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Abstract 
 
The ability to flexibly switch between tasks develops during childhood. Children’s task-

switching performance improves with practice, but the underlying processes remain unclear. 

We examined how nine weeks of task-switching training affect performance and task-related 

activation and connectivity as assessed by functional magnetic resonance imaging. Children 

(8–11 years) were pseudo-randomly assigned to three groups: high-intensity task switching 

(SW; n = 70), high-intensity single tasking (SI; n = 72), and passive control (n = 41). After 

three weeks, drift-diffusion modeling revealed faster evidence accumulation and more 

cautious responding in both training groups relative to the control group. At the end of 

training, these changes were maintained in the SW group only, that also showed activation 

decreases in dorsolateral prefrontal cortex. Functional connectivity increases associated with 

task-switching demands became less pronounced with practice in both training groups, with 

more persistent decreases in the SI group. We conclude that task-switching training altered 

performance by accelerating evidence accumulation and promoting more cautious 

responding. Faster evidence accumulation along with decreased task-related activations 

suggest increased processing efficiency in frontoparietal regions with training. More intense 

task-switching training helped maintain these changes, possibly by facilitating plastic change 

through the protracted mismatch between processing supplies and environmental demands. 

 

 

Keywords: child development, drift-diffusion modeling, prefrontal cortex, task switching 
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1. Introduction 

Executive functions describe a set of control processes supporting goal-directed behavior 

(Diamond 2013). Task switching, the ability to flexibly switch between different tasks, 

constitutes a key component of executive functions (Miyake et al. 2000; Miyake and 

Friedman 2012) and continues to improve across childhood (Cepeda et al. 2001; Crone et 

al. 2004; Reimers and Maylor 2005; Crone, Bunge, et al. 2006; Huizinga and van der Molen 

2007; Weeda et al. 2014). Accordingly, a number of studies have aimed to improve 

children’s task-switching abilities with training (Karbach and Kray 2009; Kray, Karbach, 

Haenig, et al. 2012; Zinke et al. 2012; Kray et al. 2013; Dörrenbächer et al. 2014; Karbach et 

al. 2017; Zuber et al. 2023). However, the mechanisms underlying training-related task-

switching improvements in childhood are not yet well understood. The present study seeks 

to close this gap by examining changes in the cognitive and neural processes underlying 

task switching in children aged 8 to 11 years, an age period during which children continue 

to show major improvements in executive functions (Tervo-Clemmens et al. 2023). 

 

1.1 Age differences in task-switching 

To examine task switching in the laboratory, task-switching paradigms require individuals to 

perform two or more tasks in an intermixed fashion, such that each trial constitutes either a 

repeat of the previous task or a switch to a different one (cf. Koch and Kiesel 2022). The 

demand to switch to a different task elicits performance costs (i.e., switch costs), evident in 

lower accuracy and longer response times (RTs). Switch costs are assumed to reflect the 

updating of the relevant task set and inhibition of the no-longer relevant task set (e.g., Allport 

et al. 1994; Rogers and Monsell 1995; Meiran 1996; Mayr and Kliegl 2000; Wylie and Allport 

2000). Blocks of trials involving task switches are referred to as mixed blocks and can be 

compared to single blocks in which participants perform the different tasks separately. The 

comparison of mixed and single blocks allows one to capture processes that are common to 

repeat and switch trials within mixed blocks (i.e., mixing costs), in particular the increased 
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demands to maintain and monitor multiple task sets (e.g., Rubin and Meiran 2005; Pettigrew 

and Martin 2016). Compared to young adults, children show greater mixing and switch costs, 

with switch costs approaching adult levels around age 10, while age differences in mixing 

costs continue to be evident up to adolescence (Cepeda et al. 2001; Crone et al. 2004; 

Reimers and Maylor 2005; Crone, Bunge, et al. 2006; Huizinga and van der Molen 2007; 

Manzi et al. 2011).  

Cognitive processes involved in task switching can be assessed in a more granular 

manner using drift-diffusion models (Ratcliff 1978; for a review see Schmitz and Voss 2012). 

Specifically, drift rates – the speed of evidence accumulation for the correct response – are 

generally greater on repeat compared to switch trials, thus allowing a participant to reach a 

decision for the correct response more quickly on repeat trials (Schmitz and Voss 2012). The 

boundary-separation parameter, also referred to as the decision threshold, has been 

associated with response caution. It has been suggested to capture interindividual 

differences in strategy during task switching as well as intraindividual differences between 

conditions, such that boundary separation is greater on switch than on repeat trials, 

especially when switches are unpredictable (Karayanidis et al. 2009; Schmitz and Voss 

2012). Finally, the non-decision time parameter reflects the encoding of cues and stimuli and 

preparatory processes, including the reconfiguration of the task set, which are thought to be 

more demanding on switch than repeat trials (Schmitz & Voss, 2012). Studies have further 

suggested that the non-decision time parameters additionally capture processes after the 

decision has been made, reflecting the continuous processing of the stimuli (Resulaj et al. 

2009; Schroeder and Verrel 2014). Note however that these post-decision aspects of the 

non-decision time parameter have not been systematically examined in task-switching 

studies. 

To date, drift-diffusion parameters during task switching have rarely been examined 

in developmental studies. Weeda and colleagues (2014) investigated drift-diffusion 

parameters on showed that children become more efficient at accumulating evidence for the 

correct response between ages 7 and 15 years, reflected in increased drift rates with age. 
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Compared to 7–11-year-olds, 15-year-olds showed smaller boundary separation, suggestive 

of less cautious responses, and more efficient stimulus encoding and response selection, 

indexed by lower non-decision time. All parameters approached adult levels between ages 

11 and 15 years, indicating that most developmental changes in evidence accumulation, 

response caution, and preparatory processes during task switching mature during late 

childhood to mid-adolescence (Weeda et al. 2014; see also Schuch and Konrad 2017). 

Notably, studies to date only investigated drift-diffusion parameters for switch and repeat 

trials within mixed-task blocks and did not include a single-task condition. The contributions 

of these processes to developmental improvements in mixing costs are thus unknown. This 

constitutes a significant gap in our understanding of task-switching development, since 

mixing costs show greater improvements in late childhood than do switch costs (Cepeda et 

al. 2001; Reimers and Maylor 2005), and thus greater potential for training-related 

improvements. 

 

1.2 Task-switching training 

Task-switching abilities can be improved with training across the lifespan (Kray and 

Lindenberger 2000; Cepeda et al. 2001; Minear and Shah 2008; Berryhill and Hughes 2009; 

Strobach et al. 2012; von Bastian and Oberauer 2013; Dörrenbächer et al. 2014). During 

task-switching training, participants typically train switching between tasks over the course of 

several sessions, with studies consistently showing improved performance on the trained 

tasks (Kray and Dörrenbächer 2020). By comparing performance improvements with task-

switching training to an active control group that practices the same tasks in a single-task 

condition, studies have demonstrated that it is specifically switching between tasks as 

opposed to repeated practice of the task rules that leads to improved performance (Minear 

and Shah 2008).  

In studies with adults, mixing costs were substantially reduced or even eliminated 

upon training (Berryhill and Hughes 2009; Strobach et al. 2012), while switch costs were 

mostly reduced but remained present after training (Kray and Lindenberger 2000; Cepeda et 
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al. 2001; Strobach et al. 2012). This pattern of results suggests that the demands on task-set 

maintenance and monitoring processes associated with mixing costs (Rubin and Meiran 

2005; Pettigrew and Martin 2016) can be met more effectively with training, resulting in 

comparable performance in mixed- and single-task blocks. From a developmental 

perspective, these results stress the potential of training to mitigate age differences in task 

switching, which are particularly pronounced with respect to the ability to maintain and 

monitor multiple task sets (Cepeda et al. 2001; Reimers and Maylor 2005).  

Indeed, task-switching training in children leads to improvements in both mixing and 

switch costs (Cepeda et al. 2001; Karbach and Kray 2009; Kray, Karbach, Haenig, et al. 

2012; Zinke et al. 2012; Kray et al. 2013; Dörrenbächer et al. 2014; Karbach et al. 2017; 

Zuber et al. 2023). Some studies showed even greater training gains in children than adults 

(Cepeda et al. 2001; Karbach and Kray 2009; Karbach et al. 2017) suggesting that task 

switching abilities may be especially malleable while they are still developing (cf. Wass et al. 

2012; Kühn and Lindenberger 2016).  

While these studies demonstrate that children approach adult levels of task-switching 

performance upon training, it is unclear whether neural activation patterns associated with 

task switching also become more adult-like or whether children improve their performance 

by strengthening different, potentially child-specific activation patterns. Moreover, varying 

switching demands during training, in combination with the opportunity to train the task rules 

during single tasks, may be particularly beneficial in children, as they may have additional 

difficulties in representing the different task-relevant rules (Karbach and Kray 2009). 

 

1.3 Changes in neural processes with training 

Task switching has been associated with increased fMRI activation in frontoparietal brain 

regions (for recent meta-analyses, see Worringer et al. 2019; Zhang et al. 2021), in 

particular in the inferior frontal junction (IFJ; cf. Derrfuss et al. 2005), the superior parietal 

lobe (SPL), and the dorsolateral prefrontal cortex (dlPFC), along with functional connections 

among them (Yin et al. 2015; Dajani et al. 2020). Training studies of task switching or dual 
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tasking in adults suggest that activation in these regions decreases with training (Dux et al. 

2009; Jimura et al. 2014; Garner and Dux 2015). These results obtained for task-switching 

training are consistent with training studies of executive functions in general, which also 

showed decrements in brain activation with training (Landau et al. 2004; Landau et al. 2007; 

Dux et al. 2009; Schneiders et al. 2011; Jimura et al. 2014). At the same time, a substantial 

number of executive-function training studies has also reported training-related increases in 

activation (Olesen et al. 2004; Erickson et al. 2007; Westerberg and Klingberg 2007; Jolles 

et al. 2010; Schweizer et al. 2013; Buschkuehl et al. 2014). As a result, the overall picture of 

training-induced quantitative changes in fMRI activation is mixed (Landau et al. 2004; Kelly 

and Garavan 2005; Buschkuehl et al. 2012; Hsu et al. 2014; Constantinidis and Klingberg 

2016). Decreased activation has been interpreted as improved efficiency of rule processing 

in frontoparietal regions, while increased activation has been interpreted as stronger 

involvement of the corresponding brain regions in task execution (Poldrack 2000; Kelly and 

Garavan 2005; Kelly et al. 2006). Additionally, connectivity among frontoparietal regions has 

been found to increase with cognitive training, both at rest (Jolles et al. 2013; Mackey et al. 

2013; Guerra-Carrillo et al. 2014) and during task performance (Kundu et al. 2013; 

Thompson et al. 2016). 

Neuroimaging studies of age differences in task switching have shown that children 

recruit similar brain regions as adults, albeit less adaptively modulating task-related 

activation with increasing switching demands (Bunge and Wright 2007; Velanova et al. 2008; 

Wendelken et al. 2012; Mogadam et al. 2018; Engelhardt et al. 2019; Kupis et al. 2021; 

Zhang et al. 2021; Schwarze et al. 2023; but see Crone, Donohue, et al. 2006; Morton et al. 

2009). To date, no studies have investigated the changes in neural processes associated 

with task-switching training in childhood. Based on the existent cognitive training literature, 

we hypothesized two alternative patterns of neural change. First, with training, children may 

show reduced activation in frontoparietal brain regions, similar to one of the training-related 

patterns observed in adults (Landau et al. 2004; Landau et al. 2007; Dux et al. 2009; 

Schneiders et al. 2011; Jimura et al. 2014). Such a pattern has been previously 
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demonstrated with attention training in children: investigating the time course of activation 

using electroencephalography, Rueda et al. (2012) showed faster recruitment of the 

attention network after training. 

Second, cognitive training in children may have similar effects on neural processes 

as age-dependent maturation (Jolles and Crone 2012), such that with training, children’s 

brain activation becomes increasingly similar to the activation seen in adults (Rueda et al. 

2005; Jolles et al. 2012). For task switching, such a pattern would be reflected in more 

pronounced increases of brain activation with greater task-switching demands (e.g., 

Wendelken et al. 2012; Schwarze et al. 2023). Consistent with this hypothesis, studies have 

reported more adult-like connectivity patterns with working-memory training in children (Astle 

et al. 2015; but see Jolles et al. 2013) and a combined executive function training in 

adolescents (Lee et al. 2022). Note that training-induced increases in activation reported in 

previous studies in adults (Olesen et al. 2004; Erickson et al. 2007; Westerberg and 

Klingberg 2007; Jolles et al. 2010; Schweizer et al. 2013; Buschkuehl et al. 2014) may be 

indistinguishable from activation increases due to more adult-like activation with training.  

Alternatively or additionally, children may also show qualitative changes by recruiting 

additional or different brain regions to meet increased demands on task-switching upon 

training (Buschkuehl et al. 2012; Jolles and Crone 2012). This would speak to fundamentally 

different training effects in children compared to adults, potentially due to the continuing 

development of the underlying neural circuitry (Galván 2010).  

 

1.3 Present study 

The goal of the present study was to shed light on the cognitive and neural processes 

supporting training-induced improvements in task switching in children aged between 8 and 

11 years. To this end, we leveraged computational approaches to model cognitive processes 

during task switching (cf. Reinhartz et al. 2023) in combination with the examination of 

neural processes in two groups that trained with different dosages of task-switching over 

nine weeks. To elucidate trajectories of change beyond pre- and post-training measures (cf. 
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Lindenberger and Lövdén 2019; Lövdén et al. 2020), participants performed task switching 

in the MRI scanner or MRI simulator on two occasions during the training period in addition 

to the pre- and post-training sessions. We expected task-switching performance to improve 

with training in both groups, resulting in increasing drift rates, decreasing boundary 

separation, and decreasing non-decision times during mixed blocks, with changes potentially 

happening on different trajectories in the different training groups. Specifically, we expected 

less extensive or slower changes in children who trained smaller doses of task switching. 

We further sought to test the hypotheses regarding neural changes outlined above. All 

hypotheses were preregistered (https://osf.io/by4zq/). 

To briefly preview the results, drift rates and boundary separation increased for both 

groups after the first three weeks of intensive training, indicating both faster evidence 

accumulation and more cautions responses, respectively. The observed increases in drift 

rate and boundary separation were greater for the intensive task-switching group, 

particularly in the mixed blocks. The high-intensity task-switching group maintained these 

increases for the rest of training, while the initial increases in the high-intensity single-tasking 

group returned to pre-training levels by the end of training.  

On the neural level, children in the high-intensity task-switching training group 

showed decreased activation in the dlPFC across conditions. Functional connectivity among 

frontoparietal regions was higher on repeat than on single trials and decreased in both 

training groups. These changes were more pronounced in the intensive single-tasking group 

towards the end of training. Taken together, these results provide first insights into the 

dynamics of training-related change in the cognitive and neural processes supporting task 

switching in childhood and suggest that with training, children became more efficient in 

dealing with the demands of task switching.  
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2. Materials and Methods 

Hypotheses and plans for analysis were preregistered before the start of data analysis at 

https://osf.io/by4zq/. 

 

2.1 Research participants and study overview 

A total of 183 children aged between 8 and 11 years (M = 9.95 years, SD = 0.70) were 

pseudo-randomly assigned to one of three groups: two training groups and a passive control 

group. An overview of the study design is depicted in Figure 1A.  

The two training groups practiced for nine weeks on a tablet at home for a total of 27 

training sessions (30–40 min per session). In each session, participants completed a task-

switching training game. A high-intensity task-switching (SW) training group (N = 70, 35 girls; 

age: M = 9.85 years, SD = 0.65) completed 17% single-task blocks and 83% mixed-task 

blocks per training game. A high-intensity single-tasking (SI) training group (N = 72, 34 girls; 

age: M = 9.83 years, SD = 0.68) trained on 83% single-task blocks and 17% mixed-task 

blocks per training game. The stimuli and rules in each game were identical between the two 

training groups such that the groups differed only in their relative demands on task switching 

(see section 2.2). The passive control (PC) group (N = 41, 20 girls; age: M = 10.34 years, 

SD = 0.72) did not perform any training games. 

In addition to at-home training, both training groups performed four sessions of a 

task-switching paradigm (described in section 2.3) in the MRI scanner or MRI simulator: 

before training (pre-test, session A), after approximately 3 weeks of training (session B), 

after approximately 6 weeks of training (session C), and again after approximately 9 weeks, 

after the training was completed (post-test, session D). No MRI data were collected for the 

MRI simulator participants, who performed the task-switching paradigm in a mock scanner 

that looked just like the MRI scanner. The PC group performed the same task-switching 

paradigm in the MRI scanner at sessions A and D, while sessions B and C only included 

structural scans. 
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All participants were screened for MRI suitability, had no history of psychological or 

neurological diseases, and spoke German as their primary language. All participants who 

provided MRI data were right-handed. Parents and children provided informed written 

consent. All participants were reimbursed with 10€ per hour spent at the laboratory. The 

training groups received an additional bonus of 40€ for the completion of all training games 

and MRI/MRI-simulator sessions. Additionally, children in the training groups received a toy 

as a reward for their performance on the training games (see details below). The study was 

approved by the ethics committee of the Freie Universität Berlin and conducted in line with 

the Declaration of Helsinki. 

Behavioral analyses were based on the four (for the SW and SI group) or two (for the 

PC group) sessions of the experimental task-switching paradigm performed in the MRI 

scanner or simulator. To ensure that participants included in the analyses performed this 

paradigm meaningfully, we excluded data in a session-specific manner based on 

preregistered performance criteria. Specifically, if a child performed below 50% accuracy in 

the run of single blocks (run 1, see below for more details on the paradigm) in a given 

session of the task-switching paradigm or below 35% accuracy in either of the two runs of 

mixed blocks (run 2 and 3) their data of that session were excluded from analyses. 

Additionally, we excluded 4 participants (2 from each training group) from all analyses 

because they did not complete at least half of the 27 training games. Based on these criteria, 

behavioral analyses included 160 children at session A (SW = 60 [9 excluded based on 

session-specific performance], SI = 64 [6], PC = 36 [4]), 115 at session B (SW = 57 [6 

excluded], SI = 58 [6]), 115 at session C (SW = 54 [7 excluded], SI = 61 [4]), and 133 at 

session D (SW = 47 [11 excluded], SI = 57 [7]), PC = 29 [5]). 

Of the children included in behavioral analyses, we additionally excluded children 

from neuroimaging analyses based on in-scanner head motion. fMRI volumes with 

framewise displacement (Power et al. 2012) above 0.4 mm were labeled as low-quality (cf. 

Dosenbach et al. 2017). If any of the fMRI runs of a specific session exceeded 50% of low-

quality volumes, the session was excluded for that participant. Thus, fMRI analyses included 
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87 children at session A (SW = 32 [3 excluded], SI = 30 [7], PC = 25 [2]), 55 at session B 

(SW = 33 [2 excluded], SI = 22 [6]), 55 at session C (SW = 31 [4 excluded], SI = 24 [4]), and 

72 at session D (SW = 24 [4 excluded], SI = 24 [4]), PC = 24 [1]). 

Note that 2 of the 4 participants who were excluded from all analyses due to having 

completed too few training games were included in the neuroimaging analysis for session A, 

on which we defined the regions of interest (ROIs). Very few participants left the study after 

session A, i.e., dropout was minimal: SW = 3, SI = 4, PC = 7. 

 

Figure 1. Outline of study design and experimental task-switching paradigm. (A) The timeline of 

training and assessment across the nine weeks for the three groups. fMRI or simulator indicates that 

the main task-switching paradigm (see B and C) was performed in the MRI scanner or MRI simulator, 

sMRI indicates structural scan. The colored bars indicate the training games: opaque colored bars 

indicate one of the three repeating games and translucent bars indicate one of the unique games, with 

the color indicating which of the repeating tasks matched the structure of the unique task. (B) The 

task-switching paradigm that all groups completed in the fMRI scanner or simulator. The shape cue 

indicated one of the three tasks. As indicated by three exemplar stimuli of each task, participants 

selected one of three buttons based on the face’s age in the Face Task, the type of environment in 

the Scene Task and the color of the object in the Object Task. (C) Showing 3 sequential trials of the 
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single and mixed blocks; in the single run depicted here, participants performed the scene task on 

every trial. In the mixed task, the shape cues (and therefore tasks) repeated on some trials and 

switched on others. ITI: inter-trial interval. Image credits: Young and old adult faces were taken from 

the FACES collection (Ebner et al. 2010). B & C: Adapted from Schwarze et al. (2023), Figure 1, 

under CC.BY 4.0. 

 

2.2 At-home training 

Children in the SW and SI groups received a tablet after their first MRI or MRI simulator 

session and were instructed to complete three training games per week for nine weeks (i.e., 

27 games in total; Figure 1A). The training games on the tablet were programmed using 

Unity (Version 5.6.1; Unity Technologies). Completion of the games was self-paced; 

however, a new game only became available 24 hours after the completion of the previous 

game. Three games were repeated every other week in the same order (i.e., 5 repetitions of 

each of the 3 games across training). One of the repeating games was identical to the 

paradigm performed in the MRI-scanner/-simulator sessions. Each repetition of the three 

games was interspersed with three unique games that were performed only once (for a total 

of 12 unique games). The unique games were designed to have the same rule structure as 

one of the repeating games, while using different stimuli. Each game started with task 

instructions followed by 3 practice blocks of 15 trials each, during which feedback was 

provided. No feedback was given during the rest of the game. 

Two thirds (i.e., 18) of the training games consisted of 486 trials, one third (i.e., 9) 

consisted of 485 trials, resulting in a minimally different number of single trials performed at 

each game (see Supplementary Table 1 for details). In each game, the SW group completed 

17% single-block trials and 83% mixed-block trials, while the SI group completed 83% 

single-block trials and 17% mixed-block trials. For both groups, mixed blocks included 50% 

repeat and switch trials with unpredictable cues that appeared simultaneously with the 

target. For all games, each trial lasted up to 3 s and responses had to be given within this 

period, with stimuli presentation ending when a response was given. There was a 50 ms 
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interval between response and presentation of the next trial. After each block, children could 

decide independently when to start the next block by pressing a button. Each game lasted 

between 30 and 40 minutes.  

To encourage the completion of the games, children received stars at the end of 

each game block that were converted into coins at the end of each game. Children could 

trade the coins for toys at any of the MRI/MRI-simulator sessions, with a greater number of 

coins allowing children to receive larger toys. The number of stars received after each block 

depended on accuracy, with bonus points being awarded for faster responses compared to 

the previous blocks as long as performance did not drop below 80% accuracy for the SW 

group and 90% accuracy for the SI group. On average, children in the SW and SI group 

completed 25.2 (SD = 3.52) and 25.4 (SD = 3.02) training games, respectively (no difference 

between groups: t = 0.00, p = 1).  

 

2.3 Experimental task-switching paradigm 

For the training groups, all four laboratory sessions included a task-switching paradigm (see 

Schwarze et al. 2023, for detailed paradigm description) that participants performed in the 

MRI scanner or simulator. Particpants were familiar with the paradigm from an assessment 

session completed prior to the first MRI-scanner/-simulator session, and two practice blocks 

completed in the MRI simulator right before the actual task. The task-switching paradigm 

consisted of three tasks: the Face Task, the Scene Task, and the Object Task. Participants 

had to perform the task cued by the shape of the background, based on previously learned 

rules linking each shape with one of the three tasks (Figure 1B). Specifically, the Face Task 

required the presented face to be categorized by age (child, young adult, older adult), the 

Scene Task required the presented scene to be categorized by its location (forest, desert, 

ocean), and the Object Task required the presented object to be categorized by color 

(yellow, red, purple). Responses were given via button press with three fingers of the right 

hand. The stimuli and the task cue appeared at the same time. The arrangement of the 

target images varied randomly on each trial independent of the categorization rule. In each 
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session, participants performed 3 runs of 99 trials each (Figure 1C). Every trial lasted 2 s, 

followed by a fixation cross (1–6s, jittered) along with an extended fixation period (20 s) after 

every 33 trials. In the first run (i.e., single run), tasks were presented sequentially in a single-

task manner. In runs two and three (i.e., mixed runs), the three tasks were intermixed with a 

switch rate of 50% and switches were unpredictable. The first trial of each run was excluded 

from all analyses. At each session, the experimental paradigm was performed in the MRI 

scanner after an initial T1-weighted scan during which participants watched a muted cartoon. 

The PC group followed the same protocol for their sessions A and D, while sessions B and C 

only included structural scans. For comparability, children who performed the task in the MRI 

simulator also watched a muted cartoon accompanied by scanner noise before they 

completed the task. Performance in this task-switching paradigm did not differ between 

children in the MRI-scanner and MRI-simulator group at any of the sessions. 

 

2.4 Behavioral analyses 

Trials with response times (RTs) below 200 ms and above 3000 ms, and trials with no 

responses, were excluded from analyses. Accuracy was calculated as the percentage of 

correct responses across all given responses for each condition. Median RTs were based on 

correct trials only. Outliers were defined as accuracy or RT values differing by more than 3.5 

SD from the condition- and session-specific mean across all groups, and were removed from 

analyses of accuracy and RTs separately. To further examine training-related changes in the 

cognitive processes underlying task switching while accounting for potential speed–accuracy 

tradeoffs, we applied drift-diffusion modeling for the two training groups across the four 

laboratory sessions (Ratcliff 1978). Drift-diffusion models have previously been applied to 

task-switching paradigms in young adults (Schmitz and Voss 2012), children (Weeda et al. 

2014; Schuch and Konrad 2017) and older adults (Ging-Jehli and Ratcliff 2020). Drift-

diffusion parameters (i.e., drift rate, boundary separation, and non-decision time) were 

estimated for each group and session using a hierarchical drift-diffusion models (HDDM) in 

the HDDM toolbox (Version 0.9.8; Wiecki et al. 2013).  
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Specifically, the HDDM was fitted to correct and incorrect trials, with outlier 

probability set to 5%. Since all three parameters (boundary separation, drift rate, and non-

decision time) have been associated with different cognitive processes during task switching 

(cf. Schmitz & Voss, 2012), the model of interest allowed all three parameters to vary 

between conditions and groups across sessions. Compared to models fixing one or multiple 

parameters, the model of interest proved a better fit to the data. Individual-specific estimates 

were averaged across all iterations (N = 5000) of the model and used for subsequent 

analyses of training-related change described below (cf. Katahira 2016). 

All analyses were performed using Bayesian linear mixed models with the brms 

package in R (Bürkner 2017). Reported effects are based on 95% credible intervals (CI), 

meaning that we can make a statement with 95% probability (cf. Bürkner 2017; see also 

Morey et al. 2016).  

 

2.4.1 Changes from pre- to post-training: Accuracy and RTs 

For accuracy and RTs, we examined change in the SW and SI groups relative to the PC 

group from the pre-test (session A) to post-training (sessions D). Deviating from the 

preregistration, we included the SW and SI groups separately in these models, as opposed 

to combining them, to capture differences for each training group. More specifically, group 

(SW, SI, and PC, with PC as reference level), session (A vs. D), and condition (single vs. 

repeat vs. switch) were modeled as fixed effects, allowing for interactions among them. 

Models included random intercepts and slopes for individual participants. We started with a 

full model that included all interactions between fixed effects and compared this to models 

with fewer interaction terms, using leave-one-out cross-validation in the loo package (Vehtari 

et al. 2022). Across all analyses, the model including all interaction terms either 

outperformed or did not differ from the models with fewer interaction terms (see 

Supplementary Table 2). 
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2.4.2 Changes across all four sessions: HDDM parameters  

To test for differences in change between the two training groups in the course of training, 

we compared HDDM parameters between the SW and SI groups across all four sessions. 

Change across more than two sessions is not necessarily linear; to describe these 

trajectories as precisely as possible, we thus opted to model the four sessions of the present 

study as a factor with four levels (sessions A, B, C, and D). In the results reported below, we 

compare each of the sessions B, C, and D against the pre-test session A to test whether the 

training completed up to that point was associated with improved performance relative to 

before the start of training. Group (SW vs. SI), session (B vs. A, C vs. A, D vs. A), and 

condition (single vs. repeat vs. switch) were modeled as fixed effects allowing for 

interactions among them with random intercepts and slopes for individual participants. 

Across all analyses, the models including all interaction terms outperformed or did not differ 

from the models with fewer interaction terms (see Supplementary Table 2). 

We opted to analyze HDDM parameters using linear mixed models for consistency 

with all remaining analyses. An alternative approach for testing differences in HDDM 

parameters is the pairwise comparison of the posterior distributions of a parameter, for 

instance, testing whether the posterior distributions of a parameter differ between the SW 

and SI group at a specific session. These analogous, preregistered analyses revealed the 

same pattern of results as the mixed models reported below (see Supplementary Table 3). 

 

2.4 fMRI data acquisition and preprocessing 

As reported by Schwarze et al. (2023), structural and functional MR images were collected 

on a 3-Tesla Siemens Tim Trio MRI scanner. Functional runs consisted of 230 whole-brain 

echo-planar images of 36 interleaved slices (TR = 2000 ms; TE = 30 ms; 3 mm isotropic 

voxels). The imaging protocol included functional imaging during the performance of the 

task-switching paradigm on all four sessions for the SW and SI group and on the first and 

last MRI session for the PC group. Structural MRI scans were acquired for all groups at all 
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four sessions (220 slices; 1 mm isotropic voxels; TR = 4500 ms; TE = 2.35 ms; FoV = 160 

×198 x 220). 

Preprocessing was performed using fMRIprep (Version 20.2.0; Esteban et al. 2019). 

For a detailed description see the fMRIprep documentation (https://fmriprep.org/en/stable/). 

Briefly, functional images were co-registered to individual anatomical templates using 

FreeSurfer (Greve and Fischl 2009). The anatomical template was created from anatomical 

scans across all sessions, removing scans that were of poor quality based on the MRIQC 

classifier (Version 0.15.2; Esteban et al. 2017) and additional visual inspection. Images were 

slice-time corrected (using AFNI; Cox and Hyde 1997), realigned (using FSL 5.0.9; 

Jenkinson et al. 2002), resampled into MNI152NLin6Asym standard space with an isotropic 

voxel size of 2 mm, and spatially smoothed with an 8mm FWHM isotropic Gaussian kernel 

using SPM12 (Functional Imaging Laboratory, University College London [UCL], UK). 

 

2.5 fMRI data analysis 

2.5.1 General linear models (GLM) 

GLM analyses were performed using SPM12 software (Functional Imaging Laboratory, UCL, 

UK). For each participant, we estimated an event-related GLM for each session. Each 

stimulus presentation was coded as an event with zero duration, and convolved with a 

canonical hemodynamic response function (HRF). Separate regressors were included for 

correct single, correct repeat, and correct switch trials. Incorrect trials, trials with no 

responses, and the first trial of each run were modeled in a nuisance regressor. Data were 

high-pass filtered at 128 s. To minimize head motion artifacts, we included the amount of 

framewise displacement per volume in mm (Power et al., 2012), realignment parameters 

(three translation and three rotation parameters), and the first six anatomical CompCor 

components (as provided by fMRIprep; Behzadi et al. 2007) as regressors of no interest. 

The first five volumes of each run were discarded to allow for stabilization of the magnetic 

field. Temporal autocorrelations were estimated using first-order autoregression. To identify 
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regions that showed activation associated with mixing demand, we compared activation on 

repeat trials in mixed blocks to single-block trials (repeat > single) across all three groups at 

session A (N = 89; voxel-level p < .001, FDR-corrected at cluster level). To identify regions 

modulated by switch demand, we compared activation on switch to repeat trials in the mixed 

blocks (switch > repeat) across all three groups at session A (N = 89; voxel-level p < .001, 

FDR-corrected at cluster level). 

 

2.5.2 ROI definition and analyses 

ROIs were defined on the repeat > single contrast and switch > repeat contrast across all 

children at session A described above. To ensure anatomical specificity, we anatomically 

restricted activation-based ROIs in the dlPFC, SPL, and precuneus using the middle frontal 

gyrus, SPL, and precuneus regions of the Harvard-Oxford atlas, respectively (thresholded at 

30%; Makris et al. 2006). The IFJ was restricted based on coordinates from a meta-analysis 

of task switching (Derrfuss et al. 2005), as no anatomical mask is available for this 

functionally defined region associated with task-switching (cf. Richter and Yeung 2014). We 

extracted activation parameters for these ROIs using Marsbar (Brett et al. 2002). 

We performed Bayesian linear mixed models to investigate whether activation in the 

ROIs changed with training and differed between training groups. First, we explored 

trajectories of training-related change in activation across all four sessions in the two training 

groups. As for the analyses of HDDM parameters described above, models included fixed 

effects of group (SW vs. SI), session – modeled as a factor with four levels (A, B, C, D) –, 

and condition. Condition included repeat vs. single for models of activation in ROIs defined 

by the repeat > single contrast, and switch vs. repeat for activation in ROIs defined by the 

switch > repeat contrast. Random intercepts of participant and random slopes of session 

were also included in all models. 

In a second step, to test whether changes in task-related activation were training-

related, we compared the SW and SI groups to the PC group on sessions A and D, for which 

data from all groups was available. Models included fixed effects of group (SW vs. PC, SI vs. 
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PC), session (A vs. D), and condition (repeat vs. single; switch vs. repeat) and their 

interactions, as well as random intercepts of individuals and random slopes of session. 

Results of these analyses are included in the main results for ROIs that showed changes in 

the two training groups across all four sessions; detailed model outputs for all ROIs are 

reported in Supplementary Tables 9 and 11. 

To test for training-related changes in the adult task-switching network, we 

additionally defined ROIs from 53 adults (20–30 years) who performed the same task-

switching paradigm at a single timepoint (see Schwarze et al. 2023 for details). Results for 

these preregistered ROI analyses are reported in Supplementary Tables 4–6, and were 

generally consistent with the results reported below. 

 

2.5.3 Whole-brain longitudinal analyses 

Since the ROI-based analysis is biased towards the activation patterns observed in session 

A, we additionally performed longitudinal whole-brain analyses to test for training-related 

changes outside the ROIs, as well as how these differed between groups. We constructed 

mixed ANOVAS in SPM with group as a between-participant factor and session as a within-

participant factor. Specifically, we tested for differences between the SW and SI groups and 

the PC group comparing sessions A and D, and for differences between the SW and SI 

groups across all four sessions. The input contrast images included the repeat > single 

contrast to investigate changes in modulation of activation with mixing demand, and the 

switch > repeat contrast for changes in modulation of activation with switch demand. There 

were no significant clusters showing changes in activation with training at the predefined 

threshold (p < .001, uncorrected), neither when comparing sessions A and D nor when 

testing for any effects across all sessions. 

 

2.5.4 Psychophysiological interactions 

To examine training effects in task-related functional connectivity, we conducted gPPI 

(generalized psychophysiological interaction) analyses (McLaren et al. 2012) using the 
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CONN toolbox (Version 20b; Whitfield-Gabrieli and Nieto-Castanon 2012). gPPI can be used 

to model how connectivity strength differs between conditions, thus making it possible to 

investigate how brain networks are flexibly adapting to task demands. gPPI parameters were 

estimated separately for each condition, that is, correct single, correct repeat, and correct 

switch trials (McLaren et al. 2012). The main effect of the three conditions and the nuisance 

regressors from the activation GLM were regressed out of the fMRI timeseries before 

analysis. We calculated ROI-to-ROI gPPI for connections among ROIs associated with 

mixing demand, identified by the repeat > single contrast (i.e., bilateral IFJ, bilateral SPL, 

and left dlPFC). In a separate but identical model, we calculated ROI-to-ROI gPPI for 

connections among the ROIs associated with switch demands, identified by the switch > 

repeat contrast (i.e., left IFJ, bilateral SPL, bilateral precuneus). 

The gPPI models provided two connectivity parameters for each connection between 

any two ROIs representing connectivity estimates in both directions. Therefore, we first 

tested whether the direction had an effect on the connectivity parameter. We modeled 

estimated connectivity for each connection with a linear mixed model including the direction, 

condition, session, and training group as fixed effects, allowing for all interactions and 

including random intercepts of individuals and random slopes of session. We compared this 

model to one without any interactions involving seed region. As model comparisons 

indicated better fit for models without interaction effects of seed region, we averaged 

parameters across directions for each connection to be used in the subsequent analysis. 

Individuals’ condition-specific gPPI parameters (averaged across directions) for each 

connection and session were analyzed using Bayesian linear mixed models to examine 

differences in the changes of these parameters between the SW and SI groups. Specifically, 

mirroring the models of activation above, we tested whether connectivity values among the 

ROIs associated with mixing demands (defined on the basis of the repeat > single contrast) 

changed across sessions (i.e., session B, C, and D compared to A as the reference level). In 

addition to the fixed effect of session, models included fixed effects for group (SW vs. SI) 

and condition (repeat vs. single) and random intercepts of participant and connection, as 
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well as random slopes for session. For the connectivity parameters among the ROIs 

associated with switch demand, we tested the same model, except that the condition levels 

consisted of switch vs. repeat. 

Additionally, to characterize whether key task-switching regions changed connectivity 

to brain regions outside of the ROIs defined by brain activation, we analyzed seed-to-voxel 

PPIs. Here, we used a seed in the left IFJ and in the left SPL, based on their prominent roles 

in task switching (e.g., Kim et al. 2012; Richter and Yeung 2014) and our analyses of age 

differences in task switching between children and adults (Schwarze et al. 2023). Results of 

these seed-to-voxel analyses and further preregistered connectivity analyses are reported in 

Supplementary Results 1–3. 
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3. Results 

3.1 Training-related improvements in accuracy and RTs in the SW group 

To examine changes in task-switching performance with training, we first examined changes 

in accuracy and RT between sessions A to D (for analyses of accuracy and RTs across all 

sessions, see Supplementary Table 7). Here, we were primarily interested in differences 

between the training groups and the control group. To this end, we predicted accuracy and 

RT by fixed effects of group (SW, SI, and PC), condition (single, repeat, switch), and session 

(A vs. D). Across all models, the models including all interactions fit best or did not differ 

from the best fitting model (see Supplementary Table 2), suggesting that training-related 

changes in performance differed between groups and conditions. To further characterize 

how the groups changed with training, we used the PC group as the reference to evaluate 

change in each training group relative to the control group. There were no differences in 

accuracy or RTs among the three groups at session A prior to training. 

For both accuracy (Figure 2A) and RTs (Figure 2B), we observed mixing costs (i.e., 

lower accuracy and longer RTs on repeat than single trials) and switch costs (i.e., lower 

accuracy and longer RTs on switch than repeat trials) across both sessions and all groups 

(see Table 1 for model estimates).  

RT switch costs decreased from session A to D across all groups due to faster RTs 

on switch trials. Compared to the PC group, the SW group showed increasing accuracy and 

decreasing RTs from session A to D across conditions. Compared to the PC group, the SI 

group maintained higher single-task accuracy across sessions A and D, but did not differ in 

the repeat or switch conditions (see Supplementary Figure 1 for condition-specific changes). 

Taken together, the SW group – but not the SI group – showed a greater training-related 

increase in accuracy and decrease in RTs relative to the PC group. The lack of interactions 

between session and condition on accuracy change suggests that improvements were 

similar across all conditions. 
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Figure 2: Training-related changes in overall performance. Accuracy (A) and RTs (B) averaged across 

conditions. Overall performance improved from session A to D in accuracy and RTs in the task-

switching (SW) training group (blue) relative to the passive control (PC) group (green). The single-task 

(SI) training group is shown in red.  Error bars denote 95%-confidence intervals. 

 

Table 1: Model outputs for accuracy and RT. Models included condition (single, repeat, switch; with 

repeat as the reference level), session (A, D; with A as the reference level), and group (SW, SI, PC; 

with PC as the reference level) as fixed effects, and random intercepts for individuals and random 

slopes for sessions. Note that because the PC group was defined as a reference level, the model 

output only includes the comparisons of the SW group to the PC group and of the SI group to the PC 

group. Bold values indicate estimates whose 95%-CI did not include zero. Est.: Estimate. 

 

Effect 
Accuracy  RT 

Est. CI  Est. CI 
Intercept    0.81 0.77 0.86  1.47 1.41 1.52 
condition: single vs. repeat 0.13 0.1 0.16  -0.28 -0.32 -0.23 
condition: switch vs. repeat -0.07 -0.11 -0.04  0.26 0.22 0.3 
session: D vs. A -0.02 -0.07 0.03  -0.02 -0.09 0.04 
group: SW vs. PC 0.01 -0.04 0.07  0 -0.07 0.07 
group: SI vs. PC -0.02 -0.08 0.03  -0.01 -0.08 0.06 
condition (single vs. repeat) x session (D vs. A) -0.05 -0.1 0.01  0.01 -0.05 0.07 
condition (switch vs. repeat) x session (D vs. A) 0.03 -0.02 0.08  -0.08 -0.14 -0.02 
condition (single vs. repeat) x group (SW vs. PC) -0.04 -0.08 0  0.02 -0.03 0.07 
condition (switch vs. repeat) x group (SW vs. PC) -0.02 -0.06 0.02  0.01 -0.04 0.06 
condition (single vs. repeat) x group (SI vs. PC) -0.03 -0.07 0.01  0.03 -0.03 0.08 
condition (switch vs. repeat) x group (SI vs. PC) -0.01 -0.05 0.03  -0.01 -0.06 0.05 
session (D vs. A) x group (SW vs. PC) 0.08 0.02 0.14  -0.09 -0.18 -0.01 
session (D vs. A) x group (SI vs. PC) 0.03 -0.03 0.09  -0.07 -0.15 0.01 
condition (single vs. repeat) x group (SW vs. PC) x session (D vs. A) 0.01 -0.05 0.08  0.06 -0.02 0.14 
condition (switch vs. repeat) x group (SW vs. PC) x session (D vs. A) 0.02 -0.04 0.08  -0.01 -0.08 0.07 
condition (single vs. repeat) x group (SI vs. PC) x session (D vs. A) 0.07 0.01 0.13  0.05 -0.02 0.13 
condition (switch vs. repeat) x group (SI vs. PC) x session (D vs. A) -0.01 -0.07 0.05  -0.01 -0.09 0.07 
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3.2 Hierarchical drift-diffusion models across all four sessions 

For a more detailed understanding of the training-related changes in the cognitive processes 

contributing to task switching, we analyzed HDDM parameters (Wiecki et al. 2013) across all 

four sessions in the SW and SI groups. There were no differences between the SW and SI 

groups in any of the HDDM parameters at session A. We predicted different HDDM 

parameters (drift rate, boundary separation, and non-decision time) by training group (SW 

vs. SI), condition (single, repeat, and switch), and session (A, B, C, and D). In all analyses, 

the models including all interactions fit best or did not differ from the best fitting model (see 

Supplementary Table 2), suggesting that the SW and SI groups differed in changes in 

HDDM parameters across conditions. To characterize group differences in change, session 

A was set as the reference level, and the other three sessions (i.e., sessions B, C, D) were 

compared to this reference. For clarity, we focus on effects showing a probability of 95% 

below (see Supplementary Table 8 for complete model outputs).  

 

3.2.1 Condition effects across sessions.  

Across sessions and groups, drift rates were lower on switch than on repeat trials (switch vs. 

repeat: est. = –0.28; 95%-CI –0.39, –0.18) and lower on repeat trials than on single trials 

(single vs. repeat: est. = 0.69; 95%-CI 0.58, 0.81), indicating faster evidence accumulation 

for the correct response on trials with lower mixing and switch demands (Figure 3A). 

Boundary separation parameters were greater for single compared to repeat trials (single vs. 

repeat: est. = 0.10; 95%-CI 0.01, 0.18), and for repeat compared to switch trials (switch vs. 

repeat: est. = –0.17; 95%-CI –0.25, –0.09), suggesting that participants were more cautious 

on single-task blocks than on repeat trials within mixed blocks, and more cautious on repeat 

trials than on switch trials (Figure 3B). Non-decision time was shorter for single compared to 

repeat trials (single vs. repeat: est. = –0.1; 95%-CI –0.13, –0.06), and for repeat than for 

switch trials (switch vs. repeat: est. = 0.22; 95%-CI 0.17, 0.27), showing that preparation 

time was shorter on trials with lower mixing and switch demands (Figure 3C). Thus, with 

increasing mixing (repeat vs. single) and switch (switch vs. repeat) demands, children were 
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slower at accumulating evidence for the correct response, followed a less cautious response 

strategy, and took longer to prepare the response. 

 

Figure 3: Condition differences in hierarchical drift-diffusion model parameters. Showing (A) drift rate, 

(B) boundary separation, and (C) non-decision time for single trials (light green), repeat trials (light 

blue), and switch trials (purple) across sessions and groups. Scatters show individuals’ parameter 

values averaged across sessions. Error bars denote 95%-confidence intervals. Note that parameter 

values were averaged across sessions within individuals for visualization purposes only; no analyses 

were calculated on these averaged data. 

 

3.2.2 Training-related increases in drift rates in the SW group  

Across training groups and task conditions, drift rates increased from session A to B (est. = 

0.27; 95%-CI 0.13, 0.41) and remained higher on session C compared to A (est. = 0.28; 

95%-CI 0.13, 0.43; Figure 4A). Of note, these overall effects of training were further qualified 

by interactions with group and condition.  

First, across groups, increases early in training were larger for single than for repeat 

trials (Session [B vs. A] x condition [single vs. repeat]: est. = 0.29; 95%-CI 0.13, 0.44) 

whereas the maintenance of increased drift rates later in training was more pronounced for 

switch than repeat trials (session [D vs. A] x condition [switch vs. repeat]: est. = 0.15; 95%-

CI 0.01, 0.29). Second, the SW group benefited more from training in the first three weeks of 

training: drift rate increases from A to B were greater in the SW group compared to the SI 

group (session [B vs. A] x group [SW vs. SI]: est. = 0.24; 95%-CI 0.04, 0.45). These initial 
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differences in drift rate between the SW and SI groups were especially pronounced for 

repeat and switch trials relative to single trials (session [B vs. A] x condition [single vs. 

repeat] x group [SW vs. SI]: est. = –0.30; 95%-CI –0.52, –0.08; no interaction for difference 

between repeat and switch trials). Third, a further benefit of SW compared to SI training 

became evident at session D: compared to the SI group, the SW group maintained 

increased drift rates at session D compared to A across conditions (session [D vs. A] x group 

[SW vs. SI]: est. = 0.34; 95%-CI 0.1, 0.58).  

Taken together, both training groups showed an increase in evidence accumulation 

after the first three weeks of training, with the SW group showing greater increases than the 

SI group. Of note, the SW group – but not the SI group – maintained these improvements at 

the end of training.  

 

3.2.3 Greater boundary separation in the SW group  

Changes in boundary separation were qualified by interactions with condition and group, 

suggesting differences in training-related changes between groups and conditions (Figure 

4B). First, the SW group showed greater increases in boundary separation than the SI group 

from session A to B across all conditions (session [B vs. A] x group [SW vs. SI]: est. = 0.20; 

95%-CI 0.06, 0.32). The SW group maintained these condition-independent increases at 

session D to a greater extent than the SI group (session [D vs. A] x group [SW vs. SI] = est. 

= 0.22; 95%-CI 0.07, 0.36). Second, relative to session A, boundary separation parameters 

on single trials were higher in session B (session [B vs. A] x condition [single vs. repeat]: est. 

= 0.53; 95%-CI 0.42, 0.65) and session C (session [C vs. A] x condition [single vs. repeat]: 

est. = 0.26; 95%-CI 0.14, 0.37). This change was further qualified by an interaction with 

group (session [B vs. A] x condition [single vs. repeat] x group [SW vs. SI]: est. = –0.23; 

95%-CI –0.40, –0.06), indicating that the difference in boundary-separation increase 

between single and repeat trials was particularly pronounced in the SI group. 

Thus, response caution increased within the first three weeks of training, with similar 

increases across conditions for the SW group and specific increases for single trials in the SI 
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group. At the end of training, the SW group showed greater maintenance of the increased 

boundary separation than the SI group. 

 

3.2.4 Decrease of non-decision time across the SW and SI groups  

Across both training groups, non-decision time decreased with training, such that non-

decision times at sessions B, C, and D were lower than at session A (B vs. A: est. = –0.05; 

95%-CI –0.08, –0.02; C vs. A: est. = –0.07; 95%-CI –0.11, –0.04; D vs A: est. = –0.08; 95%-

CI –0.11, –0.05; Figure 4C). Decreases were particularly pronounced for single trials relative 

to repeat trials at session B (session [B vs. A] x condition [single vs. repeat]: est. = –0.06; 

95%-CI –0.1, –0.01). Thus, across training groups, non-decision time decreased, suggesting 

reduced preparation time with training. 
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Figure 4: Training-related changes in hierarchical drift-diffusion model parameters. Showing (A) drift 

rate, (B) boundary separation, and (C) non-decision time for single trials (left panels), repeat trials 

(central panels), and switch trials (right panels). The SW group is depicted in blue, and the SI group in 

red. Thin lines show individual trajectories colored according to training group. Error bars denote 95%-

confidence intervals. 
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3.3 Changes in activation and connectivity associated with mixing demands 

Whole-brain activation across all children at session A revealed stronger activation for repeat 

> single trials in multiple frontal and parietal regions, including the bilateral IFJ, bilateral SPL, 

and left dlPFC (Figure 5A). Accordingly, we investigated training-related change in activation 

and ROI-to-ROI connectivity in the following ROIs: left and right IFJ, left and right SPL, and 

left dlPFC. First, in line with the behavioral analyses above, we tested whether activation and 

connectivity changed at any of the sessions during or at the end of training (i.e., sessions B, 

C, D) relative to the pre-test session A. Second, to test whether these changes were indeed 

related to training, we compared changes in the training groups to the PC group, focusing on 

sessions A and D where data from all groups were available. 

 

3.3.1 Reduced frontoparietal activation with training in the SW group 

Within each ROI, we analyzed activation parameters for the effects of session (B, C, and D 

compared to A as the reference level) and interactions with group (i.e., differences between 

SW and SI groups). Below, we report effects involving session and interactions of session 

with group (see Supplementary Tables 9 and 10 for an overview of all effects).  

In the right SPL (Figure 5B), activation on repeat trials decreased such that the 

difference between single and repeat trials decreased with training across both groups. The 

decrease in activation for repeat trails became evident at session C (est. = –1.06; 96%-CI: –

2.03, –0.1) and remained evident at session D (est. = –1.15; 95%-CI: –2.09, –0.19). While a 

descriptively similar pattern was evident in the left SPL, the data did not support the effect 

with 95% probability. Comparison to the PC group for sessions A and D caution the 

interpretation of these changes as related to the training program: the decreases in repeat 

activation from session A to D became evident across all three groups (est. = –1.19; 95-%CI: 

–2.15, –0.22) and neither the SW nor the SI group differed reliably from the PC group at 

session D (all 95%-CI include zero).  

Compared to session A, activation in the left dlPFC (Figure 5B) decreased across 

both single and repeat conditions for the SW group but not the SI group (group [SW vs. SI] x 
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session [D vs. A]: est.  = –0.87; 95%-CI: –1.79, –0.01). Descriptively, the left IFJ showed a 

similar effect as the dlPFC, but we did not find evidence for the effect with the predefined 

criterion of 95% probability. Comparison to the PC group for sessions A and D provided 

support that this change was specific to the SW group: compared to the PC group, the SW 

group showed lower activation in the left dlPFC and left IFJ across conditions at session D 

compared to A (left dlPFC: est. = –1.48; 95-%CI: –2.47, –0.5; left IFJ: est. = –0.84; 95-%CI: 

–1.6, –0.07). 

To summarize, the dlPFC and SPL showed decreases in activation across sessions. 

The effects in the dlPFC were observed across the single and repeat conditions and were 

only present in the SW group. In the SPL, the differences between single and repeat trials 

decreased in both training groups as well as in the PC group and were therefore unlikely to 

be related to the intensive training manipulation in the study.  

 

3.3.2 Decreased task-based connectivity in the SI training group 

To test whether task-based connectivity among the ROIs (i.e., left IFJ, left SPL, left dlPFC, 

right IFJ, right SPL) showed training-related changes, we analyzed connection-specific PPI 

parameters for the effects of session (B, C, and D compared to A) and interactions with 

group (i.e., differences between SW and SI groups). 

 Across sessions, connectivity was greater for repeat than for single trials (repeat vs. 

single: est.  = 1.91; 95%-CI: 1.46, 2.38), indicating that regions interacted more closely in 

response to mixing demands. As shown in Figure 5C, this condition difference was 

influenced by training. Specifically, connectivity for the repeat condition decreased with 

training (condition [repeat vs. single] x session [B vs. A]: est.  = –0.75; 95%-CI: –1.46, –0.05; 

C vs. A: est.  = –2.17; 95%-CI: –2.85, –1.49; D vs. A: est.  = –1.57; 95%-CI: –2.25, –0.88), 

with especially pronounced decreases in the SI group towards the end of training (condition 

[repeat vs. single] x group [SW vs. SI] x session [C vs. A]: est.  = 2.14; 95%-CI: 1.23, 3.05; 

[D vs. A]: est.  = 1.41; 95%-CI: 0.47, 2.36). Comparison to the PC group for sessions A and 

D indicated that this late change was specific to the SI group: compared to the PC group, the 
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SI group showed lower connectivity on repeat trials at session D compared to A (condition 

[repeat vs. single] x group [SI vs. PC] x session [D vs. A]: est.  = –1.58; 95%-CI: –2.60, –

0.58). 

In summary, connectivity among frontoparietal ROIs during task repeats decreased 

with training across both groups, suggesting less upregulation of connectivity in the mixed- 

vs. single-task context over time. Towards the end of training (i.e., sessions C and D) this 

decrease was particularly pronounced for the SI group relative to the SW group. 
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Figure 5: Training-related changes in activation and connectivity associated with mixing costs. (A) 

Brain regions showing greater activation on repeat than on single trials at session A across all 
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children (N = 89; p < .001, FDR-cluster corrected p < .05). (B) Change in activation for each ROI. (C) 

Change in connectivity (i.e., PPI parameters across all connections) among these ROIs. The SW 

group is shown in blue and the SI group is shown in red. Error bars denote 95%-confidence intervals.  

 

3.4 Training-related changes in activation and connectivity associated with switch demand  

Whole-brain activation across all children at session A indicated increased activation for 

switch than for repeat trials in the left IFJ, bilateral SPL, and bilateral precuneus. 

Accordingly, we investigated training-related changes in activation and ROI-to-ROI 

connectivity in the following ROIs: left IFJ, left and right SPL, and left and right precuneus 

(Figure 6A). First, we tested whether activation and connectivity had changed at any of the 

sessions during or at the end of training (i.e., sessions B, C, D) relative to the pre-test 

session A. Second, to test whether these changes were indeed related to training, we 

compared changes in the training groups to the PC group, focusing on sessions A and D, 

where data from all groups were available. 

 

3.4.1 Transient changes in switch-related brain activation with training 

We analyzed activation parameters for repeat and switch trials for the effects of session (B, 

C, D compared to A) and interactions with group (SW vs. SI group) in each ROI. Below, we 

report effects that involved session and interactions of session with group (see 

Supplementary Tables 11 and 12 for an overview of all effects). 

Across both groups and conditions (Figure 6B), activation in the left IFJ decreased 

from session A to B (effect of session B vs. A: est.  = –1.03; 95%-CI: –1.89, –0.20). In the 

right precuneus, activation increased from session A to B (effect of session B vs. A: est.  = 

0.95; 95%-CI: 0.21, 1.69). These changes returned to baseline towards the end of training 

as indicated by no differences of sessions C and D compared to A (all 95%-CI include zero). 

Accordingly, the training groups did not show any differences in activation compared to the 

PC group at session D in the IFJ and in the precuneus (all 95%-CI include zero). The right 

SPL showed an overall decrease in activation across switch and repeat trials from session A 
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to D in both groups (est.  = –0.61; 95%-CI: –1.18, –0.06). The comparisons to the PC group 

did not show clear evidence that this change in the training groups differed from the PC 

group: the interactions of group and session did not become evident (95%-CI included zero). 

To summarize, across groups, the IFJ and the precuneus showed early changes in 

activation between sessions A and B after three weeks of training, with increases in the right 

precuneus and decreases in the left IFJ across conditions. The right SPL showed slower 

decreases in overall activation that only became evident at the end of training at session D; 

however, a lack of difference to the PC group at session D caution against the interpretation 

of this decrease as related to the intensive training manipulation in the study. 

 

3.4.2 Inconclusive results regarding changes in task-based connectivity with training 

We next analyzed connection-specific PPI parameters among left IFJ, left SPL, left 

precuneus, right SPL, and right precuneus for the effects of session (B, C, D compared to A) 

and interactions with group (SW vs. SI group). 

As shown in Figure 6C, connectivity for switch trials decreased from session A to B in 

the SI group, while the SW group showed an increase of connectivity for switch trials and a 

decrease for repeat trials (session [B vs. A] x group [SW vs. SI] x condition [switch vs. 

repeat]: est.  = 1.77; 95%-CI: 0.76, 2.77). However, we did not observe clear differences in 

connectivity between switch and repeat trials across the two groups independent of training. 

Thus, the observed differences between groups in training-related changes cannot be 

meaningfully interpreted as changes in adaptively adjusted connectivity among regions 

based on switch demands. Compared to the PC group, the SW group also showed a 

different pattern of change from session A to D between conditions (session [D vs. A] x 

group [SW vs. PC] x condition [switch vs. repeat]: est.  = 1.41; 95%-CI: 0.33, 2.49), but again 

the lack of condition effects across groups and sessions limits the interpretability of these 

findings. The SI group showed no compared to the PC group when comparing sessions A 

and D. 
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Figure 6: Training-related changes in activation and connectivity associated with switch costs. (A) 

Brain regions showing greater activation on switch than on repeat trials at session A across all 

children (N = 89; p < .001, FDR-cluster corrected p < .05). (B) Change in activation for each ROI. (C) 
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Change in connectivity (i.e., PPI parameters across all connections) among these ROIs. The SW 

group is shown in blue and the SI group in red. Error bars denote 95%-confidence intervals.  
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4. Discussion 

In the present study we investigated behavioral and neuroimaging data of 8–11-year-olds to 

elucidate behavioral and neural changes as a function of different doses of task-switching 

training. We analyzed task performance in terms of drift-diffusion parameters, fMRI 

activation, and task-based functional connectivity before and after training, as well as twice 

during the nine-week training phase, to shed new light on the behavioral and neural changes 

that take place during task-switching training. 

Comparing the pre- and post-training sessions, accuracy increased and RTs 

decreased with training across conditions in the group with the higher dose of task-switching 

training. These findings corroborate and extend previous findings demonstrating that task-

switching performance in children can be improved with intensive training (Karbach and Kray 

2009; Kray, Karbach, Haenig, et al. 2012; Zinke et al. 2012; Dörrenbächer et al. 2014; 

Karbach et al. 2017). We leveraged drift-diffusion modeling to provide a more detailed 

picture of how the different training schedules influenced cognitive processes during task 

switching. We observed rapid changes after three weeks (i.e., from session A to B) across 

all parameters in both training groups: the boundary-separation and drift-rate parameters 

increased, while non-decision time decreased. Children in the high-intensity task-switching 

group showed more pronounced increases in drift rate and boundary separation that were 

maintained for the duration of the training. The sustained increase in boundary separation in 

the high-intensity task-switching group is somewhat surprising, given that previous training 

studies have shown reductions in boundary separation (Reinhartz et al. 2023; Schmiedek et 

al. 2023). In our view, the combination of increasing drift rates with widening decision 

boundaries reveals that children were approaching the task in a more cautious manner with 

increasing practice. Additionally, both groups showed decreases in the non-decision time 

parameter with training. Thus, even small doses of task switching during training, in 

combination with extensively practicing the task rules separately, improved preparatory 

processes such as reconfiguration of the task set (Schmitz and Voss 2012) and more 
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efficient response execution in light of potentially conflicting or distracting information (cf. 

Resulaj et al. 2009; Schroeder and Verrel 2014). 

On the neural level, we observed different patterns of changes in activation 

associated with mixing demands (i.e., repeat vs. single trials) and switch demands (i.e., 

switch vs. repeat trials). Activations associated with both single and repeat trials decreased 

in lateral prefrontal ROIs (i.e., left dlPFC and to a smaller extent, left IFJ) in the high-intensity 

task-switching group, but not in the high-intensity single-tasking group. Additionally, task-

related activations on repeat trials decreased in the right SPL in both training groups, but 

also the PC group, resulting in a smaller difference between repeat and single conditions. In 

parallel, connectivity among frontal and parietal regions decreased with training for repeat 

trials, with more pronounced changes in the high-intensity single-tasking group than in the 

high-intensity task-switching group. Brain regions specifically associated with greater switch 

demands prior to training showed a rapid training-related change in activation in session B, 

but returned to baseline by the end of training.  

Taken together, more intensive task-switching training led to faster accumulation of 

information for the correct response while simultaneously promoting a more cautious 

response strategy. The accompanying neural analyses indicate that intensive task-switching 

training was associated with decreases in task-related activation in the prefrontal cortex 

(PFC) as well as in connectivity among PFC and parietal regions, presumably indicating 

more efficient task processing with training. 

 

4.1 Training improves efficiency of processing in frontoparietal regions  

Both training groups showed increases in drift rates with training, suggesting faster, more 

efficient evidence accumulation for the correct response (Radcliff, 1978). Higher drift-rate 

parameters have been associated with faster response selection during task switching 

(Schmitz and Voss 2012), potentially due to less interference from the previous stimulus-

response (S-R) mapping (Weeda et al. 2014). Previous studies on the flexibility of task-set 

updating in children have suggested that such an interference from the previous S-R 
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mapping contributes to the costs of switching, especially in children (Hommel et al. 2011). 

Thus, with training, children might become better at resolving interference or selecting the 

correct S-R mapping more quickly. Furthermore, increased drift rates have been associated 

with more efficient extraction of high-quality information from the task (Ratcliff et al. 2012) 

along with increased efficiency of rule processing (cf. Schmitz and Voss 2012). Gains in 

evidence accumulation during perceptual decision making have been found to be positively 

associated with working memory gains on a completely different set of tasks (Schmiedek et 

al. 2023), pointing to a connection between drift rate and mechanisms supporting working 

memory. Increased efficiency with multitasking training has also been proposed by Dux and 

colleagues (2009), based on decreased activation in lateral PFC, which is consistent with the 

activation decreases that we observed specifically in the high-intensity task-switching group. 

Specifically, activation in lateral prefrontal regions associated with mixing demands 

(i.e., repeat > single contrast), especially in the left dlPFC, showed a decrease across both 

conditions from the first to the second session. Notably, only the high-intensity task-switching 

group maintained these changes by the end of training. Previous studies in adults have 

associated such activation decreases with increased efficiency of rule processing (Kelly and 

Garavan 2005; von Bastian et al. 2022). Poldrack (2000) has suggested that a key 

contributor to training-related activation decreases are more precise neural representations 

of task sets that enable more efficient processes. Accordingly, Garner and Dux (2015) 

showed training-related performance improvements with dual-task training alongside 

reduced task-related activations and more distinct task-set representations in the PFC in 

adults. 

The present results extend the observation that increased efficiency underlies 

training-related improvements in executive functions from adulthood (cf. von Bastian et al. 

2022) to late childhood, by demonstrating decreases in frontal activation that were 

accompanied by increased drift rates with intensive task switching training. This observation 

is relevant in light of suggestions that training in children may speed up maturation with 

children becoming more adult-like in activation and connectivity patterns (Jolles et al. 2012; 
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Jolles and Crone 2012). Our previous work (Schwarze et al. 2023) showed the present task-

switching paradigm elicited smaller upregulation of frontoparietal activation in (untrained) 

children compared to adults. This pattern indicates a potential for children’s activation 

patterns to become more adult-like by condition-specific increases in activation. However, 

we did not observe such changes in any of the ROIs (see also Supplementary Results 3). 

Rather than showing more adult-like activation, children revealed a similar training-related 

change of decreasing PFC activation as previously reported in adults. Future studies are 

needed to elucidate how these training-related changes in neural processes depend on the 

targeted executive function (e.g., task-switching as opposed to working-memory training; 

Jolles et al. 2012; Astle et al. 2015) or the investigated age range (Rueda et al. 2005; Lee et 

al. 2022). 

 

4.2 Rapid temporary changes in switch-related activation 

Most changes of activation associated with switch costs were similar across training groups 

and relatively short lived, such that they became evident at the second session but were no 

longer present at the end of training. While this pattern matches the initial changes of the 

drift rate and boundary separation parameters, it does not match the maintenance of the 

later changes, especially in the high-intensity task-switching group. 

In line with the well-established evidence that switch costs approach adult levels 

earlier than mixing costs do (Cepeda et al. 2001; Crone et al. 2004; Reimers and Maylor 

2005; Crone, Bunge, et al. 2006; Huizinga and van der Molen 2007; Manzi et al. 2011), 

children in the present study showed smaller switch costs than mixing costs prior to training 

(see Schwarze et al. 2023). Thus, the different patterns of change observed for neural 

processes associated with mixing and switch costs may reflect differences in the mismatch 

between current ability and demands imposed on the cognitive control system during training 

(cf. Lövdén et al. 2010; Lövdén et al. 2020). According to this interpretation, the supply–

demand mismatch was greater for mixing costs than for switch costs, leading to the 
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observed sustained changes in neural activation, whereas the relatively smaller mismatch 

for switch costs could be met by temporary changes of control processes.    

 

4.3 Return to baseline performance and activation in the SI group 

While we had predicted slower or less extensive behavioral improvements and neural 

changes with lower dosages of task switching, the high-intensity single-tasking group 

showed behavioral and neural changes as quickly and almost as extensively as the high-

intensity task-switching group. However, the high-intensity single-tasking group returned to 

baseline levels of performance and dlPFC activation by the end of training. There are 

different potential explanations for the return to baseline with intensive single-task training. 

First, the lower doses of task switching in each training game (i.e., 17%) may not have 

posed enough demands to evoke sustained challenge to the task-switching networks to 

maintain the initial changes (Lövdén et al. 2010). Hence, the changes observed at the 

beginning of training may rather reflect the reconfiguration of existing resources, also 

referred to as flexibility (Lindenberger and Lövdén 2019; Lövdén et al. 2020; cf. Baltes 

1987), than structural alterations of brain and behavior that would qualify as plasticity. 

Second, the lower dosage of task-switching demands during training in the high-

intensity single-tasking group may have favored adopting a strategy that is tailored to the 

demands of the single-task context, which, however, might be less well suited for task 

switching. Group differences in boundary separation are especially interesting to consider in 

light of such potential strategy differences. Specifically, boundary separation captures 

response caution, both on an individual level as well as on a trial level that is likely to 

correspond to the perceived risk of making an error (Schmitz and Voss, 2012). While both 

groups showed greater boundary separation for single trials at the second session, only the 

high-intensity task-switching group showed these increases for repeat and switch trials as 

well. The increased boundary-separation parameter may reflect greater control allocation to 

switch and repeat trials or the increased sensitivity to the cue and its changes within mixed 

blocks. With children in the high-intensity single-tasking group mainly practicing on the 
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relatively easier condition of single-task blocks, they may have adopted a different strategy 

for the allocation of control than the high-intensity task-switching group (Shenhav et al. 2013; 

see Steinbeis 2023 for a developmental perspective). This may have hindered them in 

correctly judging the required control on mixed blocks, in line with our observation that group 

differences in the increase in boundary separation were especially pronounced for repeat 

and switch trials as opposed to single trials. Such differences in control allocation might have 

been especially prominent in the second half of training, when children had become more 

familiar with the type of task-switching paradigm and the amount of cognitive control required 

for successful performance. 

Another key difference between the two training groups may be related to the need to 

track changes in task demands indicated by changes in context. The ability to track changes 

in contexts continues to develop in late childhood (Waskom et al. 2014; Frick and Chevalier 

2023) and contributes to the development of self-directed control (Frick et al. 2022). In the 

present training paradigm, the demands for context tracking were greater for the high-

intensity task-switching group, in which participants performed more mixed blocks during 

training and thus faced more frequent switches of the cue. During the training games, the 

cue was always presented along with the target stimulus, effectively rendering it the context 

of the stimulus. Thus, the high-intensity task-switching group not only learned the mappings 

between each stimulus and the corresponding response, but also more intensively practiced 

tracking the context in which these were presented, which was crucial for successful task 

performance. In turn, the improved ability to track the context might have enabled more 

efficient rule implementation in the dlPFC (Hyafil et al. 2009; Ruge et al. 2013) and thus 

reduced activation in this region to a greater extent in this group than in the high-intensity 

single-tasking group. 

Finally, children in the two training groups may have learned the rule structure 

differently, based on their experience with the tasks during training. Mixed blocks require the 

application of the rules in a hierarchical manner: mappings between a stimulus and a 

response are nested within a cue indicating which stimulus is relevant. While the ability to 
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identify and apply such hierarchical rule structures has been demonstrated in infants and 

toddlers (Werchan et al. 2015; Werchan et al. 2016), it is continually refined throughout 

childhood and adolescence (Kray, Karbach, and Blaye 2012; Unger et al. 2016). During the 

instruction phase of each training game, the hierarchical structure of each task was made 

explicit to both groups. Nonetheless, children in the high-intensity single-tasking group may 

have represented the mappings between stimulus and response separately from the cue, as 

the cue was only relevant at the beginning of a block. Such a flat rule structure could be 

more efficient when single-tasking, but ineffective in mixed blocks where the cue is crucial 

for successful performance on each trial (cf. Verbeke and Verguts 2023).  

 

4.4 Limitations 

We would like to acknowledge some important limitations of the present study. First, the 

sample size for the analyses of activation and connectivity is relatively small, limiting our 

ability to find smaller effects, especially for whole-brain analyses over time as they require 

complete datasets with currently available data-analysis pipelines. Thus, the reported 

training-related changes in activation and connectivity patterns should be interpreted with 

caution and seen as a starting point for further research. Additionally, changes in 

performance and brain function may happen at different time scales (Baykara et al. 2021). 

For example, the limited changes in activation associated with switch costs may be due to 

session B being too far into training to capture the potentially early onset of such changes. 

Also, in keeping with earlier work on task switching (Schmitz and Voss 2012; Schmitz and 

Voss 2014; Weeda et al. 2014; Schuch and Konrad 2017; Ging-Jehli and Ratcliff 2020), we 

did not estimate all possible parameters of the drift-diffusion model (Henrich et al. 2023), 

given the limited number of trials per condition and group. Finally, while we were able to 

demonstrate that different doses of task-switching during training (i.e., high-intensity task 

switching vs. high-intensity single tasking) were associated with differential changes in 

performance and activation patterns, it seems worthwhile to investigate the effects of other 

training regimes in future work. In particular, we recommend examining the effects of a 
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sequential training regime in which single-task training precedes task-switching training. 

Possibly, task-switching training is more effective if preceded by a training phase during 

which the decision rules governing each task have been firmly established. 

 

4.5 Conclusion 

In this study, we show that high-intensity task-switching training speeds up evidence 

accumulation, induces more cautious response strategies, and reduces activation and 

connectivity in frontal regions in children aged between 8 and 11 years. By comparing 

different doses of practicing switching between rules, we were able to demonstrate that 

greater experience with task switching is associated with more efficient rule processing in 

the PFC. In summary, we conclude that high-intensity task-switching may facilitate the 

efficient allocation of cognitive control, such as the continuous tracking of contextual 

information and the flexible, hierarchical representation of currently relevant tasks. Our 

findings provide initial evidence on the ways in which task-switching processes change with 

training at both behavioral and neural levels of analysis in late childhood. Future research 

can build on these findings by investigating which training regimes are most effective in 

promoting efficient task switching at different ages, with the aim to better understand the 

interplay between maturational and experiential factors and timescales in the ontogeny of 

cognitive control. 
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