
J. Symbolic Computation (1991) 11, 51-81

A Completion Procedure for Conditional Equations~

HARALD GANZINGER~

Max.Planck-Institut fiir Informatik, Im Stadtwald, D-6600 Saarbriicken, Germany

(Received 15 September 1987)

The paper presents a new completion procedure for conditional equations. The work is based
on the notion of reductive conditional rewriting and the procedure has been designed to handle
in particular non-reductive equations that are generated during completion. The paper also
describes techniques for simplification of conditional equations and rules, so that the procedure
terminates on more specifications. The correctness proofs which form a substantial part of
this paper employ recursive path orderings on the proof trees of conditional equational logic,
an extension of the ideas of Bachmair, Dershowitz & Hsiang to the conditional case.

1. Introduction

In this paper we present a completion procedure for conditional equations. Emphasis is
laid upon a rigorous proof of the correctness of the procedure as well as on developing
techniques that make the procedure useful in practice. The completion procedure is,
adopting the ideas of Bachmair, Dershowitz & Hsiang (1986) and Bachmair (1987)
presented as a set of inference rules. It is shown that any application of an inference rule
leads to less complex proofs of equational theorems. If the inference rules are applied
according to a fair s t ra tegy--which, however, need not exist in all cases- - the final system
of conditional rules will be reductive, canonical, and will generate the same congruence
as the initially given set of conditional equations.

Proofs will be represented as terms in a signature of proofs. A recursive path ordering
on proof terms will allow to order proofs according to their complexity. The p roof of
correctness of the completion procedure is based on the idea that proofs for equational
theorems which are not rewrite proofs can be transformed into simpler proofs at some
stage of the completion process. As the ordering of proofs is well-founded, a rewrite
proof must be obtained eventually. Proof terms may contain variables and hence represent
proofs of equations under hypotheses, i.e. contexts in which other equations can be
assumed to hold true.

The concept of conditional rewriting which we use is the one proposed by Kaplan
(1984a, b), and further developed by Jouannaud & Waldmann (1986). Conditions in rules
are not restricted to formulas of a lower level in the specification hierarchy as in Remy
& Zhang (1984) and Zhang & Remy (1985). It is only required that terms in conditions
be smaller, according to some given reduction ordering, than the left side of the rule.
Then, the recursive calls of the rewrite relation for testing the applicability of a rule
always terminate and the rewrite relation becomes decidable.

t A preliminary version of this paper has appeared in the Proceedings of the First International Workshop
on Conditional Term Rewriting, Orsay, June 1987, Springer Lecture Notes in Computer Science, 1988.

~t This work was partially supported by the ESPRIT-project PROSPECTRA, ref. no. 390, at the University
of Dortmund, Germany.

0747-7171/91/010051 + 31 $03.00/0 �9 1991 Academic Press Limited

52 H. Ganzinger

The restriction to reductive rules is sufficiently strong to allow for efficient rewriting
(Kaplan, 1987). On the other hand it is usually the case that non-reduetive equations are
generated during completion as critical pairs between reductive rules. This problem has
been reported by many authors, Kaplan (1984a), Jouannaud & Waldmann (1986),
Ganzinger (1987), Kaplan & Remy (1987), Kounalis & Rusinowitch (1987) and Orejas
(1987) among others. For a completion procedure to be useful in practice it is of principal
importance that it has strong enough techniques to handle these critical pairs. In this
paper we describe two concepts for such techniques.

The first concept is devoted to the elimination of equations and rules. The idea is that
an equation C ~ s = t can be discarded if there is also another proof of the same
conditional equation, different from the one which led to the construction of the equation.
In addition this proof has to be simpler with respect to the complexity measure on proofs.
To that end, proofs of equations s = t under hypotheses C are represented as terms with
variables (representing the "unknown" proofs for the equations in C) in our algebra of
proofs. Particularly useful techniques for obtaining such simpler proofs are certain efficient
variations of rewriting s = t modulo the (skolemized) conditions in C of an equation,
and subsumption. It will be demonstrated by means of examples that practical procedures
must provide adequate combinations of these principal techniques.

The second concept is that of superposing rules on conditions of non-reductive conditional
equations. Hereby, the set of solutions of the condition is enumerated. For particular
classes of solutions specific instances of the equation will be generated. Any of the
instances can then be treated specifically. Some instance may become a reductive rule,
for other instances the previously mentioned elimination techniques may be applicable,
for still other instances one may have to investigate the corresponding class of solutions
further by again superposing rules on its condition. If this narrowing-like process comes
to an end, the original equation need not be considered any more when enumerating the
equational theory of the specification. A main difficulty in practice is, however, to detect
loops in this process when it does not terminate. It is well-known (R6ty, 1988) that naive
approaches to (conditional) narrowing almost never terminate.

With these two concepts, the procedure presented in this paper is a considerable
improvement over the ones given by Kaplan (1984b), Jouannaud & Waldmann (1986)
and Kaplan & Remy (1987). Another improvement over previous work is that our
procedure can be used to process modules of a complex specification separately. Upon
combination of two preprocessed and hence canonical systems of rewrite rules only the
inferences between axioms in different modules need tobe computed. The situation here
is thus the same as in the unconditional case. Another similarity to the unconditional
case is a technique in which rules are numbered to achieve fair computation of critical
pairs and to avoid recomputation of critical pairs for those rules that are simplified on
their condition and right-hand side at a later stage in the completion process. This
technique has been proven correct by Huet (1981) for the unconditional case and
implemented in most existing completion procedures.

The approach taken in this paper shows, in its treatment of non-reductive equations,
quite some similarities with recent work by Kounalis & Rusinowitch (1987). In fact, the
idea of superposing rules on non-reductive conditions of equations has been taken from
their work. One difference between both approaches is that our procedure will fail when
it encounters a non-orientable unconditional equation which it cannot eliminate. On the
other hand, if our procedure terminates it will have constructed a reductive set of
conditional rewrite rules which is confluent on all terms, and not just ground-confluent

A Completion Procedure 53

as in the case in Kounalis & Rusinowitch (1987). In the latter approach rewriting in the
completed system is less efficient as it can require reductivity proofs for the substitution
instances of an equation during rewriting. An unfailing variant of our procedure (which
can be designed and proven correct according to the ideas described in Hsiang &
Rusinowitch (1987) and Bachmair (1987) for the unconditional case) would combine the
advantages of both approaches in the Horn clauses case.

Condit ional equations are a particular case of first-order clauses with equality. In fact,
the work of Kounalis & Rusinowitch (1987) is just a restriction to Horn clauses of the
first-order theorem prover described by Rusinowiteh (1987). More recent work on this
subject is by Bachmair & Ganzinger (1990, 1991) who further optimize the inference
system, provide a general concept of redundancy as a basis for simplification and
elimination of clauses, and extend the idea of Knuth-Bendix-completion to full first-order
clauses. This latter work subsumes most of the results of the present paper. Nevertheless,
the treatment here is of interest due to the use of proof transformations and a more
elaborate ordering on clauses. Proof transformations for the related case of refutation
theorem proving in first-order logic which are based on a different proof algebra are
studied by Bachmair (1989). Other related relevant work in this area is by Nieuwenhuis
& Orejas (1991).

The procedure described in this paper has been implemented in the CEC system
(Ganzinger & Sch~fers, 1990) and been successfully applied in practice. Some examples
will be shown in section 6.

2. Basic Notions and Notations

We consider terms over many-sorted signatures. A signature 2 = (S, 12) consists of a
set o f sorts S and a family fl of sets of operator symbols with arity in S*. Tx denotes
the set of all E-terms, (Tx)~ is the set of terms of sort s ~ S. By X we denote a fixed set
of sorted variables containing denumerably infinitely many variables for each sort. Tr . (X)
is the set of all terms that may contain variables from X. Given a term or formula t,
v a r (t) denotes the set of variables occurring in t.

Substitutions are denoted by o', o-', etc. and their application to a term t by to-.
Substitutions o- with domain xt , x~ are also written as [x~o-/x~ , x, ,o-/xn]. The
identity substitution (with empty domain) is denoted by A. If o is an occurrence in t,
then t / o denotes the subterm of t at o and t i c ~ t'] denotes the result of subterm
replacement at o using t'. t[o~ <--- t l , �9 �9 on ~-- t,~], for independent occurrences ol in t, is
a shorthand for t ic1 ~ h] . . . [o~ <--- t,,].

i f t s Tx(X), by ~" we denote the term obtained from t by considering the variables as
new constants.

We assume a reduction ordering > on T ~ (X) to be given. A reduction ordering is a
well-founded ordering which is compatible with operators and stable under substitutions.
I f > is a reduction ordering and st is the strict subterm ordering, then the transitive
closure >~, of (> U s t) is a Noetherian order on T ~ (X) which is stable under substitutions
and satisfies the subterm property, i.e. terms are greater than any of their proper subterms.

We also assume that (for each sort) we have an auxiliary constant [] in Z such that
[] is smaller than any other non-variable term in Tx(X) wrt. the given reduction ordering.

54 H. Ganzinger

A contex t N is a term with exactly one occurrence of [], indicating a hole into which
other terms can be inserted. N [s] denotes the replacement of the hole in N by s. The
distance o f the hole from the root is called the depth of a context. Contexts of depth 0
simply consist o f a hole. These are also called empty contexts.

A conditional equation over ~. is a formula of form

t a = t ~ A ' ' ' ^ t. = t ' ~ t o = t ~ ,

where n ~ 0 and t~, t~ ~ T~(X)s,. A conditional equation in which the order of terms in
the conclusion is relevant is called a conditional rewrite rule. We will use the arrow
to explicitly distinguish rules from equations. For conditional rewrite rules, an additional
requi rement is var(t~) c_ var(to) and, for i > 0, var(tl) ~ var(to) and var(t~) ~ var(to), i.e.
each variable that occurs in the rule must already occur in the left side of the conclusion.

In this paper, we assume the reader to be familiar with the basic properties of reduction
orderings and in particular the recursive path ordering. A recursive path ordering of terms
is obta ined by lifting a well-founded ordering > on the (possibly infinite) set of operators
of the given signature to paths in terms. The reader may consult Dershowitz & Manna
(1979), Huet & Oppen (1986) and Dershowitz (1987) for definitions and basic results.
We briefly repeat some of the basic properties needed below.

Recursive path orderings > are simplification orderings. That is they are compatible
with operators, stable under substitutions, and satisfy the subterm property. Such orderings
are in particular well-founded. In this paper we will make use of the following fact about
recursive path orderings. Suppose two terms s and t are given such that there is a subterm
s' o f s for which va t (t) c_ var(s ') and s ' (e) > t (o) , for each non-variable occurrence
o in t. Then, s > t. (s ' (e) is the root operator in s', t (o) is the operator at o in t.)
This property about operator precedences is not preserved under substitutions.
Nevertheless, s t r > to" will follow from the stability of the recursive path ordering under
substitutions.

The operators in proof terms will be ordered by making use of multiset orderings, cf.
Dershowitz & Manna (1979) for details. For multisets we have M > N, if N can be
obtained by replacing one or more elements in M by any finite number of smaller elements.
The multiset ordering is Noetherian on finite multisets, provided the ordering on elements
is.

Kaplan 's concept of conditional rewriting introduces the notion of a simplifying rewrite
rule. It has been generalized to the notion of reductive rewrite rules by Jouannaud &
Waldmann (1986). A rule is reductive, if to > t~ and, for i > 0, to > tf and to > t'~, i.e. if
the term on the right side and each term that occurs in the condition is to be smaller
than the left side of the equation.

Let R be a set of E-rules and t, t' ~ T x (X) . The rewrite relation t---~R t' is given as the
least fixpoint of the following recursive definition: t--~s t' iff there exists a rule

t l = t ~ ^ ' ' ' ^ t~= t ~ l - - ~ r

in R, an occurrence o in t, a substitution or : X --~ T~(X) suchthat t / o = Io., t' = t[o ,,-- to.],
and for each i_< n there exists a term s, such that tlo'---~* st and t~o.--~* si. (We will
subsequently write t,o- Sn tlo. to denote this converging of t~ and tl under R.)

In Kaplan (1984b) and Jouannaud & Waldmann (1986) it is shown that, in the case
of finite and reductive R, "-~n is decidable and finitely terminating. (This is proved mainly

A Completion Procedure 55

by the observation that N [l o .] > , t t~tr and N[lo -] > , t t~cr, for any context N and substitution
m) For terminating R, local confluence is equivalent to global confluence and then
--=R = $~. In this paper, conditional rewrite rules are always assumed to be reductive. A
conditional equation, however, may have conditions of arbitrary complexity.

3. Proof Terms for Conditional Equational Logic

3.1. T H E S I G N A T U R E O F P R O O F S

Proofs are terms in which the operators represent applications of logical inference
rules. By the "propositions-as-types" paradigm, the sort of a proof term is the proved
theorem. Hence, for equational logic, the sorts of proof terms are uncondit ional E-
equations u = v , for u, v ~ T r . (X) , , s ~ S.

Given sets E and R of conditional equations and conditional rewrite rules respectively,
the following set of operators (inference rules) is complete for ~ :

(a) S u b s t i t u t i o n i n s t a n c e s o f rules a n d equa t ions :

applyn.~ : cffr X ' . �9 • ckcr ~ (s ~ = t~r),

and

a p p l y R ~ , ~ : clcr x . . �9 x cko."> (t~r = so') ,

for r / ~ C ~ s ~ t ~ R or 7/-= C ~ s = t ~ E , where C = - c t ^ . . . ^ Ck, k>---O. Hence,
apply , .~ and applyRn.,~ are k-ary operators that map proofs for the condition instances
cio- to a proof for so- = to. and tcr = so', respectively. The signature of proof terms has a
particular operator for each (h e a d) app l ica t ion a n d reverse app l i ca t ion of a rule or equation.
The signature of p roof terms is therefore infinite, even if the set of rules and equations
is finite. We will also use the notation

e l �9 �9 �9 P k

so" --~ to"
for a p p l y c ~ , ~ t , r P l , . . . , Pk) ,

P 1 . . . P k

tcr ~-- scr
for a p p l y R c ~ s _ , . ~ , (P ~ , . . . , Pk) ,

P~ . . . e k

so- ~--> to-
for a p p l y c ~ s = , , ~ (P l , . . . , Pk) , and

P l . . . P k

to" ~ so;,
for a p p l y R c ~ = t , ~ (P , , . . . , Pk) .

This notation obviously abstracts from the details about the used rule or equat ion and
substitution, and hence wilt not always be sufficiently precise. Where needed we wilt
provide additional information separately, e.g. attach the rules or equations as subscripts.
In the case of an empty condition we will simply write s o - p t~r, for p E (---,, ,---, ~} .

56 H. Ganzinger

(b) R e f l e x i v i t y a n d Trans i t i v i ty :

_ ; ; _ : (s o = s ,) x (s , = s2) x . . �9 x (s . _ , = s ,) ~ (so = s .) , n -> 2 , o r n = 0.

This opera tor allows to form sequences of proofs. We have chosen a variadic operator
to abstract from the obvious associativity property of the binary " ; " . The case n = 0
represents the reflexivity axioms So = so. We will also use the notation

for

P I 1 �9 �9 . VlklP21 . . . P2k2 P h i * . . Pnkrl

S o P o S l P l S 2 �9 . . S n - l P n - l S n

S 0 P 0 S 1 S l P l S 2 Sn- lPn- lSn

where pt ~ {~, ~ , *-~}. Another notation is

Q 1 . . . Qk Q I . . . Qk for
sop * Sn Sopslp �9 �9 ps , '

n ~ O, p ~ {--*, (--, '(--)'}.

(c) C o mp a t ib i l i t y with con tex t s :
Contexts N of depth 1 take proofs for s = t into proofs of N [s] = N[t] :

N [_] : (s = t) ~ (N r s] = Ni t]) .

We will write

P, . . . Pk for N [P-L": :-P-~k q
N [s l] p l N [s 2] p 2 . . . P , - , N [s ,] L slpls2p2 . . . Pn-1 s, J"

Formally, contexts of depth > 1 have to be viewed as nested applications of contexts o f
depth 1.

(d) S y m m e t r y :

is., : (s = t) ---* (t = s).

The subscripts s, t will usually be omitted.

Given E and R, we will denote by ~(E, R) this signature of proof rules of the equational
calculus.

As we have operators for applying rules and equations both ways, the operator for the
symmetry o f equality is redundant. It will be used as an auxiliary operator for defining
transformations of p roof terms. We also could have avoided the introduction of context
operators i f we had extended the notion of rule and equation application to applications
in context. This is done in Bachmair et al. (1986), Bachmair (1987) and KiJchlin (1986).
In these papers, moreover, proofs P and inverse proofs is . ,(P) are identified. Hence, there
is no need for the /-operators at all. We have felt that our slightly more complex notion
of p roo f orderings to be developed later justifies our slightly more redundant signature
of p roof terms. The redundancies will be removed by proof normalization rules to be
given below.

A Completion Procedure 57

For an example, suppose we have the following set E of equations

1 (O < sO) ----- tt
2
3 (s x < y) = (x < p y)
4 (nx < y) = (x < sv)
5 (O < x) = f f = = > (O < p x) = f f

and the set R of rules

6 (0 < x) = tt ~ (0 < sx) ---> tt
7 spx---> x
8 psx--* x

In this case,

(0 < sO) ~ 1 tt

(0 < ssO) -->6 tt

(pO < ssspO) --*7 (pO < ssO) ~ 4 (0 < sssO) ~ t t

is a proof for (p0 < ssspO) = tt, in which we have explicitly indicated the used equations
and rules. The inference notation of proof terms also abstracts f rom the precise interleaving
between the context operators and the other proof operators. For normalized p roo f terms
there is always one unique way of inferring this interleaving:

DEFINITION 2.1. A p roof term is said to be normal ized if it is in normal form with respect
to the following proof transformations (we use the arrow ~ to distinguish the rewriting
of proof terms for the rewriting---> of object terms; 1r and ~r~ are variables for proofs) :

i (K r ~r])-----> K [i (~)]

K['qrl, "/r2, . . . ; '/rn] " K [I r l] ; K [1 r 2] ; . . . ; K [~ r ,]

i(r ; ~-2; . . . ; 7r,) ~ i (~ ,) ; . . . ; i(~'2); i(qrl)

i (a p p l y (~ r l , . . . , ~r,)) > a p p l y R (~ r l , . . . , rr,)

i(app lyR(~rl, . . . , ~r,))-----* apply(~r~, . . . , ~r,)

i(i('n')) ~, "rr

Normalization removes patterns of form i(P), for a non-variable term P, and distributes
contexts over sequences of rule and equation applications. The p roof normalization rules
are confluent and terminating.

DEFINITION 3.2. A (normalized) proof term is called a rewrite p roo f if it has the form

P~ . . . P,

s--~* u *--* t '

with rewrite proofs Pi, 1 -< i - n, n ~ 0.

Hence, rewrite proofs contain no applications of equations and no peaks *-----> in rewrite
rule applications. I f s ---~R t, this step of conditional rewriting is represented by a p roof

58 I-I. Ganzinger

Plo~ M t e rm of fo rm over g(E, R), with a tuple P~ of rewrite proofs for the appropriately
S'--> t

subst i tuted conditions of the used rule.

3.2. COMPLEXITY OF PROOFS

In o rde r to define a well-founded ordering on proof terms, we will now introduce a
complexi ty measure c on the proof operators. We will then, for any two proof operators
F and G, define F > G i t t c(F) > c(G). This precedence of operators will be well-
founded. Therefore, the lifting of > on operators to a recursive path ordering >~ on the
p r oo f terms will yield a simplification ordering on proof terms with variables, i.e. on
T~(X).-r

We have assumed to be given a reduction ordering > on T~(X). Moreover, let min be
an e lement smaller than any term in T~(X) (including contexts). If C is a set o f
uncondi t ional equations, by ~ (C) we denote the multiset of terms on the left and right
sides of the equations in C. By u we denote the union of multisets.

DEFINITION 3.3. We define

c(applyc~s--t.~) = c(apply R c ~ , , ~) = ({so-}, {s}, ~-(C) u {t}),

c(applyc~,=,.~) = c(apply Rc~=,.~) = (:Y-(Co') u {scr, to'}, ~ (C) ~ {s, t}, ~) ,

c(K[_]) = (~, ~ , {r}),

c (_; . . . ;_) = (~, ~ , ~),

c(i,,,) = ({min}, ~ , ~) .

These triples are compared lexicographically, using the lifting o f >,t to multisets of
Tx(X)- te rms for the first component , the lifting of the subsumption ordering >> on terms
to multisets of terms for the second component and the ordering on multisets of terms
induced by >,, for the third component.

For an equation, the multiset of all substituted terms of the equation is the dominating
componen t of the complexity of any application of the equation in a proof. For a rule,
the substituted left side of the rule is the major complexity measure for its application.
Because o f the reductivity of rules, the left side dominates any other term in the rule
anyway. Hence, the actual substitution plays a major role in the complexity of an
application. In the following, if 7/ is a conditional equation or rule, c('0) will always
denote the complexity c(apply,.a) of an application of ~7 under the identity substitution A.

Note that normalization of proof terms simplifies these wrt. > ~. Any of the normalization
rules L--+ R satisfies L >~ R.

3.3. PROOFS OF CONDITIONAL EQUATIONS

Proofs o f conditional equations can be written as proof terms with variables to represent
the "assumed proofs" for the conditions. We denote by Xc, for any given multiset C o f
uncondi t ional equations, a C-sorted family of sets of proof variables. Proof variables rr
of sort s = t are also written as 7r : s = t. This representation of proofs for conditional

"~ More precisely, we compare equivalence classes of proof terms where two terms are equivalent if correspond-
ing operators have the same complexity. This detail is relevant to show the reductivity o f the proof normalization
rules for the removal o f i~,,-operators and is needed nowhere else,

A Completion Procedure 59

equations is complete as C ~ s = t is valid in all models of E u R iff .~------e~R.o r.
(Remember, g and C denotes the replacement of variables by constants in s and C,
respectively.) For p roof terms P e T~(~,~)({cr~: e ~ , . . . , or, : e,})~ we will also use the
sequent-like notation

~'l : el , �9 . . , 'rn : enF-E, R P : e

to indicate the variables occurring in P, and abbreviate or;: et simply by e;, where the
names of the variables do not matter. As an example,

(0 < s x) = tt f- (pO < x) xr 4 (O '~sX) = tt

represents a proof of (0 < sx) = t t ~ (pO < x) = tt. T h e last step of the proof uses the
hypothesis.

We will later have to transform proofs for conditional equations into proofs for
substituted equations. Let o- be a X-substitution. I f Q is a proof, by g (Q) we denote the
proof obtained f rom P by the following rules:

O-(N[P])

o-(apply[R] D~t,~.~'(P, , . . . , Pk))

o-(is, t (P))

o"(Pl ; . . . ; Pk)

o"(,rr : s = t)

= Ncr[o'(P)]

= a p p l y [R] o ~ t p ~ , , ~ , ~ (o ' (P t) , . . . , g (P k))

= is~,t~,(o'(P))

= o - (P ~) ; . . . ; ~r(Pk)

= ~r : so" = to-, for any proof variable ~r.

Hence, if Q is a p roof of C ~ s = t, o'(Q) represents a p roo f of Co- ~ so" = to'. o ' (Q)
can be viewed as the result of applying an ~g(E, R)-signature morphism induced by o- to
Q. It should not be mixed up with applications of substitutions ~" of proofs for p roof
variables to a proof P. The latter would be written as Pc.

When, during completion, one wants to eliminate a conditional equation, one is obliged
to construct a proof of the equation which has a bounded complexity.

A proof P e T~(n ,n) (Xc) s= t is said to be 3,-bounded, 3' an operator in our algebra of
proofs, if for any operator F in P it is c(3,) > c (F) . P is said to be ~?-bounded, 77 a
conditional equation or rule, i f P is applyn.A-bounded. Hence, a p roof for C ~ s = t
which is bounded by C ~ s = t is in particular simpler than the proof that just applies
C ~ s = t under the identity substitution. The complexities are generally such that
rewriting a term in an equation C ~ s = t is always a proof that is C ~ s = t -bounded.

The order used to compare of the first component of our complexity triples is stable
under substitutions. The two last components do not depend on the substitution with
which an equation or rule is applied. Therefore, if C I--E.R Q : s = t is bounded by ~7 then,
for any o-, o-(Q) is bounded by applyn.~,.

4. Inference Rules for Conditional Equational Completion

Below we list the inference rules for conditional completion c~cs

(0) Orient ing an equat ion

E w { C ~ s = t } , R
if {s} > {t} u i f (C) .

t ? , R ~ { C ~ s ~ t } '

We may orient an equation, if the left side is greater than each term in the condit ion as
well as the term on the right side wrt. the given reduction ordering.

60 H. Ganzinger

(A) Adding a conditional equational consequence

E,R
i f 3 C t - ~ , R P : S = t.

E u { C ~ s = t } , R '

Hence we may add an arbitrary conditional equational consequence to the set of equations.
Concrete complet ion procedures will only make restricted use of this inference rule and
add certain superposit ion instances of rules on rules and of rules on equations, cf. below.

(SE) Simplifying an equation

E w { C ~ s = t } , R
if 3C ~--E.R P : s = u bounded by C ~ s = t, and s > u.

E u { C ~ u = t } , R '

We may simplify the conclusion of a conditional equation, if the complexity of the
equation is thereby decreased and if there is a p roof of C ~ s = u which is less complex
than applications o f the unsimplified equation. Of course it is assumed that the symmetric
case in which t is simplified is also covered by this rule.

(D) Deleting a trivial equation

E w { C ~ s = t } , R
E, R , if 3 C t-E, R P : s = t bounded by C O s = t.

an equat ion may be deleted, if there is a simpler p roof for it than an application of the
equation itself.

(SC) Simplifying a condition

E u { C ^ u = v ~ s = t } , R
i f 3 C t - e . R P : u = w

E w { C ^ w = v ~ s = t } , R '

bounded by C ^ u = v ~ s = t a n d u > w .

E, R u { C ^ u = u~s- - -> t}
i f 3 C ~ - ~ , e P : u = w

E, R w { C ^ w = v ~ s - - ~ t } '

bounded by C ^ u = v ~ t = t a n d u > w .

A condi t ion may be simplified under the assumption that the other condition equations
hold true. The symmetric case, in which v is rewritten, is assumed to be also covered by
these rules. The difference in complexity bounds for equations and rules is due to the
fact that we do not want to recompute superpositions from rules that have been simplified
on their conditions.

(D C) Deleting a trivial condition

E u { C ^ u = v ~ s = t } ,R
E u { C ~ s = t } , R , i f 3 C ~ - ~ . R P : u = v .

E , R u { C ^ u = v ~ s - - > t}
i f 3 C ~ - e , R P : u = v b o u n d e d b y C ^ u = v ~ t = t .

E, R u { C ~ s - - ~ t } '

A condit ion which is subsumed by the other conditions may always be deleted. The proof
for C ~ u = v may be arbitrarily complex in the case of equations. In the case of rules
we require a complexity bound to not have to recompute superpositions with the simplified
rule.

A Completion Procedure 61

(SRL) Simplifying the left side o f a rule

E, R u { C ~ s - - > t}
if 3 C k-~.RP:s = u bounded by C ~ s ~ t, and s > u.

E u { C ~ u = t } , R '

(SRR) Simplifying the right side o f a rule

E, R u { C ~ s - - * t}
if 3 C ~'E.RP:t = U bounded by C ~ t ~ t, and t > u.

E,R u {C ~ s - - , u}'

The bound C ~ t --* t for P will allow to avoid the recomputat ion of superposit ions with
the simplified rules.

It is obvious that any of the above inference rules leaves the congruence ~- ~ R invariant.
We now demonstrate that p roof terms become less complex in proof signatures that are
obtained by inference rule application.

LEMMA 4.1. The ordering > ~ is a proof ordering for conditional completion, Le. for any
inference (E , R) F-ee (E ' , R ') and any proof term P e (T~(~,R)).=. we have P e
(T~(E',R')).=v, i.e. P is also a proof of u = v in the new system, or there exists a proof
P' e (T~(E'.R')).=~ of u = V in the new system which is less complex, i.e. P > ~ P'.

PROOF. We demonstrate, for any of the CC-inference rules, how "o ld" proofs can be
simulated in the new system. The simulations will be represented as sets of rewrite rules
L--* R on proof terms such that L >~ R. Hence, by application of these proof rewrite
rules, proofs become smaller. I f a proof cannot be rewritten, it is already a valid p roo f
in the new system ~(E ' , R'). The rules are, as usually, meant as rule schemes in which
arbitrary proof terms (with or without variables) may be substituted for the variables.
Variables for proofs are denoted by Ir~, The inference rules mostly assume, as a
side condition, the existence of some bounded proof K~: e ~ , . . . , K, : e, I--~,R P of some
equation with condition C = { e ~ , . . . , e,}. In these cases, P ' will denote the p r o o f
o-(P)[cr~/~c;; 1 -< i_< n] and the variables ~rt will be of the required type e~t~.

ad (o).
Suppose (E u {C ~ s = t}, R) ~ e (E, R u {C ~ s ---* t}) and s > t. The rules

~ 1 - . . ~ n ~ 1 ' ' " ~ n)
So- "6~ C_-.-r t to" SO. ~ C = > s ~ t to"

and

r . . . % crl . . . ~n).

to- ~ '~C~s=t So- tO" < - - C ~ s ~ t so-

replace any applicat ion of the equation by an application of the rule. It is
c(applyc~s=,,~) = (J'(Co.) • {so-, to-}, ~ r (C) . {s, t}, 0) . The latter is greater than
({so-},{s}, ~ - (C) u { t }) = c(applyco~t,~.). Hence the proof transformation rules are
reductive.

ad (a).
Nothing needs to be shown, as any old proof term is a valid p roof term in the t ransformed

p r o o f signature.

62 H. Ganzinger

ad (S E) .

In this case, old proofs can be rewritten to new proofs by

q ' / ' l " " "q ' / 'n ' 7 7 " 1 - ' " q'/ 'n > p ' ;
SO" 4r~C=_-~s~tto- 110" ~'->C~u=ttO"

q T 1 �9 " �9 q r n 7 1 " 1 �9 �9 �9 " B ' n
, , i (e ') .

to- ~-'~c~s=t so- to" <-~c~,=t ucr

The reductivi ty o f these rules follows from the boundedness of P by C ~ s = t, and
hence the boundedness of P ' by applyc~,=t,~, . Therefore the applicat ion of the original
equat ion C ~ s = t under substitution o- is more complex than any operator in P ' .
Moreover , c(applyc~,=t .~ ,) > c (a p p l y c ~ , = t . ~) , as s > u. Note also that the operator i(_)
has a complexi ty less than any application of a rule or equation.

ad (D) .

~ l . . . ~ n > p ,

SO" <---> C ~ s = t t o "

err 1 . . , "17 n
> i (P ')

t o " < " - > C ~ s = t S O "

achieve the desired transformations.

ad (S C) .
We first prove the case in which the condition of an equation is simplified. The following

rules can be used to construct new proofs using the simplified equation. 7r is assumed to
be a var iable of sort uo- = vo-.

"rrl . . . r 7r 7rl . . . ~,, i (P ') ; ~ )

so" ~->c^,=u~=t to" so" * - ~ c ^ w = ~ s = t to-

I r l . . . ~r, ~ ~rl . . . ~ , i (P ') ;T r

to- ~-->c^,,=o~,=t so- tcr *">c^w=o~,=t so"

Note that

c(applyc^,=o~,=t. ,~) = (E ' ((C A U = V)O-) W {SO', to-}, ,.q'(C A U = V) U {5, t} , ~)

> (f f ((C ^ w = o)o-) • {so', to'}, ~-(C A W = V) w {s, t}, ~)

= c (a p p l y c ~=,. , ,) .

By construct ion, P ' is less complex than the given application of the original equation.
In the case of simplifying the condition of a rule, the third componen t in our opera tor

complexi t ies comes into play. We have

e(applyc^,,=o~,~,. , ,) = ({scr}, {s} , J - (C ^ u = v) u { t })

> ({so-I, {s}, e r (c A W = V) U {t})

= c (a p p l y c ^ w = ~ , ~ , , , ,) .

Hence, the same kind of p roof t ransformation is reductive also for the case of a simplified
rewrite rule.

A Completion Procedure 63

ad (oc).
We again prove the case in which the condition of an equation is simplified. Here we

have the rule
q T " l �9 �9 �9 " f i n " f i q ' / ' l ~ . * " f i n

so" <-->c^.=u~s=t to- sO" ~ c ~ , = t to-

the reductivity of which is obvious.

ad (SRL).
Old proofs can be rewritten to new proofs by

"/1"1 �9 �9 �9 ' T / ' n "2"/'1 �9 �9 �9 " f i n p';
so, -->c=,~,) to, uo- - * c ~ , = , tcr

"7 / ' 1 �9 " ' " f i n " i l l ' ' ' q T " n
, i (P')

to- <'--c~s~t so" to" <-->c~u~t utr

The reductivity of these rules follows from the fact that both u and t as well as any te rm
in the condition C are simpler than s. Also, the boundedness of P and hence P ' is relevant.

ad (SRR).
Old proofs can be rewritten to new

"/1"1 �9 . . " f i n

So" --> C~s--*t tO"

proofs by

q ' r l �9 �9 - " f i n
....... >

$o" "---> C==>s~u 1.10"
; i (P ')

"17"I �9 �9 �9 "fin qrl �9 �9 , "fin p';
to" ~'-'C=r So" NO" <- -C~s- . .u SOt

As t > u, the reductivity of these rules follows from the third component in the complexi ty
measure for rewrite rule applications.

Note that for this p roof we need the ordering >,~ on proofs to be stable under
substitutions. Some of the above rewrite rules are not right-linear. Therefore it is not
possible to simply take the multiset of the complexities of operators in a proof term as
complexity measure.

A completion procedure, i.e. a mechanism that computes sequences (E0, Ro), (El , R 0 , �9 �9 �9
of derivations using the above inference rules for conditional completion, is complete, if
any proof of an equation can be transformed into a rewrite p roof in some derivate (E;, Ri)
of the initial specification (E0, Ro). To prove this it is sufficient to show that any
(normalized) proof P c (T~czj.sj)),=~ which is not a rewrite p roo f can be t ransformed
into a less complex p roof Q e (T~(~k.Rk)) for some k. As >~ is well-founded and a
proof ordering for conditional completion, after finitely many such transformations a
rewrite proof must be obtained.

I f a normalized p roof term is not a rewrite proof, it must contain an applicat ion of an
equation or a subproof of form s * - u --> w. I f the latter situation cannot be simplified, a
criticalpair must be added to the set of equations. The following is the notion of critical
pairs in the conditional case.

DEFINITION 4.2. Let two conditional rules C ~ M --> N and D ~ G --> H be given and
assume that their variables have been renamed such that they do not have any c o m m o n
variables. Assume moreover that o is a non-variable occurrence in M such that M / o and

64 H. Ganzinger

G can be unified with a mgu o.. Then, (C ^ D) o . ~ M [o ~---H]o- = No- is a (contextual)
critical pair between the two rules.

The following l emma is a slight generalization of the lemma by Jouannaud & Waldmann
(1986) which proves that for reductive rewrite rules local confluence is equivalent to the
convergence of all critical pairs.

LEMMA 4.3. Let R be reductive. I f s ,~-~ w "--~R t, then there is also a simpler proof Q o f
s = t or there exists a contextual critical pair C ~ c = d between two rules in R such that
s = N[co-], t = N[do.] and Co" c ~,R. Moreover, Q does not contain any application o f an
equation. In particular, Q is a rewrite proof in the case o f unconditional rewriting o f w.

PROOF. We will construct a simpler p roof of s = t in those cases in which the two rewritings
of w do not overlap. In the remaining ease the assertion follows immediately from the
definition o f contextual critical pairs.

(a) The rewritings have disjoint redexes
Then the given p r o o f of s = t is of form

P, P~
N [02 ~-- 12o-2][r,~rl] ~-- N [02 +- 12o-2][llo-1] ' N [Ol ~ - 1,o-1][12o'2] ~ N [ol <-" lto-~][r2o-2]

with independent occurrences o-~ and o2 in N. The proof

/'2 P1
N [01 <'-" r, oq][lzo-2] --+ N [01 *-. r,o-1][r2o-2]' N [02 *,'-- r2o-2][rlo-1] +-- N [02 ~'- r2o-2][Ilo-1]

is less complex as the context terms in the p roof algebra which correspond to the reduced
contexts N [o i ~-- rltr~] are less complex than those corresponding to the initial contexts
N [ol ~-- l~ri], i = 1, 2.

(b) The rewritings occur one above the other
Again we assume applications of rules Ci ~ l~ ~ ri, i = 1, 2 with matching substitutions

o-~. Addit ional ly we may assume the following situation.

(i) Rule 1 is appl ied at an occurrence o in context K.
(ii) l~ occurs at occurrence ~ of a variable x in It inside w. (The general case in which

/2 occurs inside a bigger term at x is not really more complex for what we have
to prove here.)

(iii) There are n >-- 1 occurrences ~i of x in 11 and m >-- 0 occurrences ~ of x in rl.
(iv) C~ consists of exactly one equation, say u = v. u and v both have exactly one

occurrence to and ~r, respectively, of x. (The general case does only add notat ional
clutter in the following proof.)

(v) P1 is the rewrite p roof for uo.1 = vo.a used upon application of rule 1. P2 is the
tuple of rewrite proofs for the condition C~o-2.

Then the given p roo f P is of form

P1
K[&o-1] ~ K[t~o-1]'

/'2
K' [I2O-2] .-o K'[r2o-2]'

A Completion Procedure 65

where

K ' = K [o ~ / 1 6 t] [o . s ~-'- 12~r2,. �9 �9 o.~, ~ 12~r21

with ~1 a s o" 1 except that it substitutes the variable x by a hole [].
A proof of s = t in which the reverse application of rule 1 follows m applications of

rule 2 would be the sequence Q1; Q2; Qa of the following proofs:
Q1 represents m applications/2o'2 ~ r2cr 2 of rule 2 at the occurrences ~ of x in rl which

are the occurrences o.Ki in

s --- K [o e - rlffh][o.~i ~ - 12tr2, 1 <-- i <-- m] .

This rewrites the latter term into the term

K [o <-- r l~ l][o .~ i <--- r2cr2, 1 <-- i <- m] .

Q2 represents the reverse application of rule 1 at o under a substitution cr~ which is equal
to 0" 1 and ~1, except that it substitutes x by r~r2. Hereby the proof of the rewritten
condition instance uo-~ = vcr~ is constructed by (reversely) rewriting o-~ into o'1, then
applying the given proof P1 of uo'~ -- oct I and finally rewriting ~1 into cr]. (Note that
u~l[r2~2] = ucr~, udh[12~r2] --- uo" 1 and vc~l[r2o'2] ~ vcr~, vffs[12cr2] ~ wr I .) Formally,

uS-,[r2cr2] .s-- u f ,[12cr2]; P1 ; v~'~[12cr2] ~ vo',[r2cr2]
Q2 =

K[rlff~] ":-- K[tao"l]

Qs, finally, represents the n - 1 reverse applications of rule 2 at the occurrences ~, i > 1
in I1, which are the occurrences o.~, i > 1, in

K[l to ' [] --- K [o <-- 11~9~][0.~i <-- raOr2 ; 1 ~ i --< n].

This takes this term into the term

t =- K [o *-- 1,5"1][o.~1 *'- r2cr2, o.~i ~-- 12cr2; 2 <- i ~ n],
as required. When comparing this second proof with the original one, we can make the
following observations:

Pa
(I) K [r , cr,] <--- K [l , oh] >r O2:

This is because 11 o'~ > l~ cr~ and because ({l~ ~r~}, {ld, {u, v, t~}) is greater than the complexity
of any of the applications of rule 2 in the proofs of ucr~ = uoq and wrl = o~r~. This can
be seen from 11o'1 >,~ 12or2. The reductivity of the rewrite rules is then needed to conclude
that 12~2 is more complex than any of the redexes in the proofs for C2o-2.

(2) P1
K [r l (r l] + - K [l l c q] >~ Qa:

To justify this claim we note that any rewriting in Qa occurs in terms smaller than l~ o-~.
Q3 contains only applications of rules and contexts. For the same reason we obtain

/'1
(3) kErlcrl] <-- K[I1~ >r QI.

Altogether, P >~ Q~; Q2; Q3, which was to be shown.

In the unconditional case Q is a rewrite proof. Hence, Lemma 4.3 is the generalization
to the case of conditional equations of Bachmair's formulation of the critical pairs lemma
(Bachmair, 1987).

66 H. Ganzinger

The following definition defines fairness of a completion procedure in a way such that
its completeness fo r equational logic is induced. By CP~ we denote the set of critical pairs
between any two rules in R~.

DEFINITION 4.4. A CC-derivation (/30, R0), (E~, R~), . . . is called fair, if (1) and (2) are
satisfied. Hereby, R~ -~ L..J~ f"~i~ ~ Rj denotes the set of final rules of the process.

1. I f C ~ c = d ~ ('~j~ Ej for some i, and if for a substitution or there exists a tuple
P of rewrite proofs in R~ for the equations in Co', then there exists an index k and
a p r o o f Q ~ (T~gu~k.Rk))ccr~a~ for co- = do- such that

P

co" ~--~C~r do" > ~ Q"

2. Let C ~ c = d ~ O i~ ,. CPi, for some i, be obtained by superposing rules A ~ l ~ r,
B ~ s ~ t ~ Rt with kr' the superposition term. I f there exists a substitution or,
o" = o"~', tuples P/, and PB of rewrite proofs in R~ for the conditions Ao- and Bcr,
then there exists a k and a proof Q ~ T~(Ek, R~ for c~" = d~ such that

cz ~A~,_~/l~r ~ , - - , d~ > ~ Q"

Note that we do not require that any proof which applies an equation or a peak be
simplified. It is sufficient, as to be seen in the following lemma, that such a simplification
exists in cases where the conditions of the corresponding applications of equations and
rules are proved by rewrite proofs. Note also that we do not require that equations be
either simplified or oriented eventually. As we shall see later there are other ways o f
simplifying applications of equations in proofs.

LEMMA 4.5. Let (Eo, Ro), (Et , R1), �9 �9 �9 be a fa ir CC-derivation a n d P b e a normalized p roo f
in (T~r some equation u = v. I f P is not a rewrite proof, then there is, f o r some
k, a p r o o f P ' ~ (T~Ek.~k)),=~ such that P > ~ P'.

PROOF. Suppose P to be given. If it is not a rewrite proof it contains an application of
an equation, i.e. a subterm /3 of form

Q

SO" < ' - ~ C ~ s = t tO"

or a peak, i.e. a subterm of form
R S

S ,~--- W-----~ t "

We may assume that we have selected these subterms such that they have minimal height,
that is the R, Q, S are (possibly empty) tuples of rewrite proofs. If any of the equations
or rewrite rules in these proofs are eliminated in some later step m of the completion
procedure , f rom Lemma 4.1 follows the existence of a simpler proof/3, for/3 in ~(E, , , R,,).
In ease all used rules and equations persist, the application of C ~ s = t can be simplified
by (1) in the definition of fairness. In the case of a persistent peak we may apply the
critical pairs Lemma 4.3 and either construct a simpler proof or conclude that the branching
is caused by a critical pair between two rules in R~. A simpler proof/3, now exists because
of the second fairness requirement. In any case we have managed to transform the critical
subterm 13 o f P into a simpler proof /3 , in ~(Em, Rm).

A Completion Procedure 67

Replacing/3 in P by/3' yields, because of the fact that >~ is compatible with operators,
a proof P" which is simpler than P. However, it uses rules and equations from both
~(Em, R~) and ~(E~, R~). To construct a proof P' in ~(Ek, Rk) , k = max(i , m) , we can
apply to P' the transformations given in the proof of Lemma 4.1 according to the inference
rules used along the derivation of ~(Ek, Rk) from ~(E~, R~), n = rain(i, m).

Hence, if u ---n v and if the completion procedure does not fa i l for inputs E and > , that
is generates a fair CC-derivation, it will generate a pair (Ek, Rk) such that USRk V. In
particular, the limit RoD = ~_Jj f~j~i Rj is canonical and --=R~ = ------eoURo. In this case, the
equational theory can be decidei:l by rewriting. Note that the final set of equations need
not be empty. The final equations however do not contribute to proofs of equations. They
could in principle be eliminated. However, we rather prefer to keep them, as in the case
of a subsequent enrichment of the specification they have to be reconsidered wrt. to
fairness condition (1). An enrichment may increase the set of solutions of the equation's
condition. This distinguishes the conditional from the uneonditionaI case and this
approach from the ones of Kaplan (1984b), Jouannaud & Waldmann (1986), Ganzinger
(1987) and Kaplan & Remy (1987).

5. Completion Concepts

In this chapter we present the formal justification of some technical details of the
completion procedure in CEC (Gazinger & Schiifers, 1990).

5.1. TECHNIQUES FOR OBTAINING BOUNDED PROOFS

As we have seen in the last section, simplifying conditions and conclusions of conditional
equations and rules decreases the complexity of proofs. It also decreases the chances for
failure of the completion procedure due to non-reductive rewrite rules.

The simplification inference rules and the inference rule (D) for the elimination of
equations are based on bounded proofs of conditional equations. In practice one has to
have appropriate techniques to be able to establish proofs of this kind. In the following
we will present three such proof techniques that have shown to be useful.

5.1.1. REWRITING WITH EQUATIONS OF CONDITIONS

The first of our three techniques can be used if condition equations can themselves be
oriented according to the given reduction ordering. In this case, proofs of conditional
equations can be attempted by rewriting using the current set R of (reductive) rules and
the (skolemized) condition equations as additional rewrite rules.

PROPOSITION 5.1. A s s u m e that any equation in a condition C can be oriented, i.e. it holds,
w.l.o.g., for any equation u = v ~ C, u > v.

1. For any two terms s and t, i f s-'~ R , e ~, then there exists a (C ~ s = m in) . bounded
proof C r-o. R P : s ~ t f o r C ~ s = t. Furthermore, this proof is even bounded by
C ~ s --~ min, / f {s} > W (C) and i f the rule D ~ l --~ r that is applied to rewrite w is
either a member o f C, or the rule is not applied at the top o f ~ or ~ >> I.

2. For any two terms s and t, i f s SRue ~, then there exists a C o s = t-bounded proo f
C ~ - o , R P : S = t f o r C e s = t.

68 H. Ganzinger

PROOF. We prove this lemma by Noetherian induction over the complexity of s
A d 1. Let D ~ l ---> r be the ruie that is applied in g = 1Q[o <-- 1~], with ~ the matching

substitution and o an occurrence of a hole. In case D ~ l --> r is an equation ff = 5 ~ C,
the rewriting corresponds to the proof term N [~ : u = v], with some context N of context
operators and a p roo f variable ~ : u = v. This proof obviously has the required properties.
Otherwise, the rule is a member of R. Because of the reductivity of R, any term in D 5
is smaller than ~. Moreover, D6 c S n ~ , otherwise the rule would not be applicable.
Using the induction hypothesis for (2) we may now assume the existence of C ~ uo- =
vo--bounded proofs C~-~.~ P,=~ : uo- = vo-, for any equation u = v ~ D. The complexity
of any operator in P~=o is hence bounded by (J - (C) w {uo-, vcr}, St(C) u {uo', vo'), ~) ,
the latter being smaller than (~-(C) w {s}, {s}, St(C) w {rain}) and hence in particular
smaller than c(C ~ s = rain). Because of the reductivity of rewrite rules, the application
of D ~ l ~ r is C ~ s = rain-bounded, too. Therefore,

N[to'] ~ ~ ,~ I - ~N[ro']

is C ~ s = rain-bounded. I f additionally s is greater than any term in C, we obtain
(i f (C) w {s}, {s}, i f (C) w {min}) > ({/o-}, {I}, ~-(C) u {rain}), if the application is not
at the top or if s >> Z In this case, the rewriting is C ~ s---> min-bounded.

Ad2 . As we may apply (1) to any rewrite step in ~ SR~e ?, this assertion is an immediate
consequence of the reductivity of the rewrite rules.

For example, ---~nu~-writing is always possible (and then a good choice) in specifications
in which conditions are restricted to Boolean conditions, i.e. equations of form p = tt or
p = if, if we assume tt and ff to be smaller than any other Boolean term. More general
classes of condit ional equations of this kind are the ground-normal systems of Bergstra
& Klop (1982). In general, one may always at least use those equations in C which can
be oriented.

The following example shows some of the power of rewriting with condition equations
as addi t ional rules (list notat ion as in PROLOG):

(1) x ~ y = tt==> detete([y lys] , x)--* [u x)]
(2) has(xs, x) -- ff ==> delete(xs, x)--~xs
(3) x ~ y = t t=> has([y lys] , x) ~ has(ys, x)

Overlapping (1) and (2) yields the critical pair

x # y = t t and has([y lys] , x) = if==> [y ldelete(yx, s)] --* [ylys].

Rule (3) can be applied in has([~l~s], E) as E r ~7 rewrites to tt, this is the first condition
o f the critical pair. This simplifies the second condition to has(ys, x) = ft. Now, in the
next simplification step, [fldelete(~s, :~)] can be rewritten under R u / 3 , where D is the
simplified condit ion D = {x r y = tt, has(ys, x) = it}. Having has(~s, ~) ---> ff available
as auxiliary rule in D allows to apply rule (2). This results in rewriting [~ldelete(~s, Y)]
to DTbTs]. Now, both sides of the conclusion have become identical.

A Completion Procedure 69

5.1.2 CONTEXTUAL REWRITING

A more general reduction relation, called contextual rewriting in Ganzinger (1987) and
Zhang & Kapur (1988) is defined as follows:

DEFINITION 5.2. S "-'~R,C t i f f S =C K[lo'] , s -----,t K[kr] , t = K[rcr] u = v . . . ~ I--> r e
R, and uo- SR, c vtr. In this case, Sn, c stands for ucr---~*c u', VO'-->*R,C V', and u' = v' e ------o
(Again, the least fixpoint of this recursive definition is meant.)

R,c is a restricted form of rewriting modulo C. The restriction is that one may not
produce larger terms by the - c - s t e p s . Note that ----c is decidable if the equations in C
are ground (Ackermann, 1954). This is the case in our application. Rewriting by -->R.C
also yields bounded proofs:

PROPOSITION 5.3. 1. For any two terms s and t, i f s--~R.e [, then there exists a (C O s =
min) -bounded proof C t-~. R P: s = t for C ~ s = t. Furthermore, this proof is eoen (C
s ~ min)-bounded, i f {s} > i f (C) and i f the rule D ~ 1---~ r e R that is used to reduce
into { is not applied at the top o f ~ or ~ >> I.

2. For any two terms s and t, i f s SR,~ 7, then there exists a (C ~ s = t) -bounded p r o o f
C ~ ' ~ , R P : s = t for C O s = t.

Proposition 5.3 is a p roper generalization of 5.2. In practice one should use an efficient
reduction relation between -- ,R~e and ---~R.(, where C is the subset o f (skolemized)
orientable equations in C.

This leads us to the following important technique of eliminating equations by contex-
tual reduction:

PROPOSITION 5.4. An equation C ~ s = t can be eliminated via inference (D) , i f s,~a,c ~.

5.1.3. SUBSUMPTION

PROPOSITION 5.5. An equation C ~ s = t can be eliminated via inference (D) , i f D ~ u ---
v ~ E and (D ~ u = v)cr --- (C ~ s = t), for a substitution cr ~ A.

PROOF. tr can be a bijective renaming of variables. In this case we can consider D ~ u = v
and C ~ s = t to be equal and eliminate one of the copies. (The corresponding p roo f
terms are equivalent modulo complexities.) Otherwise, the second component in our
complexity measure for equations makes D ~ , ~ utr = wr to be a (C ~ s = t) -bounded
p r o o f of C ~ s = t, By inference rule (D) , (D ~ u --- v)tr can be deleted.

Subsumption is a part icular case in which the equations in E are used to construct
s impler proofs in the course of applying inference (D). In particular if E contains
non-reductive equations which will never be oriented into a rewrite rule, the use of
non-reductive equations for the simplification of other equations might be crucial for the
termination of the complet ion procedure. In practice, a combinat ion of the above equat ion
elimination techniques as established by the Propositions 5.4 and 5.5 will be needed.
Theoretically, when trying to eliminate an equation ~0, one can enumerate all proofs for
~7 and check as to whether they are w-bounded. Whereas the complexity test for not too
big proofs can be reasonably efficiently implemented using the termination p roof system
for rewrite rules, the problem is to efficiently enumerate "sufficiently many" proofs. In
section 6 we will give some examples to illustrate these situations.

70 H. Ganzinger

5.2. TREATMENT OF' NON-REDUCTIVE EQUATIONS

Condi t ion (1) in the definition of fairness asks for the simplification of proofs which
apply equations. An obvious possibility is to orient the equation into a rewrite rule.
Howe ve r this might not be possible due to the fact that there is a term in the condition
which violates the reductivity constraint of any possible orientation. This problem is
wel l -known in the li terature (Kaplan, 1984b; Ganzinger, 1987; Kounal is & Rusinowitch,
1987; Orejas, 1987).

The approach to be described below uses conditional narrowing on conditions o f
equations, which, in the case of a confluent R, is a complete procedure for computing
the solut ions of the condit ion equations (Hussmann, 1985; Jouannaud & Waldmann,
1986). In mos t cases, however, this technique by itself will not lead to a terminating
comple t ion process unless it is accompanied by sufficiently strong techniques for eliminat-
ing equat ions by bounded proofs, the prob lem which we have addressed in section 5.1.

DEFINITION 5.6. Let a conditional equat ion C A u = v ~ s = t and a conditional rule
D ~ l --~ r b e given and assume that the variables in the rule and the equat ion have been
renamed such that no com m on variables occur. Let o be a non-variable occurrence in
u = v such that (u = v) / o and l can be unified with a m g u o-. Moreover , if uo- > vo-, then
o is inside u, and if vo- > uo-, then o is inside v. With these assumptions, (D A C ^ (u = v)
[o ~-- r])o- ~ scr = to- is called a superposit ion ins tance from superposing D ~ l ~ r on
u = v i n C A u = v ~ s = t .

Let us provide some intuition behind our following formal t reatment. Remember we
have to provide for the simplification of proofs which apply an equation under a
substitution cr such that the proofs for any of its substituted conditions u = v are rewrite
proofs. A rewrite p r o o f for uo- = vo- is either empty (i.e. ucr ---- vo') or it must contain
some step o f rewriting f rom uo- or vtr.

In the first case, the meta-rule x = x - -~ true can be superposed on u = v. This will
delete the condit ion f rom the equation. I f we add to the set o f equations this superposit ion
instance, using the new equation with one condition less for proving scr = to- is less
complex.

In the second case, the first rewrite step can either be inside or or the redex overlaps
with a non-variable posi t ion in, say, u. In the first o f these remaining cases, rewriting first
cr to o-' and then using the same equation with the reduced substitution o-' to prove
s o - ' = to-', f o l l o w e d by unfolding o-' back into or is less complex. This is mainly because
the appl ica t ion of an equat ion using a smaller substitution becomes less complex. The
last ease, finally, can be simplified if the superposit ion instance that corresponds to the
over lap of the redex of the first rewrite step with u is added to the equations. In this
instance, u has been narrowed to z, and uo- ~- u~'~' ~ z,r'. Applying the given equation
under o- can hence be replaced by applying the superposit ion instance under substitution
~". This is less complex, mainly because utr > zr'.

LEMMA 5.7. A s s u m e E and R to be g iven sets o f equat ions a n d rules, respectively. L e t

C A U = v ~ s = t be an equat ion in E. Moreover a s sume that E conta ins all instances o f

the equa t ion genera ted by superposing each rule in R u {x = x ---> t rue} t on the condit ion

t After superposition with x = x --~ true we delete true from the condition. = is assumed not to be an operator
of the given signature E.

A Completion Procedure 71

u = v in the given equation. I f

p =
Q

so" ~-*c^u=o~s=t to"

is a proof in T~(~.R) with Q a tuple o f rewrite proofs fo r the condition equations in (C ^ u =
v)o', then T~(E,m also contains a proof o f so. = to" which is simpler than P.

PROOF. We assume P to be o f the required form. Without loss o f generali ty we a s s u m e
C = {c = d}. Q~=d and Q are assumed to be the rewrite proofs for co. = do" and
uty = vo", respectively. There are three cases to consider:

(1) utY - - v~r:

Then, o- = r~", with ~" = mgu(u, v). From superposi t ion with x = x---~ true we h a v e c~- ---
d ~ - ~ s~-= t~-e E. The p r o o f

Q ~
SO" ~ ' ~ c r = d r ~ s ' r = t~" t O "

is less complex than P as the used substitution instance o f the new equat ion ha s one
condi t ion less than the cor responding instance of the original one.

(2) The first step o f rewriting in Q . ~ occurs at or below an occurrence p o f a variable x
in u:
Then, Q,=o = Q"; Q', with Q" representing this rewrite step uo' /p--~u' . Let o r ' =
o-[x ~-- u']. A simpler p r o o f takes the form P~ ; ~ ;/)3- P~ reduces sc~ to so' ' by a p p l y i n g
the rewrite step utr/p--~ u' at each occurrence o f x in s. P2 applies the equa t ion w i t h the
reduced substitution, requiring an adaptat ion of the proofs o f the original c o n d i t i o n
co. = do. ^ uo. -- vo- to the reduced condi t ion instance co"' = do-' ^ uo' ' = vo''. M o r e
precisely,

P~ =
co" ~--* co'; Qc=d ; do.-~* do: uty' *-* uo-; Q,=o; vo---~* vo.'

S O "! ~ - - - - ~ c ~ d ^ u = v ~ S = ! t o "t

Pa, finally, is the inverse o f the reduct ion of to" to to-'. The applicat ion o f the e q u a t i o n
under the reduced subst i tut ion tY' in P2 is less complex than the original appl ica t ion u n d e r
o.. (We have uo" > uo.'.) Moreover , any of the rewrite steps in Q~=~, Qe=d and in or t o ty'
have redexes smaller o r equal to a term in ~r(c = d ^ u = v ~ s = t)tY. Hence , Q is
b o u n d e d by the original appl icat ion of the equation in P.

(3) The rewrite proof Qu=o is o f form U1 ; U2; V, where U1 = uo. "~R u[p *-- r]r~", U2 =
u[p ,~-r]~'.r'--~* w and V = w ~--* vty, with uty = u [p *--l]~"r',for p a non-variable occur-
rence in u: Hereby we also assume ~" = m g u (u / p , l) and D ~ I ---> r is the rule for r ewr i t ing
u at p. Let S be the tuple o f rewrite proofs for Do. and let z = u [p *- r]1-. We c a n also
assume that uo. ~ vo-. (Otherwise, we could take as U~ the first step of rewri t ing f r o m v
and develop the same argument for v which we now develop for u. Note tha t at least
one step o f rewriting f rom vtY must exist in any rewrite p roo f of uo. = wr in case utr < vo..)
Then, D r ^ (c = d) z ^ z = vz ~ s~" = t.c ~ E, according to the assumpt ions o f the l e m m a .
The p roo f

S, Qc=a, (U2 ; V)

S t Y < ' ~ D r ^ cT = d~" ̂ z = ur: :~s ' r ~ t~r t o "

72 H, Oanz inger

is less complex than P, as the following inequalities can easily be proven: It is {uo.} >
~-(Dcr) because of the reductivity of D ~ 1 --> r. For the same reason we have uo- > z~".
Hence,

{co-, dcr, uo-, vo-, so', to'} > if(Do-) u {co', do', zr ' , vo', so', to'}.

From this and the fact that S is a tuple o f rewrite proofs in terms all smaller than so- we
conclude that this p roo f is in fact less complex than P.

The l emma proves that superposing rules on a condition of an equation is an alternative
to orienting the equation into a rule. This gives us a particularly interesting refinement
of the general fairness constraint about completion inferences.

Let CP~ denote the set of critical pairs between any two rules in Ri. Let SP~ denote the
set of superposi t ion instances of an equation in E~ by all rules in Rt u { x = x ---> true} on
one selected condit ion of the equation. Moreover, let U~ denote the subset of unconditional
equations of Et.

LEMMA 5.8. A c~C~-derioation (Eo, Ro), (E l , R l) , . . . is fair, i f
1. ("~j~, Uj = O, f o r all i.
2. I f C ~ s = t ~ ("~j>_i C P j f o r s o m e i, then there exis ts an index i' such that C ~ s = t

E F .

3. I f C ~ s = t ~ (-~j~_~ S P j f o r s o m e i, then there exis ts an index i' such that C ~ s = t

E i, .

Hence, a complet ion procedure is fair if it can either eliminate or orient any unconditional
equat ion and if it computes each critical pair between final rules and each superposition
instance of final rules on one selected condition of each final equation. The proof of this
lemma is an immediate consequence of the Lemmas 4.3 and 5.7.

5.3. T HE C O M P L E T I O N P R O C E D U R E

In this section we describe a specific instance of a completion procedure for conditional
equations based on the inference rules and techniques described in the previous sections.
The p rocedure uses Huet 's (1981) labelling scheme to optimize the computation of critical
pairs. In the following, simplification or elimination of an equation or rule means to
apply the techniques outlined in section 5.1.

In our procedure we will label equations as either "possibly reductive" or "non-
reductive". Equat ions which are possibly reductive will be considered as candidates for
orientation. Non-reduct ive equations will be superposed on one of their conditions by
rewrite rules in the way indicated in Lemma 5.7. The procedure, when applied to an
initial set E o f equations, consists of the following steps:

1. Eo = E, all equations labelled "possibly reductive", Ro -- ~ , i = 0, p = 0.
2. I f E~ contains an equation labelled as "possibly reductive" then go to 4.
3. I f all rules are marked, stop with success. Otherwise, select an unmarked rule in Ri,

say with label k. Let C P be the set of all contextual critical pairs C ~ c = d between
rule k and any rule o f R~ of label not greater than k. Let S P be the set of superposition
instances of the rule on a specific condi t iont o f all non-reductive equations in E~.

"t In this step and in step 6 the same condition must be selected!

A Completion Procedure 73

Then, E~+1 = E~ u CP w SP. Any of the new equations is labelled as "poss ib ly
reductive". Let R~+I be the same as Ri, except that rule k is now marked. Set i := i + 1
and go to 2.

4. Select an equation D ~ c = d in E~ labelled as "possibly reductive". Simplify the
equation by E~ and R~. This process yields a simplified equation C ~ c' = d ' .

5. I f E , . u R t has a (D ~ c = d) - b o u n d e d p roof of C ~ c ' = d ' , then E~+I:=
E t - { D ~ c = d}, R~§ := R~,i := i + 1, and go to 2.

6. I f c ' > d ~, then let l := c', r := d' . I f d ' > c', then let l := d ' , r := c'. In both cases
verify that each term in C is smaller than L If this is the case, go to 7.
Otherwise, and if C is empty, stop with failure. In the remaining case, label the
equation C ~ c' = d ' as "non-reductive". Then compute the set SP of all superposi-
tions of any marked rule in R~ on a particular condition in C ~ c' = d ' . The equations
in SP are labelled as "possibly reduetive". Let E~+~ := E~ u SP, R~+~ := Ri, i := i + 1,
and go to 2.

7. Let K be the set of labels k of rules Ck ~ Ik ~ rk ~ R~ such that Ik can be simplified
by { C ~ l - - - ~ r} to, say, l~. Then,

E~+~ := (E, - { D ~ e = d}) u {Ck ~ l ~ = rklk c K} ,

all new equations labelled "possibly reductive". Increment p by 1. Let

R,§ := (j : C lj ---, rj t j : Cj --, rj R, , j K } w {p: I--, r},

where rj and C} are obtained from bounded simplification using Ei and Ri u
{C ~ l---~ r}. The rules coming from Ri are marked or unmarked as they were in
Ri. The new rule C ~ l ~ r is unmarked. Increment i by 1 and go to 2.

Some further remarks about this procedure seem to be in order. In step 3 one might
perhaps want to immediately drop any critical pair C ~ c = d the condition of which
cannot be satisfied. The fairness requirement does not ask for consideration of critical
pairs with unsatisfiable conditions. For the case of a monolithic specification this would
formally mean that C o q: =- R,, for any substitution tr and index i. Jouannaud & Waldmann
have suggested and proved correct a bounded narrowing technique in which equations
are kept separately if the satisfiability of their conditions has not yet been proved or
disproved. The conditions of these equations are further narrowed in each iteration step
o f the completion procedure. For the case of specification modules or paramet r ic
specifications such a "negat ion as failure" technique cannot prove anything about the
yet unknown actual parameter. This technique is therefore not modular as one has to
reconsider any old critical pair upon enrichment of the specification.

In our case, if an equation C ~ c = d gets deleted by a bounded proof, this p r o o f is
independent of any additional signature and axioms. Proof orderings can be extended
to the proofs in an enriched signature, if the underlying reduction ordering on T x (X)
can be extended. The deletion of the equation is therefore also allowed in an enriched
system. Otherwise, and if the equation cannot be oriented into a reductive rule, our
procedure keeps them as "non-reduct ive" equations. They are superposed on one of their
conditions. I f the procedure terminates, the final system still contains all these non-
reductive equations. They are useless for proving equations in the current system, but
they might become relevant when enriching the specification. Then, any new rule must
also be superposed on these equations. However, neither superpositions by old rules nor
critical pairs between old bales must be recomputed. Hence, our completion procedure

74 H. Ganzinger

allows separate complet ion of specification modules. Upon combining two such
specifications only the inferences between axioms of different modules need to be taken
into consideration.

In step 6, an equation is oriented into a rule if it is reductive. In practice it sometimes
turns out to be useful to consider a reductive equation nevertheless as "non-reductive"
and superpose on a condition. This choice may even be crucial to make completion
terminate. Hence if terminat ion of completion is the major goal, it is not always good to
select the maximal literal for "extended superposit ion" as suggested in Rusinowitch
(1987). One o f the advantages of our method is that we may select any literal for
superposi t ion. For example, if the condition contains an equation true = false, it should
be selected for superposition. Either the specification is inconsistent (of course, we intend
true to be different to false), or there is no superposition possible, and the equation does
not generate any further equation. If the selected literal is the consequent, we have called
the superposi t ion "crit ical pair computat ion". The selection of the consequent for superpo-
sition is however restricted to reductive rewrite rules. This causes a failure of our procedure
i f the equat ion has no condition and cannot be oriented.

Apart from this possibility of failure, our procedure is hence more efficient and will
terminate in many more practical examples compared to the procedure in Kounalis &
Rusinowitch (1987). We do not have to superpose on more than one literal of any clause,
we have much more freedom in choosing the literal for superposition, and we do not
have to superpose equations on equations or rules. Moreover, the techniques for eliminat-
ing equations based on p roo f orderings is much more powerful than what Kounalis &
Rusinowitch were able to prove.

Our procedure is correct, as established by the following theorem:

THEOREM 5.9. I f the completion procedure terminates successfully, the final set of rules R
is canonical and me = ~-R.

PROOF. Clearly, the procedure produces a CC-derivation. Hence, the correctness of R
follows from the obvious correctness of any of the inference rules.

It remains to be shown that the CC-derivation is fair. The first fairness requirement is
satisfied as any equation is eventually either deleted, turned into a rule or superposed on
by any final rule. This is exactly what is required to apply Lemma 5.8. (In fact, rules that
are later simplified on their condition or on their right side are not superposed again on
any old non-reduct ive equation. That this is correct is proved in a way similar to what
we are not proving for the case of critical pair computation.)

We now argue that any peak in a E-p roof caused by a critical pair between R-rules
can be simplified. This is true even though critical pairs between two rules p~ and p~ that
have been obtained by simplifying rules 01 and P2 using (DC) , (SC) and (SRR) are not
computed, if the critical pairs between the p~ and P2 have been computed previously. To
indicate the proof o f this fact, let us assume Pl = C~l- - ->r , C = { e l , . . . , e,} and
P2 = D ~ a ~ b and let us take a closer look at the particular case in which the right
side r o f pl has been simplified to r' in step i of the completion procedure. Then there
is a C ~ r ~ r - b o u n d e d proof K ~ : e ~ , . . . , K , : e , F - ~ , , R , P : r = r ' . The critical pair
branching

PC PD

r'o'~" ~-" c ~ t ~ ' ur ""~D=~a~b M[bcr'r]

A Completion Procedure 75

with simplified r', lo" = u = M[ao-] and arbitrary tuples of rewrite p roo f s P C =
(P1, �9 �9 �9 P,) and P D of Co-'r and Do-z, respectively, is more complex than the p r o o f o f fo rm

cm'(i (P))[Pt /K,; 1 <- i <- n];
P C P D

C"1" <">(C^D)o'--'-->c=d d"l"

using the critical pair (C ^ D)~r ~ c = d between the unsimplified rules as c o m p u t e d in
3 of some s t e p j < i. It holds {u} > ~-((C ^ D)o-) w {c, d}, c = roo, d = M[bcr] . Also , the
operators in any of the proofs P, PC and P D have a complexity less than ({u-r}, {l},
gr(C) u {r'}). In the case of P C and P D this property follows from the r educ t iv i ty of
the rules and f rom the fact that these proofs are assumed to be rewrite p roofs , cf. fa i rness
requirement 2.

The proofs of 4.3 and 5.7 exhibit the possibility for further improvements o f the c o m p l e t i o n
procedure. I f the computat ion of a critical pair or of a superposi t ion ins tance o f a
non-reductive equation is immediately followed by its simplification, we m a y re lax the
complexity bounds for these simplification proofs compared to what is in genera l requi red
for the inference rules (SE) , (D) , (S C) or (D C) .

In the case of a critical pair, the proof of 4.3 shows that the superposi t ion t e r m u of
a critical pair is more complex than the complexity of a critical pair app l i ca t i on

C r d

When simplifying the critical pair equation cp = (Co ~ ^ D o o ~ c = d) i m m e d i a t e l y we
may therefore relax the complexity bound for the simplification proof to c(u ~ rain) . In
other words, cp may be simplified by a u ~ min-bounded proof. As this b o u n d exceeds
c(cp), the bound which would have to be used in the general case, the s impl i f ica t ion
process becomes more powerful. The techniques described in Winkler & B u c h b e r g e r
(1983), Kiichlin (1985) and Kiichlin (1986) are based upon related ideas. In B a c h m a i r
(1987), the concept o f critical pair criterion is proposed to serve as a f r a m e w o r k for
describing such techniques.

In the case of condit ional equations, if C ^ u = v ~ s = t gets supe rposed on u = v
yielding Doo ^ Co- A z ----- VO- ~ so- = to-, we may simplify this superposi t ion ins tance with
(St(Co-) u {uo-, vo-, so-, too}, O"(C) w {u, v, s, t}, 0) as upper bound for the o p e r a t o r s in
the simplification proof. Any simplification of Do- ^ Co- A z = vo- ~ So- = too b y s u c h a
proof also allows for a simpler p roof of Co- ^ utr = vo" ~ so- = t~.

At the moment our inference rules and the notion of p roof ordering is no t s t rong
enough to support these techniques directly. In Ganzinger (1988) we have d e s c r i b e d a
completion inference system in which the complexities of equation appl ica t ions in p r o o f s
are not fixed, but rather determined dynamically upon generation of the equat ion . S o m e
of the subsequent examples will require these extended techniques to achieve t e r m i n a t i o n
of the completion process.

6. Examples

The first example is a specification of integers with 0, s, p, < taken f rom K a p l a n (1984a) .

76 H. Ganzinger

Initial equations
1 O < O = f a l s e
2 0 < s(O) = t rue
3 s (x } < y = x < p (y)
4 p(x) < y = x < s{y}
5 {y < x) =true==>y < s(x) = t rue
6 {y < x} =false==>y < p(x)=fa lse
7 s(p(x)) =x
8 p(s(x)) = x

The critical pair
(y < s(xl)) = fa lse ~ y < x l = false (9)

is obtained from superposing rules 4 and 6. It will be recognized as a non-reductive
equation. The same is true for the critical pair

(y < p(x l)) = t r u e ~ y < x l = true (10)

from 3 and 5. For Eq. (9) the superpositions by rules on its condition are as follows:

(y < x) = fa l s e ~ y < p (x) = false (11)

from superposing s (p (x)) ~ x,

(y l < x l) = true and true = f a l s e ~ y l < x l = f a l s e (12)

from superposing (y < x) = true ~ y < s (x) ~ true,

true = fa lse ~ 0 < 0 = false (13)

from superposing 0 < s(0) ~ true,

(x < p (s (x l))) = fa l s e ~ x < p(x l) = f a l s e (14)

from superposing s (x) < y ~ x < p(y), and

(x < s (s (x l))) = f a l s e ~ x < s(xl) = f a l s e (15)

from superposing p (x) < y ~ x < s(y) . Equation (11) is reduced by rule (6). Equation
(12) has an unsatisfiable condition. This will be detected by considering it as a non-
reductive equation and by observing that there are no superpositions on true = false.
Similarly, Eq. (13) is trivial. To delete Eq. (14) one first reduces the condition to
(x < x 1) = false. Now, rewriting x < p (x 1) = false using Eq. (6) and the simplified condi-
tion as auxiliary rewrite rule (the variables considered as constants), reduces the conclusion
to false =fa lse . The Eq. (15) is subsumed by (y < s(xl)) = f a l s e l y < x l =fa lse , the
equation, from which (15) has been obtained. In a similar way one can prove the
convergence of the non-reductive Eq. (10).

In this example, the procedure converges with R consisting of the originally given Eqs.
1-8 oriented from left to right and with E consisting of the two Eqs. (9) and (10). These
have, however, been proven irrelevant for the equational theory.

A Completion Procedure 77

The next example is natural numbers with <-- in which a transitivity and totality axion
have been included as non-reductive equations. The initial specification is then

1 O-- -<x=true
2 s(x) -< 0 = f a l s e
3 s (x) - s (y) = x - < y
4 x - x = t rue
5 x -< s(x) = t r u e
6 (x-< y) = t r u e = > x - s(y) = t r u e
7 (x -< y) = fa lse ==>y--< x = t rue
8 (x-< y) = t r u e and (y ~ z) = t r u e ==>x- z = t rue .

In this example, our procedure terminates producing

Final Rules
1 0 -< x --~ t rue
2 s(x) - 0 -~ fa lse
3 s(x) --- s(y) --* x -< y
4 x -< x - - , t rue
6 (x -< y) --- t rue => x -< s(y) ~ true
Final Equations
7 (x <- y) = fa lse ==> y -< x = t rue
8 (x -< y) = t rue and (y ----- z) = t rue ==> x <-- z = t rue
9 (s(x) ~ y l) = t rue ==> x -< y l = t rue
10 (s(y) ~ z) = t r u e and (x l ----- y) = t rue==>x l _< z = t r u e
11 {s(y)-< z) = t r u e and (x-< y) =true==>s(x) <- z = t r u e

Equations (10) and (11) are added upon superposing Eq. (8) by the rules 6 and 3,
respectively. No further non-trivial equations can be derived from these. Despite the
simplicity of this example, to make the procedure terminate is not trivial and requires
applications ofnon-reductive equations for the simplification of other generated equations.
For example, the equation

(s(xl) ---y) = true ~ x l <- s (y) = t rue (17)

is generated from superposing rule 6 on the condition of Eq. (9). In this case,

s(xl) -< s (y) = true ~ x l <- s (y) = t rue (9')

is the substitution instance of 9 which constitutes the complexity bound for simplification
proofs. Equation (17) may be eliminated as the proof

s(xl) -< y = t rue

x 1 <-- y <'->9 true

s(xl) --< y = t rue ~- x l <-- s (y) ---~6 t rue

is a (17)-bounded proof of (17). Both the application of the Eq. (9) and the rewrite rule
6 are less complex than 17.

78 H. Ganzinger

In our actual implementa t ion we first i terativelyt add to the condition C of any
superpos i t ion instance (and critical pair) C ~ s = t an equation uo- = vtr, if there exists
a non-reduct ive equation D ~ u = v such that there is a bounded p roof of C ~ D~r and
such tha t C ^ uo = vtr ~ s = t is still less complex than the substitution instance of the
equat ion f rom which C ~ s = t has been obtained. In the example, we would t ransform
17 into

(s(xl)---< y) = t rue and (xl -< y) = t r u e ~ x l < - s (y) = t rue (17')

using Eq. (9) with a trivial p roof for the fact that the condition o f 9 is implied by the
condi t ion of 17. The resulting Eq. (17') is less complex than (9'). Now, rewriting the
conclusion using 6 and the second condition as additional rewrite rule (cf. 5.1.1) reduces
the equat ion to the identity.

For ano the r example consider the superposit ion o f Eq. (10) on its first condition by
rule (6). The instance of (10) is

(s (y l) <- s(y2)) = t rue and (x l <- y l) = t rue ~ (x l <- s(y2)) = true. (10')

The complexi ty of (10') is the bound for the simplification proof of the new equation

(s (y l) -- y2) = true and t rue = true and (x l --- y l) = t rue ~ (x l <- s(y2)) = true. (18)

This equat ion may be el iminated as the proof

s (y l) -< y2 = true

x l <- y l ---- true, y l <- y 2 <-~9 true

x l <-- y 2 "~-~8 t rue

x l <-- y l = true, s (y l) --< y2 = t rue ~ x l <-- s(y2) "-*6 t rue

is bounded by (10'). It is however not bounded by (18) as the applications of the Eq. (9)
is not less complex than (18). This demonstrates that the superposit ion instances of rules
or old equat ions from which new equations are constructed must be used as complexity
bounds for alternative proofs to achieve termination in more cases.

Altogether, the rules 1-6 are canonical and the equational theory is the same as the
one genera ted by all rules and Eqs. 1-11.

The last example is total orderings with maximum function, an example which is used
in Orejas (1987) to demonst ra te the failure of the usual complet ion procedures. The
example also appears in Kounalis & Rusinowitch (1987) to demonstrate the power of
their method. The version of the example which we use here is more complex due to the
fact that we have also included the transitivity axion.

Input spec i f ica t ion:
1 (x ~ y) = true and (y ~ z) = true =~ (x -< z) = true.
2 (x ~ x) = t r u e .
3 (x ~ y) = true ==~ max(x , y) = y.
4 {x ~ y) = false ==~ max(x, y) = x.
5 (x ~ max(x ,y)) = t r u e .
6 (y ~ max(x ,y)) = t r u e .

t Note that there is a danger of" non-termination.

A Completion Procedure 79

Sys tem af ter comp le t i on :
Rules
2 x - - x - ~ t r u e
3 (x -< y) = t rue ==~ max(x , y) --~ y
4 (x ~ y) = fa lse ==> max(x, y) ~ x
12 (x2 _.< y) = t rue ==~ x2 -< max(x , y) - * t rue
13 (x ~ y2) = t rue =~ x -< max(y2, y) - * t rue
Equat ions
1 (x ~ y) = t r u e a n d (y - < z) = t r u e = = ~ x - z = t r u e
7 (x l _ < y l) = f a l s e = = ~ y l _<xl = t r u e
10 (max(y2,y) -< z) = t r u e and (x l -< y 2) = t r u e = # x l _< z = t r u e
11 (max(x, y) -< z) = t rue and (x l - y) = t rue ==~ x l --- z = t rue

The totality axiom 7 is obtained as a critical pair. This example is interesting as
completion transforms the original Eqs. (5) and (6) which are too weak for deciding the
equational theory by reductive rewriting (in the presence of transitivity) into the more
general rules 12 and 13. At an intermediate stage, the rules

x l ~< max(x, max(x2, x l)) -~ t rue
x l ~ max(max(x2, x l), y) - , t rue
x l ~ max(x, max(x1, y l)) --~ t rue
x l ~< m a x (m a x (M , y l), y) --~ t rue

are generated. These rules generate the non-operational equations

8 (max(M, y) -- z) ~- t rue ==~ x l --< z = t rue
9 (max(x, x l) -< z) = t rue ==~ x l --< z = t rue

Which are later again eliminated upon elimination of the rules from which they have
been generated. This example also demonstrates that the behaviour of the completion
process depends very much on the choice of the condition on which a non-operational
equation is to be superposed on. If one chooses the second condition of the transitivity
axiom for superposition, the procedure generates the crucial rules 12 and 13 directly
without producing any of the Eqs. (8)-(11).

7. Conclusions

We have shown that the concept of proof orderings by Bachmair, Dershowitz & Hsiang
extends to the conditional equational case. Recursive path orderings on proof terms
provide for the required reduction ordering on proofs. We have argued that in the
conditional case the term structure of proofs must be exploited to obtain sufficiently
strong arguments about the complexity of proofs.

A notion of bounded proof terms for conditional equations was introduced as the basis
to simplify conditional equations and rules during completion.

We have proved the correctness of superposing rules on an arbitrary condition of an
equation as an alternative to orienting that equation into a rule. In particular in the case
of generating a non-reductive critical pair this technique might still allow the completion
procedure to terminate successfully. We have proved the correctness of a specific variant

80 H. Ganzinger

of a c o m p l e t i o n p rocedure in which these techniques have been bui l t - in . We have
d e m o n s t r a t e d the use fu lness of our techniques on some examples. We have argued that
ou r p r o c e d u r e is more efficient and terminates much more often than the one in Kouna l i s
& R u s i n o w i t e h (1987).

We have m e n t i o n e d before tha t m a n y of the results of this pape r c a n be ob ta ined as
specia l cases of the results about comple t ion of first-order clauses by Bachmair &
G a n z i n g e r (1991). The i r proofs, however , are based on very different t echniques and at
p r e sen t no prac t ica l i m p l e m e n t a t i o n exists.

Some of the ideas for the treatment of non-reductive equations as presented in this paper were
stimulated by discussions at the Workshop on Conditional Term Rewriting, Orsay, July 1987. We
are grateful to St. Kaplan and J.-P. Jouannaud for their initiative in planning and organizing this
event. Discussions with A. Boekmayr and St. HSlldobler on the subject of paramodulation and
narrowing helped to find a bug in a previous proof of Lemma 5.7. The author is grateful to H.
Bertling for many discussions on the present concepts, and to R. Sch~ifers, J. Richter, U. Waldrnann
and U. Wertz for finding many bugs in previous versions of this paper.

References

Aekermann, W. (1954). Solvable cases of the decision problem. North-Holland.
Bachmair, L. (1987). Proof methods for equational theories. PhD Thesis, University of Illinois, Urbana

Champaign.
Baehmair, L. (1989). Proof normalization for resolution and paramodulation. In: Proc. 3rd lnt. Conf. Rewriting

Techniques and Applications. Springer LNCS, 355, 15-28.
Bachmair, L., Dershowitz, N., Hsiang, J. (1986). Proof orderings for equational proofs. Proc. LICS 86, 346-357.
Bachmalr, L., Ganzinger, H. (1990). On restrictions of ordered paramodulation with simplification. In: Proc.

lOth Int. Conf. on Automated Deduction. Springer LNCS, 449, 427-441.
Bachmair, L., Ganzinger, H. (1991). Completion of first-order clauses with equality by strict superposition. In:

Proc. Second Int. Workshop on Conditional and Typed Rewriting Systems. Springer LNCS, to appear.
Bergstra, J., Klop, J. W. (1982). Conditional rewrite rules: confluence and termination. Report IW198/82,

Mathematisch Centrum, Amsterdam.
Dershowitz, N. (1987). Termination of rewriting. J. Symbolic Computation 3, 69-116.
Dershowitz, N., Manna, Z. (1979). Proving termination with multiset orderings. CACM 22, 465-476.
Ganzinger, H. (1987). Ground term confluence in parametric conditional equational specifications. In: Proc.

STACS 1987, Springer LNCS 247.
Ganzinger, H. (1988). Completion with history-dependent complexities for generated equations. In: (Sannella,

Tarlecki, eds.) Proc. Workshop on Abstract Data Types, Gullane, 1987, Springer LNCS.
Ganzinger, H., Schfifers, R. (1990). System support for modular order-sorted Horn clause specifications. In:

Proc. IEEE 12th Int. Conf. on Software Engineering, Nice, pp. 150-163.
Huet, G., Oppen, D. C. (1980). Equations and rewrite rules. A survey. In: (Book, R., ed.), Formal Languages:

Perspectioes and Open Problems. New York: Academic Press, 349-405.
Hsiang, J., Rusinowitch, M. (1987). On word problems in equational theories. In: Int. Coll. on Automata

Languages and Programming, Springer LNCS.
Huet, G. (1981). A complete proof of the correctness of the Knuth-Bendix completion algorithm. JCSS 23, 11-21.
Hussmann, H. (1985). Unification in conditional-equational theories. In: Proc. Eurocal 1985, Springer LNCS

204, 543-553.
Jouannaud, J. P., Waldmann, B. (1986). Reductive conditional term rewriting systems. In: Proc. 3rd TC2 Working

Conference on the Formal Description of Prog. Concepts, Ebberup, Denmark, Aug. 1986, North.Holland,
to appear.

Kaplan, St. (1984a). Conditional rewrite rules. TCS 33, 175-193.
Kaplan, St. (1984b). Fair conditional term rewrite systems: unification, termination and confluence. Report

194, University de Paris-Sud, Centre d'Orsay.
Kaplan, St. (1987). A compiler for conditional term rewriting. In: Proe. RTA 1987, Springer LNCS 256, 25-41.
Kaplan, St., Remy, J.-L. (1987). Completion algorithms for conditional rewriting systems. MCC Workshop on

Resolution of Equations in Algebraic Structures, Austin, May 1987.
Kounalis, E,, Rusinowitch, M. (1988). On word problems in Horn logic. In: Proe. First Int. Workshop on

Conditional Term Rewriting, Orsay, June 1987, Springer LNCS, to appear.
Kiiehlin, W. (1985). A confluence criterion based on the generalised Newman lemma. In: Proc. Eurocal 1985,

Springer LNCS 204, 390-399.

A Completion Procedure 81

Kfichlin, W. (1986). Equational completion by proof" transformation. PhD Thesis, Department of Mathematics,
ETH Ziirieh.

Nieuwenhuis, R., Orejas, F. (1991). Clausal Rewriting. In: Proc. Second Int. Workshop on Conditional and Typed
Rewriting Systems. Springer LNC$, to appear,

Rrty, P. (1988). Mrthodes d'unification par surrrduction. Thesis, University de Nancy 1.
Rusinowiteh, M, (1987). Theorem-proving with resolution and superposition: an extension of Knuth and Bendix

procedure as a complete set of inference rules. Report 87-R-128, CRIN, Nancy.
Remy, J. L., Zhang, H. (1984). REVEUR 4: A system for validating conditional algebraic specifications of

abstract data types. In: Proc. 6th ECA1, Pisa 1984, 563-572.
Winkler, F., Buchberger, B. (1983). A criterion for eliminating unnecessary reductions in the Knuth-Bendix

algorithm. Coil on Algebra, Combinatorics and Logic in Comp. Sei., Gyrr.
Zhang, H., Remy, J. L. (1985). Contextual rewriting, Conf. on Rewriting Techniques and Applications, Dijon

1985, LNCS 202.

