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Abstract

We consider the problem of finding semi-matching in bipartite graphs which is also exten-
sively studied under various names in the scheduling literature. We give faster algorithms for
both weighted and unweighted cases.

For the weighted case, we give an O(nm log n)-time algorithm, where n is the number of
vertices and m is the number of edges, by exploiting the geometric structure of the problem.
This improves the classical O(n3)-time algorithms by Horn [Operations Research 1973] and
Bruno, Coffman and Sethi [Communications of the ACM 1974].

For the unweighted case, the bound can be improved even further. We give a simple divide-
and-conquer algorithm which runs in O(

√
nm logn) time, improving two previous O(nm)-time

algorithms by Abraham [MSc thesis, University of Glasgow 2003] and Harvey, Ladner, Lovász
and Tamir [WADS 2003 and Journal of Algorithms 2006]. We also extend this algorithm to solve
the Balanced Edge Cover problem in O(

√
nm logn) time, improving the previous O(nm)-time

algorithm by Harada, Ono, Sadakane and Yamashita [ISAAC 2008].

1 Introduction

In this paper, we consider a relaxation of the maximum bipartite matching problem called semi-
matching problem, in both weighted and unweighted cases. This problem has been previously
studied in the scheduling literature under different names, mostly known as (non-preemptive)
scheduling independent jobs on unrelated machines to minimize flow time, or R||∑Cj in the
standard scheduling notation [3, 26, 2].

Informally, the problem can be explained by the following off-line load balancing scenario. We
are given a set of jobs and a set of machines. Each machine can process one job at a time and it
takes different amounts of time to process different jobs. Each job also requires different processing
times if it is processed by different machines. One natural goal is to have all jobs processed with
the minimum total completion time, or total flow time, which is the summation of the duration each
job has to wait until it is finished. Observe that if the assignment is known, the order each machine
processes its assigned jobs is clear: It processes jobs in an increasing order of the processing time.

To be precise, the semi-matching problem is as follows. Let G = (U ∪ V,E) be a weighted
bipartite graph, where U is a set of jobs and V is a set of machines. For any edge uv, let wuv be its
weight. Each weight of an edge uv indicates time it takes v to process u. Through out this paper,

∗The preliminary version of this paper appeared as [11] in the Proceeding of the 37th International Colloquium
on Automata, Languages and Programming, (ICALP) 2010.

†Most of the work was done while all authors were at Kasetsart University.
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let n denote the number of vertices and m denote the number of edges in G. A set M ⊆ E is a
semi-matching if each job u ∈ U is incident with exactly one edge in M . For any semi-matching
M , we define the cost of M , denoted by cost(M), as follows. First, for any machine v ∈ V , its cost
with respect to a semi-matching M is

costM (v) = (w1) + (w1 + w2) + . . .+ (w1 + . . .+ wdegM (v)) =

degM (v)
∑

i=1

(degM (v)− i+ 1) · wi

where degM (v) is the degree of v in M and w1 ≤ w2 ≤ . . . ≤ wdegM (v) are weights of the edges in M
incident with v sorted increasingly. Intuitively, this is the total completion time of jobs assigned to
v. Note that for the unweighted case (i.e., when we = 1 for every edge e), the cost of a machine v is
simply degM (v) · (degM (v)+1)/2. Now, the cost of the semi-matching M is simply the summation
of the cost over all machines:

cost(M) =
∑

v∈V

costM (v).

The goal is to find an optimal semi-matching, a semi-matching with minimum cost.

Related works Although the name “semi-matching” was recently proposed by Harvey, Ladner,
Lovász, and Tamir [20], the problem was studied as early as 1970s when an O(n3) algorithm was
independently developed by Horn in [21] and by Bruno, Coffman and Sethi in [6]. Since then
no progress has been made on this problem except on its special cases and variations. For the
special case of inclusive set restriction where, for each pair of jobs u1 and u2, either all neighbors
of u1 are neighbors of u2 or vice versa, a faster algorithm with O(n2) running time was given by
Spyropoulos and Evans [40]. Many variations of this problem were proved to be NP-hard, including
the preemptive version [39], the case when there are deadlines [41], and the case of optimizing total
weighted tardiness [29]. The variation where the objective is to minimize maxv∈V costM (v) was
also considered [32, 25].

The unweighted case of the semi-matching problem also received considerable attention in the
past few years. Since it was shown by [20] that an optimal solution of the semi-matching problem
is also optimal for the makespan version of the scheduling problem (where one wants to minimize
the time the last machine finishes), we mention the results of both problems. The problem was first
studied in a special case, called nested case where, for any two jobs, if their sets of neighbors are
not disjoint, then one of these sets contains the other set. This case was shown to be solvable in
O(m+ n log n) time [36, p.103]. For the general unweighted semi-matching problem, Abraham [1,
Section 4.3] and Harvey, Ladner, Lovász and Tamir [20] independently developed two algorithms
with O(nm) running time. Lin and Li [28] also gave an O(n3 log n)-time algorithm which is later
generalized to a more general cost function [27]. Recently, Lee, Leung and Pinedo [25] showed that
the problem can be solved in polynomial time even when there are release times.

Recently after the preliminary version of this paper appeared, the unweighted semi-matching
problem has been generalized to the quasi-matching problem by Bokal, Bresar and Jerebic [4]. In
this problem, a function g is provided and each vertex u ∈ U is required to connect to at least g(u)
vertices in v. Therefore, the semi-matching problem is when g(u) = 1 for every u ∈ U . They also
developed an algorithm for this problem which is a generalization of the Hungarian method and
used it to deal with a routing problem in CDMA-based wireless sensor networks.

Galćık, Katrenic and Semanisin [13] very recently showed a nice reduction from the unweighted
semi-matching problem to a variant of the maximum bounded-degree semi-matching problem. Their
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approach resulted in two algorithms. The first algorithm has the same running time as ours while
the second algorithm is randomized and has a running time of O(nω) where ω is the exponent of
the best known matrix multiplication algorithm.

Motivated by the problem of assigning wireless stations (users) to access points, the unweighted
semi-matching problem is also generalized to the problem of finding optimal semi-matching with
minimum weight where an O(n2m) time algorithm was given [16].

Approximation algorithms and online algorithms for this problem (both weighted and un-
weighted cases) and the makespan version have also gained a lot of attention over the past few
decades and have applications ranging from scheduling in hospital to wireless communication net-
work. (See [26, 48] for the recent surveys.)

Applications As motivated by Harvey et al. [20], even in an online setting where jobs arrive and
depart over time, they may be reassigned from one machine to another cheaply if the algorithm’s
running time is significantly faster than the arrival/departure rate. (One example of such case is
the Microsoft Active Directory system [15, 20].) The problem also arose from the Video on Demand
(VoD) systems where the load of video disks needs to be balanced while data blocks from the disks
are retrieved or while serving clients [31, 45]. The problem, if solved in the distributed setting, can
be used to construct a load balanced data gathering tree in sensor networks [37, 33]. The same
problem also arose in peer-to-peer systems [42, 24, 43].

In this paper, we also consider an “edge cover” version of the problem. In some applications
such as sensor networks, there are no jobs and machines but the sensor nodes have to be clustered
and each cluster has to pick its own head node to gather information from other nodes in the
cluster. Motivated by this, Harada, Ono, Sadakane and Yamashita [17] introduced the balanced
edge cover problem1 where the goal is to find an edge cover (set of edges incident to every vertex)
that minimizes the total cost over all vertices. (The cost on each vertex is as previously defined.)
They gave an O(nm) algorithm for this problem and claimed that it could be used to solve the
semi-matching problem as well. We show that this problem can be efficiently reduced to the semi-
matching problem. Thus, our algorithm (for unweighted case) also gives a better bound on the
balanced edge cover problem.

Our results and techniques

We consider the semi-matching problem and give a faster algorithm for each of the weighted and
unweighted cases. We also extend the algorithm for the unweighted case to solve the balanced edge
cover problem.

• Weighted Semi-Matching: (Section 2) We present an O(nm log n) algorithm, improving
the previous O(n3) algorithm by Horn [21] and Bruno et al. [6]. As in the previous results [21,
5, 18], we use the reduction of the weighted semi-matching problem to the weighted bipartite
matching problem as a starting point. We, however, only use the structural properties arising
from the reduction and do not actually perform the reduction.

• Unweighted Semi-Matching: (Section 3) We give an O(
√
nm log n) algorithm, improving

the previous O(nm) algorithms by Abraham [1] and Harvey et al. [20].2 Our algorithm uses

1This problem is also known as a constant jump system (see, e.g., [44, 30]).
2We also observe an O(n5/2 log n) algorithm that arises directly from the reduction by applying [22].
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the same reduction to the min-cost flow problem as in [20]. However, instead of canceling one
negative cycle in each iteration, our algorithm exploits the structure of the graphs and the
cost functions to cancel many negative cycles in a single iteration. This technique can also
be generalized to any convex cost function.

• Balanced Edge Cover: (Section 4) We also present a reduction from the balanced edge
cover problem to the unweighted semi-matching problem. This leads to an O(

√
nm log n)

algorithm for the problem, improving the previous O(nm) algorithm by Harada et al. [17].
The main idea is to identify the “center” vertices of all the clusters in the optimal solution.
(Note that any balanced edge cover (in fact, any minimal edge cover) clusters the vertices
into stars.) Then, we partition the vertices into two sides, center and non-center ones, and
apply the semi-matching algorithm on this graph.

2 Weighted semi-matching

In this section, we present an algorithm that finds an optimal weighted semi-matching inO(nm log n)
time.

Overview

Our improvement follows from studying the reduction from the weighted semi-matching problem
to the weighted bipartite matching problem considered in the previous works [21, 6, 18] and the
Edmonds-Karp-Tomizawa (EKT) algorithm for finding the weighted bipartite matching [9, 47]. We
first review these briefly. For more detail, see Appendix A and B.

Reduction As in [21, 6, 18], we consider the reduction from the semi-matching problem on a
bipartite graph G = (U ∪ V,E) to the minimum-weight bipartite matching on a graph Ĝ. The
reduction is done by exploding the vertices in V , i.e., for each vertex v ∈ V , we create deg(v)
vertices, v1, v2, . . . , vdeg(v). We also make copies of edges incident to v in the original graph G, i.e,
for each vertex u ∈ U such that uv ∈ E, we create edges uv1, uv2, . . . , uvdeg(v). For each edge uvi

incident to vi in Ĝ, we set its weight to i times its original weight in G, i.e, wuvi = i · wuv. We
denote the set of these vertices by V̂v. Thus, we have

Ĝ = (U ∪ V̂ , Ê)

V̂ = {v1, v2, . . . , vdegG(v) : v ∈ V }
Ê = {uv1, uv2, . . . , vdegG(v) : uv ∈ E}

ŵuvi = i · wuv ∀uv ∈ E, i ∈ {1, 2, . . . ,degG(v)}

The correctness of this reduction can be seen by replacing the edges incident to v in the semi-
matching by the edges incident to v1, v2, . . . with weights in decreasing order. For example, in
Figure 1(a), edge u1v1 and edge u2v1 in the semi-matching in G correspond to u1v

1
1 and u2v

2
1 in

the matching in Ĝ. The reduction is illustrated in Figure 1(a).
This alone does not give an improvement on the semi-matching problem because the number

of edges becomes O(nm). However, we can apply some tricks to improve the running time.
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Figure 1:

EKT algorithm Our improvement comes from studying the behavior of the EKT algorithm for
finding the bipartite matching in Ĝ. The EKT algorithm iteratively increases the cardinality of
the matching by one by finding a shortest augmenting path. Such path can be found by applying
Dijkstra’s algorithm on the residual graph DM (corresponding to a matching M) with a reduced
cost, denoted by w̃ as an edge length.

Figure 1(b) shows examples of a residual graph DM . The direction of an edge depends on
whether it is in the matching or not. The weight of each edge depends on its weight in the original
graph and the costs on its end-vertices. We draw an edge of length 0 from s to all vertices in UM

and from all vertices in V̂M to t, where UM and V̂M are the sets of unmatched vertices in U and
V̂ , respectively. We want to find the shortest path from s to t or, equivalently, from UM to V̂M .

The reduced cost is computed from the potentials on the vertices, which can be found as in
Algorithm 2.1.3

Algorithm 2.1 EKT Algorithm (Ĝ, w)

1: Let M = ∅.
2: For every node v, let p(v) = 0. (p(v) is a potential on v.)
3: repeat
4: Let w̃uv = wuv + p(u)− p(v) for every edge uv. (w̃uv is a reduced cost of an edge uv.)
5: For every node v, compute the distance d(v) which is the distance from UM (the set of

unmatched vertices in U) to v in DM . (Recall that the length of edges in DM is w̃.)
6: Let P be the shortest UM -V̂M path in DM .
7: Update the potential p(u) to d(u) for every vertex u ∈ U ∪ (V̂ \ V̂M ).
8: Augment M along P , i.e., M = P△M (where △ denotes the symmetric difference operator).
9: until all vertices in U are matched

10: return M

Applying EKT algorithm directly leads to an O(n(n′ log n′+m′))-time algorithm where n = |U |,
n′ = |U ∪ V̂ | and m′ = |Ê| are the number of vertices and edges in Ĝ. Since |V̂ | = Θ(m) and

3Note that we set the potentials in an unusual way: We keep potentials of the unmatched vertices in V̂ to 0. The
reason is roughly that we can speed up the process of finding the distances of all vertices but vertices in V̂M . Notice
that this type of potentials is valid too (i.e., w̃ is non-negative) since for any edge uv such that v ∈ V̂M is unmatched,
w̃uv = wuv + p(u)− p(v) = wuv + p(u) ≥ 0.
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m′ = O(nm), the running time is O(nm log n + n2m). (We note that this could be brought
down to O(n3) by applying the result of Kao, Lam, Sung and Ting [22] to reduce the number of
participating edges. See Appendix B.) The bottleneck here is the Dijkstra’s algorithm which needs
O(n′ log n′ +m′) time. We now review this algorithm and pinpoint the part that will be sped up.

Dijkstra’s algorithm Recall that the Dijkstra’s algorithm starts from a source vertex and keeps
adding to its shortest path tree a vertex with minimum tentative distance. When a new vertex v is
added, the algorithm updates the tentative distance of all vertices outside the tree by relaxing all
edges incident to v. On an n′-vertex m′-edge graph, it takes O(log n′) time (using priority queue)
to find a new vertex to add to the tree and hence O(n′ log n′) in total. Further, relaxing all edges
takes O(m′) time in total. Recall that in our case, m′ = O(nm) which is too large. Thus, we wish
to reduce the number of edge relaxations to improve the overall running time.

Our approach We reduce the number of edge relaxation as follows. Suppose that a vertex u ∈ U
is added to the shortest path tree. For every v ∈ V , a neighbor of u in G, we relax all edges uv1, uv2,
. . ., uvi in Ĝ at the same time. In other words, instead of relaxing O(nm) edges in Ĝ separately,
we group the edges to m groups (according to the edges in G) and relax all edges in each group
together. We develop a relaxation method that takes O(log n) time per group. In particular, we
design a data structure Hv, for each vertex v ∈ V , that supports the following operations.

• Relax(uv, Hv): This operation works as if it relaxes edges uv1, uv2, . . .

• AccessMin(Hv): This operation returns a vertex vi (exploded from v) with minimum ten-
tative distance among vertices that are not deleted (by the next operation).

• DeleteMin(Hv): This operation finds vi from AccessMin and then returns and deletes vi.

Our main result is that, by exploiting the structure of the problem, one can design Hv that
supports Relax, AccessMin and DeleteMin in O(log n), O(1) and O(log n) respectively. Before
showing such result, we note that speeding up Dijkstra’s algorithm and hence EKT algorithm is
quite straightforward once we have Hv: We simply build a binary heap H whose nodes correspond
to vertices in an original graph G. For each vertex u ∈ U , H keeps track of its tentative distance.
For each vertex v ∈ V , H keeps track of its minimum tentative distance returned from Hv.

Main idea in designing Hv Before going into details, we sketch the main idea here. The data
structure Hv that allows fast “group relaxation” operation can be built because of the following
nice structure of the reduction: For each edge uv of weight wuv in G, the weights wuv1 , wuv2 , . . . of
the corresponding edges in Ĝ increase linearly (i.e., wuv, 2wuv , 3wuv , . . .). This enables us to know
the order of vertices, among v1, v2, . . ., that will be added to the shortest path tree. For example,
in Figure 1(b), when M = ∅, we know that, among v1 and v2, v1 will be added to the shortest path
tree first as it always has a smaller tentative distance.

However, since the length of edges in DM does not solely depend on the weights of the edges
in Ĝ (in particular, it also depends on potentials on both end-vertices), it is possible (after some
iterations of the EKT algorithm) that v1 is added to the shortest path tree after v2.

Fortunately, due to the way the potential is defined by the EKT algorithm, a similar nice
property still holds: Among v1, v2, . . . in DM corresponding to v in G, if a vertex vk, for some

6



k, is added to the shortest path tree first, then the vertices on each side of vk have a nice order:
Among v1, v2, . . . , vk−1, the order of vertices added to the shortest path tree is vk−1, vk−2, . . . , v2, v1.
Further, among vk+1, vk+2, . . ., the order of vertices added to the shortest path tree is vk+1, vk+2, . . ..

This main property, along with a few other observations, allow us to construct the data structure
Hv. In the next section, we show the properties we need and use them to construct Hv in the latter
section.

2.1 Properties of the tentative distance

Consider any iteration of the EKT algorithm (with a potential function p and a matching M). We
study the following functions f∗v and g∗v.

Definition 2.1. For any edge uv from U to V and any integer 1 ≤ i ≤ deg(v), let

guv(i) = d(u) + p(u) + i · wuv and fuv(i) = guv(i) − p(vi) = d(u) + p(u)− p(vi) + i · wuv.

For any v ∈ V and i ∈ [deg(v)], define the lower envelope of fuv and guv over all u ∈ U as

f∗v(i) = min
u:uv∈E

fuv(i) and g∗v(i) = min
u:uv∈E

guv(i).

Our goal is to understand the structure of the function f∗v whose values f∗v(1), f∗v(2), . . . are
tentative distances of v1, v2, . . ., respectively. The function g∗v is simply f∗v with the potential of
v ignored. We define g∗v as it is easier to keep track of since it is a combination of linear functions
guv and therefore piecewise linear. Now we state the key properties that enable us to keep track of
f∗v efficiently. Recall that v1, v2, . . . are the exploded vertices of v (from the reduction).

Proposition 2.2. Consider a matching M and a potential p at any iteration of the EKT algorithm.

(1) For any vertex v ∈ V , there exists αv such that v1, . . . , vαv are all matched and vαv+1, . . . , vdeg(v)

are all unmatched.

(2) For any vertex v ∈ V , g∗v is a piecewise linear function.

(3) For any i and any edge uv ∈ E where u ∈ U and v ∈ V , fuv(i) = f∗v(i) if and only if
guv(i) = g∗v(i).

(4) For any edge uv ∈ E where u ∈ U and v ∈ V , let αv be as in (1). There exists an integer 1 ≤
γuv ≤ k such that for i = 1, 2, . . . , γuv−1, fuv(i) ≥ fuv(i+1) and for i = γuv, γuv+1, . . . , αv−1,
fuv(i) ≤ fuv(i+ 1). In other words, fuv(1), fuv(2), . . . , fuv(αv) is a unimodal sequence.

Figure 2(a) and 2(b) show the structure of g∗v and f∗v according to statement (2) and (4) in
the above proposition. By statement (3), the two pictures can be combined as in Figure 2(c): g∗v
indicates u that makes both g∗v and f∗v minimum in each interval and one can find i that minimizes
f∗v in each interval by looking at αv (or near αv in some case).

Proof.
(1) The first statement follows from the following claim.

Claim 2.3. For any i, if the exploded vertex vi+1 of v (in V̂v) is matched by M , then vi is also
matched.
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(a) g∗v and potential function.

E 

Bèé:E; 

E L Û:QR;(b) fuv is unimodal. (c) f∗v together with g∗v.

Figure 2: Figures show graphs of potentials, g∗v, fuv and f∗v, where wu1v > wu2v > wu3v > . . ..
These functions only have value at integer points. For the sake of presentation, these functions are
plotted as lines.

Proof. The claim follows from the fact that EKT algorithm maintains M so that M is a so-called
extreme matching, i.e., M has the minimum weight among matchings of the same size. Suppose
that vi+1 is matched by M (i.e., uvi+1 ∈ M), but vi is not matched. Then we can remove uvi+1

from M and add uvi to M . The resulting matching will have a cost less than M but have the same
cardinality, a contradiction.

(2) To see the second statement, notice that guv = d(u)+ p(u)+ i ·wuv is linear for a fixed uv ∈ E.
Hence, g∗v is a lower envelope of a linear function, implying that it is piecewise linear.

(3) To prove the third statement, recall that for any u and any i, fuv(i) = guv(i)−p(vi). Therefore,
for any u, u′ and i, fuv(i) > fu′v(i) if and only if guv(i) > gu′v(i). Thus, the third statement follows.

(4) For the fourth claim, we first explain the intuition. First, observe that the function guv is
increasing with rate wuv. Moreover, the difference of fuv(i) and fuv(j) is a function of the potential
p(vi) and p(vj) and the multiple of edge weight (j−i)wuv . In fact, whether the difference is negative
or positive depends on the value of these three parameters. We show that these parameters change
monotonically and so we have the desired property.

To prove the fourth statement formally, we first prove two claims.
For the first claim below, recall that the potential of matched vertices, at any iteration, is

defined to be the distance on the residual graph of the previous iteration. In particular, for any
vi ∈ V̂ , there is a vertex u ∈ U such that p(u) + i · wuv = p(v). (See Algorithm 2.1.)

Claim 2.4. For any integer i < αv, consider the exploded vertices vi and vi+1. Let u and u′

denote two vertices in U such that p(u) + i ·wuv = p(vi) and p(u′) + (i+ 1) ·wu′v = p(vi+1). Then
wuv ≥ p(vi+1)− p(vi) ≥ wu′v.

Proof. The first part, wu′v ≥ p(vi+1) − p(vi), follows from p(vi) = p(u) + i · wuv and p(vi+1) ≤
p(u) + (i + 1) · wuv. The second part, p(vi+1) − p(vi) ≥ wu′v, follows from p(vi) ≤ p(u′) + i · wu′v

and p(vi+1) = p(u′) + (i+ 1) · wu′v.

The proof of the next claim follows directly from the definition of fuv (cf. Definition 2.1).

Claim 2.5. For any i < αv, fuv(i) > fuv(i+ 1) if and only if p(vi+1) − p(vi) > wuv and fuv(i) <
fuv(i+ 1) if and only if p(vi+1)− p(vi) < wuv.

8



Now, the fourth statement in the Proposition follows from the following statements: For any
integer i < αv,

(i) if fuv(i) > fuv(i+ 1), then fuv(j) ≥ fuv(j + 1) for any integer j < i, and

(ii) if fuv(i) < fuv(i+ 1), then fuv(j) ≤ fuv(j + 1) for any integer i ≤ j ≤ αv.

To prove the first statement, let u′ be such that p(u′) + i · wu′v = p(vi). If fuv(i) > fuv(i+ 1),
then

p(vi)− p(vi−1) ≥ wu′v ≥ p(vi+1)− p(vi) > wuv

where the first two inequalities follow from Claim 2.4 and the third inequality follows from Claim 2.5.
It then follows from Claim 2.5 that fuv(i − 1) > fuv(i). The first statement follows by repeating
the argument above. The second statement can be proved similarly. This completes the proof of
the fourth statement.

2.2 Data structure

Specification Let us first redefine the problem so that we can talk about the data structure in
a more general way. We show how to use this data structure for the semi-matching problem in the
next section.

Let n and N be positive integers and, for any integer i, define [i] = {1, 2, . . . , i}. We would like
to maintain at most n functions f1, f2, . . . , fn mapping [N ] to a set of positive reals. We assume
that fi is given as an oracle, i.e., we can get fi(x) by sending a query x to fi in O(1) time.

Let L and S be a subset of [N ] and [n], respectively. (As we will see shortly, we use L to
keep the numbers left undeleted in the process and S to keep the functions inserted to the data
structure.) Initially, L = [N ] and S = ∅. For any x ∈ [N ], let f∗

S(x) = minfi∈S fi(x). We want to
construct a data structure H that supports the following operations.

• AccessMin(H): Return x ∈ L with minimum value f∗
S, i.e., x = argminx∈L f∗

S(x).

• Insert(fi, H): Insert fi to S.

• DeleteMin(H): Delete x from L where x is returned from AccessMin(H).

Properties: We assume that f1, f2, . . . have the following properties.

• For all i, fi is unimodal, i.e., there is some γi ∈ [N ] such that fi(1) ≥ fi(2) ≥ . . . ≥ fi(γi) ≤
fi(γi + 1) ≤ fi(γi + 2) ≤ . . . ≤ fi(N) . We assume that γi is given along with fi.

• We also assume that each fi comes along with a linear function gi where, for any x ∈ [N ],
gi(x) = x·wi+di, for some wi and di. These linear functions have a property that fi(x) = f∗

S(x)
if and only if gi(x) = g∗S(x), where g∗S(x) = mini∈S gi(x).

• Finally, we assume that once x is deleted from L, f∗
S(x) will never change, even after we add

more functions to S.

For simplicity, we also assume that wi 6= wj for all i 6= j. This assumption can be removed by
taking care of the case of equal weight in the insert operation. We now show that there is a data
structure such that every operation can be done in O(log n) time.
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Data structure design We have two data structures to maintain the information of fi’s and
gi’s. First, we create a data structure Tg to maintain an ordered sequence gi1 , gi2 , . . . such that
wi1 ≥ wi2 ≥ . . .. We want to be able to insert a new function gi to Tg in O(log n) time. Moreover,
for any w, we want to be able to find wij and wij+1 such that wij ≤ w < wij+1 in O(log n) time.
Such Tg can be implemented by a balanced binary search tree, e.g., an AVL tree.

Observe that the linear functions gi1 , gi2 , . . . appear in the lower envelope in order, i.e., if
gij (x) ≥ gij+1(x), then gij (y) ≥ gij+1(y) for any y > x. Therefore, we can use data structure Tg to
maintain the range of values such that each gi (and therefore fi) is in the lower envelope. That is,
we use Tg to maintain x1 ≤ y1 ≤ x2 ≤ y2 ≤ . . . such that gi(x) = g∗S(x) for all i and xi ≤ x ≤ yi).

Consider the value minx∈{xi,xi+1,...,yi}∩L fi(x). Since fi is unimodal, the minimum value of
fi(x) over {xi, xi + 1, . . . , yi} ∩ L attains at the point closest to γi either from the left or from the
right. Thus, we can use two pointers pi and qi such that xi ≤ pi ≤ γi ≤ qi ≤ yi to maintain the
minimum value of fi from the left and right of γi, i.e., the minimum value minx∈{xi,xi+1,...,yi}∩L fi(x)
is either fi(pi) or fi(qi). Finally, we use a binary heap B to store the values f1(p1), f2(p2), . . . and
f1(q1), f2(q2), . . . so that we can search and delete the minimum among these values in O(log n)
time.

More details of the implementation of each operation are the followings.

• AccessMin(H): This operation is done by returning the minimum value in B. This value
is min(f1(p1), f2(p2), . . . , f1(q1), f2(q2), . . .) = minx∈L f∗

S(x).

• Insert(fi, H): First, insert gi to Tg which can be done as follows. Let the current ordered
sequence be gi1 , gi2 , . . .. In O(log n) time, we find gij and gij+1 such that wij ≤ wi < wij+1

and insert gi between them. Moreover, we update the regions for which gij , gi, and gij+1 are
in the lower envelope of g∗S , i.e., we get the values yij , xi, yi, xij+1 , yij+1 (note that yij ≤ xi ≤
yi ≤ xij+1 ≤ yij+1).

Next, we deal with the pointers pi and qi: We set pi = min(γi, yi) and qi = max(γi, xi). (The
intuition here is that we would like to set pi = qi = γi but it is possible that γi < xi or γi > yi
which means that γi is not in the region that gi is in the lower envelope g∗S .) Finally, we also
update pij and qij+1 : pij = min(pij , xi) and qij+1 = max(qij+1 , yi). Figure 3 shows an effect
of inserting a new function.

We note one technical detail here: It is possible that pi is already deleted from L. This implies
that there is another function fij′ such that fij′ (pi) = fi(pi) (since we assume that if pi is
already deleted, then f∗

S(pi) will never change even when we add more functions to S). There
are two cases: j′ < j or j′ > j. For the former case, we know that fij′ (pi − 1) < fi(pi − 1)
since wj′ > wj and thus we simply do nothing (pi will never be returned by AccessMin).
For the latter case, we know that fij′ (pi− 1) > fi(pi− 1) and thus we simply set pi to pi− 1.
We deal with the same case for qi similarly.

• DeleteMin(H): We delete the node with minimum value from B (which is the one on the top
of the heap). This deleted node corresponds to one of the values f1(p1), f2(p2), . . . , f1(q1), f2(q2), . . ..
Assume that fi(pi) (resp. fi(qi)) is such value. We insert a node with value fi(pi − 1) (resp.
fi(qi + 1)).
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(a) Before inserting f3 (b) After inserting f3 (value of p1 is changed)

Figure 3: Inserting a new function

2.3 Using the data structure for semi-matching problem

For any right vertex v, we construct a data structure Hv as in Section 2.2 to maintain fuv, which
comes along with guv, for all neighbors of v. These functions satisfy the properties above, as shown
in Section 2.1. (We note that once x is deleted, f∗v(x) will never change since this corresponds to
adding a vertex vx to the shortest path tree with distance f∗v(x).)

The last issue is how to find γuv, the lowest point of an edge uv quickly. We now show an
algorithm that finds γuv, for every edge uv ∈ E in time O(|V | + |E|) in total. This algorithm can
be run before we start each iteration of the main algorithm (i.e., above Line 4 of Algorithm 2.1).
To derive such algorithm, we need the following observation.

Lemma 2.6. Consider a vertex v ∈ V . Let u1, u2, . . . , udeg(v) be vertices of U incident to v, where
wu1v ≥ wu2v ≥ . . . ≥ wudeg(v)v. Then γu1v ≤ γu2v ≤ . . . ≤ γudeg(v)v.

Proof. It suffices to show that if wuiv ≥ wui+1v, then γuiv ≤ γui+1v. We prove this by contrapositive.
By Claim 2.5, we conclude that γuiv is the minimum integer i ∈ [deg(v)] such that p(vγuiv+1) −
p(vγuiv) ≤ wuiv, and for any j < γuiv, p(vj+1) − p(vj) > wuiv. Thus, if γuiv > γui+1v, then

wui+1v ≥ p(vγui+1v+1)− p(vγui+1v) > wuiv. This completes the proof.

Algorithm The following algorithm finds γuv for all uv ∈ E. First, in the preprocessing step
(which is done once before we begin the main algorithm), we order edges incident to v decreasingly
by their weights, for every vertex v ∈ V . This process takes O(deg(v) log(deg(v))) time. We only
have to compute γuv once, so this process does not affect the overall running time.

Next, for any v ∈ V , suppose that the list is (u1, u2, . . . , udeg(v)). Since wu1 ≥ wu2 ≥ . . . ≥
wdeg(v), it implies that γu1v ≤ γu2v ≤ . . . ≤ γudeg(v)v by Lemma 2.6. So, we first find γu1v and
then γu2v and so on. This step takes O(deg(v)) for each v ∈ V and O(m) in total. Therefore, the
running time for computing the minimum point γuv’s is O(m log n).
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We have now designed our data structure for handling the special structure of the graph Ĝ. This
allows us to implement the EKT algorithm on the graph Ĝ while the algorithm only has to read
the structure of the graph G. Thus, we solve the weighted semi-matching problem in O(nm log n)
time.

3 Unweighted semi-matching

In this section, we present an algorithm that finds the optimal semi-matching in unweighted graph
in O(m

√
n log n) time.

Overview

Our algorithm consists of the following three steps.
In the first step, we reduce the problem to the min-cost flow problem, using the same reduction

from Harvey et al. [20]. (See Figure 4.) The details are provided in Section 3.1. We note that
the flow is optimal if and only if there is no cost-reducing path (to be defined later). We start
with an arbitrary semi-matching and use this reduction to get a corresponding flow. The goal is to
eliminate all the cost-reducing paths.

The second step is a divide-and-conquer algorithm used to eliminate all the cost-reducing paths.
We call this algorithm CancelAll (cf. Algorithm 3.1). The main idea here is to divide the
graph into two subgraphs so that eliminating cost reducing paths “inside” each subgraph does not
introduce any new cost reducing paths going through the other. This dividing step needs to be
done carefully. We treat this in Section 3.2.

Finally, in the last component of the algorithm we deal with eliminating cost-reducing paths
between two sets of vertices quickly. Naively, one can do this using any unit-capacity max-flow
algorithm, but this does not give an improvement on the running time. To get a faster algorithm,
we observe that the structure of the graph is similar to a unit network, where every vertex has
in-degree or out-degree one. Thus, we get the same performance guarantee as that of Dinitz’s
algorithm [7, 8].4 Details of this part can be found in Section 3.3.

After presenting the algorithm in the next three sections, we analyze the running time in
Section 3.4. We note that this algorithm also works in a more general cost function (discussed in
Section 3.5). We also observe that there is an O(n5/2 log n)-time algorithm that arises directly from
the reduction of the weighted case (discussed in Appendix B). This already gives an improvement
over the previous results but our result presented here improves the running time further.

3.1 Reduction to min-cost flow and optimality characterization (revisited)

In this section, we review the characterization of the optimality of the semi-matching in the min-
cost flow framework. We use the reduction as given in [20]. Given a bipartite graph G = (U ∪V,E),
we construct a directed graph N as follows. Let ∆ denote the maximum degree of the vertices in
V . First, add a set of vertices, called cost centers, C = {c1, c2, . . . , c∆} and connect each v ∈ V to
ci with edges of capacity 1 and cost i, for all 1 ≤ i ≤ deg(v). Second, add s and t as a source and
sink vertex. For each vertex in U , add an edge from s to it with zero cost and unit capacity. For
each cost center ci, add an edge to t with zero cost and infinite capacity. Finally, direct each edge

4The algorithm is also known as “Dinic’s algorithm”. See [8] for details.
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Figure 4: Reduction to the min-cost flow problem. Each edge is labeled with (cost, capacity)
constraint. Thick edges either are matching edges or contain the flow.

e ∈ E from U to V with capacity 1 and cost 0. Observe that the new graph N has O(n) vertices
and O(m) edges, and any semi-matching in G corresponds to a max flow in N .

Observe that the new graph N contains O(n) vertices and O(m) edges. It can be seen that any
semi-matching in G corresponds to a max flow in N . (See example in Figure 4.) Moreover, Harvey
et al. [20] proved that an optimal semi-matching in G corresponds to a min-cost flow in N ; in other
words, the reduction described above is correct. Our algorithm is based on observation that the
largest cost is O(|U |). This allows one to use the cost-scaling framework to solve the problem.

Now, we review an optimality characterization of the min-cost flow. We need to define a cost-
reducing path first. Let Rf denote the residual graph of N with respect to a flow f . We call any
path p from a cost center ci to cj in Rf an admissible path and call p a cost-reducing path if i > j.
A cost-reducing path is one-to-one corresponding to a negative cost cycle implying the condition
for the minimality of f . Harvey et al. [20] proved the following.

Lemma 3.1 ([20]). A flow f is a min-cost flow in N if and only if there is no cost-reducing path
in Rf (N).

Proof. Note that f is a min-cost flow if and only if there is no negative cycle in Rf . To prove the
“only if” part, assume that there is an cost-reducing path from ci to cj . We consider the shortest
one, i.e., no cost center is contained in such path except the first and the last vertices. The edges
that affect the cost of this path are only the first and the last ones because only edges incident to
cost centers have cost. Cost of the first and the last edge is −i and j respectively. Connecting ci
and cj with t yields a cycle of cost j − i < 0.

For the “if” part, assume that there is a negative-cost cycle in Rf . Consider the shortest cycle
which contains only two cost centers, say ci and cj where i > j. This cycle contains an admissible
path from ci to cj .

Given a max-flow f and a cost-reducing path P , one can find a flow f ′ with lower cost by
augmenting f along P with a unit flow. This is later called path canceling. We are now ready to
explain our algorithm.

3.2 Divide-and-conquer algorithm

Our algorithm takes a bipartite graph G = (U ∪ V,E′) and outputs the optimal semi-matching. It
starts by transforming G into a graph N as described in the previous section. Since the source s
and the sink t are always clear from the context, the graph N can be seen as a tripartite graph with
vertices U ∪ V ∪ C; later on, we denote N = (U ∪ V ∪ C,E). The algorithm proceeds by finding
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an arbitrary max-flow f from s to t in N which corresponds to a semi-matching in G. This can be
done in linear time since the flow is equivalent to any semi-matching in G.

To find the min-cost flow in N , the algorithm uses a subroutine called CancelAll (cf. Algo-
rithm 3.1) to cancel all cost-reducing paths in f . Lemma 3.1 ensures that the final flow is optimal.

Algorithm 3.1 CancelAll(N = (U ∪ V ∪ C,E))

1: if |C| = 1 then halt endif
2: Divide C into C1 and C2 of roughly equal size.
3: Cancel(N,C2, C1). {Cancel all cost-reducing paths from C2 to C1}.
4: Divide N into N1 and N2 where N2 is “reachable” from C2 and N1 is the rest.
5: Recursively solve CancelAll(N1) and CancelAll(N2).

CancelAll works by dividing C and solves the problem recursively. Given a set of cost centers
C, the algorithm divides C into roughly equal-size subsets C1 and C2 such that, for any ci ∈ C1 and
cj ∈ C2, i < j. This guarantees that there is no cost reducing path from C1 to C2. Then it cancels
all cost reducing paths from C2 to C1 by calling Cancel algorithm (described in Section 3.3).

It is left to cancel the cost-reducing paths “inside” each of C1 and C2. This is done by parti-
tioning the vertices of N (except s and t) and forming two subgraphs N1 and N2. Then solve the
problem separately on each of them. In more detail, we partition the graph N by letting N2 be
a subgraph induced by vertices reachable from C2 in the residual graph and N1 be the subgraph
induced by the remaining vertices. (Note that both graphs have s and t.) For example, in Figure 4,
v1 is reachable from c3 by the path c3, v2, u2, v1 in the residual graph.

Lemma 3.2. CancelAll(N) (cf. Algorithm 3.1) cancels all cost-reducing paths in N .

Proof. Recall that all cost-reducing paths from C2 to C1 are canceled in line 3. Let S denote the
set of vertices reachable from C2.

Claim 3.3. After line 3, no admissible paths between two cost centers in C1 intersect S.

Proof. Assume, for the sake of contradiction, that there exists an admissible path from x to y,
where x, y ∈ C1, that contains a vertex s ∈ S. Since s is reachable from some vertex z ∈ C2, there
must exist an admissible path from some vertex in z to y; this leads to a contradiction.

This claim implies that, in our dividing step, all cost-reducing paths between pairs of cost
centers in C1 remain entirely in N1. Furthermore, vertices in any cost reducing path between pairs
of cost centers in C2 must be reachable from C2; thus, they must be inside S. Therefore, after
the recursive calls, no cost-reducing paths between pairs of cost centers in the same subproblems
Ci are left. The lemma follows if we can show that in these processes we do not introduce more
cost-reducing paths from C2 to C1. To see this, note that all edges between N1 and N2 remain
untouched in the recursive calls. Moreover, these edges are directed from N1 to N2, because of the
maximality of S. Therefore there is no admissible path from C2 to C1.

3.3 Canceling paths from C2 to C1

In this section, we describe an algorithm that cancels all admissible paths from C2 to C1 in Rf ,
which can be done by finding a max flow from C2 to C1. To simplify the presentation, we assume
that there is a super-source s and super-sink t connecting to vertices in C2 and in C1, respectively.
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To find a maximum flow, observe that N is unit-capacity and every vertex of U has indegree
1 in Rf . By exploiting these properties, we show that Dinitz’s blocking flow algorithm [7] can
find a maximum flow in O(|E|

√

|U |) time. The algorithm is done by repeatedly augmenting flows
through the shortest augmenting paths (see Appendix C).

Lemma 3.4. Let di be the length of the shortest s− t path in the residual graph at the ith iteration.
For all i, di+1 > di.

The lemma can be used to show that Dinitz’s algorithm terminates after n rounds of the
blocking flow step, where n is the number of vertices. Since after the n-th round, the distance
between the source is more than n, which means that there is no augmenting path from s to t
in the residual graph. The number of rounds can be improved for certain classes of problems.
Even and Tarjan [10] and Karzanov [23] showed that in unit capacity networks, Dinitz’s algorithm
terminates after min(n2/3,m1/2) rounds, where m is the number of edges. Also, in unit networks,
where every vertex has in-degree one or out-degree one, Dinitz’s algorithm terminates in O(

√
n)

rounds (see, e.g., Tarjan’s book [46]). Since the graph N we are considering is very similar to unit
networks, we are able to show that Dinitz’s algorithm also terminates in O(

√
n) in our case.

For any flow f , a residual flow f ′ is a flow in a residual graph Rf of f . If f ′ is maximum in Rf ,
f + f ′ is maximum in the original graph. The following lemma relates the amount of the maximum
residual flow with the shortest distance from s to t in our case. The proof is a modification of
Theorem 8.8 in [46].

Lemma 3.5. If the shortest s − t distance in the residual graph is d > 4, the amount of the
maximum residual flow is at most O(|U |/d).

Proof. A maximum residual flow in a unit capacity network can be decomposed into a set P of
edge-disjoint paths where the number of paths equals the flow value. Each of these paths are of
length at least d. Clearly, each path contains the source, the sink, and exactly two cost centers.
Now consider any path P ∈ P of length l. It contains l− 3 vertices from U ∪ V . Since the original
graph is a bipartite graph, at least ⌊(l− 3)/2⌋ ≥ ⌊(d− 3)/2⌋ ≥ (d− 4)/2 vertices are from U . Note
that each path in P contains a disjoint set of vertices in U , since a vertex in U has in-degree one.
Therefore, we conclude that there are at most 2|U |/(d − 4) paths in P. The lemma follows since
each path has one unit of flow.

From these two lemma, we have the main lemma for this section.

Lemma 3.6. Cancel terminates in O(|E|
√

|U |) time.

Proof. Since each iteration can be done in O(|E|) time, it is enough to prove that the algorithm
terminates in O(

√

|U |) rounds. The previous lemma implies that the amount of the maximum
residual flow after the O(

√

|U |)-th rounds is O(
√

|U |) units. The lemma thus follows because after
that the algorithm augments at least one unit of flow for each round.

3.4 Running time

The running time of the algorithm is dominated by the running time of CancelAll, which can
be analyzed as follows. Let T (n, n′,m, k) denote the running time of the algorithm when |U | =
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n, |V | = n′, |E| = m, and |C| = k. For simplicity, assume that k is a power of two. By Lemma 3.6,
Cancel runs in O(|E|

√

|U |) time. Therefore,

T (n, n′,m, k) ≤ c ·m√n+ T (n1, n
′
1,m1, k/2) + T (n2, n

′
2,m2, k/2),

for some constant c, where ni, n
′
i, andmi denote the number of vertices and edges inNi, respectively.

Recall that each edge participates in at most one of the subproblems; thus, m1+m2 ≤ m. Observe
that the number of cost centers always decreases by a factor of two. Thus, the recurrence is solved
to O(

√
nm log k). Since k = O(|U |), the running time is O(

√
nm log n) as claimed. Furthermore,

the algorithm can work with a more general cost function with the same running time as shown in
the next section.

3.5 Generalizations of an unweighted algorithm

The problem can be viewed in a slightly more general version. In Harvey et al. [20], the cost
functions for each vertex v ∈ V are the same. We relax this condition, allowing a different function
for each vertex where each function is convex. More precisely, for each v ∈ V , let fv : Z+ → R be a
convex function, i.e., for any i, fv(i+ 1)− fv(i) ≥ fv(i)− fv(i− 1). The cost for matching M on a
vertex v is fv(degM (v)). In this convex cost function, the transformation similar to what described
in Section 3.1 can still be done. However, the number of different values of fv is now O(|E|). So,
the size of the set of cost centers C is now upper bounded by O(|E|) not O(|U |). Therefore, the
running time of our algorithm becomes O(|E|

√

|U | log |C|) = O(|E|
√

|U | log |E|) = O(
√
nm log n)

(since |E| ≤ n2) which is the same as before.

4 Extension to balanced edge cover problem

The optimal balanced edge cover problem is defined as follows. The input to this problem is a simple
undirected graph G = (V,E). An edge cover F ⊆ E is a set of edges such that every vertex of G is
incident to at least one edge in F . Define the cost of the edge cover F as cost(F ) =

∑

v∈V costF (v),

where costF (v) =
∑degF (v)

i=1 i. (The cost function is the same as that of the unweighted semi-
matching problem5.) The goal in the optimal balanced edge cover problem is to find an edge cover
F with minimum cost.

Observe that any minimal edge cover – including any optimal balanced edge cover – induces a
star forest; i.e., every connected component has at most one vertex of degree greater than one (we
call such vertices centers) and the rest have degree exactly one. For any minimal edge cover F , we
call a set of vertices C an extended set of centers of F if (1) C contains all centers of F , and (2)
each connected component in the subgraph induced by F contains exactly one vertex in C.

To solve the balanced edge cover problem using a semi-matching algorithm, we first make a
further observation that if we are given an extended set of centers of an optimal balanced edge
cover, then an optimal balanced edge cover can be found by simply solving the unweighted semi-
matching problem.

5 We note that the original definition of the balanced edge cover problem has a function f : Z+
→ R

+ as an
input [17]. However, it was shown in [17] that the optimal balanced edge cover can be determined independently of
function f as long as f is a strictly monotonic convex function. In other words, the problem is equivalent to the one
we define here.

16



Figure 5: A figure illustrates the construction of a cost-reducing path in Lemma 4.1. Solid thin
edges (in red) denote edges in F . Solid thick edges (in blue) denote edges in M . Dashed thin edges
(in red) represent the fact that vertices vi, for all odd i, have degree exactly one in F . Similarly,
dashed thick edges (in blue) represent the fact that vertices vi, for all even 0 < i < 2k, have degree
exactly one in M .

Lemma 4.1. Let C be an extended set of centers of some optimal balanced edge cover F . Let
G′ = ((V \C)∪C,E′) be a bipartite graph where E′ is the set of edges between V \C and C in G.
Then any optimal semi-matching in G′ (where every vertex in V \ C touches exactly one edge of
the semi-matching) is an optimal balanced edge cover in G.

Proof. Let M be any optimal semi-matching in G′. First, observe that F is also a semi-matching
in G′. Thus, the cost of M is at most the cost of F . It remains to show that M is an edge cover.
In other words, we will prove that every vertex in C is covered by M .

Assume for the sake of contradiction that there is a vertex v ∈ C that is not covered by M .
We show that there exists a cost-reducing path of M starting from v as follows. (The notion of
cost-reducing path is defined in Section 3.) Starting from v0 = v, let v1 be any vertex adjacent
to v0 in F . Such v1 clearly exists since F is an edge cover. Let v2 be a vertex in C adjacent to
v1 in M . Such v2 exists and is unique since v1 has degree exactly one in M . If degM (v2) > 1,
then we stop the process. Otherwise, we repeat the process by finding a vertex v3 adjacent to v2
in F and a vertex v4 adjacent to v3 in M . We repeat this until we find v2k, for some k, such that
degM (v2) > 1. This process is illustrated in Figure 5.

Claim 4.2. All vertices found during the process are distinct.

Proof. Let vi be the first vertex that appears for the second time, i.e. vi = vj for some j < i and
all vertices in {v0, . . . , vi−1} are distinct. Let j < i be such that vi = vj .

Case 1: i is odd. This means that vi /∈ C. It follows that vi has degree exactly one in F
(this is true for every vertex that is not in the extended set of centers C of F ). Also note that
(vj−1, vj) and (vi−1, vi) are both in F . Thus, (vj−1, vj) = (vi−1, vi). This means that vj−1 = vi−1,
contradicting the assumption that vi is the first vertex that appears for the second time.

Case 2: i is even. This means that vi ∈ C. It follows that vi has degree exactly one in M ;
otherwise, the process must stop when vj is found. As in Case 1, this fact implies that vj−1 = vi−1

since (vj−1, vj) and (vi−1, vi) are both in M , contradicting the assumption that vi is the first vertex
that appears for the second time. The claim is completed.

The above claim implies that the process will stop. Since we stop at vertex whose degree in M
is more than one, the path obtained by this process is a cost-reducing path of M . This contradicts
the assumption that M is an optimal semi-matching.

It remains to find an extended set of centers. We do this using the following algorithm.
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Figure 6: An example of algorithm Find-Center. The solid edges denote edges in the minimum
cardinality edge cover F , and the dashed edges denote edges not in F . The numbers in vertices
denote one possible leveling.

Algorithm Find-Center First, find a minimum cardinality edge cover F . Then find leveling of
vertices, denoted by LF , as follows.

First, all center vertices of F (i.e., all vertices with degree more than one in F ) are on level 1.
For i = 1, 2, . . ., we define level i+ 1 by considering at any vertex v not yet assigned to any level.
We pick such vertex v in any order and consider two cases.

• If i is odd and v shares an edge in F with a vertex on level i, then we add v to level i+ 1.

• If is i even, then we add v to level i+ 1 if v shares an edge not in F with a vertex on level i
and v does not share an edge in F with any vertex on level i+ 1.

We output C, the set of even-level vertices, as an extended set of centers. Note that there
might be some vertices that are not assigned to any level in LF . Figure 6 illustrates the work of
the Find-Center algorithm. We first find a minimum edge cover F (consisting of solid edges).
Vertices v1 and v2, which are the centers of the two stars in F , are in the first level. The leaves
of the stars (i.e., v3, . . . , v8) are then in the second level. Vertices v9 and v10 are both adjacent
to vertices in the second level by edges not in F . Thus, any of them could be in the third level.
However, since they are adjacent in F , they could not be both in the third level. If we consider v9
before v10 in the algorithm, then v9 will be in level 3 while v10 will be in level 4 as in the figure.
In this case, v11 and v12 will not be assigned to any level. In contrast, if we consider v10 first, then
v9, v10, v11 and v12 will be in level 4, 3, 5 and 6, respectively.

Now we analyze the running time and show the correctness of algorithm Find-Center. Once
we have these, the main claim of this section follows immediately from Lemma 4.1.

Running time analysis An edge cover F can be constructed from a maximum cardinality
matching by adding one edge incident to each uncovered vertex [14, 35]. The maximum cardinality
matching in a bipartite graph can be found by Micali-Vazirani’s algorithm [34] in O(

√
nm) time or

by Harvey’s algorithm [19] in O(nω) time, where ω is a time for computing matrix multiplication.
Thus, F can be found in O(

√
nm) time by using the first algorithm. Moreover, finding LF could be

done in a breadth-first manner, which takes O(n+m) time. Therefore, the time for the reduction
from the balanced edge cover problem to the unweighted semi-matching problem is O(

√
nm),

implying the total running time of O(
√
nm log n).
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Correctness We prove the correctness by applying the algorithm BEC1 proposed in [17]. This
algorithm starts from any minimum edge cover and keeps augmenting along a cost-reducing path
until such path does not exist. Here a cost-reducing path P with respect to an edge cover F is a
path starting from any center vertex u, following any edge in F and then following an edge not
in F . The path P keeps using edges in F and edges not in F alternately until it finally uses an
edge not in F and ends at a vertex v such that degF (v) ≤ degF (u) − 2. (See [17] for the formal
definition.) It was shown that BEC1 returns an optimal balanced edge cover.

Lemma 4.3. Let C be a set returned from the algorithm Find-Center. Then C is an extended
set of centers of some optimal balanced edge cover F ∗. In other words, there exists an optimal
balanced edge cover F ∗ such that all of its centers are in C, and each connected component (in the
subgraph induced by F ∗) has exactly one vertex in C.

Proof. Let F be a minimum cardinality edge cover found by the algorithm Find-Center. Consider
a variant of the algorithm BEC1 where we augment along a shortest cost-reducing path. We will
show that we can always augment along the shortest cost-reducing path in such a way that the parity
of vertices’ levels never change. To be precise, we construct a sequence of minimum cardinality
edge covers F = F1, F2, . . . where we obtain Fi from Fi−1 by augmenting along some shortest
cost-reducing path. By the following process, we claim that if any vertex is on an odd (even,
respectively) level in LF , then it is on an odd (even, respectively) level in LFi . Moreover, if a
vertex belongs to no level in LF , then it belongs to no level in LFi .

We prove the claim by induction on i. The claim trivially holds on F1 = F . Inductively, assume
that the claim holds on some Fi. Let P be any shortest cost-reducing path with respect to Fi. If
there is no such path P , then F ∗ = Fi is an optimal edge cover, and we are done. Otherwise, we
consider two cases.

• Case 1: The path P contains only vertices on level 1 and 2. This is equivalent to reconnecting
vertices on level 2 to vertices on level 1. The level of every vertex is the same in LFi and
LFi+1 . Thus, the claim holds on Fi+1.

• Case 2: The path P contains a vertex vk not on level 1 or 2. By the construction, vk has
degree one in F . Thus, vk is the end-vertex of P and all other vertices are on level 1 and 2;
otherwise, we can stop at the first vertex that is not on level 1 or 2 and obtain a shorter cost-
reducing path. Specifically, we may write P as P = v0v1 . . . vk, where vertices v0, v1 . . . , vk−1

are on level 1 and 2 alternately. Also, k must be even since P is a cost-reducing path. Now,
let us augment from v0 until we reach vk−2. At this point, vk−2 must have degree at least
three (after the augmentation) because it is on level 1 (which means that it has degree more
than one in Fi) and just got one more edge from the augmentation. If vk is on level 3, then
we are done as it will be on level 1 in LFi+1 , and all vertices in its subtree will be 2 levels
higher. Otherwise, vk must be on level 4. Let a be a vertex on level 3 adjacent to vk by an
edge in Fi, which exists by the construction, and let b be a vertex on level 2 adjacent to a by
an edge not in Fi. There are two subcases.

– Case 2.1: vk−1 = b. In this case, we augment along the path v1v2 . . . vk−1a instead.

– Case 2.2: vk−1 6= b. In this case, we get an edge cover with cardinality smaller than
|Fi| = |F | by deleting three edges in Fi incident to vertices b,vk−1,vk and adding edges
(a, b) and (vk−1, vk). (Note that for the case that b is covered by an edge incident to
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vk−2, we use the fact that vk−2 has degree at least 3 as discussed earlier.) So, this case
is impossible because it contradicts the fact that F is minimum cardinality edge cover.

As there exist augmentations that do not change the parity of vertices’ levels, at the end of the
process, we have an optimal balanced edge cover whose extended set of centers is exactly C. This
completes the proof.
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paper.
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APPENDIX

A Edmonds-Karp-Tomizawa algorithm for weighted bipartite match-
ing

In this section, we briefly explain Edmonds-Karp-Tomizawa (EKT) algorithm. The algorithm starts
with an empty matching M and iteratively augments (i.e., increases the size of) M . The matching
in each iteration is maintained so that it is extreme; i.e., it has the highest weight among matchings
of the same cardinality. The augmenting procedure is as follows. Let M be a matching maintained
so far. Let DM be the directed graph obtained from Ĝ by orienting each edge e in M from V̂ to U
with length ℓe = −we and orienting each edge e not in M from U to V̂ with length ℓe = we. Let
UM (respectively, V̂M ) be the set of vertices in U (respectively, V̂ ) not covered by M . If |M | 6= |U |,
then there is a UM -V̂M path. Find a shortest such path, say P , and augment M along P ; i.e., set
M = M∆P . Repeat with the new value of M until |M | = |U |.

The bottleneck of this algorithm is the shortest path algorithm. Although DM has negative-
length edges, one can find a potential and apply Dijkstra’s algorithm on DM with non-negative
reduced cost. The potential and reduced cost are defined as follows.

Definition A.1. A function p : U ∪ V̂ → R is a potential if, for every edge uv in the residual graph
DM , ℓ̃uv = ℓuv + p(u)− p(v) is non-negative. We call ℓ̃ a reduced cost with respect to a potential p.

The key idea of using a potential is that a shortest path from u to v with respect to a reduced
cost ℓ̃ is also a shortest path with respect to ℓ. We omit details here (see, e.g., ([38, Chapter 7
and Section 17.2]), but note that we can use a distance function found in the last iteration of the
algorithm as a potential, as in Algorithm 2.1.

Dijkstra’s algorithm.

We now explain Dijkstra’s algorithm on graph DM with non-negative edge weight defined by ℓ̃.
Our presentation is slightly different from the standard one but will be easy to modify later.
The algorithm keeps a subset X of U ∪ V̂ , called set of undiscovered vertices, and a function
d : U ∪ V̂ → R

+ (the tentative distance). Start with X = U ∪ V̂ and set d(u) = 0 for all u ∈ UM

and d(v) =∞ for all v /∈ UM . Apply the following iteratively:

1: Find u ∈ X minimizing d(u) over u ∈ X. Set X = X \ {u}.
2: For each neighbor v of u in DM , relax uv, i.e., set d(v)← min{d(v), d(u) + ℓ̃uv}.

The running time of Dijkstra’s algorithm depends on the implementation. One implementation
is by using Fibonacci heap. Each vertex v ∈ U ∪ V̂ is kept in the heap with key d(v). Finding
and extracting a vertex of minimum tentative distance can be done in an amortized time bound of
O(log |U ∪ V̂ |) by extract-min operation, and relaxing an edge can be done in an amortized time
bound of O(1) by decrease-key operation.

Consider the running time of finding a shortest path. Let n = |U ∪V | and m = |E|. We have to
call insertion O(n) times, decrease-key O(m) times, and extract-min O(n) times. Thus, the overall
running time is O(m+ n log n).
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B Observation: O(n3) and O(n5/2 log(nW )) time algorithms

We first recall the reduction from the weighted semi-matching problem to the weighted bipartite
matching problem, or equivalently, the assignment problem. Given a bipartite graph G = (U∪V,E)
with edge weight w, an instance for the semi-matching problem, we construct a bipartite graph
G = (U ∪ V̂ , Ê) with weight ŵ, an instance for the weighted bipartite matching problem, as follows.
For every vertex v ∈ V of degree deg(v), we create exploded vertices v1, v2, . . . , vdeg(v) in V̂ and let
V̂v denote a set of such vertices. For each edge uv in E of weight wuv, we also create deg(v) edges
uv1, uv2, . . . , uvdeg(vi)), with associated weights wuv, 2 ·wuv , . . . ,deg(v) ·wuv , respectively. It is easy
to verify that finding optimal semi-matching in G is equivalent to finding a minimum matching in
Ĝ. Figure 1(a) shows an example of this reduction.

The construction yields a graph Ĝ with O(m) vertices and O(nm) edges. Thus, applying any
existing algorithm for the weighted bipartite matching problem directly is not enough to get an
improvement. However, we observe that the reduction can be done in O(n2 log n) time, and we can
apply the result of Kao et al. in [22] to reduce the number of participating edges to O(n3). Thus,
Gabow and Tarjan’s scaling algorithm [12] gives us the following result.

Observation B.1. If all edges have non-negative integer weight bounded by W , then there is an
algorithm for the weighted semi-matching problem with the running time of O(n5/2 log(nW )).

This result immediately gives an O(n5/2 log n) time algorithm for the unweighted case (i.e.,
W = 1). Hence, we already have an improvement upon the previous O(nm) time algorithm for the
case of dense graph.

Now, we give an explanation on the observation. If we reduce the problem normally (as in
Section 2) to get Ĝ, then the number of edges in Ĝ and the running time will be O(nm). However,
since the size of any matching in the graph Ĝ is at most |U |, it suffices to consider only the smallest
|U | edges in Ĝ incident to each vertex in U . Therefore, we may assume that Ĝ has O(n2) edges.
(The same observation is also used in [22].)

More precisely, let Eu be a set of edges incident to u in Ĝ, and R be a set of |U | smallest edges
of Eu. If the maximum matching of minimum weight, say M , contains an edge e ∈ Eu \ R, then
R ∪ {e} has |U | + 1 edges. This implies that there is an edge e′ ∈ R incident to a vertex v ∈ V̂
not matched by M . Thus, we can replace e by e′ which results in a matching of smaller weight.
Therefore, we need to keep only |U |2 edges in our reduction. Moreover, we can also reduce the time
of the reduction to O(n2 log n).

The faster reduction is applied at each vertex u ∈ U as follows. First, we create a binary graph
H. Each node of H has a key (e = uv, i) and a value i · we, where e = uv ∈ E and i is an integer.
In other words, the value of the node in H with key (e, i) is the weight of an edge uvi in the graph
Ĝ. Initially, we add to H a key (e, 1) with value we for all edges e ∈ E incident to u. We iteratively
extract from H the key (e = uv, i) with minimum value. Then we create an edge uvi in E′ with
weight i ·we. If u is incident to less than |U | edges in E′, then we insert to H a key (uv, i+1) with
value (i+ 1) · we; otherwise, we stop. We repeat the process until the heap H is empty. Thus, the
process for each vertex u ∈ U terminates in |U | rounds. The pseudocode of the reduction is given
in Algorithm B.1.

Consider a vertex u ∈ U . At any time during the reduction, there are O(degG(u)) edges
in H. So, the extract-min operation takes O(log(degG(u))) time per operation. The time for
inserting a vertex to V̂ and an edge to Ê is O(1). For each vertex u ∈ U , we have to call
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Algorithm B.1 Reduction (G = (U ∪ V,E), w)

1: Create an empty set Ê, V̂ .
2: for all vertices u ∈ U do
3: Create a binary heap H.
4: for all edges e incident to u do
5: Insert to H a node with key (e, 1) and value w(u).
6: end for
7: for k ← 1 to |U | do
8: Extract-min from H, resulting in (e = uv, i).
9: Insert to V̂ a vertex vi (if it does not exist).

10: Insert to Ê an edge uvi.
11: Insert to H a node with key (e = uv, i+ 1) and value (i+ 1) · we.
12: end for
13: Delete the binary heap H.
14: end for
15: return Ĝ = (U ∪ V̂ , Ê).

insertion degG(u) + |U | times and extract-min |U | times. Thus, the time required to process each
vertex of U is O((degG(u) + |U |) log |U |). It follows that the total running time of the reduction is
O((|E| + |U |2) log |U |) = O(n2 log n).

Now, we run algorithms for the bipartite matching problem on the graph Ĝ with n2 edges. Using
Edmonds-Karp-Tomizawa algorithm, the running time becomes O(nm) = O(n3). Using Gabow-
Tarjan’s scaling algorithm, the running time becomes O(

√
nm log (nW ) = O(n5/2 log (nW )), where

W is the maximum edge weight.

C Dinitz’s blocking flow algorithm

In this section, we will give an outline of Dinitz’s blocking flow algorithm [7]. Given a network R
with source s and sink t, a flow g is a blocking flow in R if every path from the source to the sink
contains a saturated edge, an edge with zero residual capacity. A blocking flow is usually called a
greedy flow since the flow cannot be increased without any rerouting of the previous flow paths.
In a unit capacity network, the depth-first search algorithm can be used to find a blocking flow in
linear time.

Dinitz’s algorithm works in a layered graph, a subgraph whose edges are in at least one shortest
path from s to t. This condition implies that we only augment along the shortest paths. The
algorithm proceeds by successively find blocking flows in the layered graphs of the residual graph
of the previous round. The following is an important property (see, e.g., [2, 38, 46] for proofs). It
states that the distance between the source and the sink always increase after each blocking flow
step.

In the case of unit-capacity, Even-Tarjan [10] and Karzanov [23] showed algorithm that finds a
maximum flow in time O(min{n2/3,m1/2}m). In the case of unit-network, i.e., every vertex either
has indegree 1 or outdegree 1, the algorithm finds a maximum flow in time O(

√
nm).
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