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Abstract 

Goal-directed behavior requires the ability to flexibly switch between task sets with 

changing environmental demands. Switching between tasks generally comes at the 

cost of slower and less accurate responses. Compared to adults, children show 

greater switch costs, presumably reflecting the protracted development of the ability 

to flexibly update task-set representations. To examine whether the distinctiveness 

of neural task-set representations is more strongly affected by a task switch in 

children compared to adults, we examined multi-voxel patterns of fMRI activation in 

88 children (8–11 years, 49 girls) and 53 adults (20–30 years, 28 women) during a 

task-switching paradigm. Using multivariate pattern analysis (MVPA), we 

investigated whether task-set representations were less distinct on switch than on 

repeat trials across frontoparietal, cingulo-opercular, and temporo-occipital regions. 

Children and adults showed lower accuracy and longer response times on switch 

than on repeat trials, with higher accuracy costs in children. Decoding accuracy 

across regions was lower on switch than repeat trials, consistent with the notion that 

switching reduces the distinctiveness of task-set representations. Reliable age 

differences in switch-related representational distinctiveness reductions were absent, 

pointing to a remarkable degree of maturity of neural representations of task-relevant 

information in late childhood. However, we also observed that switch-related 

reductions in distinctiveness were more highly correlated across frontoparietal and  

cingulo-opercular regions in children than in adults, potentially reflecting the ongoing 

specialization of different control networks with respect to the representation of task 

features. 

 

Significance statement 

The ability to flexibly switch between tasks enables goal-directed behavior, but is 

particularly challenging for children, potentially due to protracted development in the 

ability to represent multiple and overlapping task rules that link stimuli to appropriate 

responses. We tested this hypothesis by using neuroimaging to measure brain 

activity during task switching in 8–11-year-olds and adults. Activation patterns in 

frontal, parietal, and temporal regions could tell us with above-chance accuracy 

which task a person was performing when the task remained the same, but not when 

it had switched. Adults showed greater differentiation across regions in terms of 
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switch-related reductions in distinctiveness than children, suggesting that the 

relevant functional circuity is present but has not yet fully matured by late childhood.  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.22.572358doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.572358
http://creativecommons.org/licenses/by/4.0/


Neural distinctiveness in task switching  4 

 4 

1. Introduction 
 

The ability to flexibly switch between tasks, thoughts, or actions when circumstances 

change is critical for goal-directed behavior (Miyake and Friedman, 2012; Diamond, 

2013). However, switching between tasks entails a cost compared to repeating 

previously executed tasks, such that responses are slower, less accurate, or both. A 

task switch requires updating the task set, which amounts to retrieving the task set 

for the newly relevant task and inhibiting the no-longer relevant task set (Rogers and 

Monsell, 1995; Meiran, 1996; Mayr and Kliegl, 2000; Wylie and Allport, 2000; for a 

review, see Vandierendonck et al., 2010). Both of these processes are thought to 

contribute to the switch costs observed in performance.  

Behaviorally, switch costs are more pronounced in children compared to 

adults (Crone et al., 2006a; Huizinga et al., 2006; Huizinga and van der Molen, 2007; 

Gupta et al., 2009; Cragg and Chevalier, 2012; Church et al., 2017; but see Luca et 

al., 2003; Reimers and Maylor, 2005). Age-related differences in switch costs have 

been attributed to children’s difficulties to inhibit the no-longer relevant task set and 

to update the relevant task set when rules switch (Crone et al., 2004, 2006a; Gupta 

et al., 2009; Wendelken et al., 2012). Moreover, children’s representations of goal-

relevant task sets have been suggested to be less distinct from one another (Zelazo, 

2004; Crone et al., 2006b; Lorsbach and Reimer, 2008; Jung et al., 2023), especially 

when task sets are partially overlapping (e.g., due to same responses; cf. Crone et 

al., 2006a).  

Children’s task-switching difficulties have been associated with smaller 

increases in activation for switch compared to repeat trials in frontoparietal (FP) brain 

regions, including the inferior frontal junction (IFJ), the superior parietal lobe (SPL), 

and the dorsolateral prefrontal cortex (dlPFC), compared to adults (Crone et al., 

2006b; Bunge and Wright, 2007; Velanova et al., 2008; Wendelken et al., 2012; 

Engelhardt et al., 2019; Zhang et al., 2021; Schwarze et al., 2023; but see Morton et 

al., 2009). The previous studies did not examine differences in multivariate patterns 

of neural activations between repeat and switch trials, and therefore do not address 

whether age differences therein are a possible source of age-related differences in 

switch costs. 

Research in adults (Loose et al., 2017; Qiao et al., 2017) has started to 

feature multivariate pattern analysis (MVPA; Haynes and Rees, 2006) to examine 
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the distinctiveness of neural representations of task sets in task-switching 

paradigms. Because task-set representations on switch trials have just been 

updated, they are hypothesized to be less distinct on switch compared to repeat 

trials (Meiran, 1996; Mayr and Kliegl, 2000), resulting in lower decoding accuracy. 

Decoding accuracy describes how well the currently relevant task can be predicted 

from the pattern of neural activation. Beyond this updating process, the lingering 

representation of the previously relevant task set (i.e., task-set inertia) might dilute 

the current task-set representation, further contributing to less distinct 

representations on switch compared to repeat trials (Rogers and Monsell, 1995; 

Wylie and Allport, 2000; Rangel et al., 2023). Studies investigating this hypothesis in 

adults have reported contradictory results. While one study showed greater decoding 

accuracy on repeat than on switch trials (Qiao et al., 2017), other studies showed the 

opposite pattern (Tsumura et al., 2021) or no differences between conditions (Loose 

et al., 2017). To date, neural task-set representations have not been examined in 

children to provide a direct test of representational accounts of children’s difficulties 

in task switching.  

We used MVPA to assess the distinctiveness of task-set representations in 

children (N = 88, 8–11 years) and adults (N = 53, 20–30 years) who performed a 

task-switching paradigm during neuroimaging. We expected that, children would 

show overall lower decoding accuracy and would be disproportionally affected by the 

demand to switch, resulting in lower decoding accuracy on switch trials compared to 

adults. To explore whether age differences in task switching were related to stronger 

task-set inertia in children than in adults (Gupta et al., 2009; Hommel et al., 2011; 

Wendelken et al., 2012; Witt and Stevens, 2012; but see Crone et al., 2006a), we 

used three different task sets. As opposed to switches among two task sets, this 

design allowed us to test whether decoding accuracy for the previously relevant task 

on switch trials was higher compared to the third task (that was neither relevant on 

the current nor on the previous trial), which would indicate task-set inertia. 

While adult studies of neural representations during task switching have 

focused on FP regions, the distinctiveness of task-set representations in temporo-

occipital (TO) regions (i.e., fusiform gyrus, parahippocampal gyrus, and lateral 

occipital cortex) may be particularly important for task switching in children. These 

regions mature earlier than FP regions do (Sydnor et al., 2021) and may contribute 

to the development of more distinct FP representations during rule-based tasks 
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(Amso and Scerif, 2015; Rosen et al., 2019). Furthermore, regions of the cingulo-

opercular (CO) network, including the dorsal anterior cingulate cortex (dACC) and 

the anterior insula (aI), have been associated with task-set maintenance during 

switching (Braver et al., 2003; Dosenbach et al., 2008; Gratton et al., 2018). Due to 

the relatively more sustained nature of maintenance processes (Braver et al., 2003), 

representations in CO regions may not be updated in a trial-specific fashion, 

resulting in smaller differences in decoding accuracy between switch and repeat 

trials. Thus, we explored how the distinctiveness of task-set representations in brain 

regions associated with different roles during task switching (i.e., FP vs. CO) and 

with different developmental trajectories (i.e., FP/CO vs. TO regions) differed with 

respect to age differences.  
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2. Materials and Methods 

 

The hypotheses and the analysis plan were preregistered before the start of analysis 

(https://osf.io/8mfqx/). We explicitly note deviations from the preregistered analysis 

plan below. The behavioral performance and univariate analysis of functional 

neuroimaging data of this sample are described in detail in Schwarze et al. (2023), 

and are only briefly summarized below. 

 

2.1 Participants 

Children (N = 117) and adults (N = 53) completed the task-switching paradigm in the 

MR scanner, as reported previously (Schwarze et al., 2023). All participants were 

right-handed. Prior to running the analyses of interest, participants were excluded if 

they showed low accuracy (i.e., below 50% in the fMRI run of single tasking or below 

35% in either of the two runs that presented tasks intermixed, see details below; N = 

8 children excluded), excessive in-scanner motion (more than 50% of fMRI volumes 

with framewise displacement (Power et al., 2012) above 0.4 mm; N = 24 children, 4 

of whom also showed poor performance), or fewer than 5 trials for each class, i.e., 

each combination of condition (switch vs. repeat) and task (face vs. scene vs. object, 

see below), in the MVPA analyses (N = 1 child; included in the previous study 

[Schwarze et al., 2023]). The final sample included 88 children (8–11 years; mean 

age = 10.07 years, SD = 0.69; 49 girls) and 53 adults (20–30 years; mean age = 

24.69 years, SD = 2.6; 28 women). Adult participants, parents, and children provided 

informed written consent and the study was approved by the ethics committee of the 

Freie Universität Berlin and conducted in line with the Declaration of Helsinki. 

 

2.2 Experimental design 

In the task-switching paradigm performed in the MR scanner, participants had to 

respond to one of three simultaneously presented stimuli (a face, a scene, and an 

object) each relevant to a different task (i.e., the face task, the scene task, and the 

object task). The relevant task was indicated by a simultaneously presented shape in 

the background, such that, for instance, a diamond-shaped background indicated the 

face task, which required the classification of the face according to its age (see 

Figure 1A). On each trial, the spatial arrangement of stimuli varied pseudo-randomly 
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independent of the currently relevant stimulus. Participants responded via button 

press. 

The fMRI session consisted of three runs: one single run in which the tasks 

were presented in separate blocks, followed by two mixed runs in which the three 

tasks were pseudo-randomly intermixed. Each run had 99 trials each lasting 2s, 

followed by a fixation cross for a jittered time period (1–6 s). In the single run, tasks 

were presented in three separate blocks of 33 trials, interspersed with blocked 

fixation cross periods (20 s). In the mixed runs, the three tasks were pseudo-

randomly intermixed, with 50% repeat and 50% switch trials, again across blocks of 

33 trials with blocked fixation cross periods (20 s) to match the single run. Switches 

were unpredictable, such that participants did not know which task had to be 

performed on the upcoming trial. The first trial of each run was excluded from all 

analyses as it could not be classified as a switch or repeat trial in the mixed runs. 

The main MVPA determining representational changes during task switching 

focused on the two mixed runs. Data from all three runs were used to define regions 

of interest (ROIs) that were representative of the task-related univariate activation. 

 

2.3 Behavioral measures and analysis 

Behavioral results were previously reported for essentially the same sample across 

all three task runs (89 as opposed to 88 children, cf. Schwarze et al., 2023), whereas 

the present analysis focused on the two mixed runs and thus only on repeat and on 

switch trials. Individual trials with response times (RT) below 0.2 s or above 3 s were 

excluded from all analyses, so that responses during stimulus presentation and 

within the first second of the inter-trial interval were accepted. Only correct trials 

were considered for the calculation of median RTs per condition. Accuracy was 

calculated as the percentage of correct responses across all given responses for 

each condition. No datapoints of individual participants had to be removed based on 

the predefined outlier criterion of mean accuracy or median RTs that deviated 3.5 

standard deviations (p < .001) or more from the age group-specific mean 

(Tabachnick and Fidell, 2013). We used Bayesian linear mixed models, using brms 

(version 2.19.0; Bürkner, 2017) in R (version 4.3.1; R Core Team, 2018), with flat 

priors to predict proportions of correct responses or median correct RT from 

condition, age group, and their interaction, including random intercepts for subject. 

For all models, reported effects are based on 95% credible intervals (CI) such that 
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the described effects have a 95% probability in the present data (Bürkner, 2017; see 

also Morey et al., 2016). 

 

2.4 fMRI data acquisition and preprocessing 

Functional MR images were collected on a 3-Tesla Siemens Tim Trio MRI scanner 

using whole-brain echo-planar images (TR = 2000ms; TE = 30ms; 3 mm isotropic 

voxels). The first five acquired volumes of each run were discarded before analysis 

to allow for scanner stabilization. 

Preprocessing was performed using fMRIprep (Version 20.2.0; Esteban et al., 

2019; for a detailed description of procedures, see https://fmriprep.org/en/stable/). 

BOLD images were co-registered to individual anatomical templates using 

FreeSurfer, which implements boundary-based registration (Greve and Fischl, 2009). 

Additionally, they were slice-time corrected (using AFNI; Cox and Hyde, 1997), and 

realigned (using FSL 5.0.9; Jenkinson et al., 2002). For the definition of ROIs based 

on group-level univariate activation, BOLD images were normalized into 

MNI152NLin6Asym standard space. All multivariate analyses were conducted in 

individual-specific anatomical space. ROIs defined in MNI space were transformed 

into individual-specific anatomical space using Advanced Normalization Tools 

(ANTs; Avants et al., 2009) and FSL (Version 5.0.9; Jenkinson et al., 2002).  

 

2.5 ROI definition 

Frontoparietal (FP) and cingulo-opercular (CO) regions. Previous research has 

demonstrated that lateral FP regions, including the IFJ, the SPL, and dlPFC, show 

enhanced univariate activation during task switching (Kim et al., 2012; Niendam et 

al., 2012; Richter and Yeung, 2014; Worringer et al., 2019) and represent the 

currently relevant task in adult studies (Loose et al., 2017; Qiao et al., 2017). Thus, 

we focused on these areas as our main ROIs (see preregistration: 

https://osf.io/8mfqx/). Along with the expected FP regions, the univariate activation 

analyses (see Figure 2) also revealed enhanced activation in the dACC and the aI 

during task switching. Thus, for exploratory analyses, we defined ROIs of the CO 

network, including the aI and dACC (Dosenbach et al., 2007, 2008).  

The ROI definition procedure was as follows. ROIs were initially defined 

based on task activation across all three runs relative to baseline and subsequently 
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restricted by anatomical location. To this end, we constructed a general linear model 

(GLM) of correct single, correct repeat, and correct switch trials as separate 

regressors. Missed trials, error trials, and the first trial of each run were included in a 

separate regressor of no interest. Framewise displacement per volume (in mm; 

Power et al., 2012), realignment parameters (three translation and three rotation 

parameters), and the first six anatomical CompCor components as provided by 

fMRIprep were added as regressors of no interest. CompCor identifies patterns of 

noise using a principle-component analysis approach and the inclusion of the 

components aids in the removal of noise from fMRI data (Behzadi et al., 2007). We 

derived a contrast, comparing task (correct single, repeat, and switch trials) with 

baseline collapsed across age groups. The resulting whole-brain contrast map was 

thresholded at family-wise error (FWE) corrected p < .05, cluster size > 50 voxels. 

Multiple brain regions in the frontal and parietal cortices showed greater 

activation for tasks compared to baseline, including bilateral IFJ, dlPFC, SPL, dACC, 

and aI. Functional activations as determined above were anatomically restricted 

using the Harvard-Oxford atlas (Makris et al., 2006), thresholded at 30%. The 

inclusive anatomical masks we used to restrict univariate activation to pre-defined 

ROIs were the middle frontal gyrus for the dlPFC, the superior parietal lobe for the 

SPL, insular cortex for the aI, and the paracingulate gyrus for the dACC. Because no 

anatomical mask for the restriction of the IFJ is available, we defined it based on 

coordinates from a meta-analysis of task-switching studies focusing on the IFJ 

(Derrfuss et al., 2005). See Figure 2 A–B for task-based FP and CO ROIs, 

respectively. 

 

Temporo-occipital (TO) ROIs. ROIs in TO were defined on activation maps provided 

by the Neuroquery (Dockès et al., 2020) and Neurosynth (Yarkoni et al., 2011) 

platforms, using the search terms “face” “object”, and “place”. A probability map was 

downloaded for each of the search terms from each platform on November 22nd, 

2021. Neuroquery maps were thresholded with a z-score of 3 as recommended by 

the developers (Dockès et al., 2020); Neurosynth maps were thresholded at p < .01 

(FDR-corrected; Yarkoni et al., 2011). All negative value voxels were set to zero to 

keep only positive activation associated with each search term. Next, the Neurosynth 

and Neuroquery masks for each search term were multiplied with each other to only 

include voxels identified across both platforms. Note that for the “place” search term 
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only the Neuroquery mask was used in ROI definition, as the map provided by 

Neurosynth did not include the parahippocampal gyrus, which has consistently been 

associated with place/scene perception across age groups (Golarai et al., 2007; 

Scherf et al., 2007).  

Finally, following the same approach as for the FP and CO ROIs, the resulting 

maps were anatomically masked using the Harvard-Oxford atlas (Makris et al., 

2006), thresholded at 30%. The temporal occipital fusiform gyrus was used as an 

anatomical mask for the face-selective ROI, the inferior lateral occipital cortex for the 

object-selective ROI, and the anterior and posterior parahippocampal gyrus for the 

scene/place-selective ROI. The resulting TO ROIs overlapped with activation in 

temporo-occipital regions of the task > baseline contrast described above. Figure 2C 

shows the resulting TO ROIs. 

Note that we had originally preregistered to define ROIs based on a 

searchlight MVPA decoding the three tasks (face vs. scene vs. object) across all 

runs, but we changed our approach due to updated methods for applying corrections 

of unequal class counts (see below). 

 

2.6 Multivariate pattern analysis 

We constructed subject-specific GLMs of the task-switching paradigm using the 

Nipype (version 1.6.0; Gorgolewski et al., 2011) interface to FSL FEAT (using FSL 

5.0.9; Jenkinson et al., 2002), focusing on the mixed runs and more specifically, on 

the differences between switch and repeat trials therein. GLMs included the 

combination of task and condition as separate regressors (i.e., face switch, face 

repeat, scene switch, scene repeat, object switch, object repeat) and the same 

nuisance regressors of no interest as in the GLM for ROI definition. Activation 

patterns for individual trials in the two mixed runs were extracted using a least 

squares separate approach, in which a trial-specific design matrix is used to obtain 

the activation estimate for that trial (LSS; Mumford et al., 2012).  

Next, we conducted MVPA for each participant in each condition separately, 

using Nilearn (version 0.8.0; see Abraham et al., 2014) and scikit-learn (version 

0.24.2; Pedregosa et al., 2011). We used a support vector classifier (LinearSVC, 

initialized with regularization parameter C = 1 and one-vs-rest multiclass strategy) 

trained to predict the currently relevant task (scene, object, face), given trial 
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activation patterns in each ROI. We applied leave-one-run-out cross-validation 

during the analysis, so that at each validation fold, a classifier was fitted on data from 

one run and tested on data of the other run. Participants with fewer than five trials of 

each task in a condition were excluded from analysis. To ensure balanced numbers 

of trials across classes, we undersampled the majority class(es) without 

replacement. We adopted this approach as opposed to the preregistered method of 

the scikit-learn “balanced” option (Pedregosa et al., 2011) as it eliminates possible 

bias rather than correcting for it post-hoc. We repeated model training and testing 

with leave-one-group-out cross-validation 100 times for each participant in each 

condition and averaged across iterations. We did not have to remove any 

participant’s decoding accuracy data based on the predefined outlier criterion of 3.5 

standard deviations (p < .001) above or below the group-specific mean. 

 

2.7 Analysis of age differences in decoding accuracy 

2.7.1 Age and condition differences within ROI sets. To test whether decoding 

accuracy differed between switch and repeat trials and between the two age groups, 

analyses in the three sets of ROIs (FP regions: dlPFC, IFJ, SPL; CO regions: dACC, 

aI; TO regions: fusiform gyrus [face-selective], parahippocampal gyrus [scene-

selective], and lateral occipital cortex [object-selective]) proceeded in three steps: (1) 

For each ROI, we tested whether it would be appropriate to combine data across 

hemispheres: that is, we tested whether decoding accuracy differed between 

hemispheres, and whether hemisphere interacted with age group or condition. We 

did not find main effects or interactions involving hemisphere in any of the ROIs and 

thus averaged across the two hemispheres for all subsequent analyses. (2) Within 

each ROI set (FP, CO, TO), we tested a Bayesian linear mixed model across all 

regions in the corresponding set. Decoding accuracy was predicted by condition 

(repeat vs. switch), ROI, age group (adults vs. children), and their interactions. All 

linear mixed models included a random intercept for participant. If an effect of region 

or any interaction of region with another effect of interest (condition or age group) 

became evident with 95% probability (i.e., the 95% CI did not include zero), we 

proceeded to test for the main effects and interactions of condition and age group in 

each ROI separately. (3) Using t-tests, we tested whether decoding accuracy for 

each condition in each age group and ROI differed from chance (i.e., 0.33). In 
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addition to comparing decoding accuracy between switch and repeat trials across all 

three tasks, we tested whether each of the TO ROIs showed selectivity for the 

theoretically preferred task on repeat trials. To this end, we compared repeat 

decoding accuracy of the preferred task (i.e., the face task for the fusiform gyrus) to 

the two non-preferred tasks (i.e., the scene and object task for the fusiform gyrus), 

and whether this effect differed between age groups.  

 

2.7.2 Age and condition differences between ROI sets. To examine whether age 

group and condition effects differed between the three sets of ROIs, we first modeled 

decoding accuracy including all ROIs. Specifically, models included fixed effects of 

condition, age group, and set of ROIs (FP vs. CON vs. TO), and their interactions, 

along with random slopes for set of ROI and random intercepts for participant. The 

model including all interactions fit slightly better than a model without any 

interactions of condition. 

 

2.7.3 Task-set inertia. In a set of exploratory analyses, we explored if the lingering 

representation of the previously relevant task set contributed to lower decoding 

accuracy on switch trials. Specifically, we tested whether incorrect predictions of the 

classifier on switch trials were more likely to predict the previously relevant task. As 

described above, the classifier predicted one of the three tasks for each trial. This 

prediction could either be correct and thus count towards the decoding accuracy 

measure, or incorrect if the prediction indicated one of the other two tasks not 

relevant on that specific trial. To test the task-set inertia hypothesis within each set of 

ROIs, we tested whether the classifier was more likely to predict the previously 

relevant task over the task that was neither relevant on the previous nor current trial; 

further, we tested whether this differed between age groups. To this end, we 

modelled percentage of false predictions as the dependent variable and the type of 

false prediction (previous vs. third task) and age group as the fixed effects, 

additionally including fixed effects of region and random intercepts of participant. 

 

2.7.4 Individual differences in the impact of switch demand on representations 

across ROI sets. While analyses up to this point tested whether the effect of switch 

demand on neural task-set representations differed between children and adults, 

they did not shed light on the question whether switch demand affected different 
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brain regions similarly within an individual. Thus, to further understand these 

individual differences across the sets of ROIs, we explored whether individuals who 

showed a greater difference in decoding accuracy between conditions in one set of 

ROIs showed a similar pattern in the other sets of ROIs. To this end, we averaged 

the differences between switch and repeat decoding accuracy across all ROIs in 

each set. Next, we tested for age group differences in the correlations among the 

three sets of ROIs by comparing the correlations of each pair of ROI sets between 

the two age groups using cocor (version 1.1-4; Diedenhofen and Musch, 2015) in R. 

 

2.8 Associations between decoding accuracy and performance 

To anticipate the outcome of our analyses, we did not observe any differences in 

decoding accuracy between individual ROIs within each set. As a result, we deviated 

from the preregistration and tested whether decoding accuracy across ROIs in a set 

predicted task performance. We used a linear mixed model with performance 

accuracy as the dependent variable, average decoding accuracy across the ROIs in 

one set, condition (repeat vs. switch), and age group (adults vs. children) as fixed 

effects, and a random intercept modeling the individual participants. We used leave-

one-out cross-validation (loo package; Vehtari et al., 2022) to compare the model 

including all interactions between the fixed effects to models including fewer 

interaction terms. We only tested models that included an interaction of age group 

and condition to account for differences in behavioral performance between children 

and adults. For both behavioral accuracy and RT, and the models in all ROI sets, 

model comparisons indicated better fit for the model including only the main effect of 

decoding accuracy and the interaction between age group and condition, but no 

interaction of decoding accuracy with either age group or condition. Thus, the effect 

of interest was the main effect of decoding accuracy. The same model setup and 

comparison approach was used for linear mixed models of RT. 
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3. Results 

3.1 Greater switch costs in children than adults 

Adults exhibited higher overall performance accuracy than children (estimate (est.) = 

–0.16; 95%-CI: –0.20, –0.11) as well as shorter RTs on correct trials (est. = 0.28; 

95%-CI: 0.22, 0.33). Both groups exhibited switch costs, with higher accuracy on 

repeat than on switch trials (est. = –0.03; 95%-CI: –0.04, –0.02); as well as shorter 

correct RTs on repeat than on switch trials (est. = 0.24; 95%-CI: 0.21, 0.27). 

Critically, children exhibited greater switch costs than adults in terms of accuracy 

(condition x group interaction: est. = –0.05; 95%-CI: –0.07, –0.03; Figure 1C), albeit 

not in terms of RTs (condition x group interaction: est. = 0.01; 95%-CI: –0.03, 0.05; 

Figure 1C). In sum, both children and adults showed switch costs in accuracy and 

RT, with greater accuracy switch costs in children than in adults. 

 

Figure 1: Task-switching paradigm and age differences in performance. (A) The task-

switching paradigm consisted of three tasks: the face task, the scene task, and the object 

task. Participants had to perform the task indicated by the simultaneously presented shape 

in the background. Depending on the stimulus presented, one of three buttons had to be 

pressed in response (indicated here by the green button). Faces had to be categorized 

according to the age of the person shown, scenes according to the location (i.e., forest, 

desert, or sea), and objects according to the color. (B) The mixed runs included trials on 

which the task of the previous trial was repeated (50%) or switched to a different task (50%) 

in an unpredictable manner. (C) Performance accuracy (in %) and response times (in 

seconds) for repeat (yellow) and switch (orange) trials split by age group. Gray lines connect 

performance measures for each individual. Image credits: Young and old adult faces were 

taken from the FACES collection (Ebner et al., 2010). 
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3.2 Higher decoding accuracy for repeat than for switch trials across age groups 

Decoding accuracy for each ROI is shown in Figure 2. We predicted lower decoding 

accuracy on switch than on repeat trials across groups in all sets of ROIs, with 

greater reductions in decoding accuracy for children. To test these hypotheses, we 

used Bayesian linear mixed models for each set of ROIs to predict decoding 

accuracy by age group, condition, and ROI. 

In each set of ROIs, we found evidence of a main effect of condition (switch 

vs. repeat; FP ROIs: est. = –0.10; 95%-CI: –0.14, –0.06; CO ROIs: est.= –0.09; 

95%-CI: –0.13, –0.05; TO ROIs: est. = –0.15; 95%-CI: –0.19, –0.11), with higher 

decoding accuracy on repeat than on switch trials. There was no evidence for effects 

of age group in any of the ROI sets, showing that, contrary to our hypothesis, 

decoding accuracy was comparable between children and adults. Finally, there were 

no effects of specific ROI within a set, suggesting that all tested ROIs showed higher 

decoding accuracy on repeat trials relative to switch trials in both age groups.  

ROI-specific analyses indicated that all ROIs showed above-chance (> 0.33) 

decoding accuracy on repeat trials (all ts > 6.85; all lower bounds of 95%-CI > 0; see 

Figure 2). By contrast, decoding accuracy on switch trials did not differ from chance 

in the majority of ROIs (i.e., the bilateral SPL and IFJ for the FP ROIs, the bilateral aI 

and dACC of the CO ROIs, and the face- and scene-selective ROI; –1.04 < t < 1.36; 

all lower bounds of 95%-CI < 0), with only two exceptions. The dlPFC showed 

above-chance decoding accuracy for switch trials in adults (t = 1.96; lower bound of 

95%-CI = 0.005) but not in children (t = 0.64; lower bound of 95%-CI = –0.015), and 

the object-selective ROI showed above-chance decoding accuracy for switch trials in 

children (t = 2.55; lower bound of 95%-CI = 0.012), but not in adults (t = 1.2; lower 

bound of 95%-CI = –0.0077). 

Taken together, in line with our hypothesis and in accordance to the observed 

behavioral switch costs, decoding accuracy was greater for repeat than for switch 

trials across all sets of ROIs. Above-chance decoding of the currently relevant task 

was only evident for repeat trials, while the newly-updated relevant task on a switch 

trial could not be distinguished from the two irrelevant tasks based on the neural 

activation pattern. Of note, contrary to our hypothesis, children showed comparably 

distinct task-set representations as adults.  
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To explore whether the TO ROIs showed preference for stimuli in the 

currently relevant task, given their putative functional specialization for processing 

different kinds of stimuli (Cantlon et al., 2011; Natu et al., 2016; Golarai et al., 2017; 

Tian et al., 2021), we tested decoding accuracy for the preferred compared to the 

non-preferred tasks on repeat trials in each ROI. The face-selective ROI showed 

greater decoding accuracy on repeat trials for the face task compared to the object 

and scene tasks (est. = –0.06; 95%-CI: –0.8, –0.03) even though each trial 

presented a face, object, and scene stimulus simultaneously on the screen and at 

unpredictable locations. By contrast, neither the object- nor scene-selective ROI 

showed a preference for object or scene tasks, respectively. Thus, only the face-

selective ROI showed a preference for the stimuli it was expected to prefer. 

 

Figure 2: Regions of interest (ROIs) and decoding accuracy results. The dashed line in each 

plot indicates chance (0.33). (A) Decoding accuracy for repeat trials (yellow) and switch trials 

(orange) in adults and children of frontoparietal (FP) regions: (a) dorsolateral prefrontal 
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cortex (dlPFC), (b) superior parietal lobe (SPL), and (c) inferior frontal junction (IFJ). (B) 

Decoding accuracy of cingulo-opercular (CO) regions: (d) dorsal anterior cingulate cortex 

(dACC) and (e) anterior insula (aI). (C) Decoding accuracy of temporo-occipital (TO) regions: 

(f) face-selective ROI in the fusiform gyrus, (g) object-selective ROI in the lateral occipital 

cortex, (h) scene-selective ROI in the parahippocampal gyrus. 

 

3.3 Higher decoding accuracy for temporo-occipital ROIs 

As the effect of condition was present in all three sets of ROIs, we next sought to 

directly compare whether it differed between the sets of ROIs. A model comparing 

the effects of age group, condition, and ROI set on decoding accuracy revealed that 

relative to the TO ROIs, decoding accuracy was lower in the FP ROIs (est. = –0.03; 

95%-CI: –0.06, –0.01) and CO ROIs (est. = –0.06; 95%-CI: –0.06, –0.04). The 

difference between the CO and the TO ROIs was further qualified by an interaction 

with condition (est. = 0.06; 95%-CI: 0.02, 0.1), indicating a greater difference in 

decoding accuracy between switch and repeat trials in the TO compared to the CO 

ROIs. There was neither evidence for differences between the FP and the CO ROIs 

nor for any differences between the age groups. Thus, while all investigated regions 

showed greater decoding accuracy on task repetitions compared to task switches, 

this condition difference, as well as overall decoding accuracy, was greater in the TO 

ROIs than in regions classically associated with cognitive control processes in 

children and adults.  

 

3.4 No evidence for task-set inertia effects on representations 

Next, we investigated whether task-set inertia contributed to less distinct task-set 

representations on switch trials. To this end, we compared the percentage of trials 

on which the classifier falsely predicted the previously relevant task to the 

percentage of trials on which it predicted the third task that was neither relevant on 

the current nor on the previous trial. Separate models for each set of ROIs included 

the fixed effects of incorrectly predicted task (previous vs. third task), age group, and 

region. None of the investigated sets of ROIs showed a higher probability of 

predicting the previous task over the third task in both children and adults (all 95%-CI 

included zero; Figure 3). Thus, we did not find any evidence that lower decoding 

accuracy on switch trials was related to task-set inertia, whereby the representation 
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of the task relevant on the immediately preceding trial would linger after ceasing to 

be relevant. 

 

Figure 3: Percentage of predictions of the previously relevant task of all false predictions of 

the currently relevant task (i.e., task-set inertia) for (A) the frontoparietal (FP) ROIs, (B) the 

cingulo-opercular (CO) ROIs, and (C) the temporo-occipital (TO) ROIs. As none of the 

analyses within each set of ROIs indicated differences between regions, data were averaged 

across ROIs in each set for visualization. 
 

3.5 Children showed similar condition differences in decoding accuracy in CO and 

FP ROIs 

Next, to assess whether switch demand affected different brain regions similarly 

within an individual, we conducted a set of exploratory analyses testing whether 

children and adults showed similar patterns of switch-related reductions in decoding 

accuracy across ROI sets. To this end, we calculated the average difference in 

decoding accuracy between switch and repeat trials (i.e., difference scores) across 

all ROIs of the same set. The association between difference scores in the FP and in 

the CO ROIs differed between the age groups (p = .018; Figure 4): children showed 

a moderate to strong correlation between decoding accuracy difference scores in FP 

and CO (r = .64; pFDR < .001, FDR-corrected for multiple comparisons), whereas 

adults showed a weak to moderate correlation (r = .33; pFDR = .027). Difference 

scores showed a moderate correlation between FP and TO ROIs in children (r = .54; 

pFDR < .001) and in adults (r = .38; pFDR = .015), and did not differ between age 

groups (p = .27). Difference scores between CO and TO ROIs showed weak to 

moderate correlations in both children (r = .31; pFDR = .004) and adults (r = .30; pFDR 

= .03), and did not differ between age groups (p = .98). In sum, children showed 
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greater similarity than adults in the impact of switching demands on FP and CO 

ROIs, while group differences were neither evident for the correlations between FP 

and TO nor for those between CO and TO. 

 

Figure 4: Correlations of condition differences in decoding accuracy between sets of ROIs 

split by age group. (A) In children (shown in magenta), greater differences in decoding 

accuracy between repeat and switch trials in frontoparietal (FP) ROIs were associated with 

greater differences on the same measure in the cingulo-opercular (CO) ROIs. This was not 

the case in adults (shown in turquoise). (B) Correlations in CO and temporo-occipital (TO) 

ROIs did not differ between children and adults. (C) Correlations in FP and TO ROIs did not 

differ between children and adults. 

 

3.5 Decoding accuracy was not related to task-switching performance  

Finally, to investigate whether having more distinct neural representations of the 

currently relevant task set was related to better task-switching performance, we 

tested whether decoding accuracy averaged across all ROIs within each set was 

associated with higher performance accuracy and/or lower RTs. Model comparisons 

indicated that the best fitting model included the main effect of decoding accuracy 

and the interaction between age group and condition, but no interaction of decoding 
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accuracy with either age group or condition. This suggests that there were no 

differences between children and adults in the potential association between 

decoding accuracy and performance. In these models across all participants, none of 

the ROI sets showed an effect of decoding accuracy on either performance accuracy 

or correct RTs (all 95%-CI included zero). Thus, we found no evidence that higher 

decoding accuracy was associated with better performance during task switching in 

the present paradigm. 
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4. Discussion 

Using MVPA, we examined the extent to which the distinctiveness of neural task-set 

representations contributed to age differences in task switching. Both children and 

adults showed lower decoding accuracy on switch compared to repeat trials across 

FP, CO, and TO regions, suggesting less distinct task-set representations on switch 

trials. We observed above-chance classification of the currently relevant task for 

repeat trials in all ROIs, while classification performance was largely at chance level 

for switch trials (except for the left dlPFC in adults and the object-selective ROI in 

children). Contrary to our expectations, we found no evidence that decoding 

accuracy differed between children and adults. In addition, task-set representations 

of the previously relevant task were not more likely to be (erroneously) decoded than 

the representations of the third task that was irrelevant on the previous and current 

trials. Thus, our analyses do not provide any evidence that task-set inertia 

contributed to lower distinctiveness for switch trials. The distinctiveness of the 

representation of the currently relevant task set decreased during switching in 

regions beyond the FP network, including CO regions associated with task control 

(Braver et al., 2003; Sestieri et al., 2014; Han et al., 2019; Palenciano et al., 2019; 

Cocuzza et al., 2020; Wood and Nee, 2023) as well as TO regions associated with 

the task-relevant stimuli (cf. Tsumura et al., 2021). Notably, children showed higher 

correlations in these decoding accuracy costs between FP and CO regions than 

adults, suggesting that switch demand affected task-set representations in FP and 

CO regions in a manner that was more similar among children than among adults.  

4.1 More distinct representations on repeat than switch trials 

The finding that the currently relevant task set could be decoded with an accuracy 

that was above chance for repeat but not for switch trials supports the notion that 

task-set representations in the present task were less stable when they had recently 

been updated (i.e., on switch trials; Meiran, 1996; Mayr and Kliegl, 2000). The lower 

distinctiveness on switch trials has partly been attributed to the lingering 

representation of the (no-longer relevant) task set from the previous trial (Rogers and 

Monsell, 1995; Wylie and Allport, 2000; Qiao et al., 2017; Rangel et al., 2023).  

Directly testing this task-set inertia hypothesis in the present study, we did not 

find any evidence for this pattern, contrary to the previous findings reported by Qiao 
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et al. (2017) based on representational similarity between consecutive trials. Note 

that compared to Qiao et al. (2017), our participants had to switch among three 

different tasks. This allowed us compare whether a multivariate pattern of brain 

activation contained more information of the previously relevant task than a third task 

(relevant on neither the previous nor the current trial), and thus directly test 

predictions made by the task-set inertia hypothesis. 

Taken together with previous studies investigating neural representations 

during task switching (Loose et al., 2017; Qiao et al., 2017), the present results 

indicate that differences in neural task-set representations may depend on the 

specific kind of switching demand. Specifically, our paradigm and the one used by 

Qiao et al. (2017) required switches between different arbitrary rules and their 

corresponding response mappings that may be more likely to modulate the 

distinctiveness of task-set representations (cf. Woolgar et al., 2011), as indicated by 

a condition difference in decoding accuracy. In contrast, the paradigm by Loose et al. 

(2017) required switches between responses while the task remained the same 

conceptually, which resulted in comparable (above-chance) decoding for both switch 

and repeat trials (cf. Brass and De Baene, 2022). 

 

4.2 Similar distinctiveness of task-set representations in children and adults 

By demonstrating that the currently relevant task can be reliably predicted from 

neural activation patterns during task switching not only in adults but also in children, 

our results provide novel insights into children’s ability to flexibly switch between 

rules. These findings add to an emerging research direction investigating the role of 

neural representations for cognitive development across childhood and adolescence 

(e.g., Fandakova et al., 2019; Jung et al., 2023).  

Contrary to our expectations based on comparisons of univariate task-based 

activation during task switching (e.g., Crone et al., 2006b; Wendelken et al., 2012), 

we did not find evidence for less distinct neural task-set representations in children 

compared to adults. However, a similar level of decoding accuracy between children 

and adults should not be taken as evidence that representations were identical or 

used in the same way in both age groups. Even with similar distinctiveness of task-

set representations, there may still be differences in the application of the task set. 

Specifically, decoding techniques only indicate differences between task-set 
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representations but do not reveal the processes through which these representations 

come to be or how they influence behavior (cf. Kriegeskorte and Douglas, 2018).  

For example, tasks eliciting different levels of task performance in adults were 

shown to have comparable levels of decoding accuracy, suggesting that differences 

in complexity were not captured by the decoder (Ruge et al., 2019). This may be 

especially relevant when comparing groups of individuals of different ages, given that 

the neural systems that are being decoded differ in organization due to maturation 

and experience. In line with this consideration, Crone and colleagues (2006c) found 

that age differences in univariate activation were more pronounced when 

representations in working memory needed to be manipulated not just maintained. 

Finally, univariate analyses of the present sample revealed that children upregulated 

frontoparietal activation on switch compared to repeat trials to a smaller extent than 

adults did (Schwarze et al., 2023), further supporting the idea that children and 

adults may differ with respect to implementing the newly relevant task-set 

representation on switch trials.  

 

4.3 Differences between networks 

Corroborating and extending previous studies of neural task-set representations 

during rule-based tasks (Woolgar et al., 2011; Zhang et al., 2013; Loose et al., 2017; 

Qiao et al., 2017) with respect to regional heterogeneity, we showed greater 

decoding accuracy in TO regions compared to FP and CO regions, not only in 

children but also in adults. TO regions may be more strongly driven by the visual 

input of the task, support sensory representations within working memory (cf. Olivers 

and Roelfsema, 2020), or carry representations of lower dimensionality rendering 

them more distinct in their neural pattern (cf. Buschman, 2021).  Note that the 

present task did not include multiple cues (i.e., a single cue was used for each task) 

and the cue was presented simultaneuously with the stimuli. We can thus not rule 

out that the cue contributed to the distinctiveness of task-set representations (cf. 

Loose et al., 2017). Given the relatively earlier position of the TO regions in the 

ventral visual processing stream (e.g., Kravitz et al., 2013), the extent to which the 

cue might have impacted task-set representations may differ between ROIs and thus 

contribute to differences in decoding accuracy between ROIs. 
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Our exploration of regional heterogeneity led to the finding that the difference 

between switch versus repeat decoding accuracy was correlated more strongly 

between the CO and FP ROIs (but not the TO ROIs) in children than in adults. It has 

been noted before that differences in the functional roles of CO and FP networks 

increase in the course of child and adolescent development (e.g., Fair et al., 2009; 

Keller et al., 2022; Tooley et al., 2022). In light of the individual differences observed 

here, we could speculate that the closer functional association between FP and CO 

regions in children is associated with the representation of more similar features in 

these regions in children as compared to adults. This idea is consistent with 

suggestions that representational structure is crucial for efficient cognitive control 

(Badre et al., 2021; Garner and Dux, 2023) and differs between regions in adults 

(Vaidya and Badre, 2022). A recent study examined how representational structures 

change during the acquisition of new tasks in adults (Mill and Cole, 2023) and 

demonstrated regional differences in compositional representations, that is, task-

general activation patterns, and conjunct representations, that is task-specific 

activation patterns. Specifically, with learning, compositional representations in 

cortical regions were replaced by conjunct representations previously only found in 

subcortical regions. 

 

4.3 Conclusion 

Taken together, our results demonstrate that task-set representations were affected 

by switch demands – not only in adults but also in children. Individual differences in 

the degree to which effects of switch demands were correlated between sets of brain 

regions raise the possibility that the closer functional association between 

frontoparietal and cinguloopercular regions in children is related to the representation 

of more similar task features across regions in childhood. These findings raise 

further questions about the role of representations in the development of cognitive 

control during childhood that merit further study: What is the role of regional 

heterogeneity and overlapping feature representation for the learning and 

generalization of task rules in childhood? Future work focusing on developmental 

changes in neural representations could provide fruitful in elucidating the 

mechanisms underlying cognitive control development.  
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