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Asymmetric thermal relaxation in driven systems: Rotations go opposite ways

Cai Dieball , Gerrit Wellecke ,* and Aljaž Godec †

Mathematical bioPhysics group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany

(Received 13 April 2023; revised 12 June 2023; accepted 24 October 2023; published 27 November 2023)

It was predicted and recently experimentally confirmed that systems with microscopically reversible dynamics
in quadratic potentials warm up faster than they cool down. This thermal relaxation asymmetry challenged
our understanding of relaxation far from equilibrium. Because the intuition and proof hinged on the dynamics
obeying detailed balance, it was not clear whether the asymmetry persists in systems with irreversible dynamics.
To fill this gap, we here prove the relaxation asymmetry for systems driven out of equilibrium by a general
linear drift. The asymmetry persists due to a nontrivial isomorphism between driven and reversible processes.
Moreover, rotations of level sets of probability densities emerge that, strikingly, occur in opposite directions
during heating and cooling. This highlights that noisy systems do not relax by passing through local equilibria.

DOI: 10.1103/PhysRevResearch.5.L042030

Introduction. According to the laws of thermodynamics,
systems in contact with a thermal environment evolve to
the temperature of their surroundings in the process called
thermal relaxation [1]. Relaxation close to equilibrium may
be explained by linear response theory conceptually based
on Onsager’s regression hypothesis [2–4]. That is, relaxation
from a temperature quench is indistinguishable from the decay
of a spontaneous thermal fluctuation at equilibrium [2–4].
Analogous results were meanwhile formulated also for re-
laxation near nonequilibrium steady states [5–7]. Beyond the
linear regime, however, the regression hypothesis and per-
turbative arguments fail. In particular, noisy systems do not
relax by passing through local equilibria; that is, intermediate
states do not correspond to equilibrium states at intermediate
temperatures, p(x, t ) �= peq[x; T (t )] with a time-dependent
temperature T (t ).

Important advances have been made in understanding
relaxation beyond the linear regime addressing hydrody-
namic limits [8,9], barrier crossing in driven systems [10,11],
memory effects [12–21], far-from-equilibrium fluctuation-
dissipation theorems [22,23], optimal heating or cooling
protocols [24], anomalous relaxation also known as the
Mpemba effect [25–32] and its isothermal analog [33],
the Kovacs effect [34,35], and dynamical phase transitions
[36–44]. Important advances further include transient thermo-
dynamic uncertainty relations [45–50], speed limits [51–55],
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and analyses of relaxation from the viewpoint of information
geometry [54–56].

A particularly striking feature of relaxation was unrav-
eled with the discovery of the asymmetry between heating
and cooling from thermodynamically equidistant temperature
quenches [57]. That is, it was found that systems with locally
quadratic energy landscapes and microscopically reversible
dynamics heat up faster than they cool down. Later works
expanded on this result [58–60]. The asymmetry was recently
quantitatively confirmed by experiments [56].

The asymmetry emerges because the entropy production
within the system during heating is more efficient than heat
dissipation into the environment during cooling [57]. In turn,
close to equilibrium they become equivalent and symmetry
is restored [56,57]. An even deeper understanding of the
asymmetry was recently achieved by means of thermal kine-
matics [56]. However, both the reasoning and the proof of the
asymmetry [56,57,61] seem to hinge on the reversibility of
the dynamics. Therefore, the persistence of the asymmetry in
systems driven into nonequilibrium steady states (NESS) was
unexpected. In particular, a nonconservative force profoundly
changes relaxation behavior [62–66] even near stable fixed
points [67] and in systems with linear drift [68], and may thus
a priori also break the asymmetry.

Here, we investigate the speed and asymmetry of thermal
relaxation to a NESS. As a paradigmatic example we first
consider a harmonically confined Rouse polymer with hy-
drodynamic interactions and internal friction driven by shear
flow (see Fig. 1), and demonstrate that heating is faster than
cooling. Next we provide a systematic analysis of relaxation
under broken detailed balance and explain under which con-
ditions heating and cooling both become faster. Finally, we
prove that all ergodic systems with a linear drift, including
those driven arbitrarily far from equilibrium and displaying
rotational motions, heat up faster than they cool down. In this
regime the notion of a local effective nonequilibrium tem-
perature is nominally impossible. Our proof, which exploits
dual-reversal symmetry, unravels a nontrivial isomorphism
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FIG. 1. (a) Configuration of a harmonically confined (color gra-
dient) Rouse polymer with N = 20 beads in three dimensions with
hydrodynamic interactions and internal friction subject to a shear
flow (arrows) in the x-y plane drawn from the NESS with covariance
�s,w (see Ref. [69] for parameters); a projection onto the x-y plane
is shown. (b) The corresponding free energy difference Di

t in Eq. (5)
during heating from Tc (red) and cooling from Th (blue) with (solid
lines) and without (dashed lines) irreversible shear flow. The shear
changes Di

t , but the thermal relaxation asymmetry Dc
t < Dh

t for
t > 0 remains valid. Inset: Temperatures Ti before the quench are
chosen thermodynamically equidistant, i.e., Dc

0 = Dh
0 .

between reversible and driven systems. Finally, we find an
unexpected facet of the relaxation asymmetry—effective ro-
tations of probability densities occur in opposite directions
during heating and cooling, respectively.

Setup and motivating example. The relaxation asym-
metry was originally proven for reversible diffusions in
locally quadratic energy landscapes as well as their low-
dimensional projections [57,61]. It states that such systems,
when quenched from thermodynamically equidistant (TED)
temperatures Th, Tc to an ambient temperature Tw with
Tc < Tw < Th, heat up faster than they cool down. In quantita-
tive terms, for degrees of freedom x (e.g., positions) at time t ,
the generalized excess free energy in units of kBTw [67,70–72]
or nonadiabatic entropy production [73,74] (i.e., the relative
entropy in units of kB [75] between the instantaneous Pw

i (x, t )
and stationary pw

s (x) probability density at Tw with i = h, c)

Di
t ≡ DKL

[
Pw

i (x, t )||pw
s (x)

] ≡
∫

dxPw
i (x, t ) ln

Pw
i (x, t )

pw
s (x)

,

(1)

is always smaller during heating [57,61]. That is, Dc
t < Dh

t for
all t > 0 and all TED Th and Tc.

In a strict sense, the asymmetry is to be understood as
a statement about linearized drift around a local minimum
in some high-dimensional energy landscape [57]; counterex-
amples for diffusion in rugged landscapes [57] and for
small quenches also in sufficiently anharmonic wells [60]
are known. The generalization to driven systems therefore
involves a linear drift that, however, does not derive from
a potential and breaks detailed balance. Our main result is
the discovery and proof (see last section) of the asymmetry
Dc

t < Dh
t in driven systems.

Consider a d-dimensional system evolving according to the
overdamped Langevin equation [76,77]

dxt = −Axt dt + σ idWt , (2)

with square drift and noise-amplitude matrices, A and
σ i, respectively. In terms of the friction matrix γ , given
by Stokes’ law, the positive definite diffusion matrix
reads Di ≡ σ iσ

T
i /2 = kBTiγ

−1 and thus depends linearly

on temperature Ti. The external force F(x) yields a Ti-
independent drift −Ax = γ−1F(x), where A is generally
nonsymmetric but confining, i.e., the eigenvalues of A
have positive real parts. Thus, xt is ergodic but irre-
versible with zero-mean Gaussian NESS density pi

s(x) =
(2π )−d/2 det[�s,i]−1/2 exp[−xT �−1

s,i x/2] where the covari-
ance �s,i obeys the Lyapunov equation [69]

A�s,i + �s,iAT = 2Di = 2kBTiγ
−1, (3)

and thus depends linearly on the temperature Ti. Equation (3)
implies for all Ti the decomposition into reversible
−Arevx ≡ Di∇ ln pi

s(x) = −Di�
−1
s,i x and irreversible

−Airrx ≡ (−A + Arev)x = −αi�
−1
s,i x drift [78], where

αT
i = −αi is an antisymmetric matrix.1

We focus on temperature quenches—instantaneous
changes of the environmental temperature at fixed drift.
The thermodynamics of relaxation upon a quench Ti → Tw

is fully specified by Di
t , as the adiabatic entropy production

(housekeeping heat divided by Tw) [74] merely embodies
the cost of maintaining the NESS [79] and thus need not be
considered. Therefore, TED temperatures Th,c correspond to
Dh

0 = Dc
0 and are equal to those of a reversible system at the

same Tw [57].
Since the initial condition is a zero-mean Gaussian with

�w
i (0) = �s,i, the probability density is Gaussian for all times

with �w
i (t ) ≡ 〈xt xT

t 〉wi − 〈xt 〉wi 〈xT
t 〉wi given by (see Supple-

mental Material [69])

d

dt
�w

i (t ) = −A�w
i (t ) − �w

i (t )AT + 2Dw

⇒ �w
i (t ) = �s,w + e−At [�s,i − �s,w]e−AT t , (4)

where 〈·〉wi denotes the average over all paths xt at tempera-
ture Tw evolving from pi

s(x). Note that �s,i = Ti�s,w/Tw [see
Eq. (3)]. Introducing δT̃i ≡ Ti/Tw − 1, the generalized excess
free energy reads (see Ref. [69])

Di
t = 1

2δT̃i trX(t ) − 1
2 ln det[1 + δT̃i X(t )], (5)

where we introduced the d × d matrix

X(t ) ≡ e−At�s,we−AT t�−1
s,w, (6)

which via Eq. (5) fully describes relaxation dynamics.
As a paradigmatic example for such processes we con-

sider a harmonically confined Rouse polymer with N beads
experiencing hydrodynamic interactions [80,81] and internal
friction [82–85] subject to a shear flow, which was investi-
gated experimentally in Refs. [86–94]. For a representative
configuration of the NESS ensemble, see Fig. 1(a). One may
also consider colloidal particles in the presence of noncon-
servative optical forces [95]. The effect of these forces is
included in the 3N × 3N drift matrix A and 3N × 3N noise
amplitude σ i [69]. Evaluating Di

t for the heating and cooling
processes upon quenches from TED temperatures Th and Tc

we find Dc
t < Dh

t for all t > 0. That is, heating is faster than

1As �s,i is invertible and symmetric Eq. (3) implies
αi = (A − Di�

−1
s,i )�s,i = −�s,i(AT − �−1

s,i Di ) = −αT
i . In fact

�−1
s,i x and αi�

−1
s,i x are orthogonal since their scalar product yields an

antisymmetric quadratic form xT �−1
s,i αi�

−1
s,i x = 0 [67].
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FIG. 2. (a)–(c) Steady-state density pw
s (x) (color gradient) and streamlines of the drift field −Ax for a two-dimensional motion in Eq. (2)

with σw = √
21 and drift matrix A with elements Aj j = r j with r1 = 1, r2 = 3, Ajk = (−1) jωrk for j, k ∈ {1, 2}, with ω in units of ωc ≡

|r2 − r1|/2
√

r1r2. Real eigendirections (yellow) only exist for ω � ωc. (d) Real and imaginary parts of eigenvalues of A as a function of ω. At
ω = ωc the eigenvalues coincide and eigendirections [yellow lines in (b), (c)] merge, i.e., A is not diagonalizable. For ω > ωc the eigenvalues
are complex. (e) Angle between the principal axes of the covariance matrices �w

i (t ) and �s,w reflecting the rotation of level sets of the Gaussian
probability densities. (f) Explanation of the counterintuitive opposing effective rotations at small times during heating from Tc/Tw = 0.1. The
change d�(t ) in Eq. (4) starting from the initial �s,i (black ellipse) for dt = 0.05 split into diffusive (yielding the blue ellipse) and drift along
the gray streamlines (yielding orange ellipse) contributions. (g)–(h) Di

t for heating and cooling with and without driving on logarithmic-linear
and linear-logarithmic scales. The driven system relaxes faster at large t as predicted from the eigenvalues in (e). Gray lines in (h) show the
limiting relaxation rates for long times, e−4r1t (dashed line) and e−4
(λ1 )t (solid line).

cooling [the red line in Fig. 1(b) is at all times below the blue
line]. This agrees with the relaxation asymmetry predicted
[57] and experimentally verified [56] in reversible systems,
and provokes the question if this holds for any linear driving.

Systematics of breaking detailed balance. We now sys-
tematically assess the influence of nonequilibrium drifts on
relaxation upon a temperature quench. As shown above, any
linear drift A for i = c,w, h decomposes as

A = (Di + αi )�
−1
s,i with αT

i = −αi. (7)

Thus, by choosing any antisymmetric matrix αi we alter the
NESS current as well as X(t ), but neither �s,i nor ps(x). We
can thus directly compare a NESS with the corresponding
reversible system αi = 0 with the same steady state. Note that
such a direct comparison is not given in the example in Fig. 1,
since the shear flow alters �s,i as it is not of the form αi�

−1
s,i

with αT
i = −αi (see Ref. [69] for details about the consistent

comparison of equilibrium versus nonequilibrium).
We now consider the influence of the nonequilibrium driv-

ing. For linear drift the relaxation is governed by the eigen-
values of A [96,97]. Since �s,i is, by definition, symmetric
with positive eigenvalues, we can find a matrix β = βT such
that β2 ≡ �−1

s,i .2 Thus, the matrix βDi�
−1
s,i β

−1 = βDiβ =
βσ i(βσ i )T /2 is symmetric, which alongside det(βσ i ) �= 0 im-
plies that Di�

−1
s,i is diagonalizable with positive eigenvalues.3

Therefore, in the absence of driving A = Di�
−1
s,i expect-

edly has strictly positive eigenvalues reflecting a monotonous
relaxation to equilibrium.

2From the orthogonal diagonalization O�−1
s,i OT = diag(s j ) we de-

fine β ≡ OT diag
√

s jO.
3Any matrix of the form MMT is symmetric, and therefore diag-

onalizable, with real non-negative eigenvalues, since MMT v = λv
implies λ = vT MMT v/vT v = (MT v)T MT v/vT v � 0.

Once we include driving αw �= 0 in the steady-state-
preserving form Eq. (7), the spectrum may or may not become
complex depending on the detailed form of αw, see, e.g.,
Figs. 2(a)–2(d). Complex eigenvectors imply that eigendi-
rections where the drift points straight towards 0 cease to
exist, see Figs. 2(a)–2(c). This happens already at arbitrarily
small driving if level sets of ps(x) are (hyper)spherical. If
some eigenvalues are on the threshold of becoming complex
[branching point ωc in Fig. 2(d)], A may become nondiagonal-
izable. In terms of the minimal 2D example in Fig. 2 we have
that A is nondiagonalizable when ω = ±ωc [see Fig. 2(d)].

An interesting consequence of driving is that the dif-
ferent dimensions no longer decouple as they do under
detailed balance [see Fig. 2(a)]. This means that the d-
dimensional Langevin equation (2) cannot be decomposed
into 1D equations and that rotational dynamics may emerge.
In the particular case of temperature quenches we find that
driving causes a time-dependent rotation of the level sets of
Pw

i (x, t ), see Fig. 2(e). In agreement with the opposite signs of
Ti − Tw in Eq. (4), these rotations occur in opposite directions
during heating and cooling, which is a striking feature of the
relaxation asymmetry. These rotations further underscore that
thermal relaxation must not be understood as passing through
local equilibria at intermediate (effective) temperatures (since
these would not be rotated with respect to the steady-state
density), and that heating and cooling here evolve along very
distinct pathways in the space of probability distributions (for
related statements without rotations see Ref. [56]).

While the initial rotation during cooling follows the di-
rection of driving, most surprisingly the effective rotations
during heating initially oppose the direction of the driving
[see Fig. 2(e)]. This effect can be traced to the interplay
of (Trotterized [98]) diffusion and drift during individual
small time increments, see Fig. 2(f). During heating for an
increment dt diffusion alone propagates the black to the
more circular blue ellipse. The subsequent drift along the
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elliptical streamlines propagates this blue ellipse to the orange
ellipse that is, however, effectively rotated in the direction
opposite to the drift (for further details see Ref. [69]). During
the initial step of cooling, this does not happen since the
diffusion becomes negligible compared to the drift, and the
shape becomes less round even for short times, see Fig. S3 in
Ref. [69]. In higher dimensions we observe opposing rotations
in two-dimensional subspaces, see Fig. S5 in Ref. [69] for the
example of a sheared Rouse polymer.

Accelerated relaxation. Before proving the relaxation
asymmetry we discuss the acceleration of relaxation via
driving [64–66,68]. We therefore focus on the real part of
the eigenvalues, which determines the relaxation timescales.
Upon a change of basis we find Ã ≡ βAβ−1 = βDiβ + βαiβ

where (βαiβ)T = −βαiβ. Then, for any complex eigenvalue
λ of Ã with eigenvector v �= 0 we may write 2
(λ)v†v =
(λ + λ†)v†v = v†(Ã + Ã†)v = 2v†βDiβv, where † denotes
the Hermitian adjoint. Decomposing v, v† in the orthonormal
eigenbasis of βDiβ with eigenvalues 0 < μ1 � · · · � μd , we
have with c j ∈ C


(λ) = v†βDiβv
v†v

=
∑d

j=1 c†
j c jμ j∑d

j=1 c†
j c j

∈ [μ1, μd ]. (8)

This means that the real parts of the eigenvalues in the pres-
ence of driving remain not only positive, as required for the
existence of a steady state, but even remain in the interval
[μ1, μd ]. Thus, Eq. (8) states that the smallest real part of
eigenvalues of A under driving obeys 
(λ1) � μ1. Note that

(λ1) typically4 sets the slowest relaxation rate [96,97]. Since

(λ1) increases (or does not decrease) upon driving, the latter
typically enhances relaxation on long time scales, as already
shown in Ref. [68].

Driving also affects the adiabatic entropy production. This
effect, however, scales trivially, as the adiabatic entropy pro-
duction increases with increasing αi according to αT

i D−1
i αi

[69]. Hence, there is no direct connection between faster
relaxation and steady-state dissipation, as the influence of
driving on the eigenvalues is specific. For example, the ac-
celeration in d = 2 saturates [see 
(λ1) in Fig. 2(d)]. More
drastically, multiplying αi by a factor larger than 1 in d = 3
may decrease 
(λ1) [68].

We see from Eq. (6) that X(t ) ∼ e−2
(λ1 )t for long times
and therefore Di

t ∼ e−4
(λ1 )t [see Ref. [69] and Figs. 2(g)–
2(h)]. The statement accelerated relaxation, 
(λ1) � μ1,
means that both, heating and cooling will at long times be
faster. In general the difference between heating and cooling
upon driving can become larger or smaller than for reversible
dynamics with the same �s,i, but as we now prove heating is
always faster than cooling.

Proof of relaxation asymmetry in driven systems. We now
prove the relaxation asymmetry for the dynamics in Eq. (2),
i.e., �Dt ≡ Dh

t − Dc
t > 0 for all t > 0. By Eq. (6)

�Dt = δT̃h − δT̃c

2
trX(t ) − 1

2
ln

det[1 + δT̃h X(t )]

det[1 + δT̃c X(t )]
. (9)

4Unless the initial distribution has only a negligible projection onto
the slowest modes.

FIG. 3. (a) Illustration of Eq. (10): Stream plot of the drift field
−Ax (black) as in blue frame in Fig. 2(c), and inverted drift field
−A−αx (white). The white line depicts e−A−ατ x0 for τ ∈ [0, t], the
black line is e−Aτ e−A−αt x0, and the blue line shows X(τ )x0. (b) Ef-
fective stiffness r̂ j (ω) ≡ − ln(xt

j )/2t at t = 1 as a function of driving
ω (see Ref. [69]). For large driving the directions mix, such that
the system effectively approaches a circular parabola with stiffness
(r1 + r2)/2, which is the real part of eigenvalues in Fig. 2(d).

To prove the asymmetry we must understand the properties
of X(t ), which is Ti independent. Using the steady-state Lya-
punov equation (3) we can rewrite X(t ) as

X(t ) = e−At e−A−αt , (10)

where A−α ≡ (Dw − αw )�−1
s,w is the driving-reversed version

of A as in Eq. (7). This form is reminiscent of the dual-
reversal symmetry [78,99–101] stating that time reversal in
nonequilibrium steady states requires concurrent current re-
versal. Equation (10) is illustrated in Fig. 3(a). The proof
again requires us to change the basis via β as

X̃(t ) ≡ βX(t )β−1 = e−Ãt (e−Ãt )T , (11)

where we used βA−αβ−1 = ÃT and e−ÃT t = (e−Ãt )T . Thus,
X̃(t ) is symmetric and hence diagonalizable with real eigen-
values. Since, det e−Ãt = e−trÃt , we have det X̃(t ) = e−2trÃt �=
0. Therefore, X̃(t ) and thus X(t ) have positive eigenval-
ues xt

j > 0, j = 1, . . . , d .3 Although A may have complex
eigenvalues or even be nondiagonalizable and exp(−At )
may be rotational [see Figs. 2(c) and 3(a)], X(t ) has a
real eigensystem since consecutive rotations in forward and
current-reversed directions effectively cancel rotations, see
Eq. (10) and Fig. 3(a).

Using the eigenvalues xt
j > 0 we rewrite Eq. (9) as

�Dt =
d∑

j=1

(
δT̃h − δT̃c

2
xt

j − 1

2
ln

[
1 + δT̃hxt

j

1 + δT̃cxt
j

])
. (12)

If all xt
j ∈ (0, 1), the proof for reversible systems [57,61]

asserts that �Dt > 0. It therefore suffices to show that xt
j < 1

for all j, which is equivalent to ||X(t )|| < 1, where ||M|| ≡
supv∈Rd \0 ||Mv||2/||v||2 and ||v||2 =

√
vT v are the matrix and

Euclidean norm, respectively. Equation (10) does not help in
showing this;5 although eigenvalues of A have positive real
parts [see Eq. (8)], it may be that ||e−A±αt || > 1 [e.g., the
distance to 0 in Fig. 3(a) increases along the white line]. This
is possible because the eigenvectors of A are not orthogonal.

5Equation (10) suffices only at equilibrium A = A−α =
Dw�−1

s,w where X(t ) = exp(−2Dw�−1
s,wt ) decomposes into

xt
j = exp(−2μ jt ) < 1.

L042030-4



ASYMMETRIC THERMAL RELAXATION IN DRIVEN … PHYSICAL REVIEW RESEARCH 5, L042030 (2023)

We thus change the basis as in Eq. (11) and use the
log-norm inequality || exp(Mt )|| � exp[μ(M)t] [102] with
log norm μ(M) ≡ limh→0+ h−1(||1 + hM|| − 1) yielding
μ(−Ã) ≡ μ(−βAβ−1) = μ(−βDwβ) = −μ1 determined by
the symmetric part (Ã + ÃT )/2 = βDwβ [69]. This basis is
appropriate because βαwβ in Ã (unlike αw�−1

s,w in A) has no
symmetric part, i.e., % the driving only affects the rotational
part. The log-norm inequality thus implies || exp(−Ãt )|| �
exp[μ(−Ã)t] = exp(−μ1t ) and similarly || exp(−ÃT t )|| �
exp(−μ1t ), and by the submultiplicative property of the ma-
trix norm we obtain from Eq. (11)

||X̃(t )|| � ||e−Ãt || ||(e−Ãt )T || � e−2μ1t < 1. (13)

Since ||X̃(t )|| = ||X(t )|| this implies xt
j < 1 and with Eq. (12)

completes the proof of �Dt > 0 for all t > 0.
The proof provides important insight into the thermody-

namics of the asymmetry in reversible versus driven systems.
Namely, �Dt in Eq. (12) for a driven system at any t is equal
to that of any reversible system with drift matrix Â having
eigenvalues μ̂i satisfying e−2μ̂ j t = xt

j . Therefore, at each t
the relaxation asymmetry of a driven system is isomorphic
to that of an equilibrium system with different geometry [see
Fig. 3(b) for effective stiffness axes of the two-dimensional
parabolic potential], which implies the persistence of the
asymmetry. This provokes intriguing questions about the

existence of the asymmetry in the presence of time-dependent
driving.

Conclusion. We have proven that overdamped ergodic sys-
tems driven by linear drift, conservative or not, for any pair of
thermodynamically equidistant temperature quenches warm
up faster than they cool down. The relaxation asymmetry [57],
which was recently confirmed experimentally [56], therefore
persists in driven systems. As the original proof hinged on
microscopic reversibility, this finding is surprising and is
explained by a nontrivial isomorphism between driven and
reversible processes. In the presence of driving a striking fea-
ture of the relaxation asymmetry appears: rotational dynamics
emerge with opposite directions during heating and cooling,
respectively. This further highlights that small, noisy systems
do not relax by passing through local equilibria [1]. Moreover,
rotations in opposing directions emphasize that heating and
cooling evolve along fundamentally distinct pathways [56].
An analysis with the framework of thermal kinematics [56]
will bring even deeper insight. Our results motivate further
studies on the existence of the relaxation asymmetry in tem-
porally driven systems [49,103–107], systems with nonlinear
drift [25,27,28,30,108], and in the presence of inertial effects
[35].
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