable is equal to 6 044. Moreover, in this example, we considered the matrix E = I2m for all
cases, meaning that we measured the H2-norm of the corresponding systems when all agents were
independently externally disturbed.
We test the same routines as in Example 4.2, namely lyap, and our novel schemes, with the

same setting as before.
We start by reporting the relative errors and the computational timings attained in the com-

putation of the H2-norms for all the considered parameters; see Table 3. The relative errors are
calculated with respect to H2-norm obtained by using lyap.
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total required time(s) average relative error
k 41 121 201 281 41 121 201 281

lyap 165.51 141.36 157.43 164.64 - - - -

rec. Krylov 257.49 242.93 255.52 265.59 7 ⋅10−14 1.03 ⋅10−13 2.07 ⋅10−13 1.7 ⋅10−13

proj. framework 15.23 9.55 10.71 25.31 9.79 ⋅10−14 7.64 ⋅10−14 2.18 ⋅10−13 1.28 ⋅10−11

Table 3: Example 4.3. Computational time and relative errors.

Figure 7: Example 4.3: magnitude of the H2-norm.

From the results in Table 3 we can see that our recycling Krylov scheme always attains very small
relative errors. On the other hand, it turns out to be not very competitive in terms of computational
timings. A finer tuning of the GCRO-DR parameters and the preconditioning operator may lead
to some improvements in the performance of our scheme. Our projection framework outperforms
all other approaches in terms of computational timing.
The extended Krylov subspaces constructed by our projection method turn out to be a little

larger in this example than the ones in Example 4.2. In particular, the smallest and largest
subspaces have dimension 12 and 96, respectively, whereas the average space dimension is 49.71.
In Figure 7 we display the magnitude of the H2-norm by varying v for a fixed k. It can be

seen how certain parameter values have a much greater impact on the H2-norm of the system thus
emphasizing the important role of the corresponding pairs of agents. Once again, thanks to our
novel solution processes, such analysis can be carried out in very few seconds on a standard laptop.

5 Conclusions

We proposed two different, efficient, and accurate methods for solving sequences of parametrized
Lyapunov equations. The recycling Krylov approach is well-suited for small dimensional problems
and is able to provide solutions achieving a very small relative errors. The proposed projection
framework relies on the extended Krylov subspace method, and it makes use of the aforementioned
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recycling Krylov technique to solve the projected equations. Even though this second algorithm is
tailored to large-scale problems, our numerical results show that it is extremely competitive also for
medium-sized problems, especially if the number of Lyapunov equations to be solved is very large
as it happens in the application settings we studied. We showed that the projection framework
is able to speed up the entire solution process by an order of magnitude. Expensive analyses like
viscosity optimization for vibrational systems and output synchronization of multi-agent systems
are, thus, now affordable.
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[32] I. Palunko, D. Tolić, and V. Prkačin, Learning near-optimal broadcasting intervals
in decentralized multi-agent systems using online least-square policy iteration, IET Control
Theory & Applications, 15 (2021), pp. 1054—1067, https://doi.org/10.1049/cth2.12102.

[33] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti, Recycling
Krylov subspaces for sequences of linear systems, SIAM J. Sci. Comput., 28 (2006), pp. 1651–
1674, https://doi.org/10.1137/040607277.

[34] M. L. Parks, K. M. Soodhalter, and D. B. Szyld, Block GCRO-DR: A version of the
recycled GMRES method using block Krylov subspaces and harmonic Ritz vectors, April 2016,
https://doi.org/10.5281/zenodo.48836.

[35] M. L. Parks, K. M. Soodhalter, and D. B. Szyld, A block recycled GMRES method
with investigations into aspects of solver performance, e-print 1604.01713, arXiv, 2016, http:
//arxiv.org/abs/1604.01713. math.NA.

[36] J. Przybilla, I. Pontes Duff, and P. Benner, Semi-active damping optimization of
vibrational systems using the reduced basis method, e-print 2305.12946, arXiv, 2023, https:
//doi.org/10.48550/arXiv.2305.12946. math.DS.

[37] W. Ren and R. Beard, Distributed consensus in multi-vehicle cooperative control - theory
and applications, Springer, London, 2008. In: Communications and control engineering.

[38] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations,
SIAM J. Sci. Comput., 29 (2007), pp. 1268–1288, https://doi.org/10.1137/06066120X.

[39] N. T. Son, P.-Y. Gousenbourger, E. Massart, and T. Stykel, Balanced truncation
for parametric linear systems using interpolation of Gramians: a comparison of algebraic
and geometric approaches, in Model reduction of complex dynamical systems, vol. 171 of
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[48] N. Truhar and K. Veselić, An efficient method for estimating the optimal dampers’ vis-
cosity for linear vibrating systems using Lyapunov equation, SIAM J. Matrix Anal. Appl., 31
(2009), pp. 18–39, https://doi.org/10.1137/070683052.
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