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ABSTRACT
Sequences of parametrized Lyapunov equations can be encountered in many application settings. Moreover, solutions of such
equations are often intermediate steps of an overall procedure whose main goal is the computation of trace(𝐸𝑋), where𝑋 denotes
the solution of a Lyapunov equation and𝐸 is a given matrix. We are interested in addressing problems where the parameter depen-
dency of the coefficient matrix is encoded as a low-rank modification to a seed, fixed matrix. We propose two novel numerical
procedures that fully exploit such a common structure. The first one builds upon the Sherman-Morrison-Woodbury (SMW) for-
mula and recycling Krylov techniques, and it is well-suited for small dimensional problems as it makes use of dense numerical
linear algebra tools. The second algorithm can instead address large-scale problems by relying on state-of-the-art projection tech-
niques based on the extended Krylov subspace. We test the new algorithms on several problems arising in the study of damped
vibrational systems and the analyses of output synchronization problems for multi-agent systems. Our results show that the algo-
rithms we propose are superior to state-of-the-art techniques as they are able to remarkably speed up the computation of accurate
solutions.
MSC2020 Classification: MSC1, MSC2, MSC3

1 | Introduction and Setting

The main goal of this study is the design of efficient numerical
procedures for solving sequences of parameter-dependent Lya-
punov equations of the form

𝐴(v)𝑋 +𝑋𝐴(v)T = −𝑄 (1)

where 𝐴(v) has the form

𝐴(v) = 𝐴0 − 𝐵𝑙𝐷(v)𝐵T
𝑟

(2)

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Here 𝐴0, 𝑄 ∈ ℝ𝑛×𝑛, and 𝐵𝑙, 𝐵𝑟 ∈ ℝ𝑛×𝑘 are fixed matrices, and
the matrix 𝐷(v) = diag(𝑣1, 𝑣2, . . . , 𝑣𝑘) contains parameters 𝑣𝑖 ∈
ℝ ⧵ {0}, for 𝑖 = 1 . . . , 𝑘, encoded in the parameter vector v =[
𝑣1, 𝑣2, . . . , 𝑣𝑘

]T ∈ (ℝ ⧵ {0})𝑘 1. Note that, without loss of general-
ity, we assume that the parameters in v are nonzero. The number
of parameters 𝑘 is supposed to be very small, 𝑘 = (1), as this
is the case in the application settings we are interested in; see
Section 3.

Structured equations of the form (1) arise in many problem set-
tings. Indeed, let 𝑏𝑖

𝑙
, 𝑏𝑖

𝑟
, 𝑖 = 1, . . . , 𝑘, be the columns of the
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matrices 𝐵𝑙 and 𝐵𝑟, respectively. Then 𝐴(v) = 𝐴0 −∑𝑘

𝑖=1𝑣𝑖𝑏
𝑖
𝑙
(𝑏𝑖
𝑟
)T =∶ 𝐴0 +

∑𝑘

𝑖=1𝑣𝑖𝐴𝑖, and hence matrices of the
form (2) can describe a class of parameter-dependent matri-
ces with an affine dependency on the parameters. Lyapunov
equations with such coefficient matrices naturally arise in the
study of vibrational systems [1], parametric model reduction
[2], in the design of low gain feedback [3], and the analysis of
multi-agent systems [4, 5]. The applications we are going to
study more closely are optimal damping of vibrational systems
and output-synchronization problems for multi-agent systems.

We are especially interested in devising efficient procedures for
calculating trace(𝐸𝑋(v)), for some matrix 𝐸, for many differ-
ent parameter vectors v, with calculating 𝑋(v) only being an
intermediate step. For instance, this is the case when comput-
ing the 𝐻2-norm of a linear system. An efficient computation
of trace(𝐸𝑋(v)) is crucial for obtaining competitive numerical
schemes in terms of both computational performance and mem-
ory requirements for the applications mentioned above. Our
method also covers efficient calculation of quantities of the form
𝑓 (𝑋(v)), for a given function 𝑓 that is assumed to be additive,
that is, 𝑓 (𝑋 + 𝑌 ) = 𝑓 (𝑋) + 𝑓 (𝑌 ). To simplify the notation, in the
sequel we will denote trace(𝐸𝑋) by 𝑓 (𝑋).

Naturally, one can solve (1) from scratch for any v. For instance, if
the problem dimension allows, one can apply the Bartels-Stewart
algorithm [6] to each instance of (1). However, this naive proce-
dure does not exploit the attractive structure of (1) and requires
the computation of the Schur decomposition of 𝐴(v) any time
v changes. This approach is not affordable in terms of compu-
tational cost if v varies a lot and 𝑓 (𝑋(v)) needs to be evaluated
many times. More sophisticated schemes for (1) can be found
in the literature. For instance, the algorithms presented in [1, 7]
do exploit the structure of 𝐴(v) in (2). Even though these
schemes are more performing than a naive application of the
Bartels-Stewart algorithm, they are not designed to capitalize on
a possible slow variation in v as it often happens within, for
example, an optimization routine. Moreover, they can be applied
to small dimensional problems only. Various approaches for solv-
ing the parameter-dependent Lyapunov equations can be found
in the literature, including those based on the conjugate gradi-
ent method [8], low-rank updates [9], interpolation on manifolds
[10], and low-rank reduced basis method [11, 12]. On the other
hand, they are not well-suited for solving sequences of numerous
parameter-dependent equations.

Leveraging the structure of the coefficient matrix A(v)—A(v)
is an affine function in v—we propose two different schemes
which are able to fully separate the parameter-independent cal-
culations from the v-dependent computations. The former will be
performed once and for all in an offline step, whereas the latter
operations take place online, namely every time v changes.

The first procedure we suggest in this paper builds upon the work
in [1, 7], which we enhance with a recycling Krylov technique.
This routine makes use of dense linear algebra tools so that it is
well suited for small dimensional problems, that is, for moder-
ate values of 𝑛. The second routine addresses the large-scale case
employing projection methods for linear matrix equations.

Both our algorithms take inspiration from the low-rank update
scheme presented in [9], for which the following assumption is
needed.

Assumption 1. The solution 𝑋0 to the Lyapunov equation
𝐴0𝑋 +𝑋𝐴T

0 = −𝑄 can be computed efficiently.

1.1 | Synopsis of the Paper

In Section 2 we present the main contribution of this work. In
particular, a novel scheme combining the SMW formula with
recycling Krylov-like methods is illustrated in Section 2.1. As
already mentioned, this scheme is able to efficiently deal with
small dimensional problems only as it employs dense numerical
linear algebra tools like, for example, the full eigenvalue decom-
position of 𝐴0, so that it cannot be applied in the large-scale
setting. We address the latter scenario in Section 2.2, where a
sophisticated projection technique, based on the extended Krylov
subspace (19), is illustrated. In this framework, we will assume
to be able to efficiently solve linear systems with 𝐴0. Some
details about two application settings where equations of the
form (1) are encountered are reported in Section 3. In particular,
damped vibrational systems are treated in Section 3.1, whereas
in Section 3.2 multi-agent systems are considered. A panel of
diverse numerical experiments displaying the effectiveness of our
methodology is presented in Section 4, while Section 5 collects
our conclusions.

Throughout the paper, we adopt the following notation: The
symbol ⊗ denotes the Kronecker product, and ∘ denotes the
Hadamard (component-wise) product. Capital letters, both in
roman (𝐴) and italic (), denote matrices with no particular
structure, whereas capital bold letters (A) denote matrices having
a Kronecker structure. Given a matrix 𝑋 ∈ ℝ𝑚×𝑛, vec(𝑋) ∈ ℝ𝑚𝑛
denotes the vector obtained by stacking the columns of𝑋 on top
of each other. The matrix 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix; the sub-
script is omitted whenever the dimension of 𝐼 is clear from the
context. The symbol 𝑒𝑖 denotes the 𝑖-th canonical basis vector of
ℝ𝑠, where 𝑠 is either specified in the text or clear from the con-
text. The symbol 𝛿𝑖,𝑗 denotes the Kronecker delta, that is, 𝛿𝑖,𝑗 = 1
if 𝑖 = 𝑗 and zero otherwise.

2 | The Novel Solution Methods

Equation (1) can be written as

(𝐴0 − 𝐵𝑙𝐷(v)𝐵T
𝑟
)𝑋(v) +𝑋(v)(𝐴0 − 𝐵𝑙𝐷(v)𝐵T

𝑟
)T = −𝑄

By exploiting the low rank of 𝐵𝑙𝐷(v)𝐵T
𝑟

and using the low-rank
update approach presented in [9], we can also rewrite 𝑋 as the
sum of a fixed matrix and a low-rank update term, that is,

𝑋(v) = 𝑋0 +𝑋𝛿(v) (3)

where𝑋0 and𝑋𝛿(v) are as follows. The matrix𝑋0 is independent
of the parameter vector v, and it solves the Lyapunov equation

𝐴0𝑋0 +𝑋0𝐴
T
0 = −𝑄 (4)
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whereas𝑋𝛿(v) is such that

𝐴(v)𝑋𝛿(v) +𝑋𝛿(v)𝐴(v)T = 𝐵𝑙𝐷(v)𝐵T
𝑟
𝑋0 +𝑋0𝐵𝑟𝐷(v)𝐵T

𝑙
(5)

Assumption 1 implies that𝑋0 can be efficiently calculated.

We notice that the right-hand side in (5) can be written as

𝐵𝑙𝐷(v)𝐵T
𝑟
𝑋0 +𝑋0𝐵𝑟𝐷(v)𝐵T

𝑙
= [𝑋0𝐵𝑟, 𝐵𝑙]

[
0 𝐷(v)
𝐷(v) 0

]
[𝑋0𝐵𝑟, 𝐵𝑙]T = 𝑃

(2 ⊗𝐷(v)
)
𝑃 T (6)

where𝑃 = [𝑋0𝐵𝑟, 𝐵𝑙]has rank 2𝑘, and2 =
[

0 1
1 0

]
. This formula-

tion of the right-hand side will be crucial for the projection-based
method we design for large-scale problems in Section 2.2.

In the next sections, we show how to efficiently compute 𝑋𝛿(v).
In particular, it turns out that many of the required operations do
not depend on v so that they can be carried out in the offline stage.
Therefore, we split the solution process into offline and online
phases, where only the operations that actually depend on v are
performed online.

2.1 | Small-Scale Setting: SMW and Recycling
Krylov Methods

In this section we address the numerical solution of the Lyapunov
equation (5) assuming the problem dimension 𝑛 to be small,
namely it is such that dense linear algebra operations costing up
to (𝑛3) flops are feasible.

Even though there are many efficient methods for solving Lya-
punov equations of moderate dimensions, see, for example [13]
and references therein, we want to efficiently solve (5) for a
sequence of parameter vectors v.

The strategy proposed in this section builds upon the work
in [1, 7]. We extend their approach to the more general class
of problems of the form (1), and we allow for more than one
parameter, that is, 𝑘 can be larger than one. The scheme we are
going to present relies on the computation of the full eigenvalue
decomposition of𝐴0, namely𝐴0 = 𝑄0Λ0𝑄

−1
0 with𝑄0 ∈ ℂ𝑛×𝑛 and

Λ0 = diag(𝜆1, . . . , 𝜆𝑛), 𝜆𝑖 ∈ ℂ, 𝑖 = 1, . . . , 𝑛.

Considering the notation introduced in (6), we can write.

𝐴0𝑋𝛿(v) +𝑋𝛿(v)𝐴T
0 − 𝐵𝑙𝐷(v)𝐵T

𝑟
𝑋𝛿(v)

−𝑋𝛿(v)𝐵T
𝑟
𝐷(v)𝐵𝑙 = 𝑃

(2 ⊗𝐷(v)
)
𝑃 T

If 𝐴0 = 𝑄0Λ0𝑄
−1
0 , Λ0 = diag(𝜆1, . . . , 𝜆𝑛), we have

Λ0𝑋𝛿(v) +𝑋𝛿(v)Λ0 −𝑄−1
0 𝐵𝑙𝐷(v)𝐵

T
𝑟
𝑄0𝑋𝛿(v)

−𝑋𝛿(v)𝑄T
0𝐵

T
𝑟
𝐷(v)𝐵𝑙𝑄−T

0 = 𝑄−1
0 𝑃

(2 ⊗𝐷(v)
)
𝑃 T𝑄−T

0

where 𝑋𝛿(v) = 𝑄0𝑋𝛿(v)𝑄T
0 . Solving the equation above is equiv-

alent to inverting a linear operator composed of two parts. The

first one, namely the Lyapunov operator defined by Λ0, is easy
to invert thanks to the diagonal pattern of Λ0, whereas the
second one has a low-rank structure. This is the perfect sce-
nario for applying the Sherman-Morrison-Woodbury (SMW) for-
mula. We remind the reader that for a standard linear system of
the form

(L − MDNT)𝑥 = 𝑏

where M and N have low rank, the SMW formula says that

𝑥 = L−1𝑏 + L−1M(D−1 − NTL−1M)−1NTL−1𝑏 (7)

see, for example [14]. By applying the matrix-oriented SMW for-
mula (see, e.g., [15]) in our setting, the matrix 𝑋𝛿(v) can be writ-
ten as the summation of two components 𝑋𝛿(v) = 𝑍(v) +𝑊 (v)
as well, where 𝑍(v) is such that

Λ0𝑍(v) +𝑍(v)Λ0 = 𝑄−1
0 𝑃

(2 ⊗𝐷(v)
)
𝑃 T𝑄−T

0 (8)

whereas the expression of 𝑊 (v) is more intricate. Up to a simi-
larity transformation, the matrices𝑍(v) and𝑊 (v) are the matrix
counterparts of the first and second term in the right-hand side
of (7), respectively.

Our goal is thus to compute

𝑋𝛿(v) = 𝑍(v) +𝑊 (v) = 𝑄0𝑍(v)𝑄T
0 +𝑄0𝑊 (v)𝑄T

0 (9)

efficiently by taking into account the structure of the problem and
the dependency on the parameters in v.

The use of the Sherman-Morrison-Woodbury formula in the
matrix setting is not new; see, for example [15, 16], [17, Section 3],
[18, Section 5], [19, 20]. However, applying the general-purpose
schemes presented in these papers to our parameter-dependent
framework would not lead to an efficient solution process.
Indeed, this would be equivalent to explicitly computing 𝑋𝛿(v)
every time v changes. Our main goal here is to divide the oper-
ations that depend on v from those that do not, as much as pos-
sible, such that the v-independent calculations can be performed
offline, only once. In the interest of the reader, we thus spell out
the details of our procedure, step by step, in spite of some simi-
larities with prior work.

Step 1: Compute 𝑍(v). The matrix 𝑍(v) is such that 𝑍(v) =
𝑄0𝑍(v)𝑄T

0 where 𝑍(v) solves the Lyapunov equation (8). Since
Λ0 = diag(𝜆1, . . . , 𝜆𝑛), by defining the Cauchy matrix  ∈ ℂ𝑛×𝑛
whose (𝑖, 𝑗)-th entry is given by 𝑖,𝑗 = 1∕(𝜆𝑖 + 𝜆𝑗), we can write

𝑍(v) = 𝑄0
(∘(𝑄−1

0 𝑃
(2 ⊗𝐷(v)

)
𝑃 T𝑄−T

0
))
𝑄T

0 (10)

The matrix 2 ⊗𝐷(v) can be written as

2 ⊗𝐷(v) =
𝑘∑
𝑖=1
𝑣𝑖(𝑒𝑘+𝑖𝑒T

𝑖
+ 𝑒𝑖𝑒T

𝑘+𝑖)
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and by plugging this expression into (10), we get

𝑍(v) =
𝑘∑
𝑖=1
𝑣𝑖𝑍𝑖 =

𝑘∑
𝑖=1
𝑣𝑖𝑄0𝑍𝑖𝑄

T
0 ,

𝑍𝑖 ∶= ∘(𝑄−1
0 𝑃

(
𝑒𝑘+𝑖𝑒

T
𝑖
+ 𝑒𝑖𝑒T

𝑘+𝑖
)
𝑃 T𝑄−T

0
)

(11)

We can thus compute the matrices 𝑍𝑖 before any change in the
parameters v takes place. Whenever we need 𝑍(v), we just com-
pute the linear combination in (11).

Step 2: Compute𝑊 (v). As we already mentioned, the expression
for𝑊 (v) is more involved than the one for𝑍(v). In particular, the
computation of the former goes through the solution of a 2𝑛𝑘 ×
2𝑛𝑘 linear system along with some further minor steps; see, for
example [15, Algorithm 0].

In the following, we show how to efficiently construct the
right-hand side (Step 2.1) and the coefficient matrix (Step 2.2)
of this linear system. Moreover, its solution will be carried out by
an iterative method for which we design a structure-aware pre-
conditioner (Step 2.3). We then illustrate the final computations
for obtaining𝑊 (v) (Step 2.4).

Step 2.1: The right-hand side. In the linear system setting,
this step corresponds to computing the vector NTL−1𝑏 in (7). In
principle, one could look at the Kronecker form of (5) and real-
ize that we could set N =

[
𝑄T

0𝐵𝑟 ⊗ 𝐼, 𝐼 ⊗ 𝑄
T
0𝐵𝑟

]
in our setting,

whereas L−1𝑏 corresponds to the vectorized form of𝑍(v). There-
fore, thanks to the properties of the Kronecker product, we can
write

NTvec(𝑍(v)) = NT

(
𝑘∑
𝑖=1
𝑣𝑖vec

(
𝑍𝑖

))
=

𝑘∑
𝑖=1
𝑣𝑖

⎡⎢⎢⎣
vec

(
𝑍𝑖𝑄

T
0𝐵𝑟

)
vec

(
𝐵T
𝑟
𝑄0𝑍𝑖

)⎤⎥⎥⎦
We can thus construct the quantities vec

(
𝑍𝑖𝑄

T
0𝐵𝑟

)
,

vec
(
𝐵T
𝑟
𝑄0𝑍𝑖

)
once, and compute the linear combination

above whenever a change in the parameters 𝑣𝑖’s takes place.

Step 2.2: The coefficient matrix. We now focus on the solution
of the inner linear system involved in the SMW formula. In the
notation of (7), this corresponds to solving the linear system(

D − NTLM
)
𝑤 = NTL−1𝑏 (12)

In our context, this amounts to a 2𝑛𝑘 × 2𝑛𝑘 linear system where
D = D(v) is a parameter-dependent diagonal matrix such that

D(v)−1 =
[
𝐷(v)−1 ⊗ 𝐼

𝐼 ⊗𝐷(v)−1

]
. The structure of NTL−1M is

more involved. A first study of its structure can be found in [1].
Unlike what is done in [1], here we exploit the diagonal pattern
of L−1 = (Λ0 ⊗ 𝐼 + 𝐼 ⊗ Λ0)−1, which leads to a useful representa-
tion of the blocks of NTL−1M when the latter is viewed as a 2 × 2
block matrix. Such a block structure will help us to design effi-
cient preconditioners for the solution of the linear system in (12)
as well (see Step 2.3).

Let M = [M1,M2] and N = [N1,N2] where M1 = 𝑄−1
0 𝐵𝑙 ⊗ 𝐼 ,

M2 = 𝐼 ⊗ 𝑄−1
0 𝐵𝑙, N1 = 𝑄T

0𝐵𝑟 ⊗ 𝐼 , and N2 = 𝐼 ⊗ 𝑄T
0𝐵𝑟. Then we

can write

NTL−1M =

[
NT

1 L−1M1 NT
1 L−1M2

NT
2 L−1M1 NT

2 L−1M2

]

We first focus on the (1, 1)-block, namely NT
1 L−1M1 ∈ ℂ𝑛𝑘×𝑛𝑘. By

recalling that the ℎ-th basis vector of ℂ𝑛𝑘 can be written as 𝑒ℎ =
vec(𝑒𝑠𝑒T

𝑡
), with 𝑒𝑠 and 𝑒𝑡 being the canonical vectors in ℂ𝑛 and ℂ𝑘,

respectively, and ℎ = (𝑡 − 1)𝑛 + 𝑠, we can write the (𝑖, 𝑗)-th entry
of NT

1 L−1M1 ∈ ℂ𝑛𝑘×𝑛𝑘 as

𝑒T
𝑖

NT
1 L−1M1𝑒𝑗 = vec(𝑒𝑠𝑒T

𝑡
)TNT

1 L−1M1vec(𝑒𝑞𝑒T
𝑝
)

where 𝑖 = (𝑡 − 1)𝑛 + 𝑠 and 𝑗 = (𝑝 − 1)𝑛 + 𝑞. Since N1 and M1 have
a Kronecker structure, we have

𝑒T
𝑖

NT
1 L−1M1𝑒𝑗 = vec(𝑒𝑠𝑒T

𝑡
𝐵T
𝑟
𝑄0)TL−1vec(𝑒𝑞𝑒T

𝑝
𝐵T
𝑙
𝑄−T

0 )

= vec(𝑒𝑠𝑒T
𝑡
𝐵T
𝑟
𝑄0)Tvec(∘(𝑒𝑞𝑒T

𝑝
𝐵T
𝑙
𝑄−T

0 ))

= trace
(
𝑄T

0𝐵𝑟𝑒𝑡𝑒
T
𝑠
(∘(𝑒𝑞𝑒T

𝑝
𝐵T
𝑙
𝑄−T

0 ))
)

= 𝑒T
𝑠
(∘(𝑒𝑞𝑒T

𝑝
𝐵T
𝑙
𝑄−T

0 ))𝑄T
0𝐵𝑟𝑒𝑡

where the last equality holds thanks to the cyclic property of the
trace operator. Now, by applying the following property of the
Hadamard product

𝑥T(𝐴∘𝐵)𝑦 = trace(diag(𝑥)𝐴diag(𝑦)𝐵T)

we get

𝑒T
𝑖

NT
1 L−1M1𝑒𝑗 = trace

(
diag(𝑒𝑠)diag(𝑄T

0𝐵𝑟𝑒𝑡)𝑄
−1
0 𝐵𝑙𝑒𝑝𝑒

T
𝑞

)
= 𝑒T

𝑞
diag(𝑒𝑠)diag(𝑄T

0𝐵𝑟𝑒𝑡)𝑄
−1
0 𝐵𝑙𝑒𝑝

= 𝑒T
𝑞
𝑒𝑠𝑒

T
𝑠
diag(𝑄T

0𝐵𝑟𝑒𝑡)𝑄
−1
0 𝐵𝑙𝑒𝑝

= 𝛿𝑞,𝑠 ⋅ 𝑒T
𝑠
diag(𝑄T

0𝐵𝑟𝑒𝑡)𝑄
−1
0 𝐵𝑙𝑒𝑝

= 𝛿𝑞,𝑠 ⋅ 𝑒T
𝑠

(((𝑄T
0𝐵𝑟𝑒𝑡)∘(𝑄

−1
0 𝐵𝑙𝑒𝑝)

))
(13)

where 𝛿𝑞,𝑠 denotes the Kronecker delta. The relation in (13) shows
that NT

1 L−1M1 is a 𝑘 × 𝑘 block matrix whose blocks are all diag-
onal. In particular, the block in the (𝑡, 𝑝) position is given by the
matrix diag

(((𝑄T
0𝐵𝑟𝑒𝑡)∘(𝑄

−1
0 𝐵𝑙𝑒𝑝)

))
.

We now derive the structure of the (2, 2)-block NT
2 L−1M2. Follow-

ing the same reasoning as before, we have

𝑒T
𝑖

NT
2 L−1M2𝑒𝑗 = vec(𝑄T

0𝐵𝑟𝑒𝑡𝑒
T
𝑠
)TL−1vec(𝑄−1

0 𝐵𝑙𝑒𝑝𝑒
T
𝑞
)

= vec(𝑄T
0𝐵𝑟𝑒𝑡𝑒

T
𝑠
)Tvec(∘(𝑄−1

0 𝐵𝑙𝑒𝑝𝑒
T
𝑞
))

= trace
(
𝑒𝑠𝑒

T
𝑡
𝐵T
𝑟
𝑄0(∘(𝑄−1

0 𝐵𝑙𝑒𝑝𝑒
T
𝑞
))
)

= 𝑒T
𝑡
𝐵T
𝑟
𝑄0(∘(𝑄−1

0 𝐵𝑙𝑒𝑝𝑒
T
𝑞
))𝑒𝑠

Notice that in the expression above we wrote 𝑒𝑖 = vec(𝑒𝑡𝑒T
𝑠
),

with 𝑒𝑡, and 𝑒𝑠 canonical vectors in ℂ𝑘 and ℂ𝑛, respectively,
so that 𝑖 = (𝑠 − 1)𝑘 + 𝑡. Similarly, 𝑗 = (𝑞 − 1)𝑘 + 𝑝. As before, we
can write

𝑒T
𝑖

NT
2 L−1M2𝑒𝑗 = trace

(
diag(𝑄T

0𝐵𝑟𝑒𝑡)diag(𝑒𝑠)𝑒𝑞𝑒T
𝑝
𝐵T
𝑙
𝑄−T

0

)
= 𝑒T

𝑝
𝐵T
𝑙
𝑄−T

0 diag(𝑄T
0𝐵𝑟𝑒𝑡)𝑒𝑠𝑒T

𝑠
𝑒𝑞
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= 𝛿𝑠,𝑞 ⋅ 𝑒T
𝑝
𝐵T
𝑙
𝑄−T

0 diag(𝑄T
0𝐵𝑟𝑒𝑡)𝑒𝑠

= 𝛿𝑠,𝑞 ⋅
(
(𝑄−1

0 𝐵𝑙𝑒𝑝)∘(𝑄
T
0𝐵𝑟𝑒𝑡)

)T𝑒𝑠
Therefore, NT

2 L−1M2 is a block diagonal matrix with 𝑛 diagonal
blocks of order 𝑘. In particular, the (𝑡, 𝑝)-th entry of the 𝑠-th diag-
onal block is given by

(
(𝑄−1

0 𝐵𝑙𝑒𝑝)∘(𝑄
T
0𝐵𝑟𝑒𝑡)

)T𝑒𝑠.
Unlike its diagonal blocks, the off-diagonal blocks of NTL−1M,
namely NT

2 L−1M1, and NT
1 L−1M2, do not possess a structured

sparsity pattern. Nevertheless, we can still apply the same strat-
egy we employed above to construct NT

2 L−1M1 and NT
1 L−1M2

while avoiding the explicit computation of M1, M2, N1, and N2.
If 𝑖 = (𝑠 − 1)𝑘 + 𝑡 and 𝑗 = (𝑝 − 1)𝑛 + 𝑞, we have

𝑒T
𝑖

NT
2 L−1M1𝑒𝑗 = vec(𝑄T

0𝐵𝑟𝑒𝑡𝑒
T
𝑠
)TL−1vec(𝑒𝑞𝑒T

𝑝
𝐵T
𝑙
𝑄−T

0 )

= vec(𝑄T
0𝐵𝑟𝑒𝑡𝑒

T
𝑠
)Tvec(∘(𝑒𝑞𝑒T

𝑝
𝐵T
𝑙
𝑄−T

0 ))

= trace
(
𝑒𝑠𝑒

T
𝑡
𝐵T
𝑟
𝑄0(∘(𝑒𝑞𝑒T

𝑝
𝐵T
𝑙
𝑄−T

0 ))
)

= 𝑒T
𝑡
𝐵T
𝑟
𝑄0(∘(𝑒𝑞𝑒T

𝑝
𝐵T
𝑙
𝑄−T

0 ))𝑒𝑠

= trace
(

diag(𝑄T
0𝐵𝑟𝑒𝑡)diag(𝑒𝑠)𝑄−1

0 𝐵𝑙𝑒𝑝𝑒
T
𝑞

)
= 𝑒T

𝑞
diag(𝑄T

0𝐵𝑟𝑒𝑡)diag(𝑒𝑠)𝑄−1
0 𝐵𝑙𝑒𝑝

= (𝑒T
𝑞
𝑄T

0𝐵𝑟𝑒𝑡)(𝑒
T
𝑞
𝑒𝑠)(𝑒T

𝑠
𝑄−1

0 𝐵𝑙𝑒𝑝) (14)

Similarly, if 𝑖 = (𝑡 − 1)𝑛 + 𝑠 and 𝑗 = (𝑞 − 1)𝑘 + 𝑝, it holds

𝑒T
𝑖

NT
1 L−1M2𝑒𝑗 = vec(𝑒𝑠𝑒T

𝑡
𝐵T
𝑟
𝑄0)TL−1vec(𝑄−1

0 𝐵𝑙𝑒𝑝𝑒
T
𝑞
)

= vec(𝑒𝑠𝑒T
𝑡
𝐵T
𝑟
𝑄0)Tvec(∘(𝑄−1

0 𝐵𝑙𝑒𝑝𝑒
T
𝑞
))

= trace
(
𝑄T

0𝐵𝑟𝑒𝑡𝑒
T
𝑠
(∘(𝑄−1

0 𝐵𝑙𝑒𝑝𝑒
T
𝑞
))
)

= 𝑒T
𝑠
(∘(𝑄−1

0 𝐵𝑙𝑒𝑝𝑒
T
𝑞
))𝑄T

0𝐵𝑟𝑒𝑡

= trace
(

diag(𝑒𝑠)diag(𝑄T
0𝐵𝑟𝑒𝑡)𝑒𝑞𝑒

T
𝑝
𝐵T
𝑙
𝑄−T

0

)
= 𝑒T

𝑝
𝐵T
𝑙
𝑄−T

0 diag(𝑒𝑠)diag(𝑄T
0𝐵𝑟𝑒𝑡)𝑒𝑞

= (𝑒T
𝑝
𝐵T
𝑙
𝑄−T

0 𝑒𝑠)(𝑒
T
𝑠
𝑒𝑞)(𝑒T

𝑞
𝑄T

0𝐵𝑟𝑒𝑡) (15)

The construction of NTL−1M can be carried out before starting
changing v. Once this task is accomplished, we have to solve a
2𝑛𝑘 × 2𝑛𝑘 linear system with D(v)−1 − NTL−1M every time we
have to solve (1) for a different v.

Step 2.3: Solving the SMW inner linear system. We want to
efficiently compute the vector 𝑤(v) ∈ ℂ2𝑛𝑘 such that

(
D(v)−1 − NTL−1M

)
𝑤(v) =

𝑘∑
𝑖=1
𝑣𝑖

⎡⎢⎢⎣
vec

(
𝑍𝑖𝑄

T
0𝐵𝑟

)
vec

(
𝐵T
𝑟
𝑄0𝑍𝑖

)⎤⎥⎥⎦ (16)

We assume the coefficient matrix and the right-hand side
in (16) to slowly change with v. For instance, if (1) is
embedded in a parameter optimization procedure, the param-
eters v𝓁 = [𝑣(𝓁)1 , . . . , 𝑣

(𝓁)
𝑘
]T in one step do not dramatically dif-

fer from the ones used in the previous step, namely v𝓁−1 =
[𝑣(𝓁−1)

1 , . . . , 𝑣
(𝓁−1)
𝑘

]T, especially in the later steps of the adopted
optimization procedure. For a sequence of linear systems of
this nature, recycling Krylov techniques represent one of the

most valid families of solvers available in the literature. See, for
example [21, 22] and the recent survey paper [23].

We employ the GCRO-DR method proposed in [22] to solve the
sequence of linear systems in (16). See [24, 25] for a Matlab imple-
mentation and a thorough discussion on certain computational
aspects of this algorithm.

Once the (𝓁 − 1)-th linear system is solved, GCRO-DR uses the
space spanned by 𝑠𝓁 approximate eigenvectors of D(v𝓁−1)−1 −
NTL−1M to enhance the solution of the 𝓁-th linear system

(
D(v𝓁)−1 − NTL−1M

)
𝑤(v𝓁) =

𝑘∑
𝑖=1
𝑣
(𝓁)
𝑖

⎡⎢⎢⎣
vec

(
𝑍𝑖𝑄

T
0𝐵𝑟

)
vec

(
𝐵T
𝑟
𝑄0𝑍𝑖

)⎤⎥⎥⎦
We employ the 𝑠𝓁 eigenvectors corresponding to the 𝑠𝓁 eigenval-
ues of smallest magnitude2, but different approximate eigenvec-
tors can be used as well; see [22, Section 2.4].

The convergence of GCRO-DR is driven by the spectral proper-
ties of D(v)−1 − NTL−1M. However, the latter ones are extremely
tricky to identify in general. Only by allowing further assump-
tions on𝐵𝑙,𝐵𝑟, and𝐴0, we may come up with sensible statements.
For instance, if 𝐵𝑙 = 𝐵𝑟 and 𝐴0 is Hermitian, D(v)−1 − NTL−1M
is Hermitian too, and GCRO-DR can take advantage of that;
see [22, Theorem 3.1]. Similarly, if, in addition, all the parame-
ters 𝑣𝑖’s are, for example, strictly positive and 𝐴0 is stable, then
D(v)−1 − NTL−1M is also positive definite. GCRO-DR can take
advantage of this property as well.

GCRO-DR allows for preconditioning. In particular, thanks to the
pattern of D(v)−1 − NTL−1M we are able to design efficient pre-
conditioning operators, which can be cheaply tuned to address
the variation in the parameters.

We have

D(v)−1 − NTL−1M =

[
𝐷(v)−1 ⊗ 𝐼 − NT

1 L−1M1 NT
1 L−1M2

NT
2 L−1M1 𝐼 ⊗ 𝐷(v)−1 − NT

2 L−1M2

]

and we want to maintain the (2 × 2)-block structure in the pre-
conditioner as well.

In D(v)−1 − NTL−1M, only the diagonal blocks 𝐷(v)−1 ⊗ 𝐼 −
NT

1 L−1M1 and 𝐼 ⊗ 𝐷(v)−1 − NT
2 L−1M2 depend on the current

parameters. Moreover, both𝐷(v)−1 ⊗ 𝐼 and 𝐼 ⊗ 𝐷(v)−1 are diag-
onal matrices so that the sparsity pattern of NT

1 L−1M1 and
NT

2 L−1M2 is preserved. In particular, 𝐷(v)−1 ⊗ 𝐼 − NT
1 L−1M1 is

still a 𝑘 × 𝑘 block matrix with diagonal blocks whereas 𝐼 ⊗
𝐷(v)−1 − NT

2 L−1M2 is block-diagonal with 𝑘 × 𝑘 blocks on the
diagonal. By exploiting such a significant sparsity pattern, we are
thus able to efficiently solve linear systems with 𝐷(v)−1 ⊗ 𝐼 −
NT

1 L−1M1 and 𝐼 ⊗ 𝐷(v)−1 − NT
2 L−1M2 by a sparse direct method,

regardless of the change in v.

The off-diagonal blocks of D(v)−1 − NTL−1M, namely NT
1 L−1M2

and NT
2 L−1M1, are dense in general. We approximate these

blocks by means of their truncated SVD (TSVD) of order 𝑝, for
a user-defined 𝑝 > 0. Notice that these TSVDs can be computed
once and for all, since neither NT

1 L−1M2 nor NT
2 L−1M1 depend

on v. We denote the results of the TSVD by 1T
2 and 2T

1
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where𝑖,𝑖 ∈ ℂ𝑛𝑘×𝑝, 𝑖 = 1, 2, and1T
2 ≈ NT

1 L−1M2 whereas
2T

1 ≈ NT
2 L−1M1.

Consequently, the preconditioning operator we employ is

(v) =

[
𝐷(v)−1 ⊗ 𝐼 − NT

1 L−1M1 1T
2

2T
1 𝐼 ⊗ 𝐷(v)−1 − NT

2 L−1M2

]
≈ D(v)−1 − NTL−1M (17)

We use right preconditioning within GCRO-DR so that at each
iteration a linear system with (v) needs to be solved. However,
such a task is particularly cheap. Indeed, thanks to the 2 × 2 block
structure of (v), we define its Schur complement

(v) = 𝐷(v)−1 ⊗ 𝐼 − NT
1 L−1M1

−1T
2
(
𝐼 ⊗ 𝐷(v)−1 − NT

2 L−1M2
)−12T

1

and, since 1T
2
(
𝐼 ⊗ 𝐷(v)−1 − NT

2 L−1M2
)−12T

1 has rank 𝑝,
we can employ the SMW formula to efficiently solve linear sys-
tems with (v). We thus have

(v)−1

[
𝑣1

𝑣2

]
=
⎡⎢⎢⎣

(v)−1
(
𝑣1 −1T

2
(
𝐼 ⊗ 𝐷(v)−1 − NT

2 L−1M2
)−1
𝑣2

)
(
𝐼 ⊗ 𝐷(v)−1 − NT

2 L−1M2
)−1(2T

1(v)−1(1T
2
(
𝐼 ⊗ 𝐷(v)−1 −NT

2 L−1M2
)−1
𝑣2 − 𝑣1

)
+ 𝑣2

) ⎤⎥⎥⎦
Step 2.4: Final computations. Once the linear system in (16) is
solved and the vector 𝑤(v) ∈ ℂ2𝑛𝑘 is computed, we proceed with
the remaining operations to compute 𝑋𝛿(v). We first write

𝑤(v) =

[
𝑤1(v)
𝑤2(v)

]
=

[
vec

(
𝑊1(v)

)
vec

(
𝑊2(v)

)], 𝑊1(v) ∈ ℂ𝑛×𝑘,𝑊2(v) ∈ ℂ𝑘×𝑛

.
Then the matrix𝑊 (v) in (9) is such that

𝑊 (v) = ∘(𝑊1(v)𝐵T
𝑙
𝑄−T

0 +𝑄−1
0 𝐵𝑙𝑊2(v)

)
This operation corresponds to performing L−1M𝑤 in the lin-
ear system setting (7). By the change of coordinates with 𝑄0 we
retrieve the second component of the solution 𝑋𝛿(v) = 𝑍𝛿(v) +
𝑊𝛿(v), namely𝑊 (v) = 𝑄0𝑊 (v)𝑄T

0 .

The solution𝑋(v) to (1), in case of moderate 𝑛, can thus be com-
puted as follows:

𝑋(v) = 𝑋0 +𝑋𝛿(v) = 𝑋0 +𝑍(v) +𝑊 (v)

= 𝑋0 +
𝑘∑
𝑖=1
𝑣
(𝓁)
𝑖
𝑍𝑖 +𝑄0

(∘(𝑊1(v)𝐵T
𝑙
𝑄−T

0 +𝑄−1
0 𝐵𝑙𝑊2(v)

))
𝑄T

0 (18)

so that

𝑓 (𝑋(v)) = 𝑓 (𝑋0) +
𝑘∑
𝑖=1
𝑣
(𝓁)
𝑖
𝑓 (𝑍𝑖)

+ 𝑓 (𝑄0
(∘(𝑊1(v)𝐵T

𝑙
𝑄−T

0 +𝑄−1
0 𝐵𝑙𝑊2(v)

))
𝑄T

0 )

In Table 1, we summarize the operations that can be performed
offline and online. Notice that the (𝑛3) flops needed to compute
𝑊 (v) come from the final matrix-matrix multiplications by 𝑄0
and 𝑄T

0 in (18). These operations can be avoided for 𝑓 = trace
and𝑄0 orthogonal, thus reducing the cost of computing𝑊 (v) to
(𝑛2) flops.

We conclude this section by recalling the reader that 𝑤(v) has
been computed by GCRO-DR, an iterative method that has been
run up to a certain tolerance on the relative residual norm

associated to (16). Therefore, we can think of 𝑤(v) as being of
the form 𝑤(v) = 𝑤∗(v) + 𝓁(v), where 𝑤∗(v) is the exact solution
to (16) whereas 𝓁(v) is the error vector coming from the com-
putation of 𝑤(v). The magnitude of 𝓁(v) plays an important role
in the overall accuracy that can be attained by 𝑋(v) in (18).
In particular, by writing 𝓁(v) = [𝓁1(v);𝓁2(v)], 𝓁1(v),𝓁2(v) ∈
ℂ𝑛𝑘, and 𝐸1(v) ∈ ℂ𝑛×𝑘, 𝓁1(v) = vec(𝐸1(v)), 𝐸2(v) ∈ ℂ𝑘×𝑛, 𝓁2(v) =
vec(𝐸2(v)), a direct computation shows that we can write

𝑋(v) = 𝑋0 +𝑍(v) +𝑊∗(v) + 𝐸(v)

where 𝐸(v) = 𝑄0
(∘(𝐸1(v)𝐵T

𝑙
𝑄−T

0 +𝑄−1
0 𝐵𝑙𝐸2(v)T))𝑄T

0 . To
bound ||𝐸(v)||𝐹 , it may be more convenient to look at
𝐸(v) as the solution to the following Lyappunov equation

𝐴0𝐸(v) + 𝐸(v)𝐴T
0 = 𝑄0𝐸1(v)𝐵T

𝑙
+ 𝐵𝑙𝐸2(v)T𝑄T

0

TABLE 1 | Offline and online operations involved in the computation of the solution𝑋(v) to (1) for a moderate 𝑛.𝑚 denotes the number of iterations
needed by GCRO-DR to converge.

Offline Online

Operation Flops Operation Flops

Compute𝑋0 and 𝑃 (𝑛3) Compute 𝑍(v) (𝑘𝑛2)
Eig 𝐴0 = 𝑄0Λ0𝑄

−1
0 (𝑛3) Solve (16) (𝑚𝑘2𝑛2)

Assemble NTL−1M (𝑘2𝑛2) Compute𝑊 (v) (𝑛3)
TSVD  T

1 2,  T
2 1 (𝑛3)

Compute 𝑍𝑖, 𝑍𝑖, 𝑖 = 1, . . . , 𝑘 (𝑛3)

Note: Depending on the properties of 𝑓 , the cost of computing𝑊 (v) reduces to (𝑛2) flops.

6 of 21 Numerical Linear Algebra with Applications, 2025
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Indeed, for stable 𝐴0, by defining 𝛼0 as the largest eigenvalue
of the symmetric part of 𝐴0, namely 𝛼0 = 𝜆max((𝐴0 + 𝐴T

0 )∕2), if
𝛼0 < 0, standard results on the norm of solutions to Lyapunov
equations say that

||𝐸(v)||𝐹 ⩽ 1
2|𝛼0| ||𝑄0𝐸1(v)𝐵T

𝑙
+ 𝐵𝑙𝐸2(v)T𝑄T

0 ||𝐹
see, for example [26].

2.2 | Large-Scale Setting: A Projection
Framework

In this section, we address the numerical solution of problems
of large dimensions. In particular, due to a too large value of 𝑛,
we assume that many of the operations described in the previous
section, for example, the computation of the eigenvalue decom-
position of 𝐴0, are not affordable. On the other hand, we assume
that it is possible, and efficient, to solve linear systems with 𝐴0.

Assumption 2. Solving linear systems with 𝐴0 and possibly
multiple right-hand sides is possible and efficient.

In all our numerical results, we computed (and stored) the LU
factors of 𝐴0.

Taking inspiration from well-established projection methods for
large-scale Lyapunov equations, we design a novel scheme for (5).
As before, the main goal is to reuse the information we already
have at hand, as much as possible, every time (5) has to be solved
for a new v.

We employ the extended Krylov subspace method presented in
[27] and further studied in [28]. In this section, we illustrate how
to fully exploit its properties for our purposes.

In the case of a parameter independent Lyapunov equation of the
form (4) with 𝑄 = 𝑃𝑃 T, the extended Krylov subspace

EK◽
𝑚
(𝐴0, 𝑃 ) = Range([𝑃 ,𝐴−1

0 𝑃 ,𝐴0𝑃 ,𝐴
−2
0 𝑃 , . . . , 𝐴

𝑚−1
0 𝑃 ,𝐴−𝑚

0 𝑃 ])

= K◽
𝑚
(𝐴0, 𝑃 ) + K◽

𝑚
(𝐴−1

0 , 𝐴
−1
0 𝑃 ) (19)

can be employed as approximation space. In (19), K◽
𝑚
(𝐴0, 𝑃 )

denotes the standard, polynomial (block) Krylov sub-
space generated by 𝐴0 and 𝑃 , namely K◽

𝑚
(𝐴0, 𝑃 ) =

Range([𝑃 ,𝐴0𝑃 , . . . , 𝐴
𝑚−1
0 𝑃 ]).

If 𝑉𝑚 ∈ ℝ𝑛×2𝑚𝑘, 𝑘 = rank(𝑃 ), has orthonormal columns3 and it
is such that Range(𝑉𝑚) = EK◽

𝑚
(𝐴0, 𝑃 ), the extended Krylov sub-

space method computes an approximate solution of the form
𝑋𝑚 = 𝑉𝑚𝑌𝑚𝑉 T

𝑚
. The square matrix 𝑌𝑚 ∈ ℝ2𝑚𝑘×2𝑚𝑘 is usually com-

puted by imposing a Galerkin condition on the residual matrix
𝑅𝑚 = 𝐴0𝑋𝑚 +𝑋𝑚𝐴T

0 + 𝑃𝑃 T, namely 𝑉 T
𝑚
𝑅𝑚𝑉𝑚 = 0. It is easy to

show that such a condition is equivalent to computing 𝑌𝑚 by
solving a reduced Lyapunov equation. With 𝑌𝑚 at hand, an accu-
racy measure, either the residual norm or the backward error, is
computed to assess the quality of the current solution. Whenever
this value is sufficiently small, we stop the process; otherwise the
space is expanded.

A very similar scheme could also be employed for (5). However,
both the right-hand side and the coefficient matrix in (5) depend
on v so that, at a first glance, a new extended Krylov subspace
has to be computed for each v. This would be too expensive from
a computational point of view.

We show that only one extended Krylov subspace can be con-
structed and employed for solving all the necessary Lyapunov
equations (5) regardless of the change in v. In particular, we sug-
gest the use of EK◽

𝑚
(𝐴0, 𝑃 ) as an approximation space, where 𝑃

is defined as in (6). This selection is motivated by the following
reasoning.

As reported in (6), the right-hand side of (5) can be written in
factorized form as

𝑃
(2 ⊗𝐷(v)

)
𝑃 T, 𝑃 = [𝑋0𝐵𝑟, 𝐵𝑙] ∈ ℝ𝑛×2𝑘, 2 =

[
0 1
1 0

]

Therefore, we can use only 𝑃 as the starting block for the con-
struction of the approximation space for every v. See, for example
[31, Section 3.2].

The argument to justify the use of 𝐴0 in place of 𝐴(v) is a little
more involved. We first observe that we can write

𝐴(v)𝑃 = (𝐴0 − 𝐵𝑙𝐷(v)𝐵T
𝑟
)𝑃 = 𝐴0𝑃 − 𝐵𝑙(𝐷(v)𝐵T

𝑟
𝑃 )

and, since Range(𝐵𝑙) ⊆ Range(𝑃 ) by definition, we have
Range(𝐴(v)𝑃 ) ⊆ Range(𝐴0𝑃 ) + Range(𝑃 ). Similarly, we can
show that

Range(𝐴(v)𝑗𝑃 ) ⊆ Range(𝐴𝑗0𝑃 ) + Range(𝑃 )

for all 𝑗 > 0. This implies that K◽
𝑚
(𝐴(v), 𝑃 ) ⊆ K◽

𝑚
(𝐴0, 𝑃 ). We

now show that also the Krylov subspaces for the inverses are
nested, that is, K◽

𝑚
(𝐴(v)−1, 𝐴(v)−1𝑃 ) ⊆ K◽

𝑚
(𝐴−1

0 , 𝐴
−1
0 𝑃 ), so that

EK◽
𝑚
(𝐴(v), 𝑃 ) ⊆ EK◽

𝑚
(𝐴0, 𝑃 ) and the use of the non-parametric

space EK◽
𝑚
(𝐴0, 𝑃 ) is thus justified.

Thanks to the SMW formula, we have

𝐴(v)−1𝑃 = (𝐴0 − 𝐵𝑙𝐷(v)𝐵T
𝑟
)−1𝑃 = 𝐴−1

0 𝑃

+ 𝐴−1
0 𝐵𝑙(𝐷(v)

−1 − 𝐵T
𝑟
𝐴−1

0 𝐵𝑙)
−1𝐵T

𝑟
𝐴−1

0 𝑃

and once again, since Range(𝐴−1
0 𝐵𝑙) ⊆ Range(𝐴−1

0 𝑃 ) , it holds
Range(𝐴(v)−1𝑃 ) ⊆ Range(𝐴−1

0 𝑃 ). Similarly, Range(𝐴(v)−𝑗𝑃 ) ⊆
Range(𝐴−𝑗

0 𝑃 ) for all 𝑗 > 0. Therefore, we can use EK◽
𝑚
(𝐴0, 𝑃 ) for

the computation of𝑋(v).

If 𝑉𝑚 ∈ ℝ𝑛×4𝑚𝑘 has orthonormal columns, and it is such that
Range(𝑉𝑚) = EK◽

𝑚
(𝐴0, 𝑃 ), we seek an approximate solution

𝑋𝛿,𝑚(v) = 𝑉𝑚𝑌𝑚(v)𝑉 T
𝑚

to (5). As in the nonparametric case, the
matrix 𝑌𝑚(v) ∈ ℝ4𝑚𝑘×4𝑚𝑘 is computed by imposing a Galerkin
condition on the residual, namely it is the solution of the pro-
jected equation

(𝑇𝑚 − 𝐵𝑙,𝑚𝐷(v)𝐵T
𝑟,𝑚

)𝑌 (v) + 𝑌 (v)(𝑇𝑚 − 𝐵𝑙,𝑚𝐷(v)𝐵T
𝑟,𝑚

)T

= 𝐸1𝐺(2 ⊗𝐷(v))𝐺T𝐸T
1 (20)
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where 𝑇𝑚 = 𝑉 T
𝑚
𝐴0𝑉𝑚 can be cheaply computed as suggested in

[27], 𝐵𝑙,𝑚 = 𝑉 T
𝑚
𝐵𝑙 and 𝐵𝑟,𝑚 = 𝑉 T

𝑚
𝐵𝑟 can be updated on the fly

by performing 4𝑘 inner products, whereas 𝐺 ∈ ℝ4𝑘×2𝑘 is such
that 𝑃 = 𝑉1𝐺. Notice that 𝐵𝑙 can be exactly represented in
EK◽

𝑚
(𝐴0, 𝑃 ), namely 𝐵𝑙 = 𝑉𝑚𝐵𝑙,𝑚, as it is part of the initial block

𝑃 = [𝑋0𝐵𝑟, 𝐵𝑙]. This does not hold for 𝐵𝑟.

Since the Galerkin method is structure preserving, the
small-dimensional equation (20) can be solved by the proce-
dure presented in Section 2.1. Notice that the well-posedness
of Equation (20) is difficult to guarantee a priori without any
further assumptions on 𝐵𝑙, 𝐵𝑟, and 𝐷(v). Indeed, even in case of
an 𝐴0, and thus 𝑇𝑚, definite, the signature of 𝑇𝑚 − 𝐵𝑙,𝑚𝐷(v)𝐵T

𝑟,𝑚

cannot be easily predicted. However, in Section 3.1, we will show
that the structural properties, inherent to some of the application
settings we are interested in, ensure to work with a matrix 𝐴(v)
that is stable for every v. Even though this does not guarantee
Equation (20) to be well-defined for any 𝑚, it has been noticed in
[32, Section 5.2.1] that it is very unlikely to get singular projected
equations in this scenario.

Once 𝑌𝑚(v) has been computed, we need to decide whether the
corresponding numerical solution 𝑋𝛿,𝑚(v) = 𝑉𝑚𝑌𝑚(v)𝑉 T

𝑚
is suf-

ficiently accurate. To this end, we employ the backward error,
which can be computed as shown in the following proposition
for the Lyapunov equation (5).

Proposition 1. The backward error Δ𝑚,v =||𝑅𝑚(v)||𝐹
2||𝐴(v)||𝐹 ||𝑋𝛿,𝑚(v)||𝐹+||𝑃 (2⊗𝐷(v))𝑃 T||𝐹 provided by the approximate
solution𝑋𝛿,𝑚(v) = 𝑉𝑚𝑌𝑚(v)𝑉 T

𝑚
to (5) is such that

Δ𝑚,v =

√
2||𝐸T

𝑚
𝑇 𝑚𝑌𝑚(v)||𝐹

2
√||𝐴0||2𝐹 + vT((𝐵T

𝑟
𝐵𝑙)∘(𝐵T

𝑟
𝐵𝑙))v − 2𝑎Tv ⋅ ||𝑌𝑚(v)||𝐹 + ||𝐺(2 ⊗𝐷(v))𝐺T||𝐹

(21)

where 𝑎 = diag(𝐵T
𝑟
𝐴0𝐵𝑙).

Proof. The expression for the residual matrix

𝑅𝑚 = 𝐴(v)𝑋𝑚(v) +𝑋𝑚(v)𝐴(v)T − 𝑃 (2 ⊗𝐷(v))𝑃 T

directly comes from the Arnoldi relation

𝐴0𝑉𝑚 = 𝑉𝑚𝑇𝑚 + 𝑚+1𝐸
T
𝑚
𝑇
𝑚

where 𝑚+1 ∈ ℝ𝑛×4𝑘 is the (𝑚 + 1)-th basis block, namely 𝑉𝑚+1 =
[𝑉𝑚,𝑚+1]. We can write

𝑅𝑚(v) = 𝐴(v)𝑋𝛿,𝑚(v) +𝑋𝛿,𝑚(v)𝐴(v)T − 𝑃 (2 ⊗𝐷(v))𝑃 T

= 𝐴(v)𝑉𝑚𝑌𝑚(v)𝑉 T
𝑚
+ 𝑉𝑚𝑌𝑚(v)𝑉 T

𝑚
𝐴(v)T − 𝑃 (2 ⊗𝐷(v))𝑃 T

= (𝐴0 − 𝐵𝑙𝐷(v)𝐵T
𝑟
)𝑉𝑚𝑌𝑚(v)𝑉 T

𝑚

+ 𝑉𝑚𝑌𝑚(v)𝑉 T
𝑚
(𝐴0 − 𝐵𝑙𝐷(v)𝐵T

𝑟
) − 𝑃 (2 ⊗𝐷(v))𝑃 T

Recalling that 𝐵𝑙 = 𝑉𝑚𝐵𝑙,𝑚, 𝑃 = 𝑉𝑚𝐸1𝐺, and plugging the
Arnoldi relation above, we get

𝑅𝑚(v) = 𝑉𝑚((𝑇𝑚 − 𝐵𝑙,𝑚𝐷(v)𝐵T
𝑟,𝑚

)𝑌 (v)

+ 𝑌 (v)(𝑇𝑚 − 𝐵𝑙,𝑚𝐷(v)𝐵T
𝑟,𝑚

)T

− 𝐸1𝐺(2 ⊗𝐷(v))𝐺T𝐸T
1 )𝑉

T
𝑚
+ 𝑚+1𝐸

T
𝑚
𝑇
𝑚
𝑌𝑚(v)𝑉 T

𝑚

+ 𝑉𝑚𝑌𝑚(v)𝑇 T
𝑚
𝐸𝑚T

𝑚+1

= 𝑚+1𝐸
T
𝑚
𝑇
𝑚
𝑌𝑚(v)𝑉 T

𝑚
+ 𝑉𝑚𝑌𝑚(v)𝑇 T

𝑚
𝐸𝑚T

𝑚+1

Therefore, thanks to the orthogonality of 𝑉𝑚 and 𝑚+1, we have

||𝑅𝑚(v)||2𝐹 = 2||𝐸T
𝑚
𝑇
𝑚
𝑌𝑚(v)||2𝐹

Similarly, since 𝑃 = 𝑉1𝐺,

||𝑃 (2 ⊗𝐷(v))𝑃 T||𝐹 = ||𝐺(2 ⊗𝐷(v))𝐺T||𝐹
We now focus on ||𝐴(v)||𝐹 . By exploiting the cyclic property of the
trace operator, and recalling that𝐷(v) is diagonal, we have

||𝐴(v)||2
𝐹
= ||𝐴0 − 𝐵𝑙𝐷(v)𝐵T

𝑟
||2
𝐹
= ||𝐴0||2𝐹 + ||𝐵𝑙𝐷(v)𝐵T

𝑟
||2
𝐹

− 2trace(𝐵𝑙𝐷(v)𝐵T
𝑟
𝐴0)

= ||𝐴0||2𝐹 + trace(𝐵𝑙𝐷(v)𝐵T
𝑟
𝐵𝑙𝐷(v)𝐵T

𝑟
)

− 2trace(𝐷(v)𝐵T
𝑟
𝐴0𝐵𝑙)

= ||𝐴0||2𝐹 + trace(𝐷(v)(𝐵T
𝑟
𝐵𝑙)𝐷(v)(𝐵T

𝑟
𝐵𝑙)) − 2𝑎Tv

= ||𝐴0||2𝐹 + vT((𝐵T
𝑟
𝐵𝑙)∘(𝐵T

𝑟
𝐵𝑙))v − 2𝑎Tv

where 𝑎 = diag(𝐵T
𝑟
𝐴0𝐵𝑙). ◽

Proposition 1 shows that even though the computation of Δ𝑚,v
depends on the current parameter v, its evaluation can be car-
ried out at low cost. In fact, quantities involving the full problem
dimension 𝑛, like ||𝐴0||𝐹 , (𝐵T

𝑟
𝐵𝑙)∘(𝐵T

𝑟
𝐵𝑙), and 𝑎, can be computed

in the offline stage. On the other hand, the computational effort
for the remaining parameter-dependent terms is only quadratic
in the dimension 𝑘 of the parameter space. Thus, as long as 𝑘2

stays well below 𝑛, this procedure is cheap. If the accuracy pro-
vided by 𝑌𝑚(v) is not adequate, we expand the space.

With the corresponding 𝑌𝑚(v) at hand, we can compute
𝑓 (𝑋𝛿,𝑚(v)) = 𝑓 (𝑉𝑚𝑌𝑚(v)𝑉 T

𝑚
). Notice that, depending on the

nature of 𝑓 , the structure of𝑋𝛿,𝑚(v) can be further exploited. For
instance, we can cheaply evaluate trace(𝑋𝛿,𝑚(v)), as

trace(𝑋𝛿,𝑚(v)) = trace(𝑉𝑚𝑌𝑚(v)𝑉 T
𝑚
) = trace(𝑌𝑚(v))

thanks again to the cyclic property of the trace and the orthog-
onality of 𝑉𝑚. Thus, the basis 𝑉𝑚 is not necessary to compute
trace(𝑋𝛿,𝑚(v)).

The overall procedure is summarized in Algorithm 1. Note that
Algorithm 1 can be easily modified to be used in optimiza-
tion procedures, having instead of the set of parameter vec-
tors V a starting vector v0 and using Algorithm 1 to calculate
𝑓 (𝑉𝑚𝑌𝑚(v𝓁)𝑉 T

𝑚
) for each new v𝓁 in the iterative optimization

scheme while keeping, and possibly expanding, the computed
subspace.

8 of 21 Numerical Linear Algebra with Applications, 2025
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ALGORITHM 1 | Extended Krylov subspace method for
calculating trace of a structured, parameter dependent Lyapunov
equation.
input : 𝐴0 ∈ ℝ𝑛×𝑛, 𝖵: the set of parameter vectors,

(𝐵T
𝑟
𝐵𝑙)∘(𝐵T

𝑟
𝐵𝑙) ∈ ℝ𝑘×𝑘, 𝑎 = diag(𝐵T

𝑟
𝐴0𝐵𝑙) ∈ ℝ𝑘,

𝑃 ∈ ℝ𝑛×2𝑘, ‖𝐴0‖𝐹
max. iteration count 𝑚max, backward error bound
𝜖 > 0.

output: 𝑓 (𝑋𝛿,𝑚(v)) for all v ∈ 𝖵.

1 Compute a skinny QR factorization of [𝑃 ,𝐴−1
0 𝑃 ] = 𝑉1[𝛾, 𝜃]

2 Set 𝑚 = 1, 𝖵0 = 𝖵

3 while 𝑚<𝑚max do
4 Compute next basis block 𝑚+1, set 𝑉𝑚+1 = [𝑉𝑚,𝑚+1],

and update 𝑇𝑚 = 𝑉 T
𝑚
𝐴0𝑉𝑚 as in 48

5 Update 𝐵𝑙,𝑚 = 𝑉 T
𝑚
𝐵𝑙, 𝐵𝑟,𝑚 = 𝑉 T

𝑚
𝐵𝑟

6 Compute the offline quantities in Table 1 for solving
Equation (20)

7 for all v ∈ 𝖵0 do
8 Perform the online steps in Table 1 and compute 𝑌𝑚(v)
9 Compute Δ𝑚,v as in (21)

10 if Δ𝑚,v ⩽ 𝜖 then
11 Compute 𝑓 (𝑉𝑚𝑌𝑚(v)𝑉 T

𝑚
)

12 𝖵0 = 𝖵 ⧵ {v}
13 else
14 break and go to line 15
15 Set 𝑚 = 𝑚 + 1

We recall that the solution of the linear systems with 𝐴0 needed
in the construction of the basis of EK◽

𝑚
(𝐴0, 𝑃 ) can be efficiently

carried out thanks to Assumption 2.

As outlined above, the construction of the extended Krylov
method requires adding 4𝑘 vectors per iteration to the
current basis even though the initial block 𝑃 has rank 2𝑘.
This could lead to the allocation of a large basis if many itera-
tions 𝑚 need to be performed. To avoid the use of an excessive
amount of memory, one could combine our methodology with
the compress-and-restart paradigm presented in [33] for the
polynomial Krylov subspace method.

3 | Applications

In this section we illustrate two important problem settings
where (1) needs to be solved several times, for many parame-
ters v. The large number of equations in these scenarios makes
our novel solvers very appealing, especially if compared to
state-of-the-art procedures, which are not able to fully capitalize
on the structure of the problem; see also Section 4.

3.1 | Damped Vibrational Systems

We consider linear vibrational systems described by

𝑀𝑥̈ + 𝐶(v)𝑥̇ +𝐾𝑥 = 0

𝑥(0) = 𝑥0, 𝑥̇(0) = 𝑥̇0 (22)

where 𝑀 denotes the mass matrix, 𝐶(v) denotes the parameter
dependent damping matrix, 𝐾 denotes the stiffness matrix, and
𝑥0 and 𝑥̇0 are initial data. We assume that𝑀 and𝐾 are real, sym-
metric positive definite matrices of order 𝑚. The damping matrix
is defined as 𝐶(v) = 𝐶int + 𝐶ext(v).

We assume that
𝐶ext(v) = 𝐵𝐷(v)𝐵T (23)

where the matrix𝐵 ∈ ℝ𝑚×𝑘 describes the dampers’ geometry and
the matrix 𝐷(v) = diag(𝑣1, 𝑣2, . . . , 𝑣𝑘) contains the damping vis-
cosities 𝑣𝑖 > 0, for 𝑖 = 1 . . . , 𝑘. The viscosities will be encoded in
the parameter vector v =

[
𝑣1, 𝑣2, . . . , 𝑣𝑘

]T ∈ ℝ𝑘
>0.

The internal damping 𝐶int can be modeled in different ways. It is
usually modeled as a Rayleigh damping matrix, which means that

𝐶int = 𝛼𝑀 + 𝛽𝐾, with 𝛼, 𝛽 ⩾ 0, 𝛼2 + 𝛽2 > 0 (24)

or as a small multiple of the critical damping, that is,

𝐶int = 𝛼𝑀1∕2
√
𝑀−1∕2𝐾𝑀−1∕2𝑀1∕2, where 𝛼 > 0 (25)

See, for example [26, 34, 35] for further details.

Vibrations arise in a wide range of systems, such as mechanical,
electrical, or civil engineering structures. Vibrations are a mostly
unwanted phenomenon in vibrational structures, since they can
lead to many undesired the effects such as the creation of noise,
oscillatory loads, or waste of energy that may produce damaging
effects on the considered structures. Therefore, in order to attenu-
ate or minimize unwanted vibrations, an important problem is to
determine the damping matrix in such a way that the vibrations
of the system are as small as possible. This is usually achieved
through optimization of the external damping matrix 𝐶ext(v).
Within this framework, we will focus on the optimization of the
damping parameter vector v defining 𝐶ext(v) as in (23). While
damping optimization is a widely studied topic, there are still
many challenging tasks that require efficient approaches. There is
a vast literature in this field of research. For further details, we list
only a few references that address the minimization of dangerous
vibrations with different applications [26, 36–41].

The problem of vibration minimization requires a proper opti-
mization criterion. A whole class of criteria are based on eigen-
values; see, for example [42–47]. Another important criterion is
based on the total average energy of the system. This has been
intensely considered in the last two decades; see, for example
[26, 48–52]. Since our approach is also based on the total aver-
age energy, in the following we provide more details and set the
stage for the application of our framework.

Several approaches trying to fully exploit the structure and
accelerate the optimization process have been proposed in the
literature about damping systems. In more details, in [53–55]
the authors considered approaches that allowed derivation of
explicit formulas for the total average energy, but they are ade-
quate only for certain case studies. Furthermore, in [56, 57] the
authors employed dimension reduction techniques in order to
obtain efficient approaches for the calculation of the total aver-
age energy. However, these approaches require specific system
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configurations, and they cannot be applied efficiently for general
system matrices.

If we write (22) as a first-order ODE in phase space 𝑦̇ = 𝐴(v)𝑦, the
solution is given by 𝑦(𝑡) = e𝐴(v)𝑡𝑦0, where 𝑦0 denotes the vector of
initial data. The average total energy of the system is given by

∫||𝑦0||=1 ∫
∞

0
𝑦(𝑡)T𝑦(𝑡) d𝑡 d𝜎 = ∫||𝑦0||=1 ∫

∞

0
𝑦T

0 e𝐴(v)T𝑡e𝐴(v)𝑡𝑦0 d𝑡 d𝜎

where𝜎 is a given non-negative measure on the unit sphere. From
[26, Proposition 21.1] it follows that one can calculate the aver-
age total energy as trace(𝑋(v)), where 𝑋(v) solves the Lyapunov
equation

𝐴(v)𝑋(v) +𝑋(v)𝐴(v)T = −𝑄 (26)

Here𝑄 is the unique positive semidefinite matrix determined by
𝜎. We will show that 𝐴(v) has the form (2) and that Assumptions
1 is satisfied for both types of internal damping mentioned above
and for typical choices of 𝜎.

Using the linearization 𝑦1 = 𝑥, 𝑦2 = 𝑥̇, the differential
equation (22) in phase space can be written as

𝑦̇ = 𝐴(v)𝑦, where 𝐴(v) =

[
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶(v)

]
(27)

In the case of internal Rayleigh damping (24), it is easy to see that
𝐴(v) has the form (2) with

𝐴0 =

[
0 𝐼

−𝑀−1𝐾 −𝛼𝐼 − 𝛽𝑀−1𝐾

]
, 𝐵𝑙 =

[
0

𝑀−1𝐵

]
, 𝐵𝑟 =

[
0
𝐵

]

It can be shown that 𝐴(v) is a Hurwitz matrix (the eigenvalues
of 𝐴 are in the open left half of the complex plane) if 𝛼2 + 𝛽2 >

0. Moreover, by using the appropriate permutation matrix, 𝐴0
can be written as a block diagonal matrix with 2 × 2 blocks on
its diagonal so that its eigenvalues can be directly calculated.
Assume 𝑍 = diag(𝐾−1,𝑀−1), which corresponds to the choice
of the surface measure 𝜎 generated by the energy norm ||𝑦|| =

1√
2

√
𝑦T

1𝐾𝑦1 + 𝑦T
2𝑀𝑦2 on ℝ2𝑚. Then, one can calculate the corre-

sponding𝑋0 as

𝑋0 =
⎡⎢⎢⎢⎣

(𝛼𝐾 + 𝛽𝐾𝑀−1𝐾)−1

+𝛼𝐾−1𝑀−1𝐾−1 + 𝛽𝐾−1
− 1

2
𝐾−1

− 1
2
𝐾−1 (𝛼𝐾 + 𝛽𝐾𝑀−1𝐾)−1

⎤⎥⎥⎥⎦ (28)

hence Assumption 1 is satisfied. It can be shown that the eigen-
values of 𝐴0 are given by

1
2

(
−𝛼 − 𝛽𝜆𝑖 ±

√
(𝛼 + 𝛽𝜆𝑖)2 − 4𝜆𝑖

)
where 𝜆𝑖 > 0, 𝑖 = 1, . . . , 𝑚, are the eigenvalues of the matrix
pair (𝐾,𝑀) and that the corresponding eigenvectors can be
constructed from the eigenvectors of the pair (𝐾,𝑀). Hence,
Assumption 2 is satisfied.

In the case of internal damping of the form (25), a different kind
of linearization is more convenient. From the assumptions on𝑀

and𝐾 , it follows that there exists a matrix Φ that simultaneously
diagonalizes𝑀 and 𝐾 , that is,

ΦT𝐾Φ = Ω2 and ΦT𝑀Φ = 𝐼 (29)

where Ω = diag(𝜔1, . . . , 𝜔𝑚) contains the square roots of the
eigenvalues of (𝐾,𝑀), which are eigenfrequencies of the corre-
sponding undamped (𝐶(v) = 0) vibrational system. We assume
that they are ordered in ascending order, 0 < 𝜔1 ⩽ 𝜔2 ⩽ · · · ⩽ 𝜔𝑚.
It holds that the matrix Φ diagonalizes 𝐶int as well, that is,

ΦT𝐶intΦ = 𝛼Ω

for more details see, for example [26].

Using the linearization 𝑦1 = 𝐿T
𝐾
𝑥, 𝑦2 = 𝐿T

𝑀
𝑥̇, where 𝐿𝐾 , and 𝐿𝑀

are the Cholesky factors of𝐾 and𝑀 , respectively, the matrix𝐴(v)
can be written as

𝐴(v) =

[
0 Ω
−Ω −ΦT𝐶(v)Φ

]
(30)

where Ω and Φ are given by (29). It is important to notice that the
matrix 𝐴(v) from (30) is Hurwitz if 𝛼 > 0; see, for example [26].

Since in this case the matrix 𝐴0 is given by

𝐴0 =

[
0 Ω
−Ω −𝛼Ω

]
all its eigenvalues of 𝐴0 are non-real for 𝛼 < 2.

Let 𝑛 = 2𝑚. Typical choices for the matrix 𝑄 in this case are 𝑄 =
1
𝑛
𝐼 , which corresponds to the case when 𝜎 is generated by the

Lebesgue measure on ℝ𝑛×𝑛, and, for 𝑠 < 𝑚,

𝑄 = 1
2𝑠

⎡⎢⎢⎢⎢⎢⎣

𝐼𝑠 0 0 0
0 0 0 0
0 0 𝐼𝑠 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
(31)

which corresponds to the case when 𝜎 is generated by the
Lebesgue measure on the subspace spanned by the vectors [𝑥𝑖, 0]T

and [0, 𝑥𝑖]T, 𝑖 = 1, . . . , 𝑠, where 𝑥𝑖 are the eigenvectors of the first
𝑠 𝜔𝐼 ’s, and on the rest of ℝ𝑛 it corresponds to the Dirac measure
concentrated at zero.

For both choices of the matrix𝑄mentioned above, Assumption 1
is satisfied. Indeed, if 𝑄 = 1

𝑛
𝐼 , we have

𝑋0 = 1
𝑛

[
3𝛼
2
Ω−1 − 1

2
Ω−1

− 1
2
Ω−1 1

𝛼
Ω−1

]
and if 𝑄 is given by (31), then a direct calculation shows that

𝑋0 = 1
2𝑠

⎡⎢⎢⎢⎢⎢⎣

3𝛼
2
Ω−1
𝑠

0 − 1
2
Ω−1
𝑠

0
0 0 0 0

− 1
2
Ω−1
𝑠

0 1
𝛼
Ω−1
𝑠

0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
where Ω𝑠 = diag(𝜔1, . . . , 𝜔𝑠).
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3.2 | Multi-Agent Systems

The second application concerns the analysis of parameter vari-
ation in output synchronization for heterogeneous multi-agent
systems. In a nutshell, multi-agent systems are a class of dynam-
ical systems on networks, consisting of a number of dynami-
cal systems (agents) connected in a network, where the agents
can exchange information with the neighboring agents through
a given interaction protocol, with the communication topology
being specified through a (combinatorial) graph. Agent dynamics
can be rather complex; see, for example [58]. Examples of systems
that can be modeled as multi-agent systems are, for example,
wireless sensor networks, power grids, and social networks. Com-
mon protocols are those for which the systems achieve consen-
sus or output synchronization, and those for which the systems
achieve desired formation or flocking state. The design and anal-
yses of multi-agent systems have been a widely investigated field
in recent years, and for more details, see, for example [59–61] and
references therein.

The problem of output synchronization is how to design/control
a system in such a way that the outputs of the agents converge
to the same state. The general setting of output synchronization
problems for heterogeneous multi-agent systems was considered,
for example, in [4, 58, 62, 63].

An important aspect in heterogeneous multi-agent systems is
studying the impact that one agent has, or a subset of agents has,
on the whole system. This will, of course, depend on the dynamics
of these agents and their location in the communication graph.
The goal of this subsection is to analyze this impact with high
computational efficiency in the case of the output synchroniza-
tion protocol. We will analyze how one or more agents influence
the entire system by using the 𝐻2-norm (see, e.g., [64]) of the
corresponding multi-agent system as a performance measure. By
using this information, the system designer can modify or control
the heterogeneous multi-agent system in order to achieve a target
behavior.

To understand why equations of the form (1) arise in this setting,
we first need to briefly introduce the bigger picture. Motivated by
work from [65–67], we consider 𝑚 agents with their dynamics
described by

𝜉̇𝑖 = 𝐴(𝑖)𝜉𝑖 + 𝐵(𝑖)𝑢𝑖 + 𝜔𝑖
𝜁𝑖 = 𝐶 (𝑖)𝜉𝑖 (32)

Here the function 𝜉𝑖 represents the state of the agent 𝑖, the func-
tion 𝑢𝑖 represents the input of the agent 𝑖, the function 𝜁𝑖 repre-
sents the output of the agent 𝑖, and the function 𝜔𝑖 represents
the exogenous disturbance of the agent 𝑖, 𝑖 ∈ {1, 2, . . . , 𝑚}. The
matrices 𝐴(𝑖), 𝐵(𝑖), and 𝐶 (𝑖) are called the state, input, and output
matrices, of the agent 𝑖, respectively. We assume that all matrices
𝐴(𝑖) have the same size, and that the same holds for the matrices
𝐵(𝑖) and 𝐶 (𝑖). Let 𝐺 be the corresponding communication graph,
which models the connections of the agents from (32), with nodes
{1, . . . , 𝑚}. This means that (𝑖, 𝑗) is an edge in the graph 𝐺 if the
agents 𝑖 and 𝑗 exchange information through the common proto-
col. A protocol we are going to study is the following:

𝑢𝑖(𝑡) = −𝐾 (𝑖)
∑
𝑗∈𝔑𝑖

(𝜁𝑖(𝑡) − 𝜁𝑗(𝑡)), 𝑖 = 1, . . . , 𝑚 (33)

Here 𝔑𝑖 denotes the set of neighboring agents of the agent 𝑖
(described by𝐺), and𝐾 (𝑖) is a so-called gain matrix of appropriate
dimension [67].

We define the stack vector 𝜉 = (𝜉1, . . . , 𝜉𝑚). Let 𝑛 be the size
of the matrices 𝐴(𝑖), hence, 𝑛𝑚 is the size of the vector 𝜉. As
we want to treat scenarios in which the disturbances 𝜔𝑖 need
not all be independent, let us suppose that among the exoge-
nous disturbances {𝜔1, . . . , 𝜔𝑚} there are 𝑘 ∈ {1, . . . , 𝑚} differ-
ent ones {𝜔𝑖1 , . . . , 𝜔𝑖𝑘} (e.g., the same ocean waves or wind
gusts concurrently disturb several agents). Then

[
𝜔1 · · · 𝜔𝑚

]⊤ =
𝐻
[
𝜔𝑖1 · · · 𝜔𝑖𝑘

]⊤, where the matrix𝐻 ∈ ℝ𝑚×𝑘 is given by

𝐻𝑗𝑙 =

{
1, 𝜔𝑗 = 𝜔𝑖𝑙
0, otherwise

, 𝑗 = 1, . . . , 𝑚, 𝑙 = 1, . . . , 𝑘

With E = 𝐻 ⊗ 𝐼𝑛, we denote the corresponding disturbance
matrix. Let 𝜔 = (𝜔𝑖1 , . . . , 𝜔𝑖𝑘 ). With C we denote the overall out-
put matrix C = diag(𝐶 (1), . . . , 𝐶 (𝑚)).

The closed-loop dynamic equation of the system described by (32)
and (33) can be represented as

𝜉̇(𝑡) = A𝜉(𝑡) + E𝜔(𝑡)

𝜁 (𝑡) = C𝜉(𝑡) (34)

where the system matrix A ∈ ℝ𝑛𝑚×𝑛𝑚 in (34) can be seen as a block
matrix whose (𝑖, 𝑗)-th block A𝑖𝑗 is given by

A𝑖𝑗 = 𝛿𝑖,𝑗𝐴(𝑖) − 𝓁𝑖𝑗𝐵
(𝑖)𝐾 (𝑖)𝐶 (𝑗), 𝑖, 𝑗 ∈ {1, . . . , 𝑚}

where 𝓁𝑖𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑚, are the entries of the Laplacian
matrix 𝐿 of the graph 𝐺, see, for example [66]. Note, however,
that the model in [66] has delays, while our model has no delays.

By calculating the𝐻2-norm of the system (34), we are calculating
the norm of the mapping 𝜔 ↦ 𝜁 , thus measuring how the distur-
bance 𝜔 is influencing the multi-agent system. This boils down
to the calculation of trace(EET𝑋), where 𝑋 solves the Lyapunov
equation AT𝑋 +𝑋A = −CTC. If we were interested in measur-
ing the influence of the disturbance to a part of the system, that
is, to a subset of agents, instead of the matrix C in (34), we would
use the matrix PC, where P has the form P = 𝑃 ⊗ 𝐼 , with𝑃 being
an orthogonal projector to the subspace spanned by the canonical
vectors corresponding to the subset of agents we are interested in.

We want to study the impact that a variation of dynamics in one
or a subset of agents has on the 𝐻2-norm of the resulting sys-
tem. To this end, we need to compute trace(EET𝑋(v)), where
now 𝑋(v) denotes the solution to a Lyapunov equation of the
form (1) with 𝑄 = CTC. In this framework, the low-rank modi-
fication 𝐵𝑙𝐷(v)𝐵T

𝑟
in the coefficient matrix (2) is meant to take

into account the variation in the dynamics of the agents of inter-
est. In particular, 𝐵𝑙 and 𝐵𝑟 will encode the location of the agents
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to be modified, whereas𝐷(v) amounts to the parameter variation
to be applied to those agents.

In the numerical examples in Section 4 we choose symmetric
matrices 𝐴(𝑖) and 𝐾 (𝑖), and we will also take 𝐵(𝑖) = (𝐶 (𝑖))T, 𝑖 =
1, . . . , 𝑚. Hence, the matrix A will be symmetric, and therefore
Assumptions 1 and 2 will be satisfied.

4 | Numerical Examples

We now illustrate the advantages of the proposed methods
through different numerical experiments. First, we construct an
artificial example aimed at illustrating some of the features of
our routines. We then examine problem settings coming from
the two applications described in the previous section. Firstly, we
consider an example, including analyzing the influence of damp-
ing parameters in a mechanical system. Secondly, we study the
impact that variation of agents’ dynamics has on a couple of dif-
ferent multi-agent systems. To this end, we employ our novel
schemes to efficiently compute the 𝐻2-norm of the underlying
linear time-invariant system (34).

Example 1. In the first example, we consider 𝐴0 ∈ ℝ𝑛×𝑛, 𝑛 =
2 500, coming from the centered finite difference discretization
of the 2D Laplacian operator on the unit square with zero Dirich-
let boundary conditions. The matrices 𝐵𝑙, 𝐵𝑟 ∈ ℝ𝑛×𝑘, 𝑘 = 3, and
𝑄 = 𝑐𝑐T, 𝑐 ∈ ℝ𝑛, have normally distributed random entries. We
construct the diagonal matrix

𝐷(v) =
⎡⎢⎢⎢⎣
𝑣1

𝑣2

𝑣3

⎤⎥⎥⎥⎦
as follows. We consider 𝑝 different values for 𝑣1, 𝑣2, and 𝑣3 so that
we solve equation (1) for all the possible 𝑝3 different instances
of v = [𝑣1, 𝑣2, 𝑣3]. In particular, 𝑣1 takes 𝑝 logarithmically equally
spaced values in [1, 10]. Similarly, 𝑣2 and 𝑣3 take 𝑝 logarithmically
equally spaced values in [102, 103] and [104, 105], respectively.
Notice that this selection of the parameters implies that 𝐷(v) is
never a scalar multiple of the identity.

We start by solving the sequence of Lyapunov equations
described above by the SMW+recycling Krylov technique pre-
sented in Section 2.1. We select 𝑝 = 2 so that we solve 8 Lyapunov

equations. The parameters for the GCRO-DR method are as fol-
lows: The threshold on the relative residual norm is 10−10, the
maximum number of iterations allowed is 300, and the number
of eigenvectors 𝑠𝓁 used in the recycling technique is 𝑠𝓁 = 10 for
all 𝓁.

We first report on Figure 1 (left) the peculiar sparsity pattern of
the matrix NTL−1M that we analyzed in detail in Section 2.1. We
can easily appreciate the 2 × 2 block structure of this matrix and
the remarkable structured sparsity pattern of its diagonal blocks.
The analysis of this sparsity pattern is crucial in different ways.
First, it allows us to assemble NTL−1M at low cost. Second, it
suggests the design of a natural preconditioner for GCRO-DR,
namely the operator  in (17). We now study whether this pre-
conditioner is indeed effective in reducing the GCRO-DR itera-
tion count. To this end, in Figure 1 (center), we report the number
of iterations achieved by GCRO-DR with no preconditioning (red
circles) and GCRO-DR preconditioned with (17) (blue stars). In
the preconditioner (17), the rank 𝑝 of 1T

1 and 2T
2 coming

from the TSVD of NT
1 L−1

0 M1 and NT
2 L−1

0 M2, respectively, is 5.

We can observe how our preconditioner effectively cuts down
the number of iterations for every parameter configuration we
tested. In particular, for some selection of v, we achieve up to a
50% reduction in the iteration count.

We now consider the novel projection scheme we presented
in Section 2.2. We want to compare it with applying the
extended Krylov subspace method [27] to every single instance
of equation (1). Since, for this problem, we consider a low-rank
right-hand side 𝑄 = 𝑐𝑐𝑇 , the application of EKSM to (1) is possi-
ble and requires the construction of the subspaces EK◽

𝑚
(𝐴(v), 𝑐).

For the linear system solves with 𝐴(v) = 𝐴0 − 𝐵𝑙𝐷(v)𝐵𝑇𝑟 needed
in the extended Krylov basis construction, we apply the SMW
formula, where we precompute the LU factorization of 𝐴0 only
once. We set 𝑝 = 10 so that we need to solve a sequence of 1, 000
equations.

The threshold we adopt for the backward error is 10−8 in both
approaches. The GCRO-DR setting needed in the solution of the
projected problems in our scheme is as before.

In Figure 1 (right), we report the dimension of the constructed
EK◽

𝑚
(𝐴(v), 𝑐) for any v. These values need to be compared

to the dimension of EK◽
𝑚
(𝐴0, 𝑃 ) our method constructs. For
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FIGURE 1 | Example 1. Left: Sparsity pattern of NTL−1M. Center: Numbers of iterations performed by GCRO-DR when preconditioned with (17)
(blue stars) and when not preconditioned at all (red circles) for all the different parameter selections we tested. Right: Dimension of the space
EK◽

𝑚
(𝐴(v), 𝑐) constructed for the solution of each instance of (1).
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this example, we get dim(EK◽
𝑚
(𝐴0, 𝑃 )) = 72. Even though the

latter is slightly larger than the values reported in Figure 1
(right), we remind the reader that we construct EK◽

𝑚
(𝐴0, 𝑃 ) only

once, whereas EK◽
𝑚
(𝐴(v), 𝑐) is built from scratch every time v

changes. This aspect can lead to large computational timings,
especially when the orthogonalization step in the construction
of EK◽

𝑚
(𝐴(v), 𝑐) gets expensive, namely when large spaces are

needed to converge. As reported in Figure 1 (right), this does
not happen for this example, and dim(EK◽

𝑚
(𝐴(v), 𝑐)) remains

rather moderate for all v. This explains why, for this example,
our projection technique results in being only slightly faster than
a naive application of EKSM: the latter takes 115.76 s, whereas
our scheme requires 93.27 s to converge. However, in the next
example, coming from damping optimization, we will see that
very large subspaces are indeed necessary to compute accurate
solutions.

Example 2. We consider a mechanical system of 2𝑑 + 1
masses consisting of two main rows of 𝑑 masses connected with
springs; see, for example [57, 68]. The springs in the first row of
masses have stiffness 𝑘1, and those in the second row have stiff-
ness 𝑘2. The first masses, on the left edge, (i.e., masses 𝑚1 and
𝑚𝑑+1) are connected to a fixed boundary, while, on the other side
of the rows, the last masses (𝑚𝑑 and 𝑚2𝑑) are connected to the
mass 𝑚2𝑑+1 which, via a spring with stiffness 𝑘3, is connected to
a fixed boundary. An illustration is given in Figure 2.

The model is given by (22) where the mass matrix is 𝑀 =
diag(𝑚1, 𝑚2, . . . , 𝑚2𝑑+1) and the stiffness matrix 𝐾 is given by

𝐾 =
⎡⎢⎢⎢⎣
𝐾11 −𝜅1

𝐾22 −𝜅2

−𝜅T
1 −𝜅T

2 𝑘1 + 𝑘2 + 𝑘3

⎤⎥⎥⎥⎦, 𝐾𝑖𝑖 = 𝑘𝑖
⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
−1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with 𝜅𝑖 =

[
0 . . . 0 𝑘𝑖

]
for 𝑖 = 1, 2.

Each row has 𝑑 masses, and we consider systems with 2𝑑 + 1
masses, including

𝑚𝑖 =
⎧⎪⎨⎪⎩

1
10
(2𝑑 + 1 − 2𝑖), 𝑖 = 1, . . . , 500

1
10
(𝑖 − 500) + 100, 𝑖 = 501, . . . , 1000

160, 𝑖 = 1000, . . . , 2𝑑

𝑚2𝑑+1 = 175 (35)

The stiffness values are chosen as 𝑘1 = 40, 𝑘2 = 20, and 𝑘3 = 30.
We assume that the internal damping is modeled as a small mul-
tiple of the critical damping (25) with 𝛼 = 0.04. We would like to
remind the reader that, for a given 𝑑, the coefficient matrix 𝐴(v)
in (1) has dimension 𝑛 = 4𝑑 + 2.

We consider viscosity optimization over three dampers (𝑘 = 3)
with viscosities 𝑣1, 𝑣2, and 𝑣3 with their positions encoded in

𝐵𝑙 = 𝐵𝑟 =
[
𝑒𝑖1 , 𝑒𝑖1+

𝑑
10

− 𝑒
𝑖1+

𝑑
10 +𝑑

, 𝑒𝑖2

]
, 1 ⩽ 𝑖1 ⩽ 𝑑, 𝑑 + 1 ⩽ 𝑖2 ⩽ 2𝑑

(36)

where 𝑒𝑖 is the 𝑖th canonical vector and the indices 𝑖1 and 𝑖2 deter-
mine the damping positions. The first damping positions will
damp the first row of masses (using a grounded damper). Simi-
larly, the third damps the second row of masses, while the second
damper connects both rows of masses of the considered mechan-
ical system.

We will optimize the viscosity parameters with respect to the aver-
age total energy measure introduced in Section 3.1. The optimiza-
tion problems were solved by using Matlab’s built-in fmin-
searchwith the starting point v0 = (100, 100, 100). The stopping
tolerance for this routine was set to 10−4.

The performance of our new approaches will be illustrated on two
damping configurations with different features.

a. In the first case, we consider a small dimensional problem
with 𝑑 = 400, so we have a system with 801 masses. Here we
damp the 9 lowest undamped eigenfrequencies, that is, 𝑠 =
9 in (31). The damping geometry is determined by (36), and
20 different damping positions will be considered. These are
determined by the following indices:

𝑖1 ∈ {50, 130, 210, 290}, and 𝑖2 ∈ {460, 540, 620, 700, 780}

Due to the small problem dimension (𝑛 = 1, 602), we
employ the SMW+recycling Krylov technique presented
in Section 2.1 to solve this problem. In particular, we use
the following parameters for the GCRO-DR method. The
threshold on the relative residual norm is 10−10, the max-
imum number of iterations allowed is 300, and the number
of eigenvectors 𝑠𝓁 used in the recycling technique is 𝑠𝓁 = 10
for all𝓁. In the preconditioner (17), the rank 𝑝 of1T

1 and

FIGURE 2 | Example 2, illustration of the mechanical system.
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2T
2 coming from the TSVD of NT

1 L−1
0 M1 and NT

2 L−1
0 M2,

respectively, is 50.

b. In the second case, we increase the problem dimension by
considering 𝑑 = 1, 000; thus, here we have a system with
2,001 masses and 𝑛 = 4002. In this case, we damp the 21
lowest undamped eigenfrequencies, that is, 𝑠 = 21 in (31).
Here we consider 25 damping positions determined by the
following indices:

𝑖1 ∈ {50, 250, 450, 650, 850}, and 𝑖2 ∈ {1150, 1350, 1550, 1750, 1950}

We apply the projection framework illustrated in Section 2.2
for the solution of this larger problem. We would like
to mention that a Lyapunov equation whose coefficient
matrix is of dimension 4,002, as in this case, is usually
not considered to be large scale in the matrix equation
community. On the other hand, the huge number of Lya-
punov equations we need to solve within the optimiza-
tion procedure makes our novel projection framework very
appealing. In Algorithm 1 we employ 𝜖 = 10−8 and 𝑚max =
120. The projected Equations (20) are solved by means of
our SMW+recycling Krylov approach, adopting the same
parameters as in case (a) above.

We first focus on case (a) described above and in Figure 3
we report the relative errors obtained by our SMW+recycling
Krylov method. The relative errors in the optimal viscosities were
calculated by ||v∗ − v||∕||v||, where v and v∗ denote the opti-
mal viscosity vectors calculated by the SMW+recycling Krylov
method and the Matlab’s functionlyap, respectively. Similarly,
the relative errors in the average total energy are calculated by|trace(𝑋(v)∗) − trace(𝑋(v))|∕trace(𝑋(v)∗), where trace(𝑋(v)∗) is
once again the optimal trace for the given configuration obtained
by the Matlab’s function lyap, and trace(𝑋(v)) is the optimal
trace calculated by our SMW+recycling Krylov scheme.

From the results reported in Figure 3 we can notice that our
novel SMW+recycling Krylov approach leads to a solution pro-
cess able to achieve very small errors in the average total energy.

Also, the computed optimal viscosities turn out to be rather accu-
rate, attaining an error of the same order as the threshold used
for fminsearch. Moreover, our novel SMW+recycling Krylov
strategy is very efficient. In particular, in this example, it accel-
erated the overall optimization process approximately 2.7 times
(in the average case). Figure 4 shows a precise acceleration ratio
for each considered configuration. The displayed time ratio is the
ratio between the total time needed for the direct calculation of
the average total energy by using Matlab’s function lyap and
the total time needed for the viscosity optimization by using the
SMW+recycling Krylov method.

We would like to mention that, also for this example, we tried to
use also GCRO-DR with no preconditioning within our recycling
Krylov technique. In the best case scenarios, plain GCRO-DR
managed to converge by performing a larger number of itera-
tions: (102) iterations to be compared to the (101) iterations
performed in the preconditioned case. Such a large number of
iterations remarkably worsened the overall performance in terms
of computational time. In some other cases, unpreconditioned
GCRO-DR did not achieve the prescribed level of accuracy, thus
jeopardizing the convergence of the outer minimization proce-
dure. This shows once again that the preconditioning operator 
described in (17) works well, even though more performing pre-
conditioners can certainly be designed.

We now turn our attention to case (b). As already mentioned,
having coefficient matrices of dimension 4,002 is often consid-
ered as working in the small-scale setting in the matrix equation
literature so, that dense linear algebra solvers may be preferred
in this case. In this example, we would like to show that employ-
ing a projection framework is largely beneficial also in this
scenario. To this end, we compare our fresh projection frame-
work with the SMW+recycling Krylov technique we propose
in Section 2.1. Indeed, we showed above that the latter method
is able to achieve small errors while accelerating the overall
solution process. Figure 5 shows the relative errors achieved by
our projection framework with respect to the SMW+recycling

0 2 4 6 8 10 12 14 16 18 20
damping configuration number

10-10

10-8

10-6

10-4

re
la

tiv
e 
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r

relative error in the optimal viscosity
relative error in the optimal average total energy

FIGURE 3 | Example 2, the case (a). Relative errors in the total average energy (squares) and in the viscosity (circles) at optimal gains for the
SMW+recycling Krylov method.
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FIGURE 4 | Example 2, case (a). Acceleration factors in the overall minimization procedure attained by employing our novel recycling Krylov
approach.
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FIGURE 5 | Example 2, case (b). Relative errors in the total average energy (squares) and in the viscosity (circles) at optimal gains for the projection
framework.

Krylov method. We can notice that the error in the optimal
viscosities is still of the same order of magnitude of the thresh-
old used within fminsearch, whereas the relative errors in
the optimal average total energy norm are a little higher than
the ones reported in Figure 3, even though still satisfactory.
Moreover, the projection framework method accelerated the
optimization process by approximately 23.3 times, and Figure 6
showcases a precise acceleration time ratio for all the 25 con-
figurations, compared to the SMW+recycling Krylov method.
The main reason why our novel projection method performs
so well in terms of computational time lies in the fact that we
basically use the same approximation subspace for every v𝓁 . In
particular, once we construct a sufficiently large EK◽

𝑚
(𝐴0, 𝑃 ) for

the first equation, namely Δ𝑚,v0
meets our accuracy demand,

we keep using the same approximation subspace for all the
subsequent equations, by expanding it very few times instead of
computing a new subspace from scratch. For most of the damp-
ing configurations we considered, EK◽

𝑚
(𝐴0, 𝑃 ) does not need

to be expanded at all after its construction during the solution
of the first equation. Only for three configurations – (𝑖1, 𝑖2) ∈
{(250, 1 750), (450, 1 550), (450, 1 950)} – EK◽

𝑚
(𝐴0, 𝑃 )

needed to be expanded a couple of times during the optimiza-
tion procedure. In particular, for (𝑖1, 𝑖2) = (250, 1 750), the
dimension of EK◽

𝑚
(𝐴0, 𝑃 ) after the solution of the first equation

was 708. This space has been expanded twice during the online
optimization step, getting a space of dimension 720 and then
732. Similarly, for (𝑖1, 𝑖2) = (450, 1 950) we started the online
phase with a space of dimension 780, which got expanded twice,
getting a space of dimension 792 first, and 804 later. For (𝑖1, 𝑖2) =
(450, 1 550), EK◽

𝑚
(𝐴0, 𝑃 ) was expanded only once, passing from

a space of dimension 768 to a space of dimension 780. In general,
for this example, the dimension of EK◽

𝑚
(𝐴0, 𝑃 ) averaged over all

the configurations is about 749, with a minimum and maximum
dimension equal to 708 and 852, respectively.

In the next numerical examples, we are going to illustrate the fol-
lowing two cases of analysis of multi-agent systems that are of
interest:

• For each agent 𝑖, we choose 𝐻 = 𝑒𝑖. Then we study the
influence of the variation of the dynamics of the agent 𝑖 by
calculating the 𝐻2-norm of the corresponding systems. By

15 of 21
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FIGURE 6 | Example 2, case (b). Acceleration factors in the overall minimization procedure attained by employing our new projection framework.

applying this procedure to all agents, we can study the struc-
tural importance of each agent in the system.

• We choose 𝐻 = 𝐼𝑚. For a given set of subsets of agents{
𝐽1, . . . , 𝐽𝑞

}
, 𝐽𝑖 ⊂ {1, . . . , 𝑚}, and a given set of parameters

of agents in 𝐽𝑖, we study the influence of these parameters on
the dynamics of the overall system. By calculating the cor-
responding 𝐻2-norms, we can study the influence of these
parameters on the dynamics of the whole system when all
agents are exposed to independent external disturbances.

See Examples 3 and 4 for further details.

Example 3. For the sake of simplicity, here we investigate
agent dynamics that are defined by 2 × 2 state matrices. We con-
sider𝑚 = 196 agents. The state matrices of all agents are given by

𝐴(𝑖) =

[
−10 5

5 −8

]
, for 𝑖 = 1, . . . , 𝑚

By following the notation of Section 3.2, the other components of
the system are

𝐾 (𝑖) =

[
0.3 0
0 0.2

]
, 𝐵(𝑖) = (𝐶 (𝑖))T =

[
1 1
−1 1

]
, for 𝑖 = 1, . . . , 𝑚

Therefore, the 2 × 2 blocks of the system matrix A ∈ ℝ2𝑚×2𝑚 are
given by

A𝑖𝑗 = 𝛿𝑖,𝑗𝐴(𝑖) − 𝓁𝑖𝑗𝐵
(𝑖)𝐾 (𝑖)𝐶 (𝑗), 𝑖, 𝑗 ∈ {1, . . . , 𝑚}

An illustration of the underlying topology can be seen in Figure 7.

We would like to analyze the influence of parameter variations
in different agents. This means that for a fixed 𝑘-th agent to be
altered, we consider a low-rank update of A aimed at modifying
only its 𝑘-th diagonal 2 × 2 block. In particular, given the param-
eters v = (𝑣1, 𝑣2, 𝑣3), the matrix A(𝑘)(v) corresponds to a low-rank
update of A of the following form

A(𝑘)(v) = A − 𝐵𝑙diag(𝑣1, 𝑣2, 𝑣2, 𝑣3)𝐵T
𝑟

(37)

where 𝐵𝑙, 𝐵𝑟 ∈ ℝ2𝑚×4 are determined by the agent index 𝑘. It
holds,

𝐵𝑙(2(𝑘 − 1) + 1 ∶ 2𝑘, 1 ∶ 4) =

[
1 1 0 0
0 0 1 1

]
,

𝐵𝑟(2(𝑘 − 1) + 1 ∶ 2𝑘, 1 ∶ 4) =

[
1 0 1 0
0 1 0 1

]
whereas all other entries of 𝐵𝑙 and 𝐵𝑟 are zero. In this example,
we considered the influence of the variation of the dynamics of
one agent by calculating the𝐻2-norm of a corresponding system
when only this agent is externally disturbed. Thus, in the case of
the matrix A(𝑘) (that corresponds to analyzing the 𝑘-th agent), the
corresponding matrix E is given by E = 𝑒𝑘 ⊗ 𝐼𝑛, for 𝑘 = 1, . . . , 𝑚.

For all different agents, we will analyze the dependence of the
system to the parameter variation 𝑣1, 𝑣2, and 𝑣3 of the 𝑘-th agent,
𝑘 = 1, . . . , 𝑚. In particular, the low-rank update of the system
matrix given by (37) influences the 𝑘-th block in the following
way. The diagonal elements are altered by the parameters 𝑣1 and
𝑣3, while the off-diagonal elements are symmetrically modified
by the parameter 𝑣2. All the parameters 𝑣1, 𝑣2, and 𝑣3 will be var-
ied between −9.9 and 10.1 with step 1.

In this example we will modify all the agents, namely we consider
all agent’s indices 𝑘 = 1, . . . , 𝑚.

We note that some instances of A(𝑘)(v) turned out to be
non-stable. In particular, we have computed the rightmost eigen-
value 𝜆 of A(𝑘)(v) and discarded those configurations for which
Re(𝜆) ⩾ 0. By doing so, for this particular example, the total
number of considered parameters is equal to 1,400,3284. This
means that we needed to calculate the 𝐻2-norm, and thus solve
a Lyapunov equation, a significant number of times. In particu-
lar, for fixed 𝑣1, 𝑣2, and 𝑣3, we are interested in identifying for
which 𝑘, 𝑘 = 1, . . . , 𝑚, the 𝐻2-norm of the underlying system
over described parameter variations is maximal. This provides an
insight on the importance of the considered agent.

Table 2 presents the average computational time needed
by different methods to perform the task described above.
We report the average required time by our novel solvers,
namely the SMW+recycling Krylov method and the projec-
tion framework (denoted in the table by SMW+rec. Krylov and
proj. framework, respectively). The computational parameters of
our SMW+recycling Krylov method are as in Example 2. The

16 of 21 Numerical Linear Algebra with Applications, 2025
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FIGURE 7 | Example 3. Maximal𝐻2-norm for different agents with respect to the parameter variations we performed. Darker colors correspond to
the agents where the maximal𝐻2-norm is larger.

TABLE 2 | Example 3. Computational time and relative errors.

Average required
time (s)

Average relative
error

lyap 625.02 —
SMW+rec. Krylov 678.05 3.575 × 10−12

proj. framework 17.48 3.675 × 10−12

only exceptions are in the GCRO-DR threshold and the rank 𝑝 of
the TSVD 1T

1 and 2T
2 used in the preconditioner. Here,

we use 10−8 and 𝑝 = 5, respectively. For Algorithm 1 we used
𝜖 = 10−10 and 𝑚max = 200. The projected equations are solved by
our SMW+recycling Krylov method with the same setting we
have just described above.

In the same table, we also document the relative errors achieved
by the different algorithms. To this end, we considered the
results obtained by using lyap as exact. As we can see, all the
approaches achieve a very small relative error. On the other hand,
the projection framework outperforms all other approaches in
terms of computational time; being one order of magnitude faster
than all the other algorithms we tested. Also in the multi-agent
system framework, reusing the same subspace EK◽

𝑚
(𝐴0, 𝑃 ) is key

for our projection method to be successful. For this example,
the extended Krylov subspace generated by our routine is very
small for all the configurations we tested. In particular, the space
dimensions range from 8 to 56, with an average value equal to
29.08.

Figure 7 illustrates the topology of the problem and provides
information regarding the maximal 𝐻2-norm we computed by
varying the parameter of the system. The node colors illustrate
this latter aspect. In particular, darker colors correspond to the

agents where the maximal 𝐻2-norm turns out to be larger. It
can be seen that certain groups of agents result in much larger
𝐻2-norms. Therefore, they are much more important for the con-
sidered multi-agent system, as altering those agents may lead to
an (almost) unstable system. Thanks to our novel solvers, this
kind of analysis can now be accurately carried out at an accept-
able cost.

Example 4. In this example, we still consider agent dynamics
defined by 2 × 2 state matrices of dimension𝑚. We aim at analyz-
ing the parameter variation in off-diagonal elements of consec-
utive agents. The system matrices 𝐴(𝑖), 𝐵(𝑖), 𝐶 (𝑖), 𝐾 (𝑖), and A are
defined as in Example 3 but here we consider 𝑚 = 200.

The Laplacian matrix 𝐿 of the underlying graph is given by
Algorithm 2 and the corresponding matrices𝐵𝑙 and𝐵𝑟 determin-
ing the low-rank perturbation are defined in the following way.
For a given odd index 1 ⩽ 𝑘 ⩽ 2𝑚 − 3, 𝐵𝑙, 𝐵𝑟 ∈ ℝ2𝑚×4 are

𝐵𝑙(𝑘 ∶ 𝑘 + 3, 1 ∶ 4) =

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦
, 𝐵𝑟(𝑘 ∶ 𝑘 + 3, 1 ∶ 4) = 𝐼4

and all other entries of 𝐵𝑙 and 𝐵𝑟 are zero.

The modified system matrix will depend on two parameters, 𝑣1
and 𝑣2, and it is defined as

A(𝑘)(v) = A − 𝐵𝑙diag(𝑣1, 𝑣1, 𝑣2, 𝑣2)𝐵T
𝑟

This means that for a fixed index 𝑘, the off-diagonal elements of
the diagonal blocks determined by 𝑘 and 𝑘 + 1 are modified by
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ALGORITHM 2 | Construction of the Laplacian matrix 𝐿 in Example 4.
input : number of agents 𝑚
output: the Laplacian matrix 𝐿

1 𝑟 = [𝑚∕20 + 𝑚∕50 ∶ 𝑚∕10, 𝑚∕4 + 𝑚∕20 ∶ 𝑚∕4 + 𝑚∕10, 𝑚∕2 + 𝑚∕20 + 2 ∶ 𝑚∕2 + 𝑚∕20 + 𝑚∕50,… 𝑚∕2 + 𝑚∕10 + 2 ∶
𝑚∕2 + 𝑚∕10 + 𝑚∕20, 𝑚 − 𝑚∕10 ∶ 𝑚 − 𝑚∕20] ∈ ℝ𝑖𝑟

2 ℎ = [1 ∶ 𝑚∕20, 𝑚∕10 + 𝑚∕40 ∶ 𝑚∕10 + 𝑚∕20, 𝑚∕2 ∶ 𝑚∕2 + 𝑚∕20, 𝑚 − 1] ∈ ℝ𝑖ℎ
3 for 𝑖 = 1 ∶ 𝑚 − 2 do
4 𝐿(𝑖, 𝑖 + 1) = −1; 𝐿(𝑖, 𝑚) = −1;
5 𝐿(1, 𝑚 − 1) = −1; 𝐿(𝑚 − 1, 𝑚) = −1;
6 for 𝑖 = 1 ∶ 𝑖𝑟 do
7 if 𝑟(𝑖) == (𝑚 − 1) then
8 𝐿(1, 𝑚 − 1) = 0;
9 else

10 𝐿(𝑟(𝑖), 𝑟(𝑖) + 1) = 0;
11 𝐿(ℎ,𝑚) = 0; 𝐿 = 𝐿 + 𝐿T;
12 for 𝑖 = 1 ∶ 𝑚 do
13 𝐿(𝑖, 𝑖) = −

∑𝑚

𝑗=1(𝐿(𝑖, 𝑗));

FIGURE 8 | Example 4: magnitude of the𝐻2-norm.

TABLE 3 | Example 4. Computational time and relative errors.

Total required time (s) Average relative error

𝒌 41 121 201 281 41 121 201 281

lyap 165.51 141.36 157.43 164.64 — — — —
SMW+rec. Krylov 257.49 242.93 255.52 265.59 7 × 10−14 1.03 × 10−13 2.07 × 10−13 1.7 × 10−13

proj. framework 15.23 9.55 10.71 25.31 9.79 × 10−14 7.64 × 10−14 2.18 × 10−13 1.28 × 10−11

𝑣1 and 𝑣2, respectively. The parameters 𝑣1 and 𝑣2 vary between
−4.9 and 14.6 with step 0.5. As before, we only consider the stable
instances of the matrices A(𝑘) for our purposes.

We will study the behavior of the𝐻2-norm of the underlying sys-
tem by varying the parameter 𝑘 ∈ {61, 141, 221, 301}. The total
number of parameter configurations v = (𝑣1, 𝑣2) for which A𝑘(v)
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is stable is equal to 6 0445. Moreover, in this example, we con-
sidered the matrix E = 𝐼2𝑚 for all cases, meaning that we mea-
sured the𝐻2-norm of the corresponding systems when all agents
were independently externally disturbed.

We test the same routines as in Example 3, namely lyap, and our
novel schemes, with the same setting as before.

We start by reporting the relative errors and the computational
timings attained in the computation of the 𝐻2-norms for all the
considered parameters; see Table 3. The relative errors are calcu-
lated with respect to𝐻2-norm obtained by using lyap.

From the results in Table 3 we can see that our SMW+recycling
Krylov scheme always attains very small relative errors. On the
other hand, it turns out to be not very competitive in terms of
computational timings. A finer tuning of the GCRO-DR parame-
ters and the preconditioning operator may lead to some improve-
ments in the performance of our scheme. Our projection frame-
work outperforms all other approaches in terms of computational
timing.

The extended Krylov subspaces constructed by our projection
method turn out to be a little larger in this example than the ones
in Example 3. In particular, the smallest and largest subspaces
have dimensions 12 and 96, respectively, whereas the average
space dimension is 49.71.

In Figure 8 we display the magnitude of the𝐻2-norm by varying
v for a fixed 𝑘. It can be seen how certain parameter values have a
much greater impact on the𝐻2-norm of the system, thus empha-
sizing the important role of the corresponding pairs of agents.
Once again, thanks to our novel solution processes, such analysis
can be carried out in very few seconds on a standard laptop.

5 | Conclusions

We proposed two different, efficient, and accurate methods for
solving sequences of parametrized Lyapunov equations. The
SMW+recycling Krylov approach is well-suited for small dimen-
sional problems and is able to provide solutions achieving a very
small relative errors. The proposed projection framework relies
on the extended Krylov subspace method, and it makes use of
the aforementioned SMW+recycling Krylov technique to solve
the projected equations. Even though this second algorithm is tai-
lored to large-scale problems, our numerical results show that it
is extremely competitive also for medium-sized problems, espe-
cially if the number of Lyapunov equations to be solved is very
large, as it happens in the application settings we studied. We
showed that the projection framework is able to speed up the
entire solution process by an order of magnitude. Expensive anal-
yses like viscosity optimization for vibrational systems and output
synchronization of multi-agent systems are, thus, now affordable.
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Endnotes
1 For the sake of simplicity, we assume the data of our problem to be real.

Our algorithms can handle complex data by applying straightforward
modifications.

2 This is the default strategy in [24].
3 Hereafter, we assume𝑉𝑚 to have full rank. If this is not the case, standard

deflation strategies can be adopted; see, for example [29, 30, Section 7.1].
4 This number is obtained by multiplying all the possible values of 𝑣1, 𝑣2,

and 𝑣3, namely 213, by all the adopted selections of 𝑘, that is,𝑚, and then
subtracting the number of unstable cases (414, 828).

5 As before, this number is obtained by multiplying all the possible values
of 𝑣1 and 𝑣2, namely 402, by all the adopted selections of 𝑘, that is, 4, and
then subtracting the number of unstable cases (356).
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52. N. Truhar and K. Veselić, “An Efficient Method for Estimating the
Optimal dampers’ Viscosity for Linear Vibrating Systems Using Lya-
punov Equation,” SIAM Journal on Matrix Analysis and Applications 31
(2009): 18–39, https://doi.org/10.1137/070683052.
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