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Dear Editor,

Rauvolfia tetraphylla (aka the Devil pepper) (Supplemental Figure 1)

is a well-known medicinal plant that produces monoterpenoid

indole alkaloids (MIAs). This MIA biosynthesis occurs in several or-

gans, including leaves, stems, fruit, and roots, which accumulate

the famous antiarrhythmic ajmaline (Kumar et al. 2016a, 2016b;

Kumara et al., 2019). MIAs are natural products notably involved

in plant adaptation to the environment and defense against

aggressors. This mainly results from their high biological activities,

which also explain their pharmacological properties. MIAs display

complex structures resulting from long and elaborate biogenesis

processes, as mainly illustrated in the Madagascar periwinkle

Catharanthus roseus (Kulagina et al., 2022). Although ajmaline

remains an important drug in the general pharmaceutical market,

its biosynthetic pathway is still incomplete, precluding a transfer

to heterologous organisms as recently achieved for bioproduction

of other valuable MIAs (Zhang et al., 2022). Overall, the

biosynthesis of ajmaline requiresa 10-stepmodificationof strictosi-

dine, catalyzed by enzymes from the cytochrome P450, alcohol

dehydrogenase (ADH), and BAHD acyltransferase families, all

but one of which have been identified (Dang et al., 2017)

(Supplemental Figure 2). The central part of this pathway involves

the conversion of vinorine into 17-O-acetyl-norajmaline, which

relies on hydroxylation of vinorine into vomilenine by vinorine

hydroxylase (VH) (Dang et al., 2017). Next, two ADHs successively

ensure the reduction of the vomilenine 19,20-double bond and

the reduction of its indolenine ring in the 1,2-position. To date,

only the vomilenine reductase (from themedium-chain dehydroge-

nase/reductase family) that produces 19,20-a(S)-dihydrovomile-

ninehasbeen characterizedandnamedVR2 (vomilenine reductase

2; Geissler et al., 2016). This makes the remaining ADH the only

enzyme missing from the ajmaline biosynthetic pathway.

To identify this enzyme, we first assembled a chromosome-scale

version of the R. tetraphylla genome by generating 43.8 Gb ONT

PromethION reads with an N50 of �21.8 kb. Reads were assem-

bled with Flye, and the resulting contigs were corrected twice

with ONT reads and polished twice with Illumina reads. Using Hi-

C data (Supplemental Figure 3A), 89.7% of the unscaffolded

assembly was anchored to 33 pseudo-chromosomes (Figure 1A;

supplemental materials and methods) in accordance with the

66 chromosomes counted in R. tetraphylla cells (2n = 66;

Supplemental Figure 2B), resulting in an assembly of �733.6 Mb.

About 98.3% of the eudicot Benchmarking Universal Single Copy

Orthologs (BUSCOs) were annotated, and the LTR Assembly

Index (19.21) was higher than that of C. roseus (13.11 [Li et al.,

2023]–14.62 [Sun et al., 2023]), indicating the high completeness

of our assembly in both genic and non-genic regions

(Supplemental Table 1). By integrating ab initio prediction and
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de novo transcriptome assembly, we annotated 101 883 high-

confidence genes (Figure 1A; Supplemental Tables 1 and 2) with

a BUSCO completeness score of 97.7%. Functional annotations

were assigned to �65.7% of the genes (Supplemental Table 2).

Transposable-element annotation revealed that �39% of the

genome consists of transposable elements (Figure 1A;

Supplemental Table 3). An evolutionary analysis indicated that R.

tetraphylla has undergone a whole-genome triplication, which

probably resulted from a double hybridization (2n = 6x = 66;

Figures 1A and 1B), and a marked expansion of several

orthogroups (Figure 1C and Supplemental Figure 4). This also

resulted in a substantial expansion of genes encoding

ADHs, notably including 372 medium-chain dehydrogenase/

reductases, 317 short-chain ADHs, and 135 aldo-keto reductases

(Supplemental Table 4).

Using this new genome, we searched for putative natural product

biosynthetic gene clusters (supplemental materials and methods;

Supplemental Tables 5 and 6). Among them, we identified 3

genomic regions located on chromosomes 11a, 11b, and

11c that consisted of 10, 9, and 9 successive genes, respectively,

all of which encoded ADHs corresponding to cinnamyl-ADH-like

genes from the medium-chain dehydrogenase/reductase family

(Figure 1D). Besides being collinear because they result from

polyploidization (Figures 1A and 1D), these regions also shared a

high degree of synteny with a locus enriched in genes encoding

ADHs involved in heteroyohimbane synthesis (tetrahydroalstonine

synthase [THAS]) found on chromosome 4 of C. roseus (Sun

et al., 2023), suggesting a putative local duplication of THAS1 and

THAS3 orthologs in R. tetraphylla prior to the whole-genome

triplication (Supplemental Figure 5). We determined that 25 of the

28 genes were associated with complete ADH proteins and

clustered into 7 ADH identity groups (Figure 1E). A homology

search revealed that VR2 was located in the studied genomic

regions and corresponded to Rte11bG086277, with two close ho-

mologs, Rte11aG083588 and Rte11cG087148 (Supplemental

Table 7). The three genes show conserved local synteny

(Figure 1D), together with a common phylogenetic clustering

(Figure 1E).

Such density of ADHs prompted us to investigate the activity of

the genomic neighbors of VR2 that may encode the missing

ADH of the ajmaline pathway. On the basis of a high expression

level in roots (Supplemental Figure 6), one representative of each

ADH identity group was amplified and assayed by transient

expression in Nicotiana benthamiana, together with VH and VR2
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Figure 1. Chromosome-scale genome of R. tetraphylla and identification of 1,2-dihydrovomilenine reductase.
(A) Genomic landscape of R. tetraphylla. Concentric rings present, from the outside to the inside, pseudo-chromosome name, pseudo-chromosome

scale, gene density (purple: low density; yellow: high density), and transposable-element density (blue: low density; brown: high density). Blue central

(legend continued on next page)
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(Figure 1F; supplemental materials and methods). Although no

modification of the fed vinorine was observed in control leaves

expressing only green fluorescent protein (Supplemental

Figure 7), overexpression of VH and VH combined with VR2

caused the conversion of vinorine into vomilenine and 19,20-

a(S)-dihydrovomilenine, measurable at m/z 351 and 353,

respectively (Figure 1F). These reactions were fully consistent

with the previously reported reaction catalyzed by VH and VR2

(Geissler et al., 2016; Dang et al., 2017). Interestingly, co-

expression of Rte11bG086272 and Rte11cG087143 with VH and

VR2 led to formation of a new compound whose m/z (355) was

consistent with an additional reduction of 19,20-a(S)-dihydrovomi-

lenine, potentially yielding 17-O-acetyl-norajmaline. By contrast,

no such reduction was observed when Rte11cG087137,

Rte11cG083572, Rte11cG087145, or Rte11bG086265 was ex-

pressed, confirming the specificity of the reaction catalyzed by

Rte11bG086272 and Rte11cG087143. In addition, individual co-

expression of each of the four aforementioned genes with VH re-

vealed that Rte11cG087145 catalyzed a vomilenine reduction

similar to that of VR2 (Supplemental Figure 8).

To gain insight into the identity of the vomilenine derivatives

produced in these assays, VR2, Rte11bG086272, and

Rte11cG087143 were individually co-expressed with VH

(Figure 1G, left, and Supplemental Figure 8). As previously

observed for VR2, we noted that Rte11bG086272 and

Rte11cG087143 were capable of reducing vomilenine directly,

as revealed by formation of an m/z 353 product. However, the

difference in retention times of the VR2 and Rte11bG086272/

Rte11cG087143 products strongly argues for the formation

of two distinct compounds. We took advantage of these syn-

theses to assign the characteristic UV spectrum changes of

vomilenine derivatives to the VR2 and Rte11bG086272/

Rte11cG087143 products (Figure 1H and Supplemental

Figure 8). As described by Geissler et al. (2016), we first

observed that both vomilenine and the VR2 product (19,20-

a(S)-dihydrovomilenine) displayed similar spectra, reaching two

maxima at 221 and 269 nm. Interestingly, the Rte11bG086272/

Rte11cG087143 product exhibited a radical spectrum shift,

with two maxima at 235 and 287 nm, characteristic of the reduc-

tion of the indolenine ring in the 1,2-position found in 1,2-

dihydrovomilenine. The identity of this compound was further

confirmed by mass fragmentation, which clearly revealed differ-

ences in the reductions catalyzed by Rte11bG086272/
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Rte11cG087143 and VR2 (Supplemental Figure 9). These

results indicate that both Rte11bG086272 and Rte11cG087143

encode the missing enzyme of the ajmaline pathway, namely

1,2VR, which catalyzes the 1,2 reduction of vomilenine.

To establish the preferential ADH reaction order, products

generated by co-expression of VH and VR2 or VH and

Rte11bG086272 or Rte11cG087143 (1,2VR) were further incu-

bated for 24 h with N. benthamiana disks expressing

Rte11bG086272/Rte11cG087143 (1,2VR) and VR2, respectively

(Figure 1G, right, and Supplemental Figure 10). Interestingly, we

observed that the enzymes encoded by Rte11bG086272 and

Rte11cG087143 (1,2VR) were not capable of reducing the VR2

product (19,20-a(S)-dihydrovomilenine), whereas VR2 efficiently

reduced the Rte11bG086272 and Rte11cG087143 products

(1,2-dihydrovomilenine). This strongly suggests that 1,2VRs

(Rte11bG086272 or Rte11cG087143) catalyze the first vomilenine

reduction, and this is followed by the VR2 reaction, in contrast to

the previous hypothesis (Geissler et al., 2016).

In conclusion, this chromosome-scale version of the R. tetra-

phylla genome provides valuable insights into MIA biogenesis

through identification of the missing enzyme of the ajmaline

pathway. The VR2- and 1,2VR-encoding genes were adjacent

in the genome and also displayed a distant copy. This identifica-

tion will undoubtedly pave the way for future bioproduction of

ajmaline in a heterologous organism.
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Raw DNA sequencing data, Hi-C data, RNA sequencing data, and

the genome assembly have been deposited under BioProject

numbersPRJNA771251 (https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA771251) and PRJNA1020772 (https://www.ncbi.nlm.nih.

gov/bioproject/PRJNA1020772). The genome annotation, coding

sequences, protein sequences, and transcript sequences are avail-

able on figshare at https://doi.org/10.6084/m9.figshare.21679628

(private link: https://figshare.com/s/3b080658774cf533f383).
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37200 Tours, France
2Future Genomics Technologies, 2333 BE Leiden, the Netherlands
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