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Abstract: We present a novel denoising scheme for spectroscopy experiments employing
broadband light sources and demonstrate its capabilities using transient absorption measurements
with a high-harmonic source. Our scheme relies on measuring the probe spectra before and after
interacting with the sample while capturing correlations between spectral components through
machine learning approaches. With the present setup we achieve up to a tenfold improvement in
noise suppression in XUV transient absorption spectra compared to the conventional pump on/
pump off referencing method. By utilizing strong spectral correlations in source fluctuations,
the use of an artificial neural network facilitates pixel-wise noise reduction without requiring
wavelength calibration of the reference spectrum. Our method can be adapted to a wide range of
experiments and may be particularly advantageous for low repetition-rate systems, such as free
electron lasers as well as laser-driven plasma and HHG sources. The enhanced sensitivity enables
the investigation of subtle electron and lattice dynamics in the weak excitation regime, which is
relevant for studying photovoltaics and photo-induced phase transitions in strongly correlated
materials.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Table-top optical-extreme-ultraviolet (XUV) transient absorption spectroscopy is a powerful
tool to investigate photoinduced electronic and structural dynamics in atoms, molecules, and
solids [1–4]. In this approach, a sample material is excited by an optical pulse and subsequently
probed in reflection or transmission with a time-delayed XUV pulse produced by high-harmonic
generation (HHG). Photons in the XUV spectrum can excite core electrons, and thus enable
element-specific probing of the optically induced dynamics with intrinsic attosecond timing
precision due to the phase-locked generation [5]. In addition, the HHG process allows for
single isolated attosecond pulses. These properties enable unprecedented time resolution for the
observation of sub-cycle electron dynamics [1,6,7].

Despite its wide range of applications, table-top optical-XUV transient absorption spectroscopy
has been mainly utilized in the high-pump-fluence regime (>1 mJ/cm2) that induce large transient
signals. This is largely due to the strong nonlinearities in HHG that greatly amplify fluctuations
of the driving laser pulse, leading to a typical noise floor of 0.1 - 1 mOD in state-of-the-art
experiments [8–12], which presents a formidable challenge for the observation of small pump-
induced XUV absorbance changes. This far-from-shot-noise-limited sensitivity hinders studies
of dynamics in the low-excitation regime, as involved in carrier dynamics in photovoltaics and
electronic and structural phase transitions in solids [13–15]. For example, in a solar cell, the
excited carrier density by sunlight is typically on the order of 1014-1017 cm−3 [16,17], whereas the
carrier density in a 200 nm thick silicon membrane excited by 800 nm laser irradiation with fluence
of 1 mJ/cm2 exceeds 1018 cm−3 [18]. Substantial efforts have already been made to enhance the
signal-to-noise ratio of transient absorption spectroscopy in the context of HHG sources. The
most common method to trace long-term fluctuations involves a successive recording of pumped
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and un-pumped spectra [9,10]. Additionally, noise reduction is possible by referencing, using
the laser power [19], the spectral regions unaffected by the pump-induced dynamics [8,20], or a
second spectrum of the XUV pulse before the sample [21,22]. It is also possible to use an almost
common path referencing by splitting up the XUV beam [23–25]. However, these approaches
typically impose requirements on the sample and experimental geometry and can not be easily
used in a large variety of beam lines. Although approaches with a second spectrum may also
overcome noise due to both long and short term fluctuations, imperfectly matched spectra can
lead to far-from-ideal noise suppression.

In this work, we utilize machine learning to find the optimal referencing given an imperfect
reference spectrum. Linear and polynomial regression and a neural network model are evaluated
for signal enhancement of experimental XUV transient absorption spectra. In experiments with a
60 nm thick 1T-TiSe2 sample at low fluences (0.66 mJ/cm2), we find that a three-layer neural
network surpasses all other methods and enables studies of coherent lattice vibrations and a phase
transition in this material [26]. Moreover, we exploit the capability of performing a pixel-wise
referencing with sub harmonic spectral resolution using the neural network.
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Fig. 1. (a) Experimental setup for extreme ultraviolet transient absorption spectroscopy
with a reference spectrum. (b) Comparison of different referencing algorithms. (c)
Scheme for referencing with a neural network, trained on the un-pumped data. The
model is applied at every pump-probe time delay 𝜏. (d) Noise control scheme
by comparing pumped and un-pumped signal (on/off) spectrum without additional
reference spectrum.
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Fig. 1. (a) Experimental setup for extreme ultraviolet transient absorption spectroscopy
with a reference spectrum. (b) Comparison of different referencing algorithms. (c) Scheme
for referencing with a neural network, trained on the un-pumped data. The model is applied
at every pump-probe time delay τ. (d) Noise control scheme by comparing pumped and
un-pumped signal (on/off) spectrum without additional reference spectrum.

The experimental setup is illustrated in Fig. 1(a). We investigate a 1T-TiSe2 sample with XUV
pulses produced by HHG with a 2 mJ, 35-fs-duration, 800-nm-wavelength driving pulse and its
second harmonic from a Ti:sapphire laser operating at 1 kHz repetition rate with 0.28 % RMS
shot-to-shot stability. A second femtosecond optical pump pulse at 2 µm wavelength produced
by optical parametric amplification from the same laser system is used to excite the sample. We
employ discrete harmonics that are even and odd multiples of the 1.55 eV fundamental photon
energy and fluctuate by 4 % RMS. The total flux exceeds 6 x 109 photons/s/harmonic for 38 nm
wavelength at the source. In contrast to conventional XUV absorption experiments [9], where
the XUV beam is focused onto the sample with a toroidal mirror, here the focusing mirror before
the sample is replaced by a toroidal grating (Grating 1) and the first-order diffracted XUV beam
from the grating is taken as the reference spectrum. The zeroth-order beam probes the sample
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and is dispersed by a second grating producing the signal spectrum. The signal and the reference
XUV beam illuminate the upper and lower half of a charged-coupled device (CCD, 1024 × 255
pixels), respectively. By recording the reference beam intensity Iref , the noise of each acquisition
of the signal spectrum Isig may be directly compensated. However, noise originating from the
beam path after the reference grating such as vibrations of the sample cannot be accounted
for. Transient absorption experiments measure the change of absorbance ∆A = − log10(Isig/I0),
defined as the logarithm of the pumped signal spectrum normalized by I0 which corresponds to
the transmitted probe spectrum without the pump. The time-dependent information of Isig is
obtained by varying the delay τ between pump and probe pulse.

Most experiments use successive recording of pumped and unpumped (on/off) signal spectra
(I0 corresponds to a subsequently acquired signal spectrum without the pump) to trace fluctuations
on timescales exceeding the camera acquisition time (see Fig. 1(d)). However, noise originating
from fluctuations on the acquisition timescale can only be fully suppressed if I0 and Isig are
known simultaneously. In a two-spectrometer configuration, the normalization spectrum I0 can
be calculated by the simultaneously acquired reference spectrum I0 = F(Iref ). Here, F is a
function that relates the reference spectrum with the unpumped sample absorption.

In its simplest form, F merely contains the averaged ratio between the intensity of the unpumped
signal and reference spectrum (direct referencing):

F(λ, Iref ) = Iref (λ) × ⟨Isig(λ)/Iref (λ)⟩, (1)

with λ denoting the wavelength. In practice, however, the signal and reference beams may be
subjected to different noise levels which prevents successful signal extraction. For example, the
reference and signal beams may vary drastically in intensity and spectral purity induced by the
differences in optics and path lengths between the two beams. Furthermore, the two spectra may
cover different spectral regions due to their respective beam paths and it can be very challenging
to precisely calibrate CCD pixels and corresponding wavelength for both spectra at the same
time. To address these issues, machine learning, which is capable of learning intensity relations
between different wavelengths [8,20], is utilized to establish the pixel-wise relationship between
the signal and reference spectrum. The model function F is trained by 58240 sets (80%) of data
to learn the relation between I0 and Iref . The training data is acquired without optical pump. The
efficacy of the models are tested by another 14560 sets (20%) of unpumped data. In the following,
we introduce three different machine learning models: linear and polynomial regression, and a
three-layer neural network. The performance of the three approaches are evaluated by comparing
their mean squared error to direct referencing and on/off referencing using the same dataset
(Fig. 1(b)). Due to the discrete nature of the harmonics in our experiment and the described
problems for direct and on/off approaches, we use the individual harmonics (7 in the reference
and 15 in the signal spectrum) as pixels in the comparison.

In the nonlinear polynomial regression model of degree N, the intensity of I0 at pixel s is
expressed as

I0,s = F(s, Iref ) = as
0 +

N∑︂
k=1

∑︂
r1,...,rk

as
r1,...,rk

Iref ,r1 × · · · × Iref ,rk , (2)

where indices ri run through all pixels containing the reference beam and as
0 and as

r0,...,rk
’s are

fitting coefficients. The linear regression model uses N = 1 with (7 + 1) × 15 = 120 fitting
parameters. As the number of fitting parameters increases exponentially with N, nonlinear
polynomial regression models with different N’s are tested by 5-fold cross validation to avoid
over-fitting [27]. Here, 20% of the randomly ordered training data are permutatively taken out to
evaluate the degree of over-fitting. In this data set, over-fitting sets in at polynomial orders larger
than 5 which correspond to 30030 fitting parameters.

The neural network model can be viewed as a further generalization, capable of fitting an
arbitrary, non-polynomial function F(Iref ) to the data [28]. In the present work, we employ a
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three-layer feed-forward neural network (see Fig. 1(c)) constructed with libraries Keras and
TensorFlow [29]. The code is available at [30]. In the model, the number of neurons from hidden
layers 1-3 are 250, 100, 70, and 200, 100, 20 for correlating intensity data of each pixel and
each harmonic, respectively. These numbers have been empirically tested on the presented data
and equivalent data sets recorded with the same setup and slightly changed HHG parameters.
Larger models were found to yield no further accuracy improvements. A rectified-linear-unit
activation function [31,32] was used. The networks of 24435 and 193170 trainable parameters,
corresponding to individual harmonic and pixel wise models, are optimized with stochastic
gradient descent on the mean-squared error with the Adam optimizer [33] and batches of 50 data
points [34]. Training of the larger model by 58240 data sets is achieved in less than three hours
on a personal computer without parallelization, which presents a very moderate computational
cost. In order to avoid over-fitting, the fitting is stopped when the error minimization of the
testing data saturates. The presented architecture of a simple 3 layer neural network poses a good
foundation for a model to describe the connection of signal and reference spectrum without any
prior knowledge. In the future, more sophisticated designs may be employed to further improve
the already great performance and accuracy.

Among the different models, the mean squared error (Fig. 1(b)) of the pumped spectrum before
time zero and a subsequently acquired unpumped spectrum (on/off) is the largest. Marginal
improvements are obtained by direct referencing (Eq. (1)) and linear regression. The polynomial
regression method can reach better approximation with much smaller error, but is still surpassed by
the neural network model. This indicates the importance to account for non-polynomial intensity
noise imprinted by the highly nonlinear HHG process. To further analyze the performance of
the different approaches, the models are applied to experimental XUV transient absorption data
before time zero. Here, the pump pulse arrives after the XUV probe and we expect the transient
absorption in this material system to be zero. In Fig. 2(a) the absorbance change of the 25th

and 27th harmonic are compared between the on/off method, direct referencing and the neural
network. The on/off approach shows the largest noise which is given by the standard deviation
of the histograms. Direct referencing improves the noise level, but is highly dependent on the
harmonic order. This may result from various effects including clipping of some intensity and
the unequal imaging condition such as optical aberrations, imperfect simultaneous alignment of
both focal planes, and spectral impurity caused by the different beam paths and optical elements.
Significantly better results are achieved with the neural network yielding similar noise levels at
both harmonics.

A comprehensive analysis of the noise level derived from the standard deviations as a function
of harmonic order is presented in Fig. 2(b). While the direct referencing improves the on/off
approach at almost all wavelengths, the resulting noise strongly varies between harmonics.
Please note that due to geometric constraints, only harmonic 24 to 30 can be recorded in the
reference spectrum, limiting the spectral applicability of the direct referencing. The machine
learning approaches which includes linear and polynomial regression and the neural network
show significantly better performance with less deviation over the whole spectral region. We find
that the neural network outperforms the other techniques at almost all orders of harmonics for the
presented data. While the linear regression shows already good results and could be applied as
a simpler model, the difference to the neural network approach is still significant. The results
are compared with the photon shot noise that defines the lower noise limit. At the utilized 200
msec integration time and 3 MHz readout rate, the dark current of 0.02 counts and the readout
noise of 30 counts are negligible in comparison to the measured signal of >105 counts per pixel.
The machine learning referencing reduces the noise level significantly and roughly matches
the photon shot noise spectral dependence. The remaining discrepancy is likely to result form
imperfect matching of signal and reference spectrum due to the different optical elements and
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Fig. 2. (a) Histograms of optical density difference before time zero for harmonics 25
and 27. (b) Noise levels of the discussed referencing techniques derived by the histogram
standard deviation as a function of the harmonic order. (c) Autocorrelation of the signal
spectrum. (d) Cross-correlation between reference and signal spectrum. Diagonal elements
(black line) are used for direct referencing.

beam paths. Furthermore, the spectral region which is not covered by the reference spectrum is
prone to additional error.

To validate the predictive power when the reference and signal spectra do not share the exact
same wavelength ranges, we study the intensity correlation of different harmonic orders between
the unpumped signal and reference spectra. Figures 2(c) and 2(d) show the correlation coefficients
among harmonics of the signal spectrum and between signal and reference spectrum, respectively.
Most off-diagonal elements in both correlation maps have >0.4 magnitude, indicating that the
intensities of different harmonics are strongly correlated by the HHG process. The black line
in Fig. 2(d) shows components that are used in direct referencing. As the intensities between
different regions of the harmonic spectrum are highly correlated, it is feasible to predict the signal
spectrum using a reference spectrum with partially overlapped spectral region. In addition, the
off-diagonal components provide additional information, which are used by the linear regression
model. Nonlinear correlations fitted by the polynomial regression and the neural network model
are not captured by the correlation coefficients. In principle, any other correlated quantity, like
laser power, HHG source variables or total XUV intensity could be used for de-noising with
machine learning.

Finally, we demonstrate the signal enhancement capability by showing a pump-probe trace of
the 25th harmonic for on/off, direct and neural network referencing in Fig. 3(a). The 9.4×10−4 OD
standard deviation of the spectrum with on/off referencing aligns with the typical noise level
≈ 1 mOD found in most transient absorption studies [8] and can be improved by a factor of two
with direct referencing. An improvement by more than one order of magnitude in sensitivity
to 9 × 10−5 OD is achieved with the neural network. In addition, the neural network model
can be applied to obtain a pixel-wise correlation between the signal and reference spectra. As
most attosecond sources offer a broadband supercontinuum covering large portions of the XUV
region, pixel-wise correlation offers noise-reduction without the loss of spectral resolution due
to binning. Transient absorption spectra as a function of pump-probe delays and XUV photon
energies are compared in Fig. 3(b) and Fig. 3(c) between the established on/off approach and
the neural network referencing, respectively. For clarity, the spectral regions with low XUV
intensities (owing to the discrete nature of harmonics) are omitted. While the pump induced
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response remains at a similar level, the neural network referencing drastically improves the
visibility of the pump probe data. Again one order of magnitude improvement down to roughly
10−4 OD is visible. Note that while polynomial regression can also handle nonlinearities in the
spectral correlation, it is computationally unfeasible to fit single pixel spectra due to the large
number of fit parameters. For example, in the case of a 1024-pixel detector, 1014 fit parameters
would be needed to model a polynomial of 5th degree in polynomial regression.
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Fig. 3. (a) Transient absorption of the 25th harmonic evaluated with different referencing
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at the particular harmonic. (b) Pixel-wise spectrum obtained with the conventional on/off
approach. (c) Same as (b) but with the neural network referencing.

The feasibility of single pixel referencing renders the neural network algorithm ideally suited
for normalizing the broadband spectra from a wide range of attosecond beam lines. The reference
spectrum can be acquired without wavelength calibration or complete coverage of the signal
spectrum. Furthermore, instead of implementing a second spectrum, any measured quantity
which is correlated to the harmonic intensity such as laser power, total XUV intensity, pulse
duration, pulse shape, gas pressure or beam position may be use as input in the machine learning
algorithm. As a side note, the neural network should always be trained during the data acquisition
on the unpumped data such that the model can accurately capture fluctuations of the HHG source
during the measurement. Comparing with the widely used on/off referencing, the neural network
method does not require additional experiment time since pumped data are recorded by default
for the on/off referencing in quick succession to un-pumped spectra. Note that when using a
pre-trained model for noise-reduction of datasets in a different experiment, the performance of
the model may degrade due to differences in HHG parameters.

In summary, we developed an algorithm for optimal noise correction in transient absorption
spectroscopy with a reference spectrum. Thereby, we extend the applications of data driven
algorithms in optics and photonics [35] which already showed great success in X-ray diffraction
and spectroscopy for noise suppression and signal extraction [36]. Among the tested algorithms,
the three-layer neural network approach shows the best result and improves the noise level by
an order of magnitude compared to the established on/off referencing method. This sensitivity
increase opens the field of femtosecond to attosecond XUV transient absorption spectroscopy in
the weak excitation regime such as photoinduced phase transitions in photovoltaics in operando
or strongly correlated materials like 1T-TiSe2. As the neural network approach utilizes the
nonlinear intensity correlation between different pixels, it does not require wavelength-calibrated
reference spectra, nor does it rely on signal and reference beams covering the same spectral
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region. This largely relaxes the conditions for experimental instrumentation and highlights
the wide application of our method to both narrowband and broadband sources in the field
of transient spectroscopy. On a broader scale, the presented combination of referencing with
machine learning may be applied to a large variety of experiments with fluctuating probes to
enhance the sensitivity.
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