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The paper presents a new completion procedure for conditional equations. The work is based 
on the notion of reductive conditional rewriting and the procedure has been designed to handle 
in particular non-reductive equations that are generated during completion. The paper also 
describes techniques for simplification of conditional equations and rules, so that the procedure 
terminates on more specifications. The correctness proofs which form a substantial part of 
this paper employ recursive path orderings on the proof trees of conditional equational logic, 
an extension of the ideas of Bachmair, Dershowitz & Hsiang to the conditional case. 

1. Introduction 

In this paper we present a completion procedure for conditional equations. Emphasis is 
laid upon a rigorous proof  of the correctness of the procedure as well as on developing 
techniques that make the procedure useful in practice. The completion procedure is, 
adopting the ideas of  Bachmair, Dershowitz & Hsiang (1986) and Bachmair (1987) 
presented as a set of inference rules. It is shown that any application of an inference rule 
leads to less complex proofs of equational theorems. If the inference rules are applied 
according to a fair s t ra tegy--which,  however, need not exist in all cases- - the  final system 
of conditional rules will be reductive, canonical, and will generate the same congruence 
as the initially given set of  conditional equations. 

Proofs will be represented as terms in a signature of  proofs. A recursive path ordering 
on proof terms will allow to order proofs according to their complexity. The p roof  of 
correctness of the completion procedure is based on the idea that proofs for equational 
theorems which are not rewrite proofs can be transformed into simpler proofs at some 
stage of the completion process. As the ordering of proofs is well-founded, a rewrite 
proof  must be obtained eventually. Proof terms may contain variables and hence represent 
proofs of equations under hypotheses, i.e. contexts in which other equations can be 
assumed to hold true. 

The concept of conditional rewriting which we use is the one proposed by Kaplan 
(1984a, b), and further developed by Jouannaud & Waldmann (1986). Conditions in rules 
are not restricted to formulas of a lower level in the specification hierarchy as in Remy 
& Zhang (1984) and Zhang & Remy (1985). It is only required that terms in conditions 
be smaller, according to some given reduction ordering, than the left side of  the rule. 
Then, the recursive calls of  the rewrite relation for testing the applicability of a rule 
always terminate and the rewrite relation becomes decidable. 

t A preliminary version of this paper has appeared in the Proceedings of the First International Workshop 
on Conditional Term Rewriting, Orsay, June 1987, Springer Lecture Notes in Computer Science, 1988. 

~t This work was partially supported by the ESPRIT-project PROSPECTRA, ref. no. 390, at the University 
of Dortmund, Germany. 

0747-7171/91/010051 + 31 $03.00/0 �9 1991 Academic Press Limited 



52 H. Ganzinger 

The restriction to reductive rules is sufficiently strong to allow for efficient rewriting 
(Kaplan, 1987). On the other hand it is usually the case that non-reduetive equations are 
generated during completion as critical pairs between reductive rules. This problem has 
been reported by many authors, Kaplan (1984a), Jouannaud & Waldmann (1986), 
Ganzinger (1987), Kaplan & Remy (1987), Kounalis & Rusinowitch (1987) and Orejas 
(1987) among others. For a completion procedure to be useful in practice it is of principal 
importance that it has strong enough techniques to handle these critical pairs. In this 
paper we describe two concepts for such techniques. 

The first concept is devoted to the elimination of equations and rules. The idea is that 
an equation C ~ s = t can be discarded if there is also another proof of  the same 
conditional equation, different from the one which led to the construction of the equation. 
In addition this proof has to be simpler with respect to the complexity measure on proofs. 
To that end, proofs of equations s = t under hypotheses C are represented as terms with 
variables (representing the "unknown" proofs for the equations in C) in our algebra of 
proofs. Particularly useful techniques for obtaining such simpler proofs are certain efficient 
variations of rewriting s = t modulo the (skolemized) conditions in C of an equation, 
and subsumption. It will be demonstrated by means of examples that practical procedures 
must provide adequate combinations of these principal techniques. 

The second concept is that of superposing rules on conditions of non-reductive conditional 
equations. Hereby, the set of solutions of the condition is enumerated. For particular 
classes of solutions specific instances of the equation will be generated. Any of the 
instances can then be treated specifically. Some instance may become a reductive rule, 
for other instances the previously mentioned elimination techniques may be applicable, 
for still other instances one may have to investigate the corresponding class of solutions 
further by again superposing rules on its condition. If this narrowing-like process comes 
to an end, the original equation need not be considered any more when enumerating the 
equational theory of the specification. A main difficulty in practice is, however, to detect 
loops in this process when it does not terminate. It is well-known (R6ty, 1988) that naive 
approaches to (conditional) narrowing almost never terminate. 

With these two concepts, the procedure presented in this paper is a considerable 
improvement over the ones given by Kaplan (1984b), Jouannaud & Waldmann (1986) 
and Kaplan & Remy (1987). Another improvement over previous work is that our 
procedure can be used to process modules of a complex specification separately. Upon 
combination of two preprocessed and hence canonical systems of rewrite rules only the 
inferences between axioms in different modules need tobe  computed. The situation here 
is thus the same as in the unconditional case. Another similarity to the unconditional 
case is a technique in which rules are numbered to achieve fair computation of critical 
pairs and to avoid recomputation of critical pairs for those rules that are simplified on 
their condition and right-hand side at a later stage in the completion process. This 
technique has been proven correct by Huet (1981) for the unconditional case and 
implemented in most existing completion procedures. 

The approach taken in this paper shows, in its treatment of non-reductive equations, 
quite some similarities with recent work by Kounalis & Rusinowitch (1987). In fact, the 
idea of superposing rules on non-reductive conditions of equations has been taken from 
their work. One difference between both approaches is that our procedure will fail when 
it encounters a non-orientable unconditional equation which it cannot eliminate. On the 
other hand, if our procedure terminates it will have constructed a reductive set of 
conditional rewrite rules which is confluent on all terms, and not just ground-confluent 
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as in the case in Kounalis & Rusinowitch (1987). In the latter approach rewriting in the 
completed system is less efficient as it can require reductivity proofs for the substitution 
instances of  an equation during rewriting. An unfailing variant of our procedure (which 
can be designed and proven correct according to the ideas described in Hsiang & 
Rusinowitch (1987) and Bachmair (1987) for the unconditional case) would combine the 
advantages of  both approaches in the Horn clauses case. 

Condit ional equations are a particular case of first-order clauses with equality. In fact, 
the work of  Kounalis & Rusinowitch (1987) is just a restriction to Horn clauses of the 
first-order theorem prover described by Rusinowiteh (1987). More recent work on this 
subject is by Bachmair & Ganzinger (1990, 1991) who further optimize the inference 
system, provide a general concept of redundancy as a basis for simplification and 
elimination of  clauses, and extend the idea of  Knuth-Bendix-completion to full first-order 
clauses. This latter work subsumes most of the results of the present paper. Nevertheless, 
the treatment here is of  interest due to the use of proof transformations and a more 
elaborate ordering on clauses. Proof  transformations for the related case of  refutation 
theorem proving in first-order logic which are based on a different proof algebra are 
studied by Bachmair (1989). Other related relevant work in this area is by Nieuwenhuis 
& Orejas (1991). 

The procedure described in this paper has been implemented in the CEC system 
(Ganzinger & Sch~fers, 1990) and been successfully applied in practice. Some examples 
will be shown in section 6. 

2. Basic Notions and Notations 

We consider terms over many-sorted signatures. A signature 2 = (S, 12) consists of a 
set o f  sorts S and a family fl  of  sets of operator symbols with arity in S*. Tx denotes 
the set of all E-terms, (Tx)~ is the set of  terms of sort s ~ S. By X we denote a fixed set 
of  sorted variables containing denumerably infinitely many variables for each sort. Tr . (X)  
is the set of  all terms that may contain variables from X. Given a term or formula t, 
v a r ( t )  denotes the set of  variables occurring in t. 

Substitutions are denoted by o', o-', etc. and their application to a term t by to-. 
Substitutions o- with domain xt . . . .  , x~ are also written as [x~o-/x~ . . . .  , x, ,o-/xn]. The 
identity substitution (with empty domain) is denoted by A. If  o is an occurrence in t, 
then t / o  denotes the subterm of t at o and t i c  ~ t'] denotes the result of subterm 
replacement at o using t'. t[o~ <--- t l ,  �9 �9 on ~-- t,~], for independent occurrences ol in t, is 
a shorthand for t ic1 ~ h] . . .  [o~ <--- t,,]. 

i f  t s Tx(X),  by ~" we denote the term obtained from t by considering the variables as 
new constants. 

We assume a reduction ordering > on T ~ ( X )  to be given. A reduction ordering is a 
well-founded ordering which is compatible with operators and stable under substitutions. 
I f  > is a reduction ordering and st  is the strict subterm ordering, then the transitive 
closure >~, of  ( > U  s t )  is a Noetherian order on T ~ ( X )  which is stable under substitutions 
and satisfies the subterm property,  i.e. terms are greater than any of their proper subterms. 

We also assume that (for each sort) we have an auxiliary constant [ ] in Z such that 
[ ] is smaller than any other non-variable term in Tx(X) wrt. the given reduction ordering. 
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A contex t  N is a term with exactly one occurrence of [ ], indicating a hole into which 
other  terms can be inserted. N [ s ]  denotes the replacement of  the hole in N by s. The 
distance o f  the hole from the root is called the depth of  a context. Contexts of  depth 0 
simply consist o f  a hole. These are also called empty  contexts. 

A conditional equation over ~. is a formula of  form 

t a = t ~ A ' ' ' ^  t. = t ' ~ t o = t ~ ,  

where n ~ 0 and t~, t~ ~ T~(X)s,. A conditional equation in which the order of  terms in 
the conclusion is relevant is called a conditional rewrite rule. We will use the arrow 
to explicitly distinguish rules from equations. For  conditional rewrite rules, an additional 
requi rement  is var(  t~) c_ var( to) and, for i > 0, var(  tl) ~ var( to) and var( t~) ~ var( to), i.e. 
each variable that occurs in the rule must already occur in the left side of the conclusion. 

In this paper, we assume the reader to be familiar with the basic properties of reduction 
orderings and in particular the recursive path ordering. A recursive path  ordering of terms 
is obta ined by lifting a well-founded ordering > on the (possibly infinite) set of operators 
of  the given signature to paths in terms. The reader may consult Dershowitz & Manna 
(1979), Huet  & Oppen (1986) and Dershowitz (1987) for definitions and basic results. 
We briefly repeat some of the basic properties needed below. 

Recursive path orderings > are simplification orderings. That  is they are compatible 
with operators, stable under substitutions, and satisfy the subterm property. Such orderings 
are in particular well-founded. In this paper we will make use of  the following fact about 
recursive path orderings. Suppose two terms s and t are given such that  there is a subterm 
s' o f  s for  which va t ( t )  c_ var(s ' )  and s ' (e )  > t (o) ,  for  each non-variable occurrence 
o in t. Then, s > t. (s ' (e)  is the root operator in s', t (o)  is the operator at o in t.) 
This property about  operator precedences is not preserved under substitutions. 
Nevertheless, s t r >  to" will follow from the stability of the recursive path ordering under 
substitutions. 

The  operators in proof  terms will be ordered by making use of multiset orderings, cf. 
Dershowitz  & Manna  (1979) for details. For multisets we have M > N, if N can be 
obtained by  replacing one or more elements in M by any finite number of smaller elements. 
The multiset ordering is Noetherian on finite multisets, provided the ordering on elements 
is. 

Kaplan 's  concept of  conditional rewriting introduces the notion of  a simplifying rewrite 
rule. It has been generalized to the notion of reductive rewrite rules by Jouannaud & 
Waldmann (1986). A rule is reductive, if to > t~ and, for i > 0, to > tf and to > t'~, i.e. if 
the term on the right side and each term that occurs in the condition is to be smaller 
than the left  side of  the equation. 

Let  R be a set of  E-rules and t, t' ~ T x ( X ) .  The rewrite relation t---~R t' is given as the 
least fixpoint of the following recursive definition: t--~s t' iff there exists a rule 

t l = t ~ ^ ' ' ' ^  t~= t ~ l - - ~ r  

in R, an occurrence o in t, a substitution or : X --~ T~( X )  suchthat  t /  o = Io., t' = t[ o ,,-- to.], 
and for each i_< n there exists a term s, such that tlo'---~* st and t~o.--~* si. (We will 
subsequently write t,o- Sn tlo. to denote this converging of t~ and tl under R.) 

In Kaplan (1984b) and Jouannaud & Waldmann (1986) it is shown that, in the case 
of finite and  reductive R, "-~n is decidable and  finitely terminating. (This is proved mainly 
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by the observation that N [ l o . ]  > , t  t~tr and N[ lo - ]  > , t  t~cr, for any context N and substitution 
m) For terminating R, local confluence is equivalent to global confluence and then 
--=R = $~. In this paper, conditional rewrite rules are always assumed to be reductive. A 
conditional equation, however, may have conditions of arbitrary complexity. 

3. Proof Terms for Conditional Equational Logic 

3.1. T H E  S I G N A T U R E  O F  P R O O F S  

Proofs are terms in which the operators represent applications of logical inference 
rules. By the "propositions-as-types" paradigm, the sort of  a proof term is the proved 
theorem. Hence, for  equational logic, the sorts of  proof terms are uncondit ional  E- 
equations u = v ,  for u, v ~ T r . ( X ) , ,  s ~ S. 

Given sets E and R of conditional equations and conditional rewrite rules respectively, 
the following set of  operators (inference rules) is complete for ~ :  

( a )  S u b s t i t u t i o n  i n s t a n c e s  o f  rules  a n d  equa t ions :  

applyn.~ : cffr X ' . �9 • ckcr ~ ( s ~  = t~r), 

and 

a p p l y R ~ , ~  : clcr x . .  �9 x cko."> ( t~r = so') ,  

for r / ~  C ~ s ~ t ~ R  or 7/-= C ~ s =  t ~ E ,  where C = - c t ^ . . .  ^ Ck, k>---O. Hence, 
apply , .~  and applyRn.,~ are k-ary operators that map proofs for the condition instances 
cio- to a proof  for so- = to. and tcr = so', respectively. The signature of proof terms has a 
particular operator for each ( h e a d )  app l ica t ion  a n d  reverse app l i ca t ion  of a rule or equation. 
The signature of p roof  terms is therefore infinite, even if the set of rules and equations 
is finite. We will also use the notation 

e l  �9 �9 �9 P k  

so" --~ to" 
for a p p l y c ~ , ~ t , r  P l ,  . . . , Pk ) ,  

P 1 . . . P k  

tcr ~-- scr 
for a p p l y R c ~ s _ , . ~ , ( P ~ , . .  . , Pk ) ,  

P~ . . . e k  

so- ~--> to- 
for a p p l y c ~ s = , , ~ ( P l , . . . ,  Pk) ,  and 

P l . . . P k  

to" ~ so;, 
for a p p l y R c ~ = t , ~ (  P , ,  . . . , Pk) .  

This notation obviously abstracts from the details about the used rule or equat ion and 
substitution, and hence wilt not  always be sufficiently precise. Where needed we wilt 
provide additional information separately, e.g. attach the rules or equations as subscripts. 
In the case of  an empty condition we will simply write s o - p  t~r, for p E (---,, ,---, ~} .  
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( b ) R e f l e x i v i t y  a n d  Trans i t i v i ty :  

_ ;  . . . . .  ; _ : ( s o  = s , )  x ( s ,  = s2)  x . .  �9 x ( s . _ ,  = s , ) ~  (so  = s . ) ,  n -> 2 ,  o r  n = 0. 

This opera tor  allows to form sequences of proofs. We have chosen a variadic operator  
to abstract from the obvious associativity property of the binary " ; " .  The case n = 0 
represents the reflexivity axioms So = so. We will also use the notation 

for  

P I 1  �9 �9 . VlklP21 . . .  P2k2 . . . . . .  P h i * . .  Pnkrl 

S o P o S l P l S 2  �9 . . S n - l P n - l S n  

S 0 P 0 S 1  S l P l S 2  Sn- lPn- lSn  

where pt ~ {~,  ~ ,  *-~}. Another  notation is 

Q 1 . . .  Qk Q I . . .  Qk for 
sop * Sn Sopslp �9 �9 ps ,  ' 

n ~ O, p ~ {--*, (--, '(--)'}. 

(c)  C o mp a t ib i l i t y  with con tex t s :  
Contexts N of depth 1 take proofs for s = t into proofs of N [ s ]  = N[ t ] :  

N [ _ ] : ( s  = t ) ~  (N r s ]  = Ni t ] ) .  

We will write 

P, . . . Pk for N [  P-L": :-P-~k q 
N [ s l ] p l N [ s 2 ] p 2  . . . P , - ,  N [ s , ]  L slpls2p2 . . . Pn-1 s,  J"  

Formally, contexts of  depth > 1 have to be viewed as nested applications of  contexts o f  
depth 1. 

( d )  S y m m e t r y :  

is., : (s  = t) ---* (t = s). 

The subscripts s, t will usually be omitted. 

Given E and R, we will denote by ~(E,  R) this signature of  proof  rules of the equational 
calculus. 

As we have operators for applying rules and equations both ways, the operator for the 
symmetry o f  equality is redundant. It will be used as an auxiliary operator  for defining 
transformations of  p roof  terms. We also could have avoided the introduction of context 
operators i f  we had extended the notion of rule and equation application to applications 
in context. This is done in Bachmair et al. (1986), Bachmair (1987) and KiJchlin (1986). 
In these papers,  moreover,  proofs P and inverse proofs is . ,(P) are identified. Hence, there 
is no need for  the /-operators at all. We have felt that our slightly more complex notion 
of p roo f  orderings to be developed later justifies our  slightly more redundant  signature 
of p roof  terms. The redundancies will be removed by proof normalization rules to be  
given below. 
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For an example, suppose we have the following set E of equations 

1 (O < sO) ----- tt 
2 
3 ( s x < y ) = ( x < p y )  
4 (nx < y) = (x < sv) 
5 ( O < x ) = f f = = > ( O < p x ) = f f  

and the set R of  rules 

6 (0 < x) = tt ~ (0 < sx) ---> tt  
7 spx---> x 
8 psx--* x 

In this case, 

(0 < sO) ~ 1  tt 

(0 < ssO) -->6 tt 

(pO < ssspO) --*7 (pO < ssO) ~ 4  (0 < sssO) ~ t t  

is a proof  for (p0 < ssspO) = tt, in which we have explicitly indicated the used equations 
and rules. The inference notation of  proof  terms also abstracts f rom the precise interleaving 
between the context operators and the other proof  operators. For  normalized p roo f  terms 
there is always one unique way of  inferring this interleaving: 

DEFINITION 2.1. A p roof  term is said to be normal ized if it is in normal form with respect  
to the following proof  transformations (we use the arrow ~ to distinguish the rewriting 
of  proof  terms for the rewriting---> of object terms; 1r and ~r~ are variables for proofs) :  

i (K r ~r])-----> K [ i ( ~ ) ]  

K['qrl, "/r2, . . . ; '/rn ] " K [ I r l ] ; K [ 1 r 2 ] ; . . . ; K [ ~ r , ]  

i(r ; ~-2; . . .  ; 7r,) ~ i ( ~ , ) ; . . .  ; i(~'2); i(qrl) 

i ( a p p l y ( ~ r l , . . . ,  ~r,)) > a p p l y R ( ~ r l , . . . ,  rr,) 

i( app lyR(  ~rl, . . . , ~r,) )-----* apply( ~r~, . . . , ~r,) 

i( i('n') ) ~, "rr 

Normalization removes patterns of  form i(P),  for a non-variable term P, and distributes 
contexts over sequences of  rule and equation applications. The p roof  normalization rules 
are confluent and terminating. 

DEFINITION 3.2. A (normalized) proof  term is called a rewrite p roo f  if it has the form 

P~ . . .  P, 

s--~* u *--* t '  

with rewrite proofs Pi, 1 -< i - n, n ~ 0. 

Hence, rewrite proofs contain no applications of equations and no peaks *-----> in rewrite 
rule applications. I f  s ---~R t, this step of  conditional rewriting is represented by  a p roof  
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Plo~ M t e rm of fo rm over g(E,  R),  with a tuple P~ of rewrite proofs for the appropriately 
S'--> t 

subst i tuted conditions of the used rule. 

3.2. COMPLEXITY OF PROOFS 

In o rde r  to define a well-founded ordering on proof  terms, we will now introduce a 
complexi ty  measure c on the proof  operators. We will then, for  any two proof  operators 
F and G, define F > G i t t  c(F) > c(G). This precedence of  operators will be well- 
founded.  Therefore,  the lifting of > on operators to a recursive path ordering >~ on the 
p r oo f  terms will yield a simplification ordering on proof  terms with variables, i.e. on 
T~(X).-r 

We have assumed to  be given a reduction ordering > on T~(X). Moreover, let min be 
an e lement  smaller than any term in T~(X) (including contexts). If C is a set o f  
uncondi t ional  equations, by ~ ( C )  we denote the multiset of  terms on the left and right 
sides of the equations in C. By u we denote the union of multisets. 

DEFINITION 3.3. We define 

c(applyc~s--t.~) = c( apply R c ~ , , ~ )  = ({so-}, {s}, ~-(C) u {t}), 

c(applyc~,=,.~) = c( apply Rc~=,.~) = (:Y-(Co') u {scr, to'}, ~ ( C )  ~ {s, t}, ~ ) ,  

c(K[_]) = (~, ~ ,  {r}), 

c (_; . . .  ;_) = (~, ~ ,  ~),  

c(i,,,) = ({min}, ~ ,  ~) .  

These triples are compared lexicographically, using the lifting o f  >,t  to multisets of  
Tx(X)- te rms  for the first component ,  the lifting of  the subsumption ordering >> on terms 
to multisets of terms for  the second component and the ordering on  multisets of terms 
induced by  >,, for  the third component. 

For  an equation, the multiset of all substituted terms of  the equation is the dominating 
componen t  of the complexity of any application of  the equation in a proof. For  a rule, 
the substituted left  side of the rule is the major complexity measure for its application. 
Because o f  the reductivity of  rules, the left side dominates any other term in the rule 
anyway. Hence, the actual substitution plays a major role in the complexity of an 
application.  In the following, if 7/ is a conditional equation or rule, c('0) will always 
denote  the complexity c(apply,.a) of  an application of ~7 under the identity substitution A. 

Note  that  normalization of  proof  terms simplifies these wrt. > ~. Any of  the normalization 
rules L--+ R satisfies L >~ R. 

3.3. PROOFS OF CONDITIONAL EQUATIONS 

Proofs o f  conditional equations can be written as proof  terms with variables to represent 
the "assumed proofs"  for the conditions. We denote by Xc, for any given multiset C o f  
uncondi t ional  equations, a C-sorted family of sets of proof variables. Proof variables rr 
of sort s = t are also written as 7r : s = t. This representation of proofs for conditional 

"~ More  precisely, we compare equivalence classes of  proof  terms where two terms are equivalent if correspond- 
ing operators  have the same complexity. This detail is relevant to show the reductivity o f  the proof  normalization 
rules for the removal o f  i~,,-operators and is needed nowhere else, 



A Completion Procedure 59 

equations is complete as C ~ s = t is valid in all models of  E u R iff .~------e~R.o r. 
(Remember,  g and C denotes the replacement of  variables by constants in s and  C, 
respectively.) For p roof  terms P e T~(~,~)({cr~: e ~ , . . . ,  or, : e,})~ we will also use the 
sequent-like notation 

~'l : el , �9 . . ,  'rn : enF-E, R P :  e 

to indicate the variables occurring in P, and abbreviate or;: et simply by e;, where the 
names of the variables do not matter. As an example, 

(0 < s x )  = tt f-  (pO < x )  xr 4 (O '~sX)  = tt 

represents a proof  of  (0 < sx )  = t t ~  (pO < x )  = tt. T h e  last step of the proof  uses the 
hypothesis. 

We will later have to transform proofs for conditional equations into proofs  for 
substituted equations. Let o- be a X-substitution. I f  Q is a proof,  by g ( Q )  we denote  the 
proof  obtained f rom P by the following rules: 

O-(N[P]) 

o-( apply[ R ] D~t,~.~'( P,  , . . . , Pk) ) 

o-(is, t ( P ) )  

o"( Pl  ; . . .  ; Pk) 

o"(,rr : s = t) 

= Ncr[o'(P)] 

= a p p l y [ R ] o ~ t p ~ , , ~ , ~ ( o ' ( P t ) , . . . ,  g ( P k ) )  

= is~,t~,(o'(P)) 

= o - ( P ~ ) ; . . .  ; ~r(Pk) 

= ~r : so" = to-, for any  proof  variable ~r. 

Hence, if Q is a p roof  of  C ~ s = t, o'(Q) represents a p roo f  of  Co- ~ so" = to'. o ' (Q) 
can be viewed as the result of applying an ~g(E, R)-signature morphism induced by  o- to 
Q. It should not be mixed up with applications of  substitutions ~" of  proofs for p roof  
variables to a proof  P. The latter would be written as Pc. 

When, during completion, one wants to eliminate a conditional equation, one is obliged 
to construct a proof  of  the equation which has a bounded  complexity. 

A proof  P e T~(n ,n ) (Xc ) s= t  is said to be 3,-bounded, 3' an operator in our algebra of  
proofs, if for any operator  F in P it is c(3,) > c ( F ) .  P is said to be ~?-bounded, 77 a 
conditional equation or rule, i f  P is applyn.A-bounded.  Hence, a p roof  for C ~ s = t 
which is bounded by C ~ s = t is in particular simpler than the proof  that just  applies 
C ~ s = t under the identity substitution. The complexities are generally such that 
rewriting a term in an equation C ~ s = t is always a proof  that is C ~ s = t -bounded.  

The order used to compare of  the first component  of our complexity triples is stable 
under substitutions. The two last components do not depend on the substitution with 
which an equation or rule is applied. Therefore, if C I--E.R Q : s = t is bounded  by ~7 then, 
for any o-, o-(Q) is bounded  by applyn.~,. 

4. Inference Rules for Conditional Equational Completion 

Below we list the inference rules for conditional completion c~cs 

( 0 )  Orient ing an equat ion  

E w { C ~ s = t } , R  
if {s} > {t} u i f ( C ) .  

t ? , R  ~ { C  ~ s ~  t } '  

We may orient an equation, if the left side is greater than each term in the condit ion as 
well as the term on the right side wrt. the given reduction ordering. 
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( A ) Adding  a conditional equational consequence 

E,R 
i f 3 C t - ~ , R P : S  = t. 

E u { C ~ s = t } , R '  

Hence we may  add an arbitrary conditional equational consequence to the set of equations. 
Concrete  complet ion procedures will only make restricted use of  this inference rule and 
add certain superposit ion instances of  rules on rules and of  rules on equations, cf. below. 

( SE ) Simplifying an equation 

E w { C ~ s =  t } , R  
if  3C  ~--E.R P : s  = u bounded by C ~ s  = t, and s > u. 

E u { C ~ u =  t } , R '  

We may  simplify the conclusion of  a conditional equation, if the complexity of the 
equation is thereby decreased and if there is a p roof  of  C ~ s = u which is less complex 
than applications o f  the unsimplified equation. Of course it is assumed that the symmetric 
case in which t is simplified is also covered by this rule. 

( D) Deleting a trivial equation 

E w { C ~ s = t } , R  
E, R , if 3 C  t-E, R P : s = t bounded by C O s =  t. 

an equat ion may be deleted, if  there is a simpler p roof  for it than an application of the 
equation itself. 

( SC)  Simplifying a condition 

E u { C ^  u = v ~ s =  t } , R  
i f 3 C t - e . R P : u  = w 

E w { C  ^ w = v ~ s = t } , R '  

bounded  by C ^ u = v ~ s =  t a n d  u > w .  

E, R u { C  ^ u = u~s- - -> t} 
i f 3 C ~ - ~ , e P : u  = w 

E, R w { C  ^ w = v ~ s - - ~ t } '  

bounded  by  C ^  u = v ~ t = t a n d  u > w .  

A condi t ion may be simplified under the assumption that the other condition equations 
hold true. The symmetric case, in which v is rewritten, is assumed to be also covered by 
these rules. The difference in complexity bounds for equations and rules is due to the 
fact that  we do not want to recompute superpositions from rules that have been simplified 
on their  conditions. 

( D C )  Deleting a trivial condition 

E u { C  ^ u = v ~ s =  t } ,R 
E u { C ~ s = t } , R  , i f 3 C ~ - ~ . R P : u = v .  

E , R  u { C  ^ u = v ~ s - - >  t} 
i f 3 C ~ - e ,  R P : u = v b o u n d e d b y  C ^  u = v ~ t = t .  

E, R u { C ~ s - - ~ t }  ' 

A condit ion which is subsumed by the other conditions may always be deleted. The proof  
for C ~ u = v may be arbitrarily complex in the case of equations. In the case of  rules 
we require a complexity bound  to not have to recompute superpositions with the simplified 
rule. 
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(SRL)  Simplifying the left side o f  a rule 

E, R u { C ~ s - - >  t} 
if  3 C  k-~.RP:s = u bounded by C ~ s ~  t, and s > u. 

E u { C ~ u = t } , R '  

(SRR)  Simplifying the right side o f  a rule 

E, R u { C ~ s - - *  t} 
if  3 C  ~'E.RP:t  = U bounded by C ~  t ~  t, and t > u. 

E,R u {C  ~ s - - ,  u}' 

The bound C ~ t --* t for P will allow to avoid the recomputat ion of  superposit ions with 
the simplified rules. 

It  is obvious that any of the above inference rules leaves the congruence ~- ~ R  invariant.  
We now demonstrate that p roof  terms become less complex in proof  signatures that are 
obtained by inference rule application. 

LEMMA 4.1. The ordering > ~ is a proof  ordering for conditional completion, Le. for  any 
inference ( E , R )  F-ee ( E ' , R ' )  and any proof term P e (T~(~,R)).=. we have P e 
(T~(E',R')).=v, i.e. P is also a proof of u = v in the new system, or there exists a proof 
P' e ( T~(E'.R')).=~ of  u = V in the new system which is less complex, i.e. P > ~ P'. 

PROOF. We demonstrate,  for any of the CC-inference rules, how "o ld"  proofs can be 
simulated in the new system. The simulations will be represented as sets of rewrite rules 
L--* R on proof  terms such that L >~ R. Hence, by application of these proof  rewrite 
rules, proofs become smaller. I f  a proof  cannot be rewritten, it is already a valid p roo f  
in the new system ~(E ' ,  R'). The rules are, as usually, meant as rule schemes in which 
arbitrary proof  terms (with or without variables) may be substituted for the variables.  
Variables for proofs are denoted by Ir~, The inference rules mostly assume, as a 
side condition, the existence of some bounded proof  K~: e ~ , . . . ,  K, : e, I--~,R P of some 
equation with condition C = { e ~ , . . . ,  e,}. In these cases, P '  will denote the p r o o f  
o-(P)[cr~/~c;; 1 -< i_< n] and the variables ~rt will be of  the required type e~t~. 

ad (o). 
Suppose (E u {C ~ s = t}, R)  ~ e  (E, R u {C ~ s ---* t}) and s > t. The rules 

~ 1 - . .  ~ n  ~ 1 ' ' "  ~ n  ) 
So- "6~ C_-.-r t to"  SO. ~ C = > s ~ t  to" 

and 

r . . .  % crl . . .  ~n ). 

to- ~ '~C~s=t  So- tO" < - - C ~ s ~ t  so- 

replace any applicat ion of  the equation by an application of the rule. It  is 
c(applyc~s=,,~) = (J'(Co.) • {so-, to-}, ~ r ( C ) .  {s, t}, 0 ) .  The latter is greater than 
({so-},{s}, ~ - ( C ) u  { t } ) =  c(applyco~t,~.). Hence the proof  transformation rules are 
reductive. 

ad (a). 
Nothing needs to be  shown, as any old proof  term is a valid p roof  term in the t ransformed 

p r o o f  signature. 
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ad  ( S E ) .  

In this case, old proofs  can be rewritten to new proofs by  

q ' / ' l  " "  "q ' / 'n  ' 7 7 " 1 - ' "  q'/ 'n . . . . . . . . .  > p ' ;  
SO" 4r~C=_-~s~tto- 110" ~'->C~u=ttO" 

q T 1  �9 " �9 q r n  7 1 " 1  �9 �9 �9 " B ' n  
, , i ( e ' ) .  

to- ~-'~c~s=t so- to" <-~c~,=t ucr 

The reductivi ty o f  these rules follows from the boundedness  of  P by C ~ s = t, and  
hence the boundedness  of  P '  by applyc~,=t,~, .  Therefore the applicat ion of  the original 
equat ion C ~ s = t under  substitution o- is more complex than any operator  in P ' .  
Moreover ,  c(applyc~,=t .~ , )  > c ( a p p l y c ~ , = t . ~ ) ,  as s > u. Note also that  the operator  i(_) 
has a complexi ty  less than any application of  a rule or equation. 

ad ( D ) .  

~ l  . . .  ~ n  > p ,  

SO"  <---> C ~ s  = t t o "  

err 1 . . , "17 n 
> i ( P ' )  

t o "  < " - > C ~ s = t  S O "  

achieve the desired transformations.  

ad ( S C ) .  
We first prove the case in which the condition of an equation is simplified. The following 

rules can be used to construct new proofs using the simplified equation. 7r is assumed to 
be a var iable  of sort  uo- = vo-. 

"rrl . . .  r 7r 7rl . . .  ~,, i ( P ' ) ; ~  .... ) 

so" ~->c^,=u~=t  to" so" * - ~ c ^ w = ~ s = t  to- 

I r l  . . .  ~r, ~ ~rl . . .  ~ ,  i (P ' ) ;T r  

to- ~-->c^,,=o~,=t so- tcr *">c^w=o~,=t so" 

Note  that  

c(applyc^,=o~,=t. ,~) = ( E ' ( ( C  A U = V)O-) W {SO', to-}, ,.q'(C A U = V) U {5,  t} ,  ~ )  

> ( f f ( ( C  ^ w = o)o-) • {so', to'}, ~-(C A W = V) w {s, t}, ~ )  

= c ( a p p l y c  . . . .  ~=,. , , ) .  

By construct ion,  P '  is less complex than  the given application of  the original equation. 
In the case of simplifying the condition of a rule, the third componen t  in our opera tor  

complexi t ies  comes into play. We have 

e(applyc^,,=o~,~,. , ,)  = ({scr}, {s} ,  J - ( C  ^ u = v)  u { t } )  

> ({so-I, {s}, e r ( c  A W = V) U {t}) 

= c ( a p p l y c ^ w = ~ , ~ , , , , ) .  

Hence,  the same kind of  p roof  t ransformation is reductive also for  the case of  a simplified 
rewrite rule. 
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ad (oc). 
We again prove the case in which the condition of  an equation is simplified. Here  we 

have the rule 
q T " l  �9 �9 �9 " f i n  " f i  q ' / ' l  ~ . * " f i n  

so" <-->c^.=u~s=t to- sO" ~ c ~ , = t  to- 

the reductivity of  which is obvious. 

ad (SRL).  
Old proofs can be rewritten to new proofs by 

"/1"1 �9 �9 �9 ' T / ' n  "2"/'1 �9 �9 �9 " f i n  p'; 
so, -->c=,~,)  to, uo- - * c ~ , = ,  tcr 

"7 / ' 1  �9 " '  " f i n  " i l l  ' ' '  q T " n  
, i (P')  

to- <'--c~s~t so" to" <-->c~u~t utr 

The reductivity of  these rules follows from the fact that both u and t as well as any te rm 
in the condition C are simpler than s. Also, the boundedness of  P and hence P '  is relevant.  

ad (SRR).  
Old proofs can be rewritten to new 

"/1"1 �9 . . " f i n  

So" --> C~s--*t  tO" 

proofs by 

q ' r l  �9 �9 - " f i n  
....... > 

$o" "---> C==>s~u 1.10" 
; i (P ' )  

"17"I �9 �9 �9 "fin qrl �9 �9 , "fin p'; 
to" ~'-'C=r So" NO" <- -C~s- . .u  SOt 

As t > u, the reductivity of  these rules follows from the third component  in the complexi ty 
measure for rewrite rule applications. 

Note  that for this p roof  we need the ordering >,~ on proofs to be stable under  
substitutions. Some of the above rewrite rules are not right-linear. Therefore it is not  
possible to simply take the multiset of the complexities of operators  in a proof  term as 
complexity measure. 

A completion procedure, i.e. a mechanism that computes sequences (E0, Ro), (El ,  R 0 ,  �9 �9 �9 
of derivations using the above inference rules for conditional completion, is complete, if  
any proof  of  an equation can be transformed into a rewrite p roof  in some derivate (E;, Ri) 
of the initial specification (E0, Ro). To prove this it is sufficient to show that  any 
(normalized) proof  P c (T~czj.sj)),=~ which is not a rewrite p roo f  can be t ransformed 
into a less complex p roof  Q e (T~(~k.Rk)) . . . .  for some k. As >~ is well-founded and  a 
proof  ordering for conditional completion, after finitely many  such transformations a 
rewrite proof  must be obtained. 

I f  a normalized p roof  term is not a rewrite proof, it must contain an applicat ion of  an 
equation or a subproof  of form s * -  u --> w. I f  the latter situation cannot be  simplified, a 
criticalpair must be added to the set of equations. The following is the notion of  critical 
pairs in the conditional case. 

DEFINITION 4.2. Let two conditional rules C ~ M --> N and D ~ G --> H be given and  
assume that their variables have been renamed such that  they do not have any c o m m o n  
variables. Assume moreover  that o is a non-variable occurrence in M such that M / o  and 
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G can  be  unified with a mgu o.. Then, (C  ^ D ) o . ~  M [ o  ~---H]o- = No- is a (contextual)  
critical pair  between the two rules. 

The following l emma  is a slight generalization of  the lemma by Jouannaud  & Waldmann  
(1986) which  proves that for reductive rewrite rules local confluence is equivalent to the 
convergence  of all critical pairs. 

LEMMA 4.3. Let R be reductive. I f  s ,~-~ w "--~R t, then there is also a simpler proof  Q o f  
s = t or there exists a contextual critical pair C ~ c = d between two rules in R such that 
s = N[co-],  t = N[do.]  and Co" c ~,R. Moreover, Q does not contain any application o f  an 
equation. In  particular, Q is a rewrite proof  in the case o f  unconditional rewriting o f  w. 

PROOF. We will construct  a simpler p roof  of  s = t in those cases in which the two rewritings 
of w do not  overlap. In  the remaining ease the assertion follows immediately from the 
definition o f  contextual critical pairs. 

(a) The rewritings have disjoint redexes 
Then the given p r o o f  of  s = t is of  form 

P, P~ 
N [  02 ~-- 12o-2][r,~rl] ~-- N [  02 +- 12o-2][llo-1] ' N [  Ol ~ -  1,o-1][12o'2] ~ N [  ol <-" lto-~][r2o-2] 

with independent  occurrences o-~ and o2 in N. The proof  

/'2 P1 
N [  01 <'-" r, oq][lzo-2] --+ N [  01 *-. r,o-1][r2o-2]' N [  02 *,'-- r2o-2][rlo-1] +-- N [  02 ~'- r2o-2][Ilo-1] 

is less complex as the context terms in the p roof  algebra which correspond to the reduced 
contexts N [ o i  ~-- rltr~] are less complex than those corresponding to the initial contexts 
N [  ol ~-- l~ri], i = 1, 2. 

(b) The rewritings occur one above the other 
Again we assume applications of  rules Ci ~ l~ ~ ri, i = 1, 2 with matching substitutions 

o-~. Addit ional ly we may  assume the following situation. 

(i) Rule  1 is appl ied  at an occurrence o in context K. 
(ii) l~ occurs at  occurrence ~ of a variable x in It inside w. (The general case in which 

/2 occurs inside a bigger term at x is not really more complex for what we have 
to prove  here.) 

(iii) There  are n >-- 1 occurrences ~i of  x in 11 and  m >-- 0 occurrences ~ of  x in rl. 
(iv) C~ consists of  exactly one equation, say u = v. u and v both have exactly one 

occurrence to and ~r, respectively, of  x. (The general case does only add notat ional  
clutter in the following proof.) 

(v) P1 is the rewrite p roof  for uo.1 = vo.a used upon application of  rule 1. P2 is the 
tuple  of rewrite proofs for the condition C~o-2. 

Then the given p roo f  P is of  form 

P1 
K[&o-1] ~ K[t~o-1]' 

/'2 
K' [  I2O-2] .-o K'[r2o-2]' 
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where 

K '  = K [ o  ~ / 1 6 t ] [ o . s  ~-'- 12~r2,. �9 �9 o.~, ~ 12~r21 

with ~1 a s  o" 1 except that it substitutes the variable x by a hole [ ]. 
A proof of s = t in which the reverse application of rule 1 follows m applications of 

rule 2 would be the sequence Q1; Q2; Qa of the following proofs: 
Q1 represents m applications/2o'2 ~ r2cr 2 of rule 2 at the occurrences ~ of  x in rl which 

are the occurrences o.Ki in 

s --- K [ o  e -  rlffh][o.~i ~ -  12tr2, 1 <-- i <-- m ] .  

This rewrites the latter term into the term 

K [ o  <-- r l~ l][o .~ i  <--- r2cr2, 1 <-- i <- m] .  

Q2 represents the reverse application of rule 1 at o under a substitution cr~ which is equal 
to 0" 1 and ~1, except that it substitutes x by r~r2. Hereby the proof  of  the rewritten 
condition instance uo-~ = vcr~ is constructed by (reversely) rewriting o-~ into o'1, then 
applying the given proof  P1 of uo'~ -- oct I and finally rewriting ~1 into cr]. (Note  that 
u~l[r2~2] = ucr~, udh[12~r2] --- uo" 1 and vc~l[r2o'2] ~ vcr~, vffs[12cr2] ~ wr  I .) Formally, 

uS-,[ r2cr2] .s-- u f  ,[12cr2]; P1 ; v~'~[12cr2] ~ vo',[ r2cr2] 
Q2 = 

K[rlff~] ":-- K[tao"l]  

Qs, finally, represents the n - 1 reverse applications of rule 2 at the occurrences ~, i > 1 
in I1, which are the occurrences o.~, i > 1, in 

K[l to ' []  --- K [ o  <-- 11~9~][0.~i <-- raOr2 ; 1 ~ i --< n]. 

This takes this term into the term 

t =- K [ o  *-- 1,5"1][o.~1 *'- r2cr2, o.~i ~-- 12cr2; 2 <- i ~ n], 
as required. When comparing this second proof with the original one, we can make the 
following observations: 

Pa 
(I) K [ r ,  cr,] <--- K [ l ,  oh] >r O2: 

This is because 11 o'~ > l~ cr~ and because ({l~ ~r~}, {ld, {u, v, t~}) is greater than the complexity 
of any of the applications of  rule 2 in the proofs of ucr~ = uoq and wrl = o~r~. This can 
be seen from 11o'1 >,~ 12or2. The reductivity of the rewrite rules is then needed to conclude 
that 12~2 is more complex than any of the redexes in the proofs for C2o-2. 

(2) P1 
K [ r l ( r l ]  + - K [ l l c q ]  >~ Qa: 

To justify this claim we note that any rewriting in Qa occurs in terms smaller than l~ o-~. 
Q3 contains only applications of rules and contexts. For the same reason we obtain 

/'1 
(3) kErlcrl] <-- K[I1~ >r QI. 

Altogether, P >~ Q~; Q2; Q3, which was to be shown. 

In the unconditional case Q is a rewrite proof. Hence, Lemma 4.3 is the generalization 
to the case of conditional equations of Bachmair's formulation of  the critical pairs lemma 
(Bachmair, 1987). 
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The following definition defines fairness of a completion procedure in a way such that 
its completeness fo r  equational logic is induced. By CP~ we denote the set of  critical pairs 
between any two rules in R~. 

DEFINITION 4.4. A CC-derivation (/30, R0), (E~, R~), . . .  is called fair, if (1) and (2) are 
satisfied. Hereby,  R~ -~ L..J~ f"~i~ ~ Rj denotes the set of final rules of the process. 

1. I f  C ~ c = d ~ ( '~j~ Ej for some i, and if for  a substitution or there exists a tuple 
P of  rewrite proofs in R~ for the equations in Co', then there exists an index k and 
a p r o o f  Q ~ (T~gu~k.Rk))ccr~a~ for co- = do- such that 

P 

co" ~--~C~r do" > ~ Q" 

2. Let C ~ c = d ~ O i~  ,. CPi, for some i, be obtained by superposing rules A ~ l ~ r, 
B ~ s ~ t ~ Rt with kr' the superposition term. I f  there exists a substitution or, 
o" = o"~', tuples P/, and PB of rewrite proofs in R~ for the conditions Ao- and Bcr, 
then there exists a k and a proof  Q ~ T~(Ek, R~ for c~" = d~ such that 

cz ~A~,_~/l~r ~ , - - ,  d~ > ~ Q" 

Note that we do not require that any proof  which applies an equation or a peak be 
simplified. It is sufficient, as to be seen in the following lemma, that such a simplification 
exists in cases where the conditions of  the corresponding applications of equations and 
rules are proved by rewrite proofs. Note also that we do not require that equations be 
either simplified or oriented eventually. As we shall see later there are other ways o f  
simplifying applications of equations in proofs. 

LEMMA 4.5. Let  (Eo, Ro), (Et ,  R1), �9 �9 �9 be a fa ir  CC-derivation a n d P b e  a normalized p roo f  
in ( T~r some  equation u = v. I f  P is not a rewrite proof, then there is, f o r  some  
k, a p r o o f  P '  ~ (T~Ek.~k)),=~ such that P > ~ P'.  

PROOF. Suppose P to be given. If it is not a rewrite proof  it contains an application of  
an equation,  i.e. a subterm /3 of form 

Q 

SO" < ' - ~ C ~ s = t  tO" 

or a peak,  i.e. a subterm of  form 
R S  

S ,~--- W-----~ t " 

We may assume that  we have selected these subterms such that they have minimal height, 
that is the R, Q, S are (possibly empty) tuples of rewrite proofs. If any of  the equations 
or rewrite rules in these proofs are eliminated in some later step m of  the completion 
procedure ,  f rom Lemma 4.1 follows the existence of  a simpler proof/3,  for/3 in ~(E, , ,  R,,). 
In ease all used rules and equations persist, the application of C ~ s = t can be simplified 
by (1) in the definition of fairness. In the case of  a persistent peak we may apply the 
critical pairs Lemma 4.3 and either construct a simpler proof  or conclude that the branching 
is caused by  a critical pair between two rules in R~. A simpler proof/3,  now exists because 
of  the second fairness requirement. In any case we have managed to transform the critical 
subterm 13 o f  P into a simpler proof /3 ,  in ~(Em, Rm). 
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Replacing/3 in P by/3'  yields, because of the fact that >~ is compatible with operators, 
a proof P" which is simpler than P. However, it uses rules and equations from both 
~(Em, R~) and ~(E~, R~). To construct a proof P'  in ~(Ek,  Rk) ,  k = max(i ,  m ) ,  we can 
apply to P'  the transformations given in the proof of Lemma 4.1 according to the inference 
rules used along the derivation of  ~(Ek,  Rk) from ~(E~, R~), n = rain(i, m). 

Hence, if u ---n v and if the completion procedure does not fa i l  for inputs E and > ,  that 
is generates a fair CC-derivation, it will generate a pair (Ek, Rk) such that USRk V. In 
particular, the limit RoD = ~_Jj f~j~i Rj is canonical and --=R~ = ------eoURo. In this case, the 
equational theory can be decidei:l by rewriting. Note that the final set of  equations need 
not be empty. The final equations however do not contribute to proofs of  equations. They 
could in principle be eliminated. However, we rather prefer to keep them, as in the case 
of a subsequent enrichment of the specification they have to be reconsidered wrt. to 
fairness condition (1). An enrichment may increase the set of solutions of  the equation's 
condition. This distinguishes the conditional from the uneonditionaI case and this 
approach from the ones of Kaplan (1984b), Jouannaud & Waldmann (1986), Ganzinger 
(1987) and Kaplan & Remy (1987). 

5. Completion Concepts 

In this chapter we present the formal justification of some technical details of the 
completion procedure in CEC (Gazinger & Schiifers, 1990). 

5.1. TECHNIQUES FOR OBTAINING BOUNDED PROOFS 

As we have seen in the last section, simplifying conditions and conclusions of conditional 
equations and rules decreases the complexity of  proofs. It also decreases the chances for 
failure of the completion procedure due to non-reductive rewrite rules. 

The simplification inference rules and the inference rule (D) for the elimination of 
equations are based on bounded proofs of conditional equations. In practice one has to 
have appropriate techniques to be able to establish proofs of this kind. In the following 
we will present three such proof techniques that have shown to be useful. 

5.1.1. REWRITING WITH EQUATIONS OF CONDITIONS 

The first of our three techniques can be used if condition equations can themselves be 
oriented according to the given reduction ordering. In this case, proofs of conditional 
equations can be attempted by rewriting using the current set R of (reductive) rules and 
the (skolemized) condition equations as additional rewrite rules. 

PROPOSITION 5.1. A s s u m e  that any equation in a condition C can be oriented, i.e. it holds, 
w.l.o.g., for  any equation u = v ~ C, u > v. 

1. For any two terms s and t, i f  s-'~ R , e  ~, then there exists a ( C ~ s = m in ) . bounded  
proof  C r-o. R P : s ~ t f o r  C ~ s = t. Furthermore, this proof  is even bounded  by 
C ~ s --~ min, / f  {s} > W ( C )  and i f  the rule D ~ l --~ r that is applied to rewrite w is 
either a member  o f  C, or the rule is not applied at the top o f  ~ or ~ >> I. 

2. For any two terms s and t, i f  s SRue  ~, then there exists a C o s  = t-bounded proo f  
C ~ - o , R P : S =  t f o r C e s =  t. 
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PROOF. We prove this lemma by Noetherian induction over the complexity of  s 
A d  1. Let D ~ l ---> r be the ruie that is applied in g = 1Q[o <-- 1~], with ~ the matching 

substitution and o an occurrence of a hole. In case D ~ l --> r is an equation ff = 5 ~ C, 
the rewriting corresponds to the proof  term N [ ~  : u = v], with some context N of  context 
operators and  a p roo f  variable ~ : u = v. This proof  obviously has the required properties. 
Otherwise, the rule is a member of R. Because of  the reductivity of R, any term in D 5  
is smaller than  ~. Moreover,  D6  c S n ~ ,  otherwise the rule would not  be applicable. 
Using the induction hypothesis for (2) we may now assume the existence of C ~ uo- = 
vo--bounded proofs C~-~.~ P,=~ : uo- = vo-, for any equation u = v ~ D. The complexity 
of  any operator  in P~=o is hence bounded by ( J - (C)  w {uo-, vcr}, St(C) u {uo', vo'), ~ ) ,  
the latter being smaller than (~-(C) w {s}, {s}, St(C) w {rain}) and hence in particular 
smaller than c(C ~ s = rain). Because of the reductivity of  rewrite rules, the application 
of D ~ l ~ r is C ~ s = rain-bounded, too. Therefore, 

N[ to'] ~ ~ ,~ I -  ~N[ ro'] 

is C ~ s = rain-bounded. I f  additionally s is greater than any term in C, we obtain 
( i f ( C )  w {s}, {s}, i f ( C )  w {min}) > ({/o-}, {I}, ~-(C) u {rain}), if  the application is not  
at the top or if s >> Z In this case, the rewriting is C ~ s---> min-bounded. 

Ad2 .  As we may apply (1) to any rewrite step in ~ SR~e ?, this assertion is an immediate 
consequence of the reductivity of the rewrite rules. 

For example,  ---~nu~-writing is always possible (and then a good choice) in specifications 
in which conditions are restricted to Boolean conditions, i.e. equations of form p = tt or 
p = if, if  we assume tt and ff to be smaller than any other Boolean term. More general 
classes of  condit ional  equations of this kind are the ground-normal systems of  Bergstra 
& Klop (1982). In general,  one may always at least use those equations in C which can 
be oriented. 

The following example shows some of  the power of  rewriting with condition equations 
as addi t ional  rules (list notat ion as in PROLOG):  

(1) x ~ y = tt==> detete( [y lys ] ,  x)--*  [u x)] 
(2) has(xs,  x) -- ff ==> delete(xs,  x)--~xs 
(3) x ~ y = t t=>  has( [y lys] ,  x ) ~  has(ys, x) 

Overlapping (1) and (2) yields the critical pair 

x # y = t t  and has( [y lys] ,  x) = if==> [y ldelete(yx,  s)] --* [ylys]. 

Rule (3) can  be applied in has([~l~s], E) as E r ~7 rewrites to tt, this is the first condition 
o f  the critical pair. This simplifies the second condition to has(ys, x) = ft. Now, in the 
next simplification step, [fldelete(~s, :~)] can be rewritten under R u / 3 ,  where D is the 
simplified condit ion D = {x r y = tt, has(ys, x) = it}. Having has(~s, ~) ---> ff available 
as auxiliary rule in D allows to apply rule (2). This results in rewriting [~ldelete(~s, Y)] 
to DTbTs]. Now,  both sides of  the conclusion have become identical. 
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5.1.2 CONTEXTUAL REWRITING 

A more general reduction relation, called contextual rewriting in Ganzinger (1987) and 
Zhang & Kapur (1988) is defined as follows: 

DEFINITION 5.2. S "-'~R,C t i f f  S =C K[lo'] ,  s -----,t K[kr] ,  t = K[rcr] . . . .  u = v . . .  ~ I--> r e 
R, and uo- SR, c vtr. In this case, Sn, c stands for ucr---~*c u', VO'-->*R,C V', and u' = v' e ------o 
(Again, the least fixpoint of  this recursive definition is meant.) 

R,c is a restricted form of  rewriting modulo  C. The restriction is that  one may  not 
produce  larger terms by  the - c - s t e p s .  Note that ----c is decidable if  the equations in C 
are ground (Ackermann, 1954). This is the case in our application. Rewriting by  -->R.C 
also yields bounded proofs:  

PROPOSITION 5.3. 1. For any two terms s and t, i f  s--~R.e [, then there exists a ( C O s  = 
min) -bounded proof  C t-~. R P:  s = t for  C ~ s = t. Furthermore, this proof  is eoen ( C 
s ~ min)-bounded, i f  {s} > i f ( C )  and i f  the rule D ~ 1---~ r e R that is used to reduce 
into { is not applied at  the top o f  ~ or ~ >> I. 

2. For any two terms s and t, i f  s SR,~ 7, then there exists a ( C ~ s = t ) -bounded p r o o f  
C ~ ' ~ , R P : s  = t for  C O s  = t. 

Proposition 5.3 is a p roper  generalization of 5.2. In practice one should use an efficient 
reduction relation between -- ,R~e and ---~R.(, where C is the subset o f  (skolemized) 
orientable equations in C. 

This leads us to the following important  technique of  eliminating equations by  contex- 
tual  reduction: 

PROPOSITION 5.4. An  equation C ~ s = t can be eliminated via inference (D) ,  i f  s,~a,c ~. 

5.1.3. SUBSUMPTION 

PROPOSITION 5.5. An equation C ~ s = t can be eliminated via inference (D) ,  i f  D ~ u --- 
v ~ E and (D ~ u = v)cr --- (C  ~ s = t), for  a substitution cr ~ A. 

PROOF. tr can be a bijective renaming of variables. In this case we can consider D ~ u = v 
and  C ~ s = t to be equal and eliminate one of the copies. (The corresponding p roo f  
terms are equivalent modulo  complexities.) Otherwise, the second component  in our  
complexity measure for  equations makes D ~ , ~  utr = wr to be a (C ~ s = t ) -bounded  
p r o o f  of C ~ s = t, By inference rule (D) ,  (D  ~ u --- v)tr can be deleted. 

Subsumption is a part icular  case in which the equations in E are used to construct  
s impler  proofs in the course of applying inference (D). In particular if E contains 
non-reductive equations which will never be oriented into a rewrite rule, the use of  
non-reductive equations for the simplification of  other equations might be crucial for the 
termination of the complet ion procedure. In practice, a combinat ion of  the above equat ion 
elimination techniques as established by the Propositions 5.4 and 5.5 will be needed.  
Theoretically, when trying to eliminate an equation ~0, one can enumerate  all proofs  for  
~7 and  check as to whether they are w-bounded. Whereas the complexity test for not too 
big proofs can be reasonably efficiently implemented using the termination p roof  system 
for  rewrite rules, the problem is to efficiently enumerate "sufficiently many"  proofs.  In 
section 6 we will give some examples to illustrate these situations. 
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5.2. TREATMENT OF' NON-REDUCTIVE EQUATIONS 

Condi t ion  (1) in the definition of fairness asks for  the simplification of proofs which 
apply  equations.  An obvious possibility is to orient the equation into a rewrite rule. 
Howe ve r  this might not be possible due to the fact that there is a term in the condition 
which violates the reductivity constraint of  any possible orientation. This problem is 
wel l -known in the li terature (Kaplan,  1984b; Ganzinger,  1987; Kounal is  & Rusinowitch, 
1987; Orejas,  1987). 

The approach  to be described below uses conditional narrowing on conditions o f  
equations,  which, in the case of  a confluent R, is a complete procedure  for computing 
the solut ions of the condit ion equations (Hussmann,  1985; Jouannaud  & Waldmann,  
1986). In mos t  cases, however,  this technique by itself will not  lead to a terminating 
comple t ion  process unless it is accompanied  by sufficiently strong techniques for eliminat- 
ing equat ions  by bounded  proofs,  the prob lem which we have addressed in section 5.1. 

DEFINITION 5.6. Let  a conditional equat ion C A u = v ~ s = t and a conditional rule 
D ~ l --~ r b e  given and assume that the variables in the rule and the equat ion have been 
renamed  such that no com m on  variables occur. Let  o be a non-variable occurrence in 
u = v such that  (u = v ) / o  and l can be unified with a m g u  o-. Moreover ,  if uo- > vo-, then 
o is inside u, and if vo- > uo-, then o is inside v. With these assumptions,  ( D  A C ^ (u = v) 
[o ~-- r])o- ~ scr = to- is called a superposit ion ins tance  from superposing D ~ l ~ r on 
u = v i n  C A  u = v ~ s = t .  

Let us provide some intuition behind our following formal t reatment.  Remember  we 
have to provide for  the simplification of proofs which apply an equation under a 
substitution cr such that the proofs for any of its substituted conditions u = v are rewrite 
proofs.  A rewrite p r o o f  for uo- = vo- is either empty  (i.e. ucr ---- vo') or  it must  contain 
some step o f  rewriting f rom uo- or vtr. 

In the  first case, the meta-rule x = x - -~  true can be superposed on u = v. This will 
delete the condit ion f rom the equation. I f  we add to the set o f  equations this superposit ion 
instance, using the new equation with one condition less for proving scr = to- is less 
complex.  

In the second case, the first rewrite step can either be inside or or the redex overlaps 
with a non-variable  posi t ion in, say, u. In the first o f  these remaining cases, rewriting first 
cr to o-' and  then using the same equation with the reduced substitution o-' to prove 
s o - ' =  to-', f o l l o w e d  by unfolding o-' back into or is less complex. This is mainly because 
the appl ica t ion  of  an equat ion using a smaller substitution becomes less complex. The 
last ease, finally, can be simplified if the superposit ion instance that corresponds to the 
over lap of the redex of  the first rewrite step with u is added to the equations. In this 
instance,  u has been  narrowed to z, and uo- ~- u~'~' ~ z,r'. Applying the given equation 
under  o- can hence be replaced by applying the superposit ion instance under  substitution 
~". This is less complex,  mainly because utr > zr'.  

LEMMA 5.7. A s s u m e  E and  R to be g iven sets o f  equat ions  a n d  rules, respectively. L e t  

C A U = v ~ s = t be  an equat ion  in E. Moreover  a s sume  that  E conta ins  all instances o f  

the equa t ion  genera ted  by  superposing each rule in R u {x  = x ---> t rue} t  on the condit ion 

t After superposition with x = x --~ true we delete true from the condition. = is assumed not to be an operator 
of the given signature E. 
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u = v in the given equation. I f  

p = 
Q 

so" ~-*c^u=o~s=t to" 

is a proof  in T~(~.R) with Q a tuple o f  rewrite proofs fo r  the condition equations in ( C ^ u = 
v)o', then T~(E,m also contains a proof  o f  so. = to" which is simpler than P. 

PROOF. We assume P to  be o f  the required form. Without  loss o f  generali ty we  a s s u m e  
C = {c = d}. Q~=d and  Q . . . .  are assumed to be the rewrite proofs  for  co. = do" and 
uty = vo", respectively. There  are three cases to consider: 

(1 )  utY - -  v~r: 

Then,  o- = r~", with ~" = mgu(u,  v). From superposi t ion with x = x---~ true we h a v e  c~- --- 
d ~ - ~  s~-= t~-e E. The p r o o f  

Q ~  
SO" ~ ' ~  c r =  d r ~ s ' r =  t~" t O "  

is less complex than P as the used substitution instance o f  the  new equat ion  ha s  one 
condi t ion less than the cor responding  instance of  the original one.  

(2) The first step o f  rewriting in Q . ~  occurs at or below an occurrence p o f  a variable x 
in u: 
Then, Q,=o = Q"; Q', with Q" representing this rewrite step uo' /p--~u' .  Let  o r ' =  
o-[x ~-- u']. A simpler p r o o f  takes the form P~ ; ~ ;/)3- P~ reduces  sc~ to so' ' by  a p p l y i n g  
the rewrite step utr/p--~ u' at each occurrence o f  x in s. P2 applies the equa t ion  w i t h  the 
reduced substitution, requiring an  adaptat ion of  the proofs  o f  the original c o n d i t i o n  
co. = do. ^ uo. -- vo- to the reduced  condi t ion  instance co"' = do-' ^ uo' '  = vo''. M o r e  
precisely, 

P~ = 
co" ~--* co'; Qc=d ; do.-~* do: uty' *-* uo-; Q,=o;  vo---~* vo.' 

S O  "! ~ - - - - ~ c ~ d ^ u = v ~ S =  ! t o  "t 

Pa, finally, is the inverse o f  the reduct ion  of  to" to to-'. The  applicat ion o f  the e q u a t i o n  
under  the reduced subst i tut ion tY' in P2 is less complex than the original  appl ica t ion  u n d e r  
o.. (We have uo" > uo.'.) Moreover ,  any of  the rewrite steps in Q~=~, Qe=d and in or t o  ty' 
have redexes smaller o r  equal to a term in ~r(c = d ^ u = v ~ s  = t)tY. Hence ,  Q is 
b o u n d e d  by the original appl icat ion of the equation in P. 

(3) The rewrite proof  Qu=o is o f  form U1 ; U2; V, where U1 = uo. "~R u[p  *-- r]r~", U2 = 
u[p  ,~-r]~'.r'--~* w and V =  w ~--* vty, with uty = u [p  *--l]~"r',for p a non-variable occur- 
rence in u: Hereby we also assume ~" = m g u ( u / p ,  l) and  D ~ I ---> r is the rule for  r ewr i t ing  
u at p. Let S be the tuple  o f  rewrite proofs for  Do. and let z = u [  p *-  r]1-. We c a n  also 
assume that uo. ~ vo-. (Otherwise,  we could take  as U~ the first step of  rewri t ing f r o m  v 
and develop the same argument  for  v which we now develop for  u. Note  tha t  at  least  
one step o f  rewriting f rom vtY must  exist in any rewrite p roo f  of  uo. = wr in case utr < vo..) 
Then,  D r  ^ ( c = d ) z  ^ z = vz ~ s~" = t.c ~ E, according  to the assumpt ions  o f  the  l e m m a .  
The p roo f  

S, Qc=a, ( U2 ; V) 

S t Y  < ' ~  D r  ^ cT  = d~" ̂  z = ur: :~s ' r  ~ t~r t o "  
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is less complex  than P, as the following inequalities can easily be proven: It is {uo.} > 
~-(Dcr) because  of the reductivity of D ~ 1 --> r. For the same reason we have uo- > z~". 
Hence,  

{co-, dcr, uo-, vo-, so', to'} > if(Do-) u {co', do', zr ' ,  vo', so', to'}. 

From this and  the fact that S is a tuple o f  rewrite proofs  in terms all smaller than so- we 
conclude that this p roo f  is in fact less complex than P. 

The l emma proves that superposing rules on a condition of  an equation is an alternative 
to orienting the equation into a rule. This gives us a particularly interesting refinement 
of  the general  fairness constraint about completion inferences. 

Let CP~ denote  the set of critical pairs between any two rules in Ri. Let SP~ denote the 
set of  superposi t ion instances of an equation in E~ by all rules in Rt u { x  = x ---> true} on 
one selected condit ion of  the equation. Moreover,  let U~ denote the subset of  unconditional 
equations of  Et. 

LEMMA 5.8. A c~C~-derioation (Eo, Ro), (E l ,  R l ) , . . .  is fair, i f  
1. ("~j~, Uj = O,  f o r  all i. 
2. I f  C ~ s = t ~ ("~j>_i C P j f o r  s o m e  i, then there exis ts  an index i' such that C ~ s = t 

E F . 

3. I f  C ~ s = t ~ (-~j~_~ S P j f o r  s o m e  i, then there exis ts  an index i' such that  C ~ s = t 

E i, . 

Hence,  a complet ion procedure  is fair if it can either eliminate or orient any unconditional 
equat ion and if it computes  each critical pair between final rules and each superposition 
instance of  final rules on one selected condition of  each final equation. The proof  of  this 
lemma is an immediate consequence of the Lemmas 4.3 and 5.7. 

5.3. T HE C O M P L E T I O N  P R O C E D U R E  

In this section we describe a specific instance of  a completion procedure  for conditional 
equations based on the inference rules and techniques described in the previous sections. 
The p rocedure  uses Huet 's  (1981) labelling scheme to optimize the computation of  critical 
pairs. In the following, simplification or elimination of an equation or rule means to 
apply the techniques outlined in section 5.1. 

In our  procedure  we will label equations as either "possibly reductive" or "non- 
reductive".  Equat ions which are possibly reductive will be considered as candidates for 
orientation. Non-reduct ive equations will be superposed on one of their conditions by 
rewrite rules in the way indicated in Lemma 5.7. The procedure,  when applied to an 
initial set E o f  equations, consists of the following steps: 

1. Eo = E, all equations labelled "possibly reductive",  Ro -- ~ ,  i = 0, p = 0. 
2. I f  E~ contains an equation labelled as "possibly reductive" then go to 4. 
3. I f  all rules are marked, stop with success. Otherwise, select an unmarked rule in Ri, 

say with label k. Let C P  be the set of  all contextual critical pairs C ~ c = d between 
rule k and any rule o f  R~ of  label not greater than k. Let S P  be the set of superposition 
instances of the rule on a specific condi t iont  o f  all non-reductive equations in E~. 

"t In this step and in step 6 the same condition must be selected! 
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Then, E~+1 = E~ u CP w SP. Any of the new equations is labelled as "poss ib ly  
reductive". Let R~+I be the same as Ri, except that rule k is now marked. Set i := i + 1 
and go to 2. 

4. Select an equation D ~ c = d in E~ labelled as "possibly reductive".  Simplify the 
equation by E~ and R~. This process yields a simplified equation C ~ c' = d ' .  

5. I f  E , . u R t  has a ( D ~ c = d ) - b o u n d e d  p roof  of  C ~ c ' = d ' ,  then E~+I:= 
E t - { D ~  c = d}, R~§ := R~,i := i +  1, and go to 2. 

6. I f  c ' >  d ~, then let l := c', r := d' .  I f  d ' >  c', then let l :=  d ' ,  r := c'. In both  cases 
verify that each term in C is smaller than L If  this is the case, go to 7. 
Otherwise, and if  C is empty,  stop with failure. In the remaining case, label the 
equation C ~ c' = d '  as "non-reductive".  Then compute the set SP of  all superposi-  
tions of any marked  rule in R~ on a particular condition in C ~ c' = d ' .  The equations 
in SP  are labelled as "possibly reduetive". Let E~+~ := E~ u SP, R~+~ := Ri, i := i + 1, 
and go to 2. 

7. Let K be the set of  labels k of  rules Ck ~ Ik ~ rk ~ R~ such that Ik can be simplified 
by { C ~ l - - - ~  r} to, say, l~. Then, 

E~+~ := (E, - { D ~ e  = d}) u {Ck ~ l ~  = rklk c K} ,  

all new equations labelled "possibly reductive". Increment  p by 1. Let 

R,§ := ( j  : C lj ---, rj t j  : Cj --, rj R, ,  j K }  w {p:  I--, r}, 

where rj and C} are obtained from bounded simplification using Ei and Ri u 
{C ~ l---~ r}. The rules coming from Ri are marked or unmarked  as they were in 
Ri. The new rule C ~ l ~ r is unmarked. Increment i by 1 and go to 2. 

Some further remarks about  this procedure seem to be in order. In step 3 one might  
perhaps  want to immediately  drop any critical pair C ~ c = d the condition of  which 
cannot  be satisfied. The fairness requirement does not ask for consideration of  critical 
pairs  with unsatisfiable conditions. For the case of a monolithic specification this would 
formally mean that C o  q: =- R,, for any substitution tr and index i. Jouannaud & Waldmann  
have  suggested and proved correct a bounded narrowing technique in which equations 
are  kept separately if the satisfiability of  their conditions has not yet been proved  or 
disproved. The conditions of these equations are further narrowed in each iteration step 
o f  the completion procedure.  For the case of specification modules or paramet r ic  
specifications such a "negat ion as failure" technique cannot prove anything about  the 
yet  unknown actual parameter.  This technique is therefore not  modular  as one has to 
reconsider any old critical pair  upon enrichment of the specification. 

In  our case, if an equation C ~ c = d gets deleted by a bounded  proof,  this p r o o f  is 
independent  of  any additional signature and axioms. Proof orderings can be extended 
to the proofs in an enriched signature, if the underlying reduction ordering on T x ( X )  
can  be extended. The deletion of  the equation is therefore also allowed in an enriched 
system. Otherwise, and if the equation cannot be oriented into a reductive rule, our  
procedure  keeps them as "non-reduct ive" equations. They are superposed on one of  their  
conditions. I f  the procedure  terminates, the final system still contains all these non- 
reductive equations. They are useless for proving equations in the current system, but  
they might become relevant when enriching the specification. Then, any new rule must  
also be superposed on these equations. However, neither superpositions by old rules nor 
critical pairs between old bales must be recomputed. Hence, our  completion procedure  
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allows separate complet ion of specification modules. Upon combining two such 
specifications only the inferences between axioms of  different modules need to be taken 
into consideration.  

In step 6, an equation is oriented into a rule if it is reductive. In practice it sometimes 
turns out  to be useful to consider a reductive equation nevertheless as "non-reductive" 
and superpose  on a condition. This choice may even be crucial to make completion 
terminate.  Hence  if  terminat ion of  completion is the major goal, it is not always good to 
select the maximal literal for "extended superposit ion" as suggested in Rusinowitch 
(1987). One o f  the advantages of our method is that we may select any literal for  
superposi t ion.  For example,  if the condition contains an equation true = false, it should 
be selected for  superposition. Either the specification is inconsistent (of course, we intend 
true to be different to false), or there is no superposition possible, and the equation does 
not  generate any further equation. If the selected literal is the consequent,  we have called 
the superposi t ion "crit ical pair computat ion".  The selection of  the consequent for superpo- 
sition is however  restricted to reductive rewrite rules. This causes a failure of  our procedure  
i f  the equat ion  has no  condition and cannot be oriented. 

Apart  from this possibility of  failure, our procedure is hence more efficient and will 
terminate in many more practical examples compared to the procedure  in Kounalis & 
Rusinowitch (1987). We do not have to superpose on more than one literal of any clause, 
we have much  more freedom in choosing the literal for superposition, and we do not 
have to superpose equations on equations or rules. Moreover,  the techniques for eliminat- 
ing equations based on p roo f  orderings is much more powerful than what Kounalis & 
Rusinowitch were able to prove. 

Our procedure  is correct,  as established by the following theorem: 

THEOREM 5.9. I f  the completion procedure terminates successfully, the final set of  rules R 
is canonical and me = ~-R. 

PROOF. Clearly, the procedure  produces a CC-derivation. Hence, the correctness of R 
follows from the obvious correctness of any of  the inference rules. 

It remains to be shown that the CC-derivation is fair. The first fairness requirement is 
satisfied as any equation is eventually either deleted, turned into a rule or superposed on 
by any final rule. This is exactly what is required to apply Lemma 5.8. (In fact, rules that 
are later simplified on their condition or on their right side are not superposed again on  
any old non-reduct ive equation. That this is correct is proved in a way similar to what 
we are not  proving for  the case of critical pair computation.) 

We now argue that  any peak in a E-p roof  caused by a critical pair between R-rules 
can be simplified. This is true even though critical pairs between two rules p~ and p~ that 
have been obtained by  simplifying rules 01 and P2 using (DC) ,  (SC)  and (SRR)  are not  
computed,  if the critical pairs between the p~ and P2 have been computed previously. To 
indicate the proof  o f  this fact, let us assume Pl = C~l- - ->r ,  C = { e l , . . .  , e,} and 
P2 = D ~ a ~ b and let us take a closer look at the particular case in which the right 
side r o f  pl has been simplified to r' in step i of the completion procedure. Then there 
is a C ~ r ~ r - b o u n d e d  proof  K ~ : e ~ , . . . , K , : e , F - ~ , , R , P : r = r ' .  The critical pair 
branching 

PC PD 

r'o'~" ~-" c ~ t ~ '  ur ""~D=~a~b M[bcr'r] 
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with simplified r', lo" = u = M[ao-] and arbitrary tuples of  rewrite p roo f s  P C  = 
(P1, �9 �9 �9 P,) and P D  of  Co-'r and Do-z, respectively, is more complex than the p r o o f  o f  fo rm 

cm'( i (P))[Pt /K,;  1 <- i <- n]; 
P C  P D  

C"1" <">(C^D)o'--'-->c=d d"l" 

using the critical pair  (C  ^ D)~r ~ c = d between the unsimplified rules as c o m p u t e d  in 
3 of  some s t e p j  < i. It  holds {u} > ~-((C ^ D)o-) w {c, d}, c = roo, d = M[bcr] .  Also ,  the 
operators in any of  the proofs P, PC and P D  have a complexity less than  ({u-r}, {l}, 
gr(C) u {r'}). In the case of  P C  and P D  this property follows from the r educ t iv i ty  of  
the rules and f rom the fact that these proofs are assumed to be rewrite p roofs ,  cf. fa i rness  
requirement 2. 

The proofs of  4.3 and 5.7 exhibit the possibility for further improvements  o f  the c o m p l e t i o n  
procedure. I f  the computat ion of  a critical pair or of  a superposi t ion ins tance  o f  a 
non-reductive equation is immediately followed by its simplification, we m a y  re lax  the 
complexity bounds for these simplification proofs compared to what is in genera l  requi red  
for the inference rules (SE) ,  ( D ) ,  ( S C )  or ( D C ) .  

In the case of  a critical pair, the proof  of 4.3 shows that the superposi t ion t e r m  u of 
a critical pair is more complex than the complexity of  a critical pair app l i ca t i on  

C r d 

When simplifying the critical pair  equation cp = (Co ~ ^ D o o ~  c = d)  i m m e d i a t e l y  we 
may therefore relax the complexity bound for the simplification proof  to c(u  ~ rain) .  In 
other words, cp may be simplified by a u ~ min-bounded proof.  As this b o u n d  exceeds  
c(cp),  the bound which would have to be used in the general case, the s impl i f ica t ion  
process becomes more powerful.  The techniques described in Winkler & B u c h b e r g e r  
(1983), Kiichlin (1985) and Kiichlin (1986) are based upon related ideas.  In B a c h m a i r  
(1987), the concept o f  critical pair  criterion is proposed to serve as a f r a m e w o r k  for 
describing such techniques. 

In the case of  condit ional equations, if C ^ u = v ~ s = t gets supe rposed  on  u = v 
yielding Doo ^ Co- A z ----- VO- ~ so- = to-, we may simplify this superposi t ion ins tance  with 
(St(Co-) u {uo-, vo-, so-, too}, O"( C )  w {u, v, s, t}, 0 )  as upper  bound  for  the o p e r a t o r s  in 
the simplification proof. Any simplification of  Do- ^ Co- A z = vo- ~ So- = too b y  s u c h  a 
proof  also allows for a simpler p roof  of  Co- ^ utr = vo" ~ so- = t~. 

At the moment  our  inference rules and the notion of p roof  ordering is no t  s t rong  
enough to support  these techniques directly. In Ganzinger (1988) we have  d e s c r i b e d  a 
completion inference system in which the complexities of  equation appl ica t ions  in p r o o f s  
are not fixed, but rather determined dynamically upon generation of the  equat ion .  S o m e  
of the subsequent examples will require these extended techniques to achieve t e r m i n a t i o n  
of the completion process. 

6. Examples 

The first example is a specification of integers with 0, s, p, < taken f rom K a p l a n  (1984a) .  
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Initial equations 
1 O < O = f a l s e  
2 0 < s(O) = t rue  
3 s ( x } < y = x < p ( y )  
4 p(x)  < y = x < s{y} 
5 {y < x) =true==>y < s(x) = t rue 
6 {y < x} =false==>y < p(x)=fa lse 
7 s(p(x)) =x  
8 p(s(x)) = x 

The critical pair 
(y < s(xl))  = fa lse  ~ y < x l  = false (9) 

is obtained from superposing rules 4 and 6. It will be recognized as a non-reductive 
equation. The same is true for the critical pair 

(y < p(x l ) )  = t r u e ~  y < x l  = true (10) 

from 3 and 5. For Eq. (9) the superpositions by rules on its condition are as follows: 

(y  < x )  = fa l s e  ~ y < p ( x )  = false  (11) 

from superposing s ( p ( x ) )  ~ x, 

(y l  < x l )  = true and true = f a l s e  ~ y l  < x l  = f a l s e  (12) 

from superposing (y < x) = true ~ y < s ( x )  ~ true, 

true = fa lse  ~ 0 < 0 = false (13) 

from superposing 0 < s(0) ~ true, 

( x  < p ( s ( x l ) ) )  = fa l s e  ~ x  < p(x l )  = f a l s e  (14) 

from superposing s ( x )  < y ~ x < p(y),  and 

(x  < s ( s ( x l ) ) )  = f a l s e ~  x < s(xl )  = f a l s e  (15) 

from superposing p ( x )  < y ~ x < s(y) .  Equation (11) is reduced by rule (6). Equation 
(12) has an unsatisfiable condition. This will be detected by considering it as a non- 
reductive equation and by observing that there are no superpositions on true = false. 
Similarly, Eq. (13) is trivial. To delete Eq. (14) one first reduces the condition to 
( x  < x 1) = false. Now, rewriting x < p (x 1) = false using Eq. (6) and the simplified condi- 
tion as auxiliary rewrite rule (the variables considered as constants), reduces the conclusion 
to false =fa lse .  The Eq. (15) is subsumed by (y < s(xl))  = f a l s e l y  < x l  =fa lse ,  the 
equation, from which (15) has been obtained. In a similar way one can prove the 
convergence of the non-reductive Eq. (10). 

In this example, the procedure converges with R consisting of the originally given Eqs. 
1-8 oriented from left to right and with E consisting of the two Eqs. (9) and (10). These 
have, however, been proven irrelevant for the equational theory. 
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The next example is natural numbers with <-- in which a transitivity and totality axion 
have been included as non-reductive equations. The initial specification is then 

1 O-- -<x=true 
2 s(x) -< 0 = f a l s e  
3 s ( x ) - s ( y ) = x - < y  
4 x - x = t rue 
5 x -<  s(x) = t r u e  
6 (x-< y) = t r u e = > x -  s(y) = t r u e  
7 (x -< y) = fa lse ==>y--< x = t rue 
8 (x-< y) = t r u e  and (y ~ z) = t r u e  ==>x-  z = t rue .  

In this example, our procedure terminates producing 

Final  Rules 
1 0 -< x --~ t rue 
2 s(x) - 0 -~ fa lse  
3 s(x) --- s(y) --* x -< y 
4 x -< x - - ,  t rue 
6 (x -< y) --- t rue => x -< s(y) ~ true 
Final  Equations 
7 (x <- y) = fa lse ==> y -< x = t rue 
8 (x -< y) = t rue  and (y ----- z) = t rue ==> x <-- z = t rue 
9 (s(x) ~ y l )  = t rue  ==> x -< y l  = t rue 
10 (s(y) ~ z ) = t r u e  and (x l  ----- y) = t rue==>x l  _< z = t r u e  
11 {s(y)-< z) = t r u e  and (x-< y) =true==>s(x)  <- z = t r u e  

Equations (10) and (11) are added upon superposing Eq. (8) by the rules 6 and 3, 
respectively. No further non-trivial equations can be derived from these. Despite the 
simplicity of this example, to make the procedure terminate is not trivial and requires 
applications ofnon-reductive equations for the simplification of other generated equations. 
For example, the equation 

(s(xl) ---y) = true ~ x l  <- s ( y )  = t rue  (17) 

is generated from superposing rule 6 on the condition of Eq. (9). In this case, 

s(xl) -< s ( y )  = true  ~ x l  <- s ( y )  = t rue  (9') 

is the substitution instance of 9 which constitutes the complexity bound for simplification 
proofs. Equation (17) may be eliminated as the proof 

s(xl) -< y = t rue  

x 1 <-- y <'->9 true  

s(xl) --< y = t rue  ~- x l  <-- s ( y )  ---~6 t rue  

is a (17)-bounded proof of (17). Both the application of the Eq. (9) and the rewrite rule 
6 are less complex than 17. 
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In our  actual  implementa t ion  we first i terativelyt add to the condition C of any 
superpos i t ion  instance (and critical pair) C ~ s = t an  equation uo- = vtr, if there exists 
a non-reduct ive  equation D ~ u = v such that there is a bounded p roof  of  C ~ D~r and 
such tha t  C ^ uo  = vtr ~ s = t is still less complex than  the substitution instance of the 
equat ion  f rom which C ~ s = t has been obtained. In  the example,  we would t ransform 
17 into 

(s(xl)---< y) = t rue  and (xl  -< y) = t r u e ~ x l  < - s ( y )  = t rue  (17') 

using Eq. (9) with a trivial p roof  for the fact that the condition o f  9 is implied by the 
condi t ion of  17. The resulting Eq. (17') is less complex than (9'). Now,  rewriting the 
conclusion using 6 and the second condition as additional rewrite rule (cf. 5.1.1) reduces 
the equat ion to the identity. 

For ano the r  example  consider the superposit ion o f  Eq. (10) on its first condition by 
rule (6). The instance of (10) is 

( s ( y l )  <- s(y2))  = t rue  and (x l  <- y l )  = t rue ~ (x l  <- s(y2))  = true. (10') 

The  complexi ty  of (10') is the bound for the simplification proof  of  the new equation 

( s (y l )  -- y2)  = true and t rue  = true and (x l  --- y l )  = t rue  ~ (x l  <- s(y2))  = true. (18) 

This equat ion may be el iminated as the proof  

s (y l )  -< y2 = true 

x l  <- y l  ---- true, y l  <- y 2  <-~9 true 

x l  <-- y 2  "~-~8 t rue  

x l  <-- y l  = true,  s ( y l )  --< y2 = t rue  ~ x l  <-- s(y2) "-*6 t rue 

is bounded  by  (10'). It  is however  not bounded  by (18) as the applications of the Eq. (9) 
is not less complex than  (18). This demonstrates that the superposit ion instances of  rules 
or old equat ions  from which new equations are constructed must be  used as complexity 
bounds  for  alternative proofs  to achieve termination in more cases. 

Altogether,  the rules 1-6 are canonical and the equational  theory is the same as the 
one  genera ted  by  all rules and Eqs. 1-11. 

The last example is total orderings with maximum function, an example  which is used 
in Orejas (1987) to demonst ra te  the failure of  the usual complet ion procedures.  The 
example  also appears  in Kounalis  & Rusinowitch (1987) to demonstrate  the power  of  
their  method.  The version of  the example which we use here is more complex due to the 
fact  that we have  also included the transitivity axion. 

Input  spec i f ica t ion:  
1 (x ~ y) = true and (y ~ z) = true =~ (x -< z) = true. 
2 (x ~ x) = t r u e .  
3 (x ~ y) = true ==~ max(x ,  y) = y. 
4 {x ~ y) = false ==~ max(x,  y) = x. 
5 (x ~ max(x ,y ) )  = t r u e .  
6 (y ~ max(x ,y ) )  = t r u e .  

t Note that there is a danger of" non-termination. 
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Sys tem af ter  comp le t i on :  
Rules 
2 x - - x - ~ t r u e  
3 (x -< y) = t rue ==~ max(x ,  y) --~ y 
4 (x ~ y) = fa lse ==> max(x,  y) ~ x 
12 (x2 _.< y) = t rue ==~ x2 -< max(x ,  y) - *  t rue 
13 (x ~ y2) = t rue =~ x -< max(y2,  y ) - *  t rue 
Equat ions 
1 ( x ~ y ) = t r u e a n d ( y - < z ) = t r u e = = ~ x - z = t r u e  
7 (x l  _ < y l ) = f a l s e = = ~ y l  _<xl  = t r u e  
10 (max(y2,y )  -< z) = t r u e  and (x l  -< y 2 ) = t r u e = # x l  _< z = t r u e  
11 (max(x, y) -< z) = t rue and (x l  - y) = t rue ==~ x l  --- z = t rue 

The totality axiom 7 is obtained as a critical pair. This example is interesting as 
completion transforms the original Eqs. (5) and (6) which are too weak for deciding the 
equational theory by reductive rewriting (in the presence of transitivity) into the more 
general rules 12 and 13. At an intermediate stage, the rules 

x l  ~< max(x, max(x2,  x l ) )  -~  t rue  
x l  ~ max(max(x2,  x l  ), y) - ,  t rue  
x l  ~ max(x, max(x1,  y l ) )  --~ t rue  
x l  ~< m a x ( m a x ( M ,  y l  ), y) --~ t rue  

are generated. These rules generate the non-operational equations 

8 (max(M,  y) -- z) ~- t rue ==~ x l  --< z = t rue 
9 (max(x, x l  ) -< z) = t rue ==~ x l  --< z = t rue 

Which are later again eliminated upon elimination of the rules from which they have 
been generated. This example also demonstrates that the behaviour of the completion 
process depends very much on the choice of the condition on which a non-operational 
equation is to be superposed on. If  one chooses the second condition of the transitivity 
axiom for superposition, the procedure generates the crucial rules 12 and 13 directly 
without producing any of the Eqs. (8)-(11). 

7. Conclusions 

We have shown that the concept of proof orderings by Bachmair, Dershowitz & Hsiang 
extends to the conditional equational case. Recursive path orderings on proof terms 
provide for the required reduction ordering on proofs. We have argued that in the 
conditional case the term structure of proofs must be exploited to obtain sufficiently 
strong arguments about the complexity of proofs. 

A notion of bounded proof terms for conditional equations was introduced as the basis 
to simplify conditional equations and rules during completion. 

We have proved the correctness of superposing rules on an arbitrary condition of an 
equation as an alternative to orienting that equation into a rule. In particular in the case 
of generating a non-reductive critical pair this technique might still allow the completion 
procedure to terminate successfully. We have proved the correctness of a specific variant 
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of  a c o m p l e t i o n  p rocedure  in  which these techniques  have been  bui l t - in .  We have 
d e m o n s t r a t e d  the use fu lness  of  our techniques  on some examples.  We have argued that  
ou r  p r o c e d u r e  is more  efficient and  terminates  much  more often than the one in Kouna l i s  
& R u s i n o w i t e h  (1987). 

We have m e n t i o n e d  before  tha t  m a n y  of the results of  this pape r  c a n  be ob ta ined  as 
specia l  cases of the results about  comple t ion  of  first-order clauses by Bachmair  & 
G a n z i n g e r  (1991). The i r  proofs,  however ,  are based  on very different t echniques  and at 
p r e sen t  no  prac t ica l  i m p l e m e n t a t i o n  exists. 

Some of the ideas for the treatment of non-reductive equations as presented in this paper were 
stimulated by discussions at the Workshop on Conditional Term Rewriting, Orsay, July 1987. We 
are grateful to St. Kaplan and J.-P. Jouannaud for their initiative in planning and organizing this 
event. Discussions with A. Boekmayr and St. HSlldobler on the subject of paramodulation and 
narrowing helped to find a bug in a previous proof of Lemma 5.7. The author is grateful to H. 
Bertling for many discussions on the present concepts, and to R. Sch~ifers, J. Richter, U. Waldrnann 
and U. Wertz for finding many bugs in previous versions of this paper. 
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