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Accurate detection of identity-by-descent 
segments in human ancient DNA

Harald Ringbauer    1,2,9 , Yilei Huang1,3,9, Ali Akbari2,4,5, Swapan Mallick4,5,6, 
Iñigo Olalde    2,7,8, Nick Patterson2,5 & David Reich    2,4,5,6 

Long DNA segments shared between two individuals, known as 
identity-by-descent (IBD), reveal recent genealogical connections. 
Here we introduce ancIBD, a method for identifying IBD segments in 
ancient human DNA (aDNA) using a hidden Markov model and imputed 
genotype probabilities. We demonstrate that ancIBD accurately 
identifies IBD segments >8 cM for aDNA data with an average depth of 
>0.25× for whole-genome sequencing or >1× for 1240k single nucleotide 
polymorphism capture data. Applying ancIBD to 4,248 ancient Eurasian 
individuals, we identify relatives up to the sixth degree and genealogical 
connections between archaeological groups. Notably, we reveal long IBD 
sharing between Corded Ware and Yamnaya groups, indicating that the 
Yamnaya herders of the Pontic-Caspian Steppe and the Steppe-related 
ancestry in various European Corded Ware groups share substantial 
co-ancestry within only a few hundred years. These results show that 
detecting IBD segments can generate powerful insights into the growing 
aDNA record, both on a small scale relevant to life stories and on a large scale 
relevant to major cultural-historical events.

Some pairs of individuals share long, nearly identical genomic seg-
ments, so-called IBD segments, that must be co-inherited from a 
recent common ancestor because recombination during each meiosis 
leads to the rapid break-up of these segments. Consequently, long 
IBD segments provide an ideal signal to probe recent genealogical 
connections and have been used as a distinctive signal for a range 
of downstream applications such as identifying biological relatives 
or inferring recent demography1–3. Several existing methods iden-
tify IBD segments for single nucleotide polymorphism (SNP) array 
or whole-genome sequence data4–6 but they require confident dip-
loid genotype calls. These are not achievable for most human aDNA  
data because of too low genomic coverage (<5× average coverage 
per site) and comparably high error rates due to degraded and short 
DNA molecules. So far only a few exceptional applications of IBD  

to comparably high-quality aDNA have been published 7,8. First efforts 
to identify IBD on the basis of imputed data have been fruitful9–12 
but those require higher coverage not routinely available for aDNA. 
Importantly, they do not include a systematic evaluation of the IBD 
calling pipelines, a critical task given that IBD detection accuracy is 
expected to decay for short segments and low-coverage data. Practical 
downstream applications, such as demographic modelling, require 
information about power, length biases and false positive rates either 
to account directly for these error processes or to identify thresholds 
of data quality.

Here, we present and systematically evaluate ancIBD, a method  
to detect IBD segments in human aDNA data. In brief, ancIBD starts 
from phased genotype likelihoods imputed by GLIMPSE13, which are  
then screened using a hidden Markov model (HMM) to infer IBD blocks 
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to 1× coverage at 1240k sites (Fig. 2). We found that ancIBD on average 
overestimates the length of IBD segments but in the recommended 
coverage cutoff the length errors remain within ~1 cM (Extended Data 
Tables 1 and 2).

Performance on downsampled aDNA data. To assess performance 
on downsampled empirical aDNA data, we used four high-coverage 
genomes of ancient individuals, all ~5,000 years old and associated 
with the Southern Siberian Afanasievo culture (Supplementary  
Note 5)21. When comparing the IBD calls in the downsampled data to 
the IBD calls of the original high-coverage data, we found that WGS 
substantially outperforms 1240k data of the same coverage. For long 
IBD segments (>10 cM) that are particularly informative when detect-
ing relatives, ancIBD achieves high precision and recall (>90%) for all 
coverages tested here (WGS data 0.1× to 5×; 1240k data 0.5× to 2×). For 
intermediate range segments (8–10 cM), ancIBD maintains reasonable 
recall (~80%) at all coverages while having less than 80% precision at 
0.5× for 1240k data. Overall, ancIBD yields accurate IBD calling (~90% 
or higher precision) at >0.25× WGS data and >1× 1240k data (Extended 
Data Fig. 2).

Comparing to other methods. Several recent publications have 
applied softwares designed to detect IBD in high-quality present-day 
data on imputed aDNA data (for example, using GLIMPSE)9,10. We  
compared the performance of ancIBD to such methods, using the 
downsampled empirical aDNA data described above.

Softwares to call IBD can be classified into two categories, ones 
that require prior phasing and ones that use unphased data as input. 
The former search for long, identical haplotypes, while the latter pri-
marily use, directly or implicitly, the signal of ‘opposing homozygotes’ 
(two samples being homozygous for different alleles), which are lacking 
in IBD segments.

In preliminary tests, we found that methods that require  
phasing information have very low power to detect IBD in imputed 
aDNA data, potentially because of high switch error rates in imputed 
ancient genomes19, which is an order of magnitude higher than what 
is attainable for phasing Biobank-scale modern data22.

Therefore, we focus our detailed comparison on two methods that 
do not require phasing information, IBIS23 and IBDseq24. IBIS detects 
IBD segments by screening for genomic regions with few opposing 
homozygotes. Our results on downsampled aDNA data show that this 
method mostly maintains higher precision at the expense of a lower 
recall, particularly at lower coverages. Despite keeping precision at 
>90%, for segments >8 cM, IBIS recall drops to ~50% for ~1× 1240k data 
(Extended Data Fig. 2).

(Fig. 1). We then identified default parameters that optimize perfor-
mance on so-called 1240k capture data. This set of ~1.1 million autoso-
mal SNPs is targeted by in-solution enrichment experiments that have 
produced more than 70% of genome-wide human aDNA datasets to 
date14–16. Our tests show that ancIBD robustly identifies IBD longer than 
8 cM in aDNA data—for SNP capture with at least 1x average coverage 
depth (calculated on SNP target) and for whole-genome sequencing 
(WGS) as low as 0.25× average genomic coverage.

Results
Identifying IBD with ancIBD
Our method consists of two computational steps (Fig. 1b). In a pre-
processing step, the aDNA data are first computationally imputed and 
phased using a modern reference haplotype panel. In the main step, 
we apply a custom HMM to identify IBD segments.

For the preprocessing, we use imputation software that has been 
shown to work well for low-coverage data, GLIMPSE13, which we apply to 
aligned sequence data (in .bam format) to impute genotype likelihoods 
at the 1240k sites, using haplotypes in the 1000 Genome Project as the 
reference panel17. Our full imputation pipeline is described in Supple-
mentary Note 3. Previous evaluation of imputing aDNA data this way 
showed that imputed common variants, which are highly informative 
about IBD sharing, are of good quality down to mean coverage depth 
as low as 0.5–1.0× (refs. 18,19).

The details of the main ancIBD HMM are described in Methods. 
Briefly, the HMM is based on a total of five hidden states, where one 
state models non-IBD and four states the possible ways of IBD sharing 
between two phased genomes (Fig. 1a). The emission probabilities are 
based on the imputed posterior genotype probability and phasing. 
The standard forward-backward algorithm20 yields the posterior prob-
ability of being in one of the four IBD states, which is postprocessed to 
obtain the final IBD segment calls.

Evaluating ancIBD
We performed two sets of experiments to evaluate the quality of  
IBD calls of ancIBD at various sequencing depths. First, we copied IBD 
segments of known length into pairs of genomes (Methods). Second, 
we downsampled high-coverage empirical aDNA data.

Performance on copied-in IBD segments. When applying ancIBD 
to the simulated data with copied-in IBD (simulation procedures are 
described in Supplementary Note 2 and visualized in Extended Data 
Fig. 1), we observed that the inferred IBD segments remain accurate 
and that their length distribution peaks around the true value for WGS 
data down to about 0.25× coverage and for 1240k capture data down 
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Fig. 1 | Overview of the ancIBD algorithm. a, Sketch of the ancIBD HHM. The 
HMM has five states: one background state of no allele sharing and four states 
modelling the four possible IBD-sharing states between two phased diploid 
genomes. We model phase switch errors within a true IBD segment as a transition 
between the four IBD states. b, Visualization of the full pipeline to call IBD. 
First, aDNA data are imputed and phased using GLIMPSE and a panel of modern 

reference haplotypes. We note that users can customize these upstream steps; 
for example, use other tools to obtain genotype likelihoods or use different 
reference panels. Our core software (ancIBD) is then applied to the imputed data 
to screen for IBD. It produces two tables, one listing all inferred IBD segments and 
one listing IBD summary statistics for each pair of individuals.
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Fig. 2 | Performance of ancIBD on simulated IBD segments. a, Power and 
segment length errors. We copied-in IBD segments of lengths 4, 8, 12, 16 and 
20 cM into synthetic diploid samples. We simulated shotgun-like and 1240k-like 
data (Supplementary Note 2) and visualize false positive, power and length 
bias for 2×, 1×, 0.5× and 0.25× coverage (rows). For each parameter set and 
IBD length, we simulated 500 replicates of pairs of chromosome 3, each pair 
with a single, randomly placed, copied-in IBD segment. The power (or recall) 
of detecting IBD segments of each simulated length is indicated in the text 
next to the corresponding grey vertical bar. Results for other coverages are 
shown in Supplementary Fig. 4. b, False positive rate. We downsampled high-

quality empirical aDNA data without IBD segments (Supplementary Table 6) 
to establish false positive rates of IBD segments for various coverage and IBD 
lengths (Supplementary Note 7). The y axis shows the mean number of false 
positive IBD segments per pair of chromosome 3 in each length bin (bin width 
0.25 cM). To contextualize these false positive rates, we also depict expected IBD 
sharing assuming various constant population sizes (dotted lines, calculated as 
described in ref. 58). If the false positive rate is on a similar order of magnitude 
or larger than expected for a population of that effective population size (Ne), 
individual IBD calls of that length for that coverage and demographic scenario 
are likely to be false positives.
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IBDseq was designed for WGS data. It works by computing  
likelihood ratios of IBD and non-IBD states for each marker and then 
identifies IBD segments by searching for regions with high cumulative 
scores. Our results on downsampled empirical ancient aDNA data 
indicate that precision and recall of IBDseq drop substantially at lower 
coverages, achieving <50% precision for ~1× 1240k data, a coverage 
regime typical for most aDNA samples (Supplementary Figs. 16 and 17).

Detecting close and distant relatives with ancIBD
To showcase the utility of IBD segments to detect biological relatives, we 
applied ancIBD to a set of 4,248 published ancient Eurasian individuals.  
Sample quality filtering and downstream bioinformatic processing 
are described in Methods. When plotting the total sum and the total 
count of IBD segments longer than 12 cM, we find that the pattern of 

IBD sharing (Fig. 3a) closely mirrors simulated IBD sharing between 
various degrees of relatives (using the software ped-sim25) (Fig. 3b). A 
first-degree relative cluster becomes apparent, with a parent–offspring 
cluster (where the whole genome is in IBD) and a full-sibling cluster. 
The parent–offspring cluster in the simulated IBD dataset consists of 
one point, as expected because parent and offspring share each of the 
22 chromosomes fully IBD. In the inferred IBD dataset, the apparent 
parent–offspring cluster is spread out more widely, including also 
individuals with more than 22 IBD segments—the reason for this is that 
sporadically very long IBD are broken up by artificial gaps and if they 
are too big they are not merged by the default gap merging of ancIBD. 
Overall this effect remains modest and in the parent–offspring cluster 
the total number of inferred IBD segments is in most cases only slightly 
elevated beyond the expected 22.
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Fig. 3 | Inferring biological relatives in the aDNA record using long IBD 
inferred with ancIBD. a, Inferred IBD among pairs of 4,248 ancient Eurasian 
individuals. The plot visualizes both the count (y axis) as well as the summed 
length (x axis) of all IBD >12 cM long. For comparison, we colour-code pairs on 
the basis of relatedness estimates from pairwise mismatch rates (PMR) that can 
detect up to third-degree relatives (Supplementary Note 9). We also annotate 
new relatives found by ancIBD, indicated by at least three very long IBD segments 
(>20 cM) typical of up to sixth-degree relatives. b, Simulated IBD among pairs of 
relatives. For each relative class, we simulated 100 replicates using the software 

ped-sim25, as described in Supplementary Note 8. As in a, we depict the summed 
length and the count of all IBD at least 12 cM long. c, Inferred IBD among four 
ancient English Neolithic individuals, who lived about 5,700 years ago and 
were entombed at Hazleton North long cairn. A full pedigree was previously 
reconstructed using first- and second-degree relatives inferred using pairwise 
SNP matching rates26. We depict all IBD at least 12 cM long. The four individuals 
were genotyped using 1240k aDNA capture (I12438, 3.7× average coverage on 
target; I12440, 2.1×; I13896, 1.1×; I12439, 6.7×).
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Further, we observe two clear second-degree relative clusters that 
correspond to biological great-parent grandchildren and aunt/uncle–
niece/nephew relationships. Half-siblings are expected to form a gradi-
ent between these two clusters, with their average position depending 
on whether the shared parent is maternal (on average more but shorter 
shared segments) or paternal (fewer but longer shared segments)25.

In the simulated data, IBD clusters for third-degree and more 
distant relatives increasingly overlap (Fig. 3b) and the empirical IBD 
distribution follows this gradient (Fig. 3a). Owing to this biological 
variation in genetic relatedness, it is not possible to uniquely assign 
individuals to specific relative clusters beyond third-degree relatives 
even if the exact IBD is known. However, these pairs with multiple 

long shared segments still unambiguously indicate very recent bio-
logical relatedness. Most biological relatives up to the sixth degree 
will share two or more long IBD segments25. For instance, we identified 
two long IBD segments in a sixth-degree relative from Neolithic Britain  
(Fig. 3c), a relationship that was previously reconstructed from a  
pedigree of first-degree and second-degree relatives identified using 
average pairwise genotype mismatch rates26. In most human popula-
tions, pairs of biologically unrelated (that is, related at most by tenth 
degree) individuals share only sporadically single IBD segments27–29. 
Thus, the sharing of many long IBD segments provides a distinct signal 
for identifying close genealogical relationships that we can detect 
with ancIBD.
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Fig. 4 | Inferred IBD segments between various Eneolithic and Bronze Age 
West Eurasian Groups. We visualize IBD segments 12–16 cM long (for IBD 
sharing in other length classes see Extended Data Fig. 3). We applied ancIBD to 
identify IBD segments between all pairs of 304 West Eurasian ancient individuals 
(all previously published data; Supplementary Table 3) organized into 24 
archaeological groups. The number in the parenthesis indicates the sample size 
for each archaeological group. For each pair of groups, we plot the fraction of all 

possible pairs of individuals that share at least one IBD 12–16 cM long, which we 
obtained by dividing the total number of pairs that share such IBD segments by 
the total number of all possible pairs: between two different groups of n1 and n2 
individuals, one has n1n2 pairs, while within a group (on the diagonal in the figure) 
of size n one has n(n − 1)/2 pairs. LN, Late Neolithic; BAC, Battle Axe Culture;  
C, Chalcolithic; TRB, Trichterbecherkultur (Funnelbeaker culture);  
GAC, Globular Amphora Culture.
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Recent links among Eneolithic and Bronze Age groups
Because recombination acts as a rapid clock (the probability of an IBD 
segment of length l cM persisting for t generations declines quickly as 
exp(−t × l/50)), the rate of sporadic sharing of IBD segments probes 
genealogical connections between groups of individuals only a few 
hundred years deep, for example, for modern Europeans2. To showcase 
how detecting IBD segments with ancIBD can reveal such connections 
between ancient individuals, we applied our method to a set of previ-
ously published ancient West Eurasian aDNA data dating to the Late 
Eneolithic and Early Bronze Age (Supplementary Table 3). This period, 
from 3,000 to 2,000 bce, was characterized by major gene flow events, 
where ‘Steppe-related’ ancestry had a substantial genetic impact 
throughout Europe (for example, refs. 30,31), leading to widespread 
genetic admixtures and population turnover as far west as Britain32 
and Iberia33. Applying ancIBD to the relevant published aDNA record 
of 304 ancient Western Eurasians organized into 24 archaeological 
groups (Supplementary Table 3), we find several intriguing links. Many 
of those connections were previously proposed and suggested  
by admixture tests; however, the sharing of long IBD segments now 
provides definitive evidence for recent co-ancestry and biological 
interactions, tethering groups together closely in time.

We found that several nomadic Steppe groups associated with 
the Yamnaya culture that date to around 3,000 bce share comparably 

large amounts of IBD with each other (Fig. 4). This late Eneolithic to  
Early Bronze Age culture of pastoral nomads, who inhabited the Western  
Eurasian Pontic-Caspian Steppe often buried their death in tumuli  
(Kurgans) and were among the first people to use wagons, are suggested 
to have had a key role in the early spread of Indo-European languages34. 
Notably, the Yamnaya IBD cluster includes also individuals associated 
with the contemporaneous Afanasievo culture thousands of kilometres 
east, an Eneolithic archaeological culture near the Central Asian Altai 
mountains. This signal of IBD sharing confirms the previous archaeolog-
ical hypothesis that Afanasievo and Yamnaya are closely linked despite 
the vast geographic distance from Eastern Europe to Central Asia34. 
A genetic link has already been evident from genomic similarity and  
Y haplogroups31,35; however, the time depth of this connection remained 
unclear. We now identify IBD signals across all length scales, includ-
ing several shared IBD segments even longer than 20 cM (Extended 
Data Fig. 3). Such long IBD links must be recent as recombination 
ends an IBD segment ~20 cM long on average every five meiosis. This 
long IBD sharing signal, at the same level as between various Yamnaya  
groups (Fig. 4), therefore clearly indicates that ancient individuals 
from Afanasievo contexts descend from people who migrated at most 
a few generations earlier across vast distances of the Eurasian Steppe.

Increased individual mobility in Eneolithic and Early Bronze 
Age Eurasian Steppe groups is also reflected in a pair of individuals 
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associated with the Afanasievo culture that were buried 1,410 km apart, 
one in present-day Central Mongolia and one in Southern Russia, who 
share several long IBD segments (Fig. 5a,c). We identified four IBD 
segments 20–40 cM long, a distinctive signal of close biological relat-
edness typical of about fifth-degree relatives (Fig. 5c,d). Previous 
work showed that both individuals have a genetic profile typical for 
Afanasievo individuals and here this close biological link demonstrates 
that at least one individual in the chain of relatives between them must 
have travelled several hundreds of kilometres in their lifetime.

Moreover, there are several intriguing observations regarding 
individuals associated with the Corded Ware culture, an important 
archaeological culture that appears across a vast area of Eastern, Cen-
tral and Northern Europe between 3,000 and 2,400 bce. Previous 
aDNA research showed Corded Ware groups to be the first people 
of these regions to carry high amounts of a distinct ancestry found 
in Eurasian Steppe pastoralists such as the Yamnaya, admixed with 
previous Final Neolithic farmer cultures30,31,36,37. Using IBD, we find that 
individuals from diverse Corded Ware cultural groups, including from 
Sweden (associated with the Battle Axe culture), Russia (Fatyanovo) and  
East/Central Europe share high amounts of long IBD with each other 
and also have IBD sharing up to 20 cM with various Yamnaya groups 
(Fig. 4 and Extended Data Fig. 3a,b,c). We find a distinctive IBD signal  
with the so-called Globular Amphora culture, in particular from Poland 
and Ukraine, who were Copper Age (Eneolithic) farmers around 
3,000 bce not yet carrying Steppe-like ancestry38,39. This IBD link to 
Globular Amphora appears for all Corded Ware groups in our analysis, 
including from as far away as Scandinavia and Russia (Fig. 4), which 
indicates that individuals related to Globular Amphora contexts from 
Eastern Europe must have had a major demographic impact early on 
in the genetic admixtures giving rise to various Corded Ware groups.

Discussion
We have introduced ancIBD, a method to detect IBD segments opti-
mized for aDNA data. The algorithm follows a long line of work using 
probabilistic HMMs to screen for IBD segments40–44. When compared to 
other methods to detect IBD (IBIS23, IBDseq24, Germline4, Germline243 
and hapIBD6), ancIBD maintains a balanced performance between 
precision and recall in the low-coverage regime typical for aDNA data. 
A recent method KIN45 fits transitions between IBD states to identify 
relatives up to the third degree but does not identify sporadic IBD 
segments which are typical of more distant relatives or are useful for 
demographic inference.

We optimized the default parameters of ancIBD towards perfor-
mance on imputed 1240k variants, an SNP set widely used in human 
aDNA. We also recommend downsampling imputed WGS data to this 
SNP set because using all common 1000 Genome SNPs only marginally 
improves performance (Supplementary Note 6). Our benchmarks have 
demonstrated that ancIBD robustly detects IBD longer than 8 cM, for 
WGS data down to 0.25× and 1240k data down to 1× average coverage 
depth on 1,240k SNPs. That WGS data perform better than 1240k data at 
the same coverage depth on target SNPs is not surprising because WGS 
data cover the entire genome while 1,240k capture data are depleted 
for off-target data. But imputation at 1240k sites uses all SNPs in the 
1000 Genome dataset, thus providing more off-target data leads to 
substantially improved imputation quality. We found that WGS data 
can be imputed at roughly three times lower coverage equally as well 
as 1240k data (Supplementary Fig. 5), consistent with findings from 
ref. 19. This observation is relevant for choosing aDNA data generation 
strategies where IBD segment calling is of interest.

We showcased two main applications for identifying long IBD 
segments within human aDNA. First, ancIBD reveals biological rela-
tives up to the sixth degree as such pairs distinctively share multiple 
long IBD segments25. Allele sharing-based methods commonly used 
in aDNA studies46,47 are generally limited to detecting relatives only 
up to the third degree because they average over the genome and do 

not identify signals due to only a few shared IBD segments that make  
up only a small part of the genome. However, they can be applied 
to substantially lower coverage than ancIBD. Similarly, KIN45 can be 
applied to lower coverage than ancIBD but is also limited to detecting 
relatives up to the third degree.

Second, identifying IBD segments with intermediate coverage 
aDNA data unlocks a powerful way to investigate fine-scale genealogical 
connections of past human populations. Sharing of long haplotypes 
establishes bounds on the number of generations separating pairs of 
individuals, which adds information beyond average single-locus cor-
relation statistics that have been the workhorse of aDNA studies to date. 
To showcase this potential, we have used ancIBD to generate evidence 
for the origins of the people culturally associated with the Corded Ware 
culture. Corded Ware groups of Eastern, Central and Northern Europe 
were identified to be among the first cultures affected by large-scale 
gene flows starting 3,000 bce which spread a distinct ancestry found 
in pastoralists of the Pontic-Caspian Steppes across Europe30–32. Our 
analysis of long IBD segments reveals that the quarter of Corded 
Ware Complex ancestry associated with earlier European farmers can  
be pinpointed to people associated with the Globular Amphora  
culture of Eastern Europe, who carry no Steppe-like ancestry yet,  
while the remaining three-quarters must share recent co-ancestry 
with Yamnaya Steppe pastoralists in the late third millennium bce.  
This direct evidence that most Corded Ware ancestry must have  
genealogical links to people associated with Yamnaya culture spanning 
on the order of at most a few hundred years is inconsistent with the 
hypothesis that the Steppe-like ancestry in the Corded Ware primarily 
reflects an origin in as-of-now unsampled cultures genetically similar 
to the Yamnaya but related to them only a millennium earlier.

Several extensions could improve ancIBD. Both SNP density in 
the 1240k and 1000 Genome SNP set varies substantially along the 
genome29. We have found that false positive rate negatively corre-
lates with SNP density (Supplementary Fig. 9) and designed a filter 
to mask genomic regions with high false positive rates of long IBD 
(Supplementary Fig. 9). Focusing exclusively on regions of high SNP 
density could enable one to call IBD with shorter lengths. We also note  
that we have imputed ancient data using a modern reference haplo-
type panel, which yields decreasing imputation and phasing perfor-
mance the older the sample19,48. Future efforts to include high-quality  
ancient genomes into reference haplotype panels or to use  
modern reference panels substantially larger than 1000 Genomes 
will probably improve the quality of imputed ancient genomes  
and thus also boost the performance of ancIBD. We note that ancIBD 
takes imputed data as input, thus future improvements of imputation 
software or reference panels can be easily integrated by updating  
the preprocessing step.

Our algorithm infers the presence of at least one shared IBD seg-
ment between two diploid individuals but in practice both pairs or even 
three or all four haplotypes can be shared. Here, we deliberately kept 
the model simple to improve robustness and runtime. Importantly, we 
believe that detecting the presence of one IBD segment alone suffices 
for most practical applications. Double IBD sharing, often termed 
IBD2, occurs mostly in full siblings, who on average share half of their 
genome length in a single IBD and one additional quarter in a double 
IBD. In this case, the sum of IBD length alone distinguishes full sib-
lings from parent–offspring pairs (who distinctively have their whole 
genome in IBD) and from second-degree relatives (separate clusters 
in Extended Data Fig. 4). Beyond full siblings, having overlapping IBD 
segments on different haplotype pairs only rarely occurs in practice49. 
Only in special cases, such as distinguishing double first cousins from 
other second-degree relatives, identifying double IBD can be useful. 
In that case, we recommend directly screening for identical imputed 
genotypes in IBD segments.

One promising extension is calling IBD segments on X chromo-
somes. Genetic males have only one copy of it, while females have  
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two, which causes sex-specific inheritance and recombination pat-
terns (for example, males must have inherited their X chromosomes 
from their mothers). Therefore, IBD sharing on the X chromosome 
can provide information about sex-specific relatedness and demog-
raphy50. Our work here focused on the autosomes that make up most 
of the human genome; however, one can in principle apply ancIBD to 
imputed female X chromosomes. To call IBD on the X in pairs involv-
ing males, one could adapt the state space of ancIBD in a technically 
straightforward way. Another potential application of IBD segments 
is to improve the dating of ancient samples by using recombination 
clocks to tether samples in time. Future work to refine carbon-14 dat-
ing, a method widely used for determining the age of human remains, 
can build upon existing Bayesian methods to incorporate external 
information into such dates51–53.

Detecting IBD segments in modern DNA has yielded fine-scale 
insights into the recent demography of present-day populations, 
allowing researchers to infer population size dynamics54,55, genealogical 
connections between various groups of people2,43,56 and the geographic 
scale of individual mobility3,55. In principle, such analysis can also be 
applied to aDNA. It is particularly encouraging that the number of 
sample pairs that can be screened for IBD segments grows quadrati-
cally with the sample size, while the number of ancient genomes used 
in aDNA studies itself is currently quickly growing57. This rapid scaling 
will provide aDNA researchers with a powerful way to address demo-
graphic questions about the human past. We believe that the method 
to detect IBD in aDNA presented here marks only a first step towards 
creating the next generation of demographic inference tools, resulting 
in unprecedented insights into the human past.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-023-01582-w.

References
1. Palamara, P. F. & Pe’er, I. Inference of historical migration rates via 

haplotype sharing. Bioinformatics 29, i180–i188 (2013).
2. Ralph, P. & Coop, G. The geography of recent genetic ancestry 

across Europe. PLoS Biol. 11, e1001555 (2013).
3. Ringbauer, H., Coop, G. & Barton, N. H. Inferring recent demography 

from isolation by distance of long shared sequence blocks. 
Genetics 205, 1335–1351 (2017).

4. Gusev, A. et al. Whole population, genome-wide mapping of 
hidden relatedness. Genome Res. 19, 318–326 (2009).

5. Browning, B. L. & Browning, S. R. A fast, powerful method for 
detecting identity by descent. Am. J. Hum. Genet. 88, 173–182 
(2011).

6. Zhou, Y., Browning, S. R. & Browning, B. L. A fast and simple 
method for detecting identity-by-descent segments in large-scale 
data. Am. J. Hum. Genet. 106, 426–437 (2020).

7. Sikora, M. et al. Ancient genomes show social and reproductive 
behavior of early Upper Paleolithic foragers. Science 358, 
659–662 (2017).

8. Ferrando-Bernal, M. et al. Mapping co-ancestry connections 
between the genome of a medieval individual and modern 
Europeans. Sci. Rep. 10, 6843 (2020).

9. Kivisild, T. et al. Patterns of genetic connectedness between modern 
and Medieval Estonian genomes reveal the origins of a major 
ancestry component of the Finnish population. Am. J. Hum. Genet. 
108, 1792–1806 (2021).

10. Allentoft, M. E. et al. Population genomics of Stone Age Eurasia. 
Preprint at bioRxiv https://doi.org/10.1101/2022.05.04.490594 
(2022).

11. Ariano, B. et al. Ancient Maltese genomes and the genetic 
geography of Neolithic Europe. Curr. Biol. 32, 2668–2680  
(2022).

12. Severson, A. L. et al. Ancient and modern genomics of the ohlone 
indigenous population of California. Proc. Natl Acad. Sci. USA 119, 
e2111533119 (2022).

13. Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. 
Efficient phasing and imputation of low-coverage sequencing 
data using large reference panels. Nat. Genet. 53, 120–126 (2021).

14. Fu, Q. et al. Genome sequence of a 45,000-year-old modern 
human from western Siberia. Nature 514, 445–449 (2014).

15. Fu, Q. et al. An early modern human from Romania with a recent 
Neanderthal ancestor. Nature 524, 216 (2015).

16. Rohland, N. et al. Three assays for in-solution enrichment of 
ancient human DNA at more than a million SNPs. Genome Res. 32, 
2068–2078 (2022).

17. 1000 Genomes Project Consortium. A global reference for human 
genetic variation. Nature 526, 68–74 (2015).

18. Hui, R., D’Atanasio, E., Cassidy, L. M., Scheib, C. L. & Kivisild, T. 
Evaluating genotype imputation pipeline for ultra-low coverage 
ancient genomes. Sci. Rep. 10, 18542 (2020).

19. Sousa da Mota, B. et al. Imputation of ancient human genomes. 
Nat. Commun. 14, 3660 (2023).

20. Bishop, C. M. Pattern Recognition and Machine Learning 
(Information Science and Statistics) 627–628 (Springer, 2006).

21. Wohns, A. W. et al. A unified genealogy of modern and ancient 
genomes. Science 375, eabi8264 (2022).

22. Delaneau, O., Zagury, J.-F., Robinson, M. R., Marchini, J. L. & 
Dermitzakis, E. T. Accurate, scalable and integrative haplotype 
estimation. Nat. Commun. 10, 5436 (2019).

23. Seidman, D. N. et al. Rapid, phase-free detection of long 
identity-by-descent segments enables effective relationship 
classification. Am. J. Hum. Genet. 106, 453–466 (2020).

24. Browning, B. L. & Browning, S. R. Detecting identity by descent 
and estimating genotype error rates in sequence data. Am. J. 
Hum. Genet. 93, 840–851 (2013).

25. Caballero, M. et al. Crossover interference and sex-specific 
genetic maps shape identical by descent sharing in close 
relatives. PLoS Genet. 15, e1007979 (2019).

26. Fowler, C. et al. A high-resolution picture of kinship practices in an 
early Neolithic tomb. Nature 601, 584–587 (2022).

27. Palamara, PierFrancesco, Lencz, T., Darvasi, A. & Pe’er, I. Length 
distributions of identity by descent reveal fine-scale demographic 
history. Am. J. Hum. Genet. 91, 809–822 (2012).

28. Carmi, S. et al. The variance of identity-by-descent sharing in the 
Wright–Fisher model. Genetics 193, 911–928 (2013).

29. Ringbauer, H., Novembre, J. & Steinrücken, M. Parental 
relatedness through time revealed by runs of homozygosity in 
ancient DNA. Nat. Commun. 12, 5425 (2021).

30. Haak, W. et al. Massive migration from the steppe was a source for 
Indo-European languages in Europe. Nature 522, 207 (2015).

31. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. 
Nature 522, 167–172 (2015).

32. Olalde, I. et al. The Beaker phenomenon and the genomic 
transformation of northwest Europe. Nature 555, 190–196 (2018).

33. Olalde, I. et al. The genomic history of the Iberian Peninsula over 
the past 8000 years. Science 363, 1230–1234 (2019).

34. Anthony, D. W. The Horse, the Wheel and Language: How 
Bronze-Age Riders from the Eurasian Steppes Shaped the Modern 
World (Princeton Univ. Press, 2010).

35. Narasimhan, V. M. et al. The formation of human populations in 
South and Central Asia. Science 365, eaat7487 (2019).

36. Papac, L. et al. Dynamic changes in genomic and social structures 
in third millennium BCE Central Europe. Sci. Adv. 7, eabi6941 
(2021).

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-023-01582-w
https://doi.org/10.1101/2022.05.04.490594


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01582-w

37. Kristiansen, K. et al. Re-theorising mobility and the formation of 
culture and language among the Corded Ware Culture in Europe. 
Antiquity 91, 334–347 (2017).

38. Mathieson, I. et al. The genomic history of southeastern Europe. 
Nature 555, 197–203 (2018).

39. Schroeder, H. et al. Unraveling ancestry, kinship and violence  
in a late neolithic mass grave. Proc. Natl Acad. Sci. USA 116, 
10705–10710 (2019).

40. Bercovici, S., Meek, C., Wexler, Y. & Geiger, D. Estimating genome- 
wide IBD sharing from SNP data via an efficient Hidden Markov 
Model of lD with application to gene mapping. Bioinformatics 26, 
i175–i182 (2010).

41. Browning, B. L. & Browning, S. R. Improving the accuracy and 
efficiency of identity-by-descent detection in population data. 
Genetics 194, 459–471 (2013).

42. Vieira, F. G., Albrechtsen, A. & Nielsen, R. Estimating IBD tracts 
from low coverage NGS data. Bioinformatics 32, 2096–2102 
(2016).

43. Nait Saada, J. et al. Identity-by-descent detection across 487,409 
British samples reveals fine scale population structure and 
ultra-rare variant associations. Nat. Commun. 11, 6130 (2020).

44. Severson, A. L., Korneliussen, T. S. & Moltke, I. Localngsrelate: a 
software tool for inferring IBD sharing along the genome between 
pairs of individuals from low-depth NGS data. Bioinformatics 38, 
1159–1161 (2022).

45. Popli, D., Peyrégne, S. & Peter, B. M. KIN: a method to infer 
relatedness from low-coverage ancient DNA. Genome Biol. 24,  
10 (2023).

46. Lipatov, M., Sanjeev, K., Patro, R. & Veeramah, K. R. Maximum 
likelihood estimation of biological relatedness from low  
coverage sequencing data. Preprint at bioRxiv https://doi.org/ 
10.1101/023374 (2015).

47. Monroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating 
genetic kin relationships in prehistoric populations. PloS ONE 13, 
e0195491 (2018).

48. Biddanda, A., Steinrücken, M. & Novembre, J. Properties of 
2-locus genealogies and linkage disequilibrium in temporally 
structured samples. Genetics 221, iyac038 (2022).

49. Chiang, C. W. K., Ralph, P. & Novembre, J. Conflation of short 
identity-by-descent segments bias their inferred length 
distribution. G3 6, 1287–1296 (2016).

50. Buffalo, V., Mount, S. M. & Coop, G. A genealogical look at  
shared ancestry on the X chromosome. Genetics 204, 57–75 
(2016).

51. Buck, C. E., Kenworthy, J. B., Litton, C. D. & Smith, A. F. M. 
Combining archaeological and radiocarbon information:  
a Bayesian approach to calibration. Antiquity 65, 808–821 (1991).

52. Sedig, J. W., Olalde, I., Patterson, N., Harney, É. & Reich, D. 
Combining ancient DNA and radiocarbon dating data to increase 
chronological accuracy. J. Archaeol. Sci. 133, 105452 (2021).

53. Massy, K., Friedrich, R., Mittnik, A. & Stockhammer, P. W. 
Pedigree-based Bayesian modelling of radiocarbon dates.  
PLoS ONE 17, e0270374 (2022).

54. Browning, S. R. & Browning, B. L. Accurate non-parametric 
estimation of recent effective population size from segments of 
identity by descent. Am. J. Hum. Genet. 97, 404–418 (2015).

55. Al-Asadi, H., Petkova, D., Stephens, M. & Novembre, J. Estimating 
recent migration and population-size surfaces. PLoS Genet. 15, 
e1007908 (2019).

56. Han, E. et al. Clustering of 770,000 genomes reveals post-colonial 
population structure of North America. Nat. Commun. 8, 14238 
(2017).

57. Mallick, S. et al. The Allen ancient DNA resource (AADR): a curated 
compendium of ancient human genomes. Preprint at bioRxiv 
https://doi.org/10.1101/2023.04.06.535797 (2023).

58. Fernandes, D. M. et al. A genetic history of the pre-contact 
Caribbean. Nature 590, 103–110 (2021).

59. Jeong, C. et al. A dynamic 6,000-year genetic history of Eurasia’s 
Eastern Steppe. Cell 183, 890–904 (2020).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/naturegenetics
https://doi.org/10.1101/023374
https://doi.org/10.1101/023374
https://doi.org/10.1101/2023.04.06.535797
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01582-w

Methods
Ethics
No new aDNA data were generated for this study and we only analysed 
previously published and publicly available aDNA data. Identifying 
biological kin is a standard analysis in the aDNA field. Permission for 
aDNA work on the archaeological samples was granted by the respec-
tive excavators, archaeologists, curators and museum directors of the 
sites. These permissions are part of the original publications (listed in 
Supplementary Table 1).

The HMM
The ancIBD HMM makes use of the imputed genotype probabilities and 
phase information output by GLIMPSE and, for each pair of samples, 
runs a forward-backward algorithm60 to calculate the posterior prob-
abilities of being in an IBD state at each marker (Fig. 1). These prob-
abilities are then postprocessed to call IBD segments. In the following 
sections, we describe this HMM (Fig. 1a) in detail, in particular its states, 
the model for emission and transition probabilities, the calling of IBD 
segments and postprocessing and its implementation.

Throughout, we assume biallelic variants and denote the two 
individuals we screen for IBD as 1 and 2 and their phased haplotypes 
as (1A, 1B) and (2A, 2B). The HMM screens each of the 22 autosomal 
chromosomes from beginning to end independently, thus it suffices 
to describe the HMM applied to one chromosome.

Hidden states. Our HMM has five hidden states s = 0,1,…,4. The first 
state s = 0 encodes a non-IBD state, while the four states s = 1,2,3,4 
encode the four possibilities (1A/2A, 1A/2B, 1B/2A, 1B/2B) of sharing 
an IBD allele between the haplotypes of two diploid genomes (1A,1B) 
and (2A,2B) (Fig. 1a). We note that we do not model IBD sharing beyond 
a single pair of haplotypes (where both pairs of or more than three 
haplotypes share a recent common ancestor). These cases occur only 
rarely in practice49 and our goal here is to identify long tracts of IBD.

Transition probabilities. To calculate the 5 × 5 transition probabilities 
T to change states from one to the following loci, denoted by l and l + 1, 
we make use of the genetic map distances obtained from a linkage map, 
that is a map of the position using Morgans as the unit of length (1 M is 
the genomic map span over which the average number of recombina-
tions in a single generation is 1).

As in ref. 29, we specify the transition probabilities via a 5 × 5 infini-
tesimal transition rate matrix Q, from which each transition probabil-
ity matrix Al→l+1 is obtained through matrix exponentiation using the 
genetic distance rl between loci l and l + 1

Al→l+1 = exp (Q × rl) .

Here, Q is defined by the following three rate parameters: the rate to 
jump from the non-IBD state into any of the four IBD states (IBDin), the 
rate to jump from any of the IBD states to the non-IBD states (IBDout) and 
the rate to jump from any of the IBD states to another one (IBDswitch):

Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

IBDin IBDin IBDin IBDin

IBDout IBDswitch IBDswitch IBDswitch

IBDout IBDswitch IBDswitch IBDswitch

IBDout IBDswitch IBDswitch IBDswitch

IBDout IBDswitch IBDswitch IBDswitch

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1)

where the diagonal elements are defined as Qii = −∑j≠iQij such that the 
rows of Q sum to zero as required for a transition rate matrix. The rate 
IBDswitch models phasing errors, as a transition from one IBD state to 
another means that a different haplotype pair is shared. We note that 
the probability of the IBD state jumping from 1A/2A to 1B/2B would 
require phase switch errors to occur in both individuals at the same 

genomic location, which is highly unlikely; however, we set the transi-
tion matrix between all four IBD states symmetric as this allowed us to 
implement a substantial computational speed up.

Emission probabilities
Single-locus emission probabilities. To define the emission model 
of the HMM, we need to specify P(D∣s), the likelihood of the genetic 
data for the five HMM states s = 0,1,…,4 at one locus. Throughout, we 
denote reference and alternative alleles as 0 and 1, respectively, and 
the corresponding genotype as g ∈ {0,1}. The observed data D of our 
emission model will be the haploid dosage, which is the probability 
of a phased haplotype carrying an alternative allele, here denoted for 
each haplotype h as

xh = P (gh = 1) , h ∈ 𝒢1A, 1B, 2A, 2B}.

First, we explain how we approximate the two haploid dosages for 
a single imputed diploid individual 1. We have to use an approximation 
as GLIMPSE only outputs the most likely phased diploid genotype 
GT ∈ {0∣0, 0∣1, 1∣0, 1∣1} as well as three posterior genotype probabilities 
GP for each of the unphased diploid genotypes, denoted by the num-
ber of alternative alleles as 0,1,2. We first approximate the posterior  
probabilities for the four phased states, here denoted as P00, P01, P10  
and P11. The two homozygote probabilities P00 and P11 are obtained  
trivially from the corresponding unphased genotype probabilities 
GP, as no phase information is required for homozygotes. To obtain 
probabilities of the two phased heterozygotes states, P01 and P10, 
we use a simple approximation. Let p0, p1, p2 denote the posterior 
probability for each of the three possible diploid genotypes. If the 
maximum-likelihood unphased genotype is heterozygote, that is 
max(p0, p1, p2) = p1, we set P01 = p1, P10 = 0 if GT = 0∣1 and P01 = 0, P10 = p1 
if GT = 1∣0. If the maximum-likelihood unphased genotype is a homo-
zygote, that is max(p0, p1, p2) = p0 or p2 and thus there is no phase infor-
mation for the heterozygote genotype available, we set P01 = P10 = p1/2. 
Having obtained the four probabilities for the possible phased geno-
types, we can calculate the two haploid dosages as:

x1A = P11 + P10 (2)

x1B = P11 + P01. (3)

When calling IBD segments between two individuals 1 and 2, we use 
this approach to obtain all four haploid dosages and denote them for 
haplotypes 1A, 1B, 2A, 2B as (x1A, x1B, x2A, x2B).

Setting those four haploid dosages as the observed data  
D = (x1A, x1B, x2A, x2B) at one locus, we can now calculate the likelihood 
P(D∣s) for each of the five HMM states s = 0,1,…,4. We start by summing 
over all possible unobserved latent phased genotypes g = (g1A, g1B,  
g2A, g2B), yielding in total 16 possible combinations of reference and 
alternative alleles, denoted together as 𝒢𝒢 = 𝒢0, 1} × 𝒢0, 1} × 𝒢0, 1} × 𝒢0, 1}:

P(D|s = i) = ∑
g∈𝒢𝒢

P(D|g)P(g|s = i). (4)

For the term P(D∣g), applying Bayes rule yields:

P(D|g) = P(g|D) × P(D)
P(g) .

P(D) remains a constant factor across all states, which can be 
ignored because posterior probabilities of an HMM remain invariant 
to constant factors in the likelihood. We arrive at:

P(D|s = i) ≈ ∑
g∈𝒢𝒢

P(g|D)
P(g) P(g|s = i). (5)
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We now approximate the three quantities on the right-hand side 
of equation (5) for a given set of genotypes g.

First, assuming Hardy–Weinberg equilibrium, P(g) is calculated  
as the product of the four corresponding allele frequencies of (either  
p or 1 − p depending on the respective allele in g being 0 or 1). In prac-
tice, we obtain p from the allele frequencies in the reference panel.

Second, we approximate P(g∣D) as the product of the four prob-
abilities of each of the haplotypes (1A,1B) and (2A,2B) being reference 
or alternative. We assume that diploid genotype probabilities can be 
approximated as products of the respective haploid dosages, which we 
empirically verified on GLIMPSE imputed data (Supplementary Fig. 20). 
Using the haploid dosages (x1A, x1B, x2A, x2B) as calculated above yields:

P(g|D) = ∏
j∈{1A,1B,2A,2B}

[gjxj + (1 − gj)(1 − xj)]. (6)

Third, to approximate P(g∣s = i) we again assume Hardy–Weinberg  
probabilities which yield a product of factors p or 1 − p (listed in  
Supplementary Note 1). For the four IBD states, the two shared  
alleles constitute one shared draw. Consequently, there are only three 
instead of four independent factors and genotype combinations g 
where the shared genotype would be different have 0 probability.

Plugging these three approximations into equation (5) now gives 
P(D∣s) for each state s = 0,1,…,4.

For the background state (s = 0) we have P(g) = P(g∣s = 0) and thus 
these factors cancel out in equation (5). Using that ∑gP(g∣D) = 1, we 
arrive at:

P(D|s = 0) = 1. (7)

The four IBD states (s = 1,2,3,4) are calculated analogously with 
a simple rearrangement of the haplotype order. Thus, it suffices to 
describe s = 1, the state where the two first phased genotypes, 1A and 
2A, are identical. For the two nonshared alleles the Hardy–Weinberg 
factors cancel out as in s = 0. After some rearranging (Supplementary 
Note 1), we obtain:

P(D|s = 1) = 1
px1Ax2A +

1
1 − p (1 − x1A)(1 − x2A). (8)

Postprocessing: calling IBD segments
To call IBD segments, we use the posterior probability of being in the IBD 
states obtained via the standard HMM forward-backward algorithm20, 
which takes as input the transition rates (equation (1)) and emission 
probabilities (equations (7) and (8)). Our method then screens for con-
secutive markers where the posterior probability of being in the non-IBD 
state h = 0 remains below a prespecified threshold. We determine the 
start of an inferred IBD segment by locating the first SNP whose posterior 
decreases below the threshold and the end by the first SNP whose poste-
rior rises above the threshold. For each such genomic region longer than 
a prespecified minimum length cutoff, one IBD segment is recorded.

A postprocessing step commonly applied when detecting IBD is 
to merge two closely neighbouring IBD segments2,5. This step aims to 
remove spurious gaps within one true IBD segment, which can appear 
to be caused by low density of SNPs or sporadic genotyping errors. The 
rationale is that, under most demographic scenarios, sharing of long IBD 
is very rare and thus two IBD segments are unlikely to occur next to each 
other by chance49. Removing artificial gaps is important for determining 
the length of an IBD segment and therefore in particular for downstream 
methods that use the lengths of IBD segments as a recombination clock. 
In our implementation, we merge all gaps where both IBD are longer 
than a threshold length and separated by a gap of a maximum length.

By examining rates of IBD segments across the genome when 
inferring IBD in a large set of empirical aDNA data, we observed exces-
sive rates of IBD sharing in genomic regions with very low SNP density. 

This signal is probably driven by false positive IBD segments. We found 
that filtering IBD segments with an average SNP density of 1240k SNPs 
below 220 per centimorgan largely attenuates this signal. Additionally, 
we designed a set of genomic masks to filter 13 regions with generally 
high levels of IBD sharing (Supplementary Note 5 and Supplementary 
Fig. 9) that cover about 8% of the genome, with most masked regions 
involving centromeres and telomeres. The human-specific masking is 
optional, the SNP density filter is applied by default by ancIBD.

Setting default parameters of ancIBD
In the following, we describe how we chose the default parameters 
of ancIBD. In principle, users can specify any SNP set as input but  
our goal was to obtain default parameters that are optimized  
for imputed genotype likelihoods at the 1240k SNP set, as most  
published human aDNA data consists of in-solution DNA capture 
experiments enriching for this SNP set.

First, we simulated a dataset including ground-truth IBD sharing 
by using haplotypes in the 1000 Genome Project panel17. We simulated 
chromosome 3 by stitching together short haplotypes 0.25 cM long 
copied from reference individuals labelled as TSI (Tuscany, Italy) and 
then copied IBD segments of various lengths (4, 8, 12, 16 and 20 cM) 
into 100 pairs of mosaic genomes (described in detail in Supplemen-
tary Note 2 and Extended Data Fig. 1). This approach, following ref. 2, 
yields a set of diploid genotype data with exactly known IBD. Such a 
haplotype mosaic removes long IBD segments in the 1000 Genome data 
while also maintaining most of the local haplotype structure. To obtain 
data typical for aDNA sequencing, we matched genotyping errors and 
probabilities observed within downsampled high-coverage empirical 
aDNA data and added phase switch errors (Supplementary Note 2).

We then applied ancIBD for a range of parameter combinations 
and recorded performance statistics (Supplementary Tables 4 and 5). 
The final parameters that we set as default values (listed in Extended 
Data Table 3) are chosen to work well for a broad range of coverages 
and IBD lengths. Throughout this work, we use these settings but,  
in our implementation, each parameter can be changed to a  
nondefault value by the user.

Implementation and runtime
We implemented several computational speed-ups to improve the 
runtime of our algorithm. First, the forward-backward algorithm is 
coded in the Cython module to make use of the increased speed of a 
precompiled C function within our overall Python implementation. 
Second, our algorithm uses a rescaled version of the forward-backward 
algorithm20 which avoids computing logarithms of sums that would 
be computationally substantially more expensive than products and  
additions. Finally, we make use of the symmetry of the four IBD states. As 
the transition probabilities between those are fully symmetric, we can 
reduce the transition matrix from a 5 × 5 to a 3 × 3 matrix by collapsing 
the three other IBD states into a single ‘other IBD’ state. After the expo-
nentiation of the 3 × 3 matrix, the original 5 × 5 transition matrix is recon-
structed by dividing up the jump rates using the original symmetry.

We use the Python package scikit-allel (v.1.2.1) to transform the VCF 
output of GLIMPSE to an HDF5 file, a data format that allows efficient 
partial access to data61, for example we can effectively load data for 
any subset of individuals.

The average runtime of ancIBD (v.0.5) for a pair of imputed indi-
viduals on all 22 autosomes is about 25 s when using a single Intel 
Xeon E5-2697 v.3 CPU with 2.60 GHz (Extended Data Fig. 5). As the 
number of pairs in a sample of n individuals grows as n(n − 1)/2, the 
runtime scales quadratically when screening all pairs of samples for 
IBD (Extended Data Fig. 5). However, we note that due to the speed of a 
HMM forward-backward algorithm with five states requiring only a few 
multiplications and additions per locus, a large fraction of runtime per 
pair is due to loading the data (Extended Data Fig. 5). Thus, an efficient 
strategy is to load a set of individuals into memory jointly, as then the 
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loading time scales only linearly with the number of samples. This 
strategy, implemented in ancIBD, leads to hugely improved runtime per 
pair of samples in cases where many samples are loaded into memory 
and screened for pairwise IBD (Extended Data Fig. 5). We observed that 
for batches of size 50 samples and when screening all 50 × 49/2 = 1,225 
pairs for IBD, the average runtime of ancIBD per imputed pair for all 22 
chromosomes reduces to ~0.75 s. The asymptotic limit per sample pair, 
which is the runtime of the HMM and postprocessing, is about 0.35 s 
on our architecture.

Empirical data analysis
We applied ancIBD to a large set of previously published aDNA data of 
ancient Eurasians (using the bioinformatic processing described in 
the AADR dataset57). After filtering to all individuals with geographic 
coordinates in Eurasia dating within the last 45,000 years and sufficient 
genomic coverage for robust IBD calling we obtained a final set of 4,248 
unique ancient individuals (Supplementary Table 1). As the coverage 
cutoff, we required at least 70% of the 1240k SNPs on chromosome 3 
having max(GP) (defined as the maximum among the three posterior 
genotype probabilities of 0/0,0/1,1/1) exceeding 0.99. This metric was 
chosen because it can be easily calculated on imputed data for various 
data types. It corresponds to the coverage cutoff for ancIBD described 
above, as the relationship between coverage and this metric is mono-
tonic (Supplementary Fig. 19). Our imputation pipeline is described in 
detail in Supplementary Note 3. We then screened each of the 9,020,628 
pairs of ancient genomes with ancIBD. To optimize runtime we grouped 
the genomes into batches of 400 and then ran all possible pairs between 
two batches after loading the two batches into memory (this approach 
is implemented in the in ancIBD software package). For each pair with 
detected IBD, we collected IBD statistics into a summary table (see 
Supplementary Table 2 for pairs of published individuals).

Statistics and reproducibility
For empirical aDNA data analysis presented in this work, we used 
4,248 published samples originating from Eurasia dated within the 
last 45,000 years and passing the coverage requirement. No statistical 
method was used to predetermine the sample size. All simulation exper-
iments depending on probabilistic random draws were performed 
with many independent replicates to analyse statistical uncertainty.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
No new DNA data were generated for this study. The reference panel 
data that we used for imputation (phased haplotypes from the 1000 
Genomes dataset) are publicly available at http://ftp.1000genomes. 
ebi.ac.uk/vol1/ftp/release/20130502/. The four high-coverage 
genomes used in empirical downsampling experiments were previ-
ously published21 and are available at https://reich.hms.harvard. 
edu/ancient-genome-diversity-project. The Hazleton samples can be 
downloaded through the European Nucleotide Archive under acces-
sion PRJEB46958. Raw sequencing data of the published West Eurasian 
ancient individuals are publicly available as described in the original 
publications (Supplementary Table 1). The AADR resource includ-
ing the metadata we used are publicly available at https://reich.hms. 
harvard.edu/allen-ancient-dna-resource-aadr-downloadable- 
genotypes-present-day-and-ancient-dna-data. We deposited a table of all 
inferred IBD segments between the 4,248 ancient individuals at https://
zenodo.org/record/8417049. Source data are provided with this paper.

Code availability
A Python package implementing the method is available on the Python 
Package Index (https://pypi.org/project/ancIBD/) and can be installed 

through pip. Online documentation is available at https://ancibd. 
readthedocs.io/en/latest/index.html. Code developed for simulating 
data, analysis and data visualization presented in this study is avail-
able at the GitHub repository https://github.com/hringbauer/ancIBD. 
External softwares used in this study were obtained as follows: bcftools 
(1.14-26-g018607e), https://samtools.github.io/bcftools/; samtools 
(v.1.13), http://www.htslib.org/; GLIMPSE (v.1.1.1), https://odelaneau. 
github.io/GLIMPSE/glimpse1/; ibis (v.1.20.9), https://github.com/ 
williamslab/ibis; ped-sim (v1.4), https://github.com/williamslab/ped-sim; 
IBDseq (r1206), https://faculty.washington.edu/browning/ibdseq.html;  
hapIBD (v.1.0, 1.0, 23Apr20.f1a), https://github.com/browning-lab/
hap-ibd; GERMLINE2 (v.1.0), https://github.com/gusevlab/germline2; 
GERMLINE (1.5.3), http://gusevlab.org/projects/germline/; scikit-allel 
(v.1.2.1), https://pypi.org/project/scikit-allel/; Cython (v.0.29.14), 
https://pypi.org/project/Cython/.
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& Impute GP

  : Random IID
with same GT

Copy GP 
from match

A: 1000G Haplotypes (TSI)

D: Create typical aDNA data 
from diploid genotypes

B: Create Mosaic haplotypes

C: Copy over IBD blocks

Extended Data Fig. 1 | Pipeline to simulate IBD segment data. We visualize our 
steps to simulate IBD segment data (see detailed description in Supplementary 
Note 2). Starting from TSI (Tuscany) high-quality reference haplotypes in the 
1000 Genome panel (A), we created haplotype mosaics (B) as any long IBD 
segment is removed from those. We then copied over IBD segments of the target 
length (C). We grouped two mosaic haplotypes to obtain diploid individuals 

but to simplify visualization here we do not depict the second haplotype per 
individual. (D): To create data typical for imputed low-coverage aDNA, we 
matched each genotype to a random matching genotype in a panel of aDNA 
diploid genotypes called from high-coverage aDNA (either 1240k or WGS 
aDNA data). We then downsampled the high-coverage aDNA panel to the target 
coverage, imputed genotype probabilities and copied those back to each match.
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Extended Data Fig. 2 | Precision and recall of ancIBDand IBISat various 
length bins and coverages. We applied both methods with their default settings 
to genotype data imputed after downsampling to various coverages. For each 
coverage, we report the average precision and recall of each length bin across 50 

independent replicates. The error bar represents ± SE of the estimated precision 
and recall. Each row represents a length bin and each column represents one 
input data type (either WGS data or 1240k data). Note that the y axis ranges are 
different for different rows.
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Extended Data Fig. 3 | IBD sharing matrix of various Eneolithic & Bronze Age 
West Eurasian Groups for four IBD length scales. As in Fig. 4, but for shared IBD 
[8 − 12 cM], [12 − 16 cM], [16 − 20 cM], > 20 cM long. We used ancIBD to infer IBD 

segments between all pairs of groups and visualize the fraction of pairs that share 
at least one IBD for each pair of populations and for the four different IBD length 
bins.
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Extended Data Fig. 4 | Downsampling of Hazelton pedigree samples. We 
downsampled all individuals from a previously published English Neolithic 
pedigree26 with coverage at least 1x both to 1x and 0.75x. For each coverage, we 
downsampled 10 times, each with different random seeds, to create 10 replicates. 

Therefore, not all dots are independent pairs of relatives; they may be the same 
pair downsampled with different random seeds. The relationship annotations are 
obtained from Supp. Table 5 of ref. 26. All relatives more distant than 3rd degree 
are depicted as hollow dots.
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Extended Data Fig. 5 | Runtime Benchmarks of ancIBD. To benchmark 
runtimes, we applied ancIBD on empirical ancient DNA data in .hdf5 format 
imputed at 1240k sites. We used the imputed hdf5 file from the Eurasian 
application (Fig. 3), choosing samples and pairs at random. Left: For each sample 
pair, all autosomes are screened for IBD. In one experiment all pairs of samples 
were run independently, leading to a linear dependency on pair number, as 
expected. In a second experiment, all samples were loaded into memory and 
then each sample pair was screened for IBD. The apparent sub-linear behaviour 
is due to the fact that loading n samples scales slower than the actual runtime of 

n(n − 1)/2 sample pairs. Right: We depict the runtimes normalized per sample 
pair when screening all pairs of sample batches of various sizes for IBD. We 
visualize the loading time (the time it takes to load the hdf5 genotype data 
into memory), the preprocessing time (including preparing the transition and 
emission matrix), as well as the runtime of screening for IBD that includes the 
forward-backward algorithm as well as postprocessing. Due to the decrease 
in the impact of the time to load the data, which scales linearly with batch size 
while the number of sample pair scales quadratically, we observe substantially 
increased runtimes per pair.
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Extended Data Table 1 | Inferred segment length in simulated WGS-like data

For each of the simulated IBD lengths (4cM, 8cM, 12cM, 16cM, 20cM) with WGS-like data quality at various coverages, the table shows the inferred segment length averaged over 500 
independent replicates.
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Extended Data Table 2 | Inferred segment length in simulated 1240k-like data

For each of the simulated IBD lengths (4cM, 8cM, 12cM, 16cM, 20cM) with 1240k-like data quality at various coverages, the table shows the inferred segment length averaged over 500 
independent replicates.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01582-w

Extended Data Table 3 | Parameters of ancIBD HMM and default values

All parameters that can be set in our implementation. The default values are chosen to work well (low FP, high power, little length bias and variance) for a broad range of WGS and  
1240k aDNA data.
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