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Dynamics has long been recognized to play an important role in heterogeneous catalytic
processes. However, until recently, it has been impossible to study their dynamical
behavior at industry-relevant temperatures. Using a combination of machine learning
potentials and advanced simulation techniques, we investigate the cleavage of the N,
triple bond on the Fe(111) surface. We find that at low temperatures our results
agree with the well-established picture. However, if we increase the temperature to
reach operando conditions, the surface undergoes a global dynamical change and the
step structure of the Fe(111) surface is destabilized. The catalytic sites, traditionally
associated with this surface, appear and disappear continuously. Our simulations
illuminate the danger of extrapolating low-temperature results to operando conditions
and indicate that the catalytic activity can only be inferred from calculations that take
dynamics fully into account. More than that, they show that it is the transition to this
highly fluctuating interfacial environment that drives the catalytic process.

heterogeneous catalysis | nitrogen decomposition | molecular dynamics | machine learning |
enhanced sampling

One of the remarkable features of industrial catalysts is their stability under extreme
conditions of temperature and pressure, while being at the same time subjected to a
constant flow of reactants and products. In fact, a heterogeneous catalyst can be described
as a functional material that continuously creates active sites with its reactants under
reaction conditions (1). To explain this behavior, already 40 y ago, Spencer proposed a
picture of heterogeneous catalysis (2) in which a dynamical steady state is established.
This can happen in two ways: Either surface atoms become highly mobile or, more
dramatically, a surface instability sets in. However, the study of catalytic processes in
such a scenario is very challenging and until recently has proven impossible. In fact,
experimental investigations have been limited to studying temperatures and pressures
much lower than industrial ones. In the same way, theoretical studies have assumed
idealized conditions, possibly treating the dynamic effect as a perturbation. In the lack of
other information, the microscopic behavior of the catalyst in operando conditions had to
be inferred from the low-temperature low-pressure results or from indirect interpretation
of high-temperature kinetic data.

Only recently are new technologies providing access to in situ and in operando
characterization of catalytic materials (3-5), revealing the impact that such conditions
have on their structure and corresponding activity (6, 7). In parallel, theoretical
calculations have suggested that dynamics needs to be taken into account (8-13).
However, they are often limited either by the short timescales investigated or by the
fact that they treat dynamically only a subset of the system’s degrees of freedom. To
overcome such limitations, we have recently developed new strategies combining machine
learning potentials and enhanced sampling methods to model reactive events in realistic
conditions (14-17).

We shall make use of this progress to simulate a classical catalytic process, namely the
breakage of the V; triple bond on the (111) iron surface. This is a crucial step of the famed
Haber—Bosch catalysis, and as such, it has been intensively studied (18-35). We briefly
summarize the available experimental and theoretical findings that are mostly based on
low-temperature investigations. From a microscopic point of view, Ertl et al. (20, 22)
have investigated the nature of the molecularly adsorbed /V;, measuring the change of
the bond vibration frequency. They concluded that the absorbed molecules are oriented
either perpendicular or parallel to the surface. This was supported by the theoretical work
of Iroh et al. (36), which showed that the N-N bond is weakened as a consequence of the
charge transfer from the 3d orbitals of Fe to the anti-bonding orbitals 7* of NV,, whose
amount depends on the adsorption geometry. This interpretation was later confirmed by
Freund et al. (25).
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Later, Norskov et al. (28) performed static Density Functional
Theory (DFT) calculations, confirming the scenario suggested
by Ertl, but enriching it with new atomistic details. They
distinguished between two different vertically adsorbed N, sites
(y and 6) depending on whether the molecule sits on top of a
first or second layer atom (Fig. 1). Similarly, they predicted the
existence of two different horizontal absorption sites. In one, N,
is in a bridge position between first layer atoms (a), while in
the other, it sits in a hollow position on top of an atom of the
third layer (/). The latter state is particularly relevant since it
is believed to be the precursor to dissociation. According to ref.
28, such a state can be accessed either directly from the gas phase
or via the sequence y — 6 — a — «. Along this pathway,
the triple bond is progressively weakened: In the a state, a first
7 bond is transferred to two surface atoms, followed by another
one in the o state (33). Indeed, in the ' site the molecule is
in contact with seven-fold coordinated iron atoms (C7) that can
more easily donate electrons to the NV, molecule.

The higher activity of the (111) surface has been attributed
to the step structure that stabilizes the a structure and the high
density and easy accessibility of C; atoms in the open Fe(111)
surface (37, 38). Later on, we shall refer to the set of Fe atoms
that surrounds the NV, molecule in @’ as the y7 environment
(Fig. 1). There are good reasons to regard this set of atoms as a
catalytic site. Indeed, when the /V; molecule moves toward the o’
position, the amount of charge transferred from the iron surface
to the nitrogen molecule increases. Furthermore, once inside the
site, it can rotate between different equivalent orientations until
the electronic orbitals are properly aligned for the reaction to take
place. Thanks to these classical experiments and calculations, it
can be said that the low-temperature behavior of N, on the
Fe(111) surface is quite well understood.

Unfortunately, there are no experiments or calculations that
can confirm the chemisorption mechanism of nitrogen in the
industrial temperature and pressure range, i.e., 7 = 650 to
850 K and P = 10 to 300 bar. An attempt has been made
to extract such information from the kinetics of ammonia
synthesis, under the assumption that the rate-determining step
is Ma(a) — 2N (39-41). However, the kinetic parameters
thus extracted appear irreconcilable with those fitted by Ertl at
low temperatures, suggesting a different microscopic behavior
influenced by the “chemical dynamics” (1, 2) emerging at high
temperatures and possibly also by lateral interactions with other
adsorbed nitrogen (18).

Here, we use modern simulation methods to investigate
the temperature dependence of the surface dynamics and the
N, dissociative chemisorption. A number of methodological
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Fig. 1. N, adsorptionsiteson Fe(111)from T =0 K calculations, Top and side
view. Iron atoms are colored as a function of the perpendicular z position.
From Left to Right: (y) and (5) refer to the N, on top of first and second layer
atoms, respectively. (@) refer to a bridge site between first-layer atoms. (a’)
refer to a hollow site on top of the third layer.
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innovations have made it possible to simulate such a challenging
process. The first hurdle to be cleared is that in a catalytic
process, chemical bonds are broken and formed; thus, the use
of an ab initio approach is essential. However, due to their
high computational cost, ab initio simulations can only be
carried out in small systems and for short simulation times,
while realistic modeling requires studying larger systems for
longer times. A satisfactory compromise between accuracy and
efficiency can be achieved if one follows the pioneering work
of Behler and Parrinello (42) and optimize a machine learning
(ML) potential to reproduce a suitably chosen set of quantum
mechanical calculations. However, although the use of ML-based
potentials reduces the cost of ab initio-quality simulations by
orders of magnitude, these calculations are still too expensive,
and it is not possible to explore the time scales over which
these reactive processes occur. This makes the collection of
reference configurations and thus the construction of interatomic
potentials challenging. Combining this strategy with state-of-
the-art enhanced sampling methodologies allows the time scale
problem to be circumvented (14-17, 43—49). Enhanced sam-
pling techniques are used here not only to bridge the time scales
but also to harvest the appropriate set of configurations on which
to train the potential. It is the fruitful combination of these two
sets of techniques that allows performing DFT-quality reactive
simulations of rare events which would otherwise be outside the
scope of both classical and ab initio simulations. Here, we use the
recently developed On-the-fly Probability Enhanced Sampling
(OPES) method (50) which is an evolution of the widely
used metadynamics technique (51, 52). Once the simulations
were completed, due to the observed high-temperature complex
behavior new analysis methods were required to understand and
describe the catalytic behavior. In particular, we monitor the
charge transferred from the metal to the molecule. To this effect,
we trained a second machine learning model that is able to predict
the charges without the need for expensive quantum mechanical
calculations.

Armed with these tools, we study the dynamics of the
Fe(111) surface and its influence on the NV, adsorption and
decomposition function of temperature. In particular, we find
two contrasting behaviors. At low temperatures, the surface
is relatively rigid, and the reaction proceeds as described in
the literature. However, at higher temperatures, the atoms on
the surface become highly mobile and the stepped structure of
the surface becomes unstable. The y7 cavities are continuously
formed and broken, with the consequence that the precursor
state @’ is destabilized, altering the reaction profile. Still, the
transition state remains the one predominantly discussed in the
literature. This dynamical scenario is in agreement with Spencer’s
dynamical picture and shows that there are no static active sites.
Rather, the NV, dissociation takes place when the mobile reagent
encounters the crucial surface fluctuations.

Results

A Reliable Potential to Study N, on Fe(111). The first step of
this work is the construction of a potential able to describe
the properties of iron surfaces and their interaction with N,
molecules during the adsorption and dissociation processes. To
this effect, we trained a neural network-based potential on
a set of single-point calculations so as to reproduce at best
DFT energies and forces. For this procedure to be successful,
a careful choice of the training dataset is needed, especially to
model correctly the reactive pathways. Following our previous
experience in modeling rare events with ML potentials (14-16),
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Fig. 2. Fe(111) morphology: room temperature vs. in operando condition.
Top view of final structures obtained from 20-ns molecular dynamics
simulations of the Fe(111) at T = 300 K (Left) and T = 700 K (Right). Atoms
are colored as a function of the Z position. Bright regions indicate adatoms,
while dark regions the formation of vacancies on the surface. The atomistic
snapshots are made with OVITO (55).

we started from a combination of enhanced and standard ab initio
molecular dynamics (MD) simulations. Then, we used an active
learning procedure accelerated by metadynamics (Materials and
Methods). In this way, we are able to collect much more diverse
and uncorrelated samples than more conventional approaches
based on standard MD simulations and at the same time have
control over the uncertainty of our potential. In fact, whenever
a configuration is encountered in this procedure that is not well
described by the potential, an ab initio calculation is performed
and these data are added to the training set. The result of this
procedure is a collection of all the relevant configurations for
studying the surface dynamics and dissociative chemisorption
of nitrogen on the Fe(111) surface. Using the Deep Potential
Molecular Dynamics (53, 54) scheme our potential obtains a
mean absolute error (MAE) on energies of 0.60 meV/atom and
on forces of 31 meV/A, while the root mean squared error
(RMSE) is 0.81 meV/atom and 40 meV/A for energies and forces,
respectively. In SI Appendix, we report the detailed composition
of the dataset (ST Appendix, Table S1) and extensive validation of
the ML potential (87 Appendix, Figs. S1-S3), with emphasis on
benchmarking the behavior of the surface against the underlying
DEFT electronic structure calculations (S/ Appendix, Fig. S4).

Temperature Dependence of Fe Surface Morphology. We first
investigate the behavior of the pristine Fe(111) surface as a

function of temperature. This study offers a number of surprises,
as evident from Fig. 2, where we compare two surface snapshots
taken at 77 = 300 K and 7" = 700 K after 20 ns of MD
simulations. The former is hardly distinguishable from the
equilibrium structure, while the latter exhibits a considerable
amount of disorder. At high temperature, the surface is no longer
flat, the formation of hills and holes is clearly visible, and the
ordered step structure of the (111) surface is at first sight lost.
Although revealing, these snapshots are unable to fully reflect
the complex dynamics that takes place in the operando range
of temperatures, and the reader is invited to see the movies
illustrating the dynamics (Movies S1 and S2).

We turn this initial impression into a quantitative study and
follow how the surface changes as a function of temperature.
In Fig. 34, we plot the temperature dependence of the density
of surface-exposed atoms along the (111) direction. In the
low-temperature regime, we observe only the expected thermal
broadening. However, at temperatures above 500 K, a number of
atoms move to the adlayer, leaving vacancies behind. This signals
a very different behavior between a low-temperature regime
T < 500 K and a high-temperature one 7" > 600 K, which is
also reflected in the increase of surface roughness (Fig. 3B). The
change in these two properties is accompanied by an increase of
the surface atom diffusion coefficient (Fig. 3C). At T = 500 K,
the surface begins to disorder, but since the diffusion is still slow,
its disorder is basically static. Above 7" = 600 K, the surface
dynamics is fully developed and the self-diffusion coefficient
reaches large values. This is in agreement with the behavior of
metallic surfaces well below the melting point (56-60). Indeed,
the temperature at which surface diffusion sets in is known as the
Hiittig temperature, which, for iron, is estimated to be around
600 K (2). In addition, our simulations allow us to further
characterize the diffusion mechanism. Despite the high mobility,
the system maintains its crystalline order, as can be clearly seen
from the scatter diagram of atomic positions in Fig. 4 (see also S/
Appendix, Fig. S6 for the other temperatures). Indeed, the BCC
structure is locally preserved (SI Appendix, Fig. S5), and atoms
undergo a jump-like diffusion between different crystallographic
sites (SI Appendix, Fig. S7) .

So far, our description has been based on analysis tools that
are standard in surface physics. However, our main interest is
understanding how dynamics influences surface reactivity. Thus,
we study the temperature effect on the geometry of the y7 sites,
which we recall are associated with the precursor ' state. To this
effect, we use the similarity measure S(y, y7) between the atomic
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Fig. 3. Fe(111) morphology and dynamics analysis as a function of temperature. (A) Atomic layer distribution of atoms belonging to the surface as a function
of z. The emergence of new peaks at high temperatures denotes a roughening of the surface with the formation of adatoms (rightmost peak at 0.9 A) and
vacancies (leftmost peak at —2.2A). The distribution is shown only for surface atoms dynamically identified at each time step by the Alpha-Shape method. (B)
Mean and SD of the surface roughness measured as the SD of the surface atoms’ height. (C) Logarithm of the diffusion coefficient of surface atoms as a function

of inverse temperature (main panel) and diffusion vs. temperature (Inset).
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Fig. 4. Scatter plot of atomic positions of Fe atoms. Results for the 7 =300 K
(Top) and 700 K (Bottom) trajectories, both from a side and top view. The atom
positions are recorded every 2.5 ps. Even at low temperature, the Debye-
Waller factor of the surface-exposed atoms appears to be larger than that of
the bulk atoms. The early occurrence of this dynamical behavior is facilitated
by the lower density of the (111) surface and the reduced coordination (4) of
the atoms in the topmost layer. At T = 700 K, a significant mobility is reached
(side view), with the formation of an adlayer, while the long-range order is
preserved (top view). Made with VMD (61).

environments {y} of surface atoms and the y7 environment as
defined in the Materials and Methods. By counting the number of
surface atoms with high similarity, we can identify the potentially
active sites. From Fig. 54 it can be seen that at the operando
temperatures, the number of active sites decreases by about one-
third as compared to low temperatures. However, looking at the
number of sites only gives a partial view of the phenomenon. To
fully capture the behavior of the y7 sites, we need to measure also
their lifetime (Fig. 5B). In fact, the active sites are continuously
created and destroyed with a lifetime distribution that is far
from being Gaussian. As a consequence, the average values of
the lifetime are not at all representative of the typical dynamics
of y7 at high temperatures. In fact, the average lifetime is of
the order of the tens of picoseconds, but the distributions have
tails that reach the nanoseconds regime; thus, the reaction is still
allowed.

Nitrogen Adsorption and Dissociation Mechanism. We now
study the interaction of an incoming nitrogen molecule with
the surface, its adsorption, and subsequent splitting. Regarding
the thermodynamic conditions, we study the temperature de-
pendence in the zero-coverage limit which has been studied by
Ertl’s group. The gas partial pressure is taken into account by
constraining the accessible volume to the V; molecule to a value
compatible with a pressure of P = 10 bar. To study this process, we
perform a set of OPES simulations enhancing the fluctuations of
two distinct collective variables. One is the nitrogen—nitrogen
interatomic distance 4(/V, V), which is a necessarily part of
the reaction coordinate. The other is the coordination number
between Fe and N atoms, which is meant to account for the
geometric arrangement of the molecule relative to the surface.
While at low temperatures, the adsorption geometries are
easily identified (Fig. 1), at high temperatures, the continuous
movement of surface atoms makes it difficult to find a variable
able to identify the N, pose. Previous experience (62) together
with the findings of Itoh et al. (36) have shown that the electronic

https://doi.org/10.1073/pnas.2313023120
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Fig. 5. Number and lifetime of y; active sites. (A) Average and SD of the
number of y; sites exposed on the surface with respect to ideal surface.
Inset: Construction of reference environment 47 from the o’ adsorption site.
(B) Violin plot with the distribution of lifetimes of y7 sites. Line markers identify
the average lifetime, while the width describes the distribution of the points.

structure is a very sensitive indicator of the atomic environment.
For this reason, we monitor the charge ¢ transferred from the
metallic surface to the molecule. Partial charges are measured
using the Bader electronic density decomposition (63, 64) and
defined as the deviation of the Bader charges from their formal
value. To be able to compute them in large systems, we trained
a neural network on a set of DFT calculations (Materials
and Methods) to predict partial charges given only the atomic
positions. This allows us to monitor the MD simulations through
the lens of underlying chemical changes.

Performing the OPES simulations along these two collective
variables results in effective sampling of all adsorbed states and the
dissociation process (SI Appendix, Fig. S12). The resulting free
energy surfaces (FES) are plotted in Fig. 64 for two contrasting
temperatures as a function of the N-N distance & and the sum
of the N charges g = g(/V2). Let us begin by analyzing the
low-temperature one, where we clearly find metastable states that
are characterized by distinct NV, charges. In the gas phase, we
have g = 0, but as soon as the molecule interacts with the
surface the charge changes. Indeed, it goes from a low value
(g =~ 0.3) when the molecule is adsorbed perpendicular to the
surface, be it 8-like or in a y-like vertical arrangement, to a
medium value (g ~ 1), which corresponds to a a-like horizontal
position, and finally to a very high value (g & 1.6) where one can
recognize the @’ precursor state. This is evident when looking at
the geometries in Fig. 6C, where atoms are colored on the basis of
their charge. In particular, we observe how the charge transfer is
asymmetrical between the two N atoms in the vertical states and
symmetrical in the horizontal ones. The vertical adsorption states
identified by calculations at 7 = 0 K (y and ) are characterized
by the same charge transfer. To resolve them, it is necessary
to project the free energy along the distance of N, from the
surface (SI Appendix, Fig. S9). There we see how, over the entire
temperature range, the free energy barrier between the two is so
small that they can be considered as part of the same metastable
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Fig. 6. Adsorption and decomposition mechanism. (A) Free energy as a
function of N-N distance and the N, partial charge. Local minima represent
the metastable states, and white dashed lines denote the minimum free
energy pathways in this plane. (B) Free energy calculated along the minimum

free energy pathways in the d — q space, from the gas phase (Ngg)) to the
adsorption states to the dissociated state (2N). See S/ Appendix, Fig. S15 for
the free energies scaled by the thermal energy kgT. The uncertainty on the
free energy profiles is below 0.02 eV for all temperatures; see S/ Appendix,
Fig. S13 for a block average analysis. Free energies are shown only up to an
N-N distance of 2, from which a harmonic restraint is applied. (C) Snapshots
of representative geometries of the adsorption states based on the amount
of charge transferred for T=300 Kand T = 700 K. Atoms are colored according
to charges predicted by the neural network model, with two different color
scales for the N and Fe atoms.

state. Furthermore, this shows that the only possible path to reach
the precursor a' state is to pass first a vertical position and then
a horizontal one.

PNAS 2023 Vol. 120 No. 50 e2313023120

The free energy profiles reported in Fig. 64 also show that
the increase in charge transfer is accompanied by a weakening of
the N-N bond, as discussed by Ertl et al. (18, 36). If we focus
on the dissociation barrier, we see that beyond the high charge
basins, a narrow tube leads the transition state which is located
at values ¢ &~ 2 and 4 &~ 1.7 which are highly consistent with
the chemistry of the process (31).

If we analyze the free energy surface at high temperature, we
find that the shape is about the same, with similar metastable
states as a function of charge and distance, albeit less defined.
However, there is no longer a correspondence between free
energy minima and classical adsorption states. As can be seen
from the snapshots of 7" = 700 K geometries shown in Fig. 6C,
the metastable states now correspond to an ensemble of mostly
disordered and defected structures. Consequently, if we set out
to enumerate all the minima of potential energy, we would find
countless geometrically distinct states. Using the charge ¢ as a
collective variable allows us to group all geometrically different
configurations according to their ability to weaken the N-N bond,
which is the driving force of the process.

We have computed similar two-dimensional free energy plots
in the range of temperature from 300 to 800 K (S7 Appendix,
Fig. $10). To make a detailed comparison between all these free
energies, it is better to make a one-dimensional projection along
the minimum free energy paths. Remarkably these pathways can
all be superimposed in the (d, q) plane (SI Appendix, Fig. S14)
in spite of the different underlying dynamical behavior. In
Fig. 6B, all these free energy curves are aligned to the a state
minimum, and we see once again a strong difference in behavior
between low and high temperature (SI Appendix, Fig. S15).
The low-temperature behavior is essentially that predicted by
Mortensen et al. modulo the merging of the vertical ¥ and
6 states. Notably, the free energy barrier between the a state
and the dissociated one is close to that obtained from static
DFT calculations (28, 33, 35, 65). However, if we increase the
temperature above 500 K, things change significantly. The free
energy barrier to dissociate from the & adsorption state increases
by about 0.2 eV between low and high temperatures. Even
more importantly, it is the very way in which the dissociative
chemisorption occurs that is altered. In fact, the @’ state, which
is the low-temperature precursor, is no longer metastable. As a
result, the NV, () to 2V reaction changes from a two-step process,
in which the triple bond is progressively weakened (33), to one
in which the molecule must find a critical configuration that
can transfer all the necessary charge. The destabilization of the
precursor state is due to the temperature-induced disruption of
the y7 cavities discussed earlier. In fact, if we artificially fix the
iron atoms, the & state remains metastable at high temperature

(SI Appendix, Fig. S11).

Transition State Characterization. To deepen our analysis of the
fate of the &’ site, we compute the distribution of the similarity
S(xny» x7) between the environment of the Fe atom that sits
below the N, (Materials and Methods) and the active site reference
7. We restrict this analysis to the high-charge (precursor) region
by selecting only configurations with ¢ > 1.35 e. At room
temperature the distribution peaks at values close to 1, which
means that NV, is effectively adsorbed inside the y7 environment
(i.e., o state); see Fig. 7, Top panel. In contrast, at 7 = 700 K,
the distribution peaks at smaller values, not compatible with the
traditional site, and only a small shoulder is associated with the
7 site. Thus, at 7 = 700 K, the probability of being adsorbed in
the y7 cavity is highly suppressed relative to room temperature.
In particular, this reduction is greater than the decrease in the
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Precursor vs transition state configurations
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Fig. 7. High charge vs. transition state configurations. Distribution of the
similarity between the neighborhood of the Fe atom on which N, is
located and the yy state for highly charged configurations (Top) and for
those in the transition state ensemble (Bottom). They are computed with a
Gaussian kernel density estimation, and reweighted to reflect the equilibrium
distribution (Materials and Methods). All curves are normalized such that their
integral sums to 1. The snapshots below the figure are samples of the two
peaks of the distribution of transition states at T = 700 K, representing
configurations with high similarity (7 type, Right) and low similarity (defected
structures, Left). More structures are shown in S/ Appendix, Fig. S17. Atoms
are colored according to the charge transfer with the same color scheme as
in Fig. 6.

number of active sites alone reported in Fig. 5. This reinforces
our argument that at high temperature we cannot rely on the
correspondence with local minima of potential energy at 7' =
0 K, as surface dynamics leads to a distortion of adsorption
configurations.

We then study the nature of the states that pertain to the
transition region for N, dissociation. For each temperature, we
performed a committor analysis on a subset of configurations
extracted around the maxima of the minimum free energy
pathways (Materials and Methods). This allows to identify an
ensemble of transition state configurations, defined as atomic
realizations for which the probability to go into the reactant
or in the product states is equal. If we plot the histogram of
these configurations as a function of the charge transferred, the
resulting distribution is centered around the ¢ = 2 value at
all temperatures (SI Appendix, Fig. S16). This is a reassuringly
meaningful value since the transfer of two electrons is needed

to break the N, triple bond (31). In the Fig. 7, Bottom, we

https://doi.org/10.1073/pnas.2313023120

report the distribution of transition states’ similarity with the y7
arrangement for 7' = 300 and 7" = 700 K. At low temperature, the
reactive configurations are only of the y7 type, while at the higher
temperature, a number of new atomic arrangements capable
of transferring two electrons are activated by the dynamical
roughening of the surface (Movie S3). However, even in this
second regime, the distribution remains peaked at a value
compatible with the y7 state, unlike in the previous analysis
of high-charge transfer configurations. This tells us that although
the dynamics of surface atoms significantly suppresses the o’ state,
the formation of the y7 active site remains crucial for nitrogen
decomposition, in confirmation of previous studies. We can thus
describe it as the eye of the needle through which the N, must
pass to break the bond.

Temperature Dependence of Chemical Reactivity. In order to
understand the consequences that the increase of the free energy
barriers has on the chemical reactivity, we estimate the rate
coefficients of the Nz (@) — 2N reaction step using the Eyring—
Polanyi equation:

kg T AGH

= =,
K }] exXp RT

(1]

where the AGT values at each temperature are taken from the
free energies computed from the MD simulations (Fig. 6),
and the transmission coefficient k is taken equal to 1. The
corresponding rate coefficients are reported in Fig. 8. Once again,
one can clearly notice two distinct regimes where the rates can
be linearly interpolated. These results can be contrasted with an
extrapolation using only 7" = 300 K data, which overestimates
the reaction rates at high temperatures (S/ Appendix, Fig. S18).
We can also compare our results with available kinetic models
built to reproduce the experimental data, which refer to two
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Fig. 8. Kineticratesforthe N, (a) — 2N step. Logarithm of the reaction rates
as a function of inverse temperature. Red dots indicate the values estimated
from the free energy profiles using the Eyring-Polanyi equation. To highlight
the existence of two different behaviors, the solid red lines represent linear
interpolations of the data in the low (300 to 500 K) and high temperature
(600 to 800 K) regimes, while the dashed red line connects the two regimes.
Literature data are calculated from the Arrhenius equation k = Aexp —Eq/RT,
using the pre-exponential factors A and the activation energies Eq from
refs. 18, 40, and 66. High-temperature data are plotted between 650 and
770 K, while low-temperature data between 275 and 325 K.
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very different regimes. In the case of Erd et al. (18), they were
obtained from experiments done in ultrahigh vacuum and low
temperatures, between 120 and 150 K for NV, molecular adsorp-
tion and between 214 and 423 K for dissociative chemisorption.
In the case of Bowker et al. (41) and Stoltze and Norskov (40), the
kinetic models were optimized to reproduce the rates of ammonia
synthesis under industrial conditions (650 to 770 K and 1 to
300 bar), thus also taking into account lateral interactions with
adsorbed species. Each model can therefore be applied only in
the narrow range of temperatures considered. Even considering
the uncertainty in the modeling of the experimental data and
the different pressure conditions under which calculations and
experiments were performed, we find it rather satisfactory that
we can reconcile the two limiting behaviors in a single model.

Conclusions. Dynamics has a disruptive effect on the morphology
of the Fe (111) surface, with great consequences on the adsorption
and dissociation of nitrogen molecules. This results in a drastic
change in the behavior of the catalyst when going from low to
high temperature, a change that takes place in a highly nonlinear
way. This shows the danger of extrapolating high-temperature
behavior from low-temperature experiments or theories.

More generally, our work puts into question a static approach
to catalysis, especially industrial catalysis. It is not a static
atomic arrangement that induces catalysis, but catalytic sites
are continuously formed and disrupted. While this may seem
detrimental at first, this diffusive behavior will be instrumental
in establishing a catalytic steady state that is essential for long-
term stability (2).

Even though it was not our intention to unveil the full
complexity of the Haber—Bosch process, which involves multiple
reaction steps where lateral interactions, adsorption intermedi-
ates as well as promoters play a crucial role, the dynamical
scenario unveiled here allows drawing important conclusions.
The transient existence of the dissociation site for nitrogen
might prevent the resulting reactive species from forming a
stable nitride (67) thus poisoning the catalyst. Likewise, any
co-adsorbate that hinders the dynamic rearrangement of the iron
surface would act as a strong poison. The extreme sensitivity of the
catalysts (68) against oxygen, water, or sulphur species reducing
the performance, already at concentrations way below the onset
of phase formation as oxide or sulphide, would find a functional
explanation. The detailed analysis of the charge re-distribution
between iron and nitrogen presented here defines a successful
ammonia synthesis catalyst to be bi-functional. As potent as the
high availability of negative charge is for the reductive dissociation
of di-nitrogen, as much a different active site will be needed to
allow bond formation between the resulting nitrido-ion with
the hydride form of activated hydrogen being omnipresent on
the catalyst surface. This request may explain part (69) of the
crucial role of “promoters” that was found (70) experimentally.
These promoters may function by forming nitride-metallate (71)
intermediates allowing hydrogenation by partly anionic hydrogen
species. The present work forms an excellent basis for elucidating
optimal configurations of iron and its co-catalysts operating
under realistic pressures and temperatures with gases of realistic
chemical composition and opens a way toward circumventing
the scaling relation barrier (72) limiting the performance of metal
catalysts for ammonia synthesis.

Materials and Methods

DFT Simulations. The database needed to train the ML potential consists of a
set of ab initio molecular dynamics (AIMD) trajectories, as well as single-point
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calculations of configurations generated by the ML potential during the active
learning procedure (see below). In both cases, simulations are performed using
the PWscf code of Quantum ESPRESSO (73-75) supplemented by the PLUMED
plugin (76) which is an open-source, community-developed library (77) for
enhanced sampling calculations.

Inthe lack of a golden standard for metallic systems like iron, we use PBE (78)
as exchange-correlation functional. It has been shown that it reproduces well
both the bulk (79) and surface properties (80) of iron. Of particular relevance
here are surface energies, which are in good agreement with experimental
data (80). It also provides a good description of both the interaction of N
with the surface (28) and the adsorption of nitrogen (29). Furthermore, the
interaction with other small molecules is also well described, as reported by
Carter et al. (81-83). We note in passing that machine learning potentials can
also be used to investigate in a computationally efficient way the performance of
differentfunctionals by leaming corrections to the PBE model in a delta-learning
scheme (84).

Ultrasoft RRKJ pseudopotentials (85) replace explicit core-valence electron
interactions, while electron density and wavefunctions are expanded in plane
waves with energy cutoffs of 640 and 80 Ry, respectively. Occupation is treated
by the cold smearing technique of Marzari et al. (86) with a Gaussian spreading
of 0.04 Ry. Spin polarization is included to correctly describe the magnetic
properties of iron. We checked whether there was an influence of temperature
and pressure on the lattice constant, and this was negligible. Convergence
against cutoff energy, Monkhost-Pack sampling, and occupation was tested,
and the setup described was chosen as a compromise between feasibility and
accuracy. Simulations were carried out with a time step of 1.0 fs in a constant
volume and temperature (NVT) ensemble using the stochastic velocity rescaling
thermostat (87). In order to span a larger portion of the configurational space,
we simulated the systems at different temperatures ranging between 600 and
800 K. Slab models with 5, 8, and 12 atomic layers ( 45, 72, and 108 atoms
respectively)are built, and avacuum layer of at least 10 A is set in the z-direction,
thus avoiding the need to correct for dipole interactions. The first two lowest Fe
layers are kept fixed during optimization and molecular dynamics calculations.
The Brillouin zone was sampled using a 2 x 2 x 1 Monkhost-Pack k-point
grid (88). The same setup is adopted to analyze the cleavage of the N, bond
on the Fe(111) surface. Enhanced sampling simulations are employed to speed
up ab initio simulations and include configurations of adsorption/desorption
events and especially of the cleavage of the N, bond (more details below).

Machine Learning Potential. Given a set of DFT reference calculations, we
optimize a neural network-based potential as to reproduce at best energies
and forces given only the atomic positions and the chemical species. We used
the Deep Potential Molecular Dynamics Smooth Edition scheme (53, 54) as
implemented in DeePMD-kit software (89). The energy is decomposed as a
sum of atomic contributions that depend on local environments within a cut-off
range. Two different networks are used, one for embedding the atomic positions
into symmetry invariant descriptors and the other for the regression task. The
embedding network has three hidden layers and [30, 60, 120] nodes per layer,
with an embedding matrix size of 20. The fitting network has three hidden layers
and [240,240,240] nodes per layer. The cutoff radius was set to 6.0 A with a
switching function that decays from 5.7 Ato ensure continuity. The learning rate
decays from 0.001 to 3.5 - 10~ with a decay constant of 4 epochs. The loss
function used is a weighted root mean square error (RMSE) on energy and forces,
with prefactors varying during training from 0.02 to 1 for energy and from 1,000
to 1 for forces. The potentials used during the active learning phase are trained
for 200 epochs, while the final one is trained for 800 epochs. The database is
divided into training, validation, and test (80-15-5%). Four different models are
trained on different permutations of the training and validation databases, while
the test portion is used only to assess the accuracy of the model at the end of the
fitting procedure.

Active Learning Protocol. After training an initial ML model on standard and
enhanced AIMD simulations, an active learning strategy is used (90). This means
using the ML model to collect new configurations through MD simulations,
rather than from AIMD. Specifically, we can use the SD of predictions provided
by a committee of NN modelsasa proxy for uncertainty. This allows us to select for
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DFT calculations only a subset of structures that are not already well described by
the potential and add them to the training set. Nevertheless, performing active
learning using only standard MD simulations is of limited effectiveness in this
context, as it does not allow the reactive events to be thoroughly sampled. For
this reason, we have coupled this procedure with enhanced sampling methods
which allow to collect all the relevant geometric structures, providing an ab
initio-grade description of the whole reaction pathway (16).

We used the metadynamics method to accelerate the sampling of the
adsorption/desorption process as well as the cleavage of the N, bond using
the collective variables and the parameters described below. Starting with the
training set generated at T = 700 K, we performed simulations at the other
temperatures as well to be sure that both the surface and the N, chemisorption
are well described throughout the temperature range. To minimize the number
of costly single-point DFT calculations, only configurations for which the SD of
a force component (calculated from 4 models) is greater than 200 meV/A are
considered. In total, five different active learning iterations were performed. At
each round, we selected about 2k configurations for which we computed single-
point DFT calculations, resulting in a total of about 10k structures collected via
active learning.

Molecular Dynamics Simulations. Classical molecular dynamics simulations
were performed with Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) software (91), patched with DeepMD-kit 2.1 (89) and PLUMED (76).
NVT simulations were performed with an integration time step of 0.5 fs. The
temperature was controlled using stochastic velocity scaling thermostat (87)
with a coupling constant of 100 fs.

During the active learing phase, simulations of small systems were
performed witha 3 x 3 x N slab and N, is the number of layers equal to 5, 8
or 12, such that their energy and forces can be computed with DFT calculations.
When the potential is optimized, simulations lasting 20 ns were performed with
an8 x 8 x 12 slab corresponding to 768 Fe atoms together with an Ny molecule
for the adsorption/dissociation simulations. In all simulations, the bottom two
layers were fixed to impose a boundary condition that mimics a semi-infinite
slab. Periodic boundary conditions were applied in the x- and y-directions, while
along z a reflecting wall was applied above the surface. The distance of the wall
from the top layer of the surface depends on the temperature and is such that
a partial pressure of Ny equal to 10 bar, according to the equation of state for
ideal gases, is maintained. Input and results of the MD simulations, have been
deposited in Zenodo.

Surface Analysis. To analyze the morphology and dynamics of the iron surface,
we first apply the Alpha-Shape method (92), as implemented in OVITO (55),
to reconstruct the surface from the atomic positions. This method constructs a
three-dimensional surface mesh using a virtual sphere to identify the surface
separating the accessible volume (void) from the inaccessible volume (slab). The
radius of the sphere used is equal to 2 A. This makes it possible to identify the
atoms that belong to the surface at each time step and limit the subsequent
analysis to these, even if they change over time as is the case here due to high
mobility.

Surface roughness is calculated as the SD of the heights of the atoms on the
surface:

where the sum runs over the Ng(t) surface atoms identified by the Alpha-Shape
method attime t.

The diffusion coefficient of surface atoms is computed from the time-lagged
displacement as follows:

((X(t+ 1) = X()) gt

D=
2t

(3]

where the average is calculated only on surface atoms. In SI Appendix, we show
the dependence of the diffusion coefficient on the lag-time and its asymptotic
convergence. Similar values can be extracted from the asymptotic behavior of
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the mean square displacement; however, we believe this method is better suited
to the nature of diffusion, which occurs as jumps between lattice sites.

Environment Similarity. To compare the environment around an atom with
a reference, we use the environment similarity measure introduced by Piaggi
and Parrinello (93). This measure can be viewed as a non-rotationally invariant
version of the popular SOAP (Smooth Overlap of Atomic Positions) kernel (94).
First, we define a smooth local density around the central atom by fitting a
Gaussian to the position of each neighbor i:

Iy — 1|2
P =2 e | = | [4]

iex

Here, o is a broadening parameter and r; the position of atom j with respect to
the central atom. We then define the environment similarity between y and a
reference y,,f as:

S xeef) = / drp (0P (), (5]

which becomes:

1
S Xref) = EZ D e |-

i€ X JE Xef

Iri — f?lz
T 7 [6]

once we perform integration and we normalize the kernel such that
S(Xrefs Xref) = 1. Here, nrepresents the number of atoms in the environment
Kref-

eThe environment chosen here as reference for the analysis of active sites is
the y7 environment defined in Fig. 5. This is the environment of a surface atom
of the third layer corresponding to the cavity in which the N, is adsorbed in
the o state, surrounded by 7-coordinated Fe atoms. As for the computational
parameters, we included all Fe neighbors up to 3.5 A for constructing the
local density. To remove thermal fluctuations, we first performed a moving
average of the atomic positions with a window of 2.5 ps. Furthermore, we used
different values of the broadening parameter o depending on the simulation
temperature. Specifically, we used ¢ = 0.15 for T < 500 K, ¢ = 0.17 for
T = 600,06 =0.185for7T = 700and ¢ = 0.2 forT = 800K.These numbers
were chosen so that the position of the peak of y; atoms is approximately the
same for the ideal case (i.e., for a surface with only thermal fluctuations and no
observed diffusion, see the dashed lines in S/ Appendix, Fig. S8).

Once we have calculated the environment similarity for each atom on the
surface, we definethesites y7 asthose environmentsthathave S( v, x7) > 0.8.
The choice of the threshold value is based on the minima of the ideal distribution
of environment similarity at each temperature (S/ Appendix, Fig. S8) where the
ideal environments are defined above.

Neural Network Charge Model. In order to predict the atomic charges from
the atomic positions generated by the ML-based molecular dynamics, we fitted a
second neural network on a dataset of charges computed with DFT. This allows us
to predict the charges given only the atomic positions and the chemical species.
To extract the charges from the electron charge density, we used the Bader
decomposition scheme (63, 64) to compute the number of valence electrons.
Then, charges were defined as the deviation of Bader charges from their formal
value. Here, the reference values were taken to be equal to 8 e and 5 e for
Fe and N atoms, respectively. The charges were computed for a subset of
configurations taken from those used to train the potential, for a total of about
10k configurations, which were split into training and validation sets (80 to
20%).

To fit the charges, we used the deep tensor neural network SchNet
architecture (95), which was proposed for fitting ML potentials, as implemented
in the SchNetPack library (96). To represent the local atomic environment, we
used a SchNet module with five interaction layers, a 3.5 A cosine cutoff with
pairwise distances expanded on 30 Gaussians and 64 atom-wise features and
convolution filters. As for the output, we used an atom-wise module with two
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hidden layers and (64,64) nodes per layer. The loss function used was the mean

square error between the predicted charges {g;} and the reference ones{qIDFT}:
_ ] _ DFT\2
L= Do (ai—g") [7]

i

We trained the NN using the optimizer Adam (97) and a learning rate of 0.001
with the early stopping criterion. The model obtained with these parameters has
a root mean square error on the validation set equal to 10~% e.

Enhanced Sampling Simulations. Even with the availability of a machine
learning potential, many important processes such as chemical reactions
continue to occur on time scales much longer than those accessible to standard
molecular dynamics simulations. To enable these rare events to be simulated,
numerous advanced sampling methods have been developed, and in particular,
one family of these is based on the so-called collective variables s(R) (CVs). The
CVs are functions of the atomic coordinates R and are chosen to be the most
difficult to sample modes of the system. Once they are identified, an external
bias potential V(s(R)) is added to the system. The role of the bias is to enhance
the sfluctuations and speed up their sampling. Thus, with an appropriate choice
of s, large energy barriers can be overcome so that rare events are accelerated
and take place in an affordable computational time. In this work, we have used
two such techniques: Metadynamics (51, 52) and the more recent OPES (50).
The bias potential was added to the MD engine via the PLUMED plugin (76), be
it Quantum Espresso (73-75) or LAMMPS (91).

Metadynamics. Is a well-established method (51) in which a history-
dependent bias potential V(s, t) is constructed as a sum of repulsive Gaussians
centered atthe visited pointsin the collective space. The effectis to discourage the
system from visiting already explored configurations. In particular, we consider
its Well-Tempered variant (52), where the height of the hills is decreased over
time as a function of the already deposited bias with a rate that is determined by
the parametery. During the training data collection with abinitio simulations, we
used well-tempered metadynamics toaccelerate both adsorption and cleavage of
the Ny molecule on the Fe(111) surface. This allowed us to collect configurations
along the reactive paths and teach the NN how to represent the potential along
the chemical reaction. In these calculations, we used as CV the distance in the z
direction between the N, center of mass and the bottom of the slab to accelerate
N, adsorption, and the N-N distance to speed up Ny dissociation. In both cases,
a new Gaussian was deposited every 50 steps, with an initial height equal to 6
kJ/mol and a SD equal to 0.04 A, with a y = 30.

oPEs. In the second stage in which we studied the adsorption and
decomposition of N with the ML potential, we used the On-the-fly Probability
Enhanced Sampling (OPES) method (50). OPES is an evolution of metadynamics
that converges faster and requires fewer hyperparameters to be chosen. It also
allows us to limit the amount of bias that is deposited to avoid exploring high
free energy regions(98). In this approach, rather than building on the fly the bias
V(s(R)), the equilibrium probability distribution P(s) is reconstructed using a
Gaussian Kernel density estimator (KDE). Given a preassigned target distribution
pY(s), the bias is then defined as:

1. P90
V(s) = —Blog OR

At convergence, V (s) drives the s distribution to the target p9(s). The
1

(8]

target distribution is chosen to be the well-tempered one: p9(s) o P(s)7, in
which the equilibrium distribution is broadened and the free energy barriers
are lowered by a bias factor y. OPES simulations for studying the adsorption
and decomposition of N, used the N-N distance and iron-nitrogen coordination
numberas collective variables. We used the iron-nitrogen coordination number
as a proxy for the charge transfer. As can be seen in S/ Appendix, Fig. $12,
these two quantities are highly correlated in the N state, while the coordination
number fails to describe the charge transfer in the transition region and beyond.
In this second regime, the second collective variable used (N-N distance) is able
to describe the reaction progress, so it is essential to use both. The coordination
number is calculated in a continuous and differentiable manner as follows:
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The parameters used are g = 2.5 A, n = 6, and m = 12. The update of
the OPES bias was performed every 1,000 steps, with the initial width of the
kernels equal to 0.025 for d(N, N) and 0.25 for Cy . The barrier parameter
was set to 80 kJ/mol. Finally, it should be noted that a harmonic restraint was
applied atd > 2 A with an elastic constant equal to 2,000 kJ/mol/A2. This was
to facilitate the reversible sampling of the adsorption states and the dissociation
barrier, without the need to wait for the recombination to occur. Note that the
equilibrium value of the N-N distance in the 2N state is greater than 2 A , and
therefore, it is not sampled.

Free Energy Calculations. At convergence, the free energy surface (FES) along
the collective variables used for biasing can be recovered from the OPES
simulation as:

F(s) = —kgT log P(s). [10]

A more general way, which also allows the FES to be calculated along CVs
other than those used for bias, is through a reweighting procedure (50). When
the bias is in a quasi-static regime, we can recover the expectation value of any
quantity such as:

(0 (R) e//6RY),

0@ == vim,,

[11]

In particular, if we are interested in the free energy profile along a given collective
variable s, we have P(s) = (&(s — s(R)). To approximate P(s) from the
simulation data, we use a weighted Gaussian density estimator, with the weights
corresponding to wy = e=PV(s)_ For the calculation of the minimum free
energy pathways from the two-dimensional FES, we used the MEPSA (Minimum
Energy Path Surface Analysis) package (99).

Committor Analysis. To identify the transition state (TS) configurations, we
selected a range around the dissociation barrier in the minimum free energy
path and randomly chose within this range n configurations from the simulation
trajectories at each temperature. For each of the selected configurations, m short
MD simulations are started by initializing the velocities with a different random
seed. The committor probability pc, i.e., the probability of first committing to
the dissociated 2N state rather than falling back into the N, state, is then
monitored. Configurations that have a committor probability p. ~ 0.5 are part
of the transition state ensemble. In practice, at each temperature studied, we
extracted n = 500 configurations, and for each ofthem, we tested the committor
behavior running m = 50 unbiased simulations with different initial velocities.
We classified as belonging to the transition state ensemble those configurations
forwhich 0.25 < p¢ < 0.75. In such a way, we harness 100 to 150 transition
state configurations for each temperature.

Data, Materials, and Software Availability. Input files and results of MD
simulations as well as the code used for the analysis have been deposited in
Zenodo (https://doi.org/10.5281/zenodo.10000226) (100).
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