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Parametric resonances and amplification have led to extraordinary photo-induced phenomena in pump-probe
experiments. While these phenomena manifest themselves in out-of-equilibrium settings, here, we present
the striking result of parametric amplification in equilibrium. In particular, we demonstrate that quantum and
thermal fluctuations of a Raman-active mode amplifies light inside a cavity, at equilibrium, when the Raman
mode frequency is twice the cavity mode frequency. This noise-driven amplification leads to the creation
of an unusual parametric Raman polariton, intertwining the Raman mode with cavity squeezing fluctuations,
with smoking gun signatures in Raman spectroscopy. In the resonant regime, we show the emergence of
not only quantum light amplification but also localization and static shift of the Raman mode. Apart from
the fundamental interest of equilibrium parametric amplification our study suggests a resonant mechanism for
controlling Raman modes and thus matter properties by cavity fluctuations. We conclude by outlining how to
compute the Raman-cavity coupling, and suggest possible experimental realizations.

Introduction.- Driving condensed matter with light provides
a methodology of controlling its properties in an active,
dynamic fashion, in contrast to the established, static methods,
as reflected in recent scientific studies [1–4]. In this
effort, driving matter with laser light has proved to be
a remarkably versatile tool in engineering properties of
quantum materials such as controlling ferro-electricity [5],
magnetism [6–9], superconductivity [10–15], topological
features [16] and charge ordering [17, 18]. Even more
interestingly, driving with light has provided the possibility
to create novel non-equilibrium states. A notable example
includes photonic time crystals [19–23], materials exhibiting
periodic variation in properties over time that can function
as parametric amplifiers for light. Another example is time
crystals, denoting a robust, collective dynamical many-body
state, in which the response of observables oscillates
subharmonically [24–32].

The conceptual approach of dynamical control with
light can be extended to the equilibrium domain through
cavity-matter hybrids, see e.g. [33–35]. This advancement of
control via light involves replacing laser driving by quantum
light fluctuations which are strongly coupled to matter
through resonant photonic structures, such as cavities [36],
plasmonic resonators [37], surfaces hosting surface phonon
polaritons [38, 39] and photonic crystals [40]. The feasibility
of this approach has been demonstrated experimentally, with
examples including manipulation of transport [41], control of
superconducting properties [42], magnetism [43], topological
features [37] and cavity control of chemical reactivity [44–
46].

In this paper, we demonstrate that quantum and thermal
noise of a Raman-active mode, can amplify cavity fluctuations
in equilibrium. We emphasize that parametric amplification
generally occurs in driven systems while here we present
it in the context of an equilibrium amplification process.
This amplification can in turn be used to resonantly control

properties of matter and constitutes a novel method of light
control, for Raman-cavity systems.

Our starting point is the nonlinear coupling between Raman
active collective modes and light. Here Raman-active modes
could be Raman phonons [47], molecular vibrations [13],
Higgs modes in superconductors [48–50] and amplitude
modes in charge density waves [18] that are even under
inversion symmetry, and the electric field of a local cavity
mode [51]. Therefore, at leading order, the Raman-light
Hamiltonian reads HRaman−light = λQE2

cav where Ecav is
the electric field in the cavity, Q is the coordinate of the
Raman collective mode and λ is the light-matter coupling.
This quadratic coupling includes parametrically resonant
processes of the type â†â†b̂ + ââb̂† where â and b̂ are
the photon and Raman annihilation operators respectively.
In the presence of coherent Raman oscillations, ⟨b(t)⟩ =
A0e

iωRt, at the Raman frequency ωR, the above coupling
leads to exponential growth of the light field when the cavity
frequency ωc satisfies the parametric resonant condition,
2ωc = ωR. This observation naturally leads to the question:
can a randomly fluctuating field coming from Raman quantum
fluctuations also amplify light? We find that the answer is yes
which we demonstrate below.

To study this phenomenon, we use an open
Truncated-Wigner approximation method (open
TWA) [52–54] to simulate the semi-classical dynamics
of the Raman-cavity hybrids in the quantum fluctuation
regime. We also determine the signatures of equilibrium
parametric amplification in Raman spectroscopy (Fig. 1 (a)).
We find that a prominent feature of parametric resonance
and equilibrium light amplification is the appearance of
two Raman polariton branches in Raman spectroscopy as
shown in Fig. 1(b). We call this polariton parametric Raman
polariton and its formation is attributed to the nonlinear
process of mixing squeezed photon fluctuations with the
Raman coordinate. This is substantially different to the
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existent polariton panorama where polaritons typically arise
from a linear coupling between matter degrees of freedom
and light [55]. To quantify the coupling between the Raman
mode and the cavity, we compute the resonance splitting
between the upper and lower parametric Raman polariton.
This is a nonlinear extension of the usual Rabi-splitting in
the case of infrared active phonon polaritons [36]. We use a
frequency dependent Gaussian theory to provide an analytical
expression for this splitting as a function of the coupling
strength which agrees well with the simulations.

The key features of the parametric Raman polariton are as
follows: (i) The vacuum fluctuations of the cavity mode are
amplified. (ii) The fluctuations of the Raman are reduced, in
response to the amplification of the cavity fluctuations. This
corresponds to a localization of the Raman mode. (iii) The
average position of the Raman mode is statically shifted due
to the cavity fluctuations as shown schematically in Fig. 1(c).
These observations suggest that this mechanism can be used to
resonantly modify and control both the Raman mode and the
cavity in equilibrium. Furthemore we conclude by proposing
realistic experimental set-ups where this phenomenon can be
observed.

Raman-Cavity Model & Raman spectroscopy.- We consider
a model, in which cavity field fluctuations are locally coupled
to a Raman coordinate. The Hamiltonian for this system is
given by:

H

h̵
= ωcâ

†â+ωRb̂
†b̂+g (b̂† + b̂) (â† + â)2+ g4

4
(â† + â)4 . (1)

The cavity creation (annihilation) operator is â† (â) and ωc is
the cavity frequency. b̂† and b̂ are the creation and annihilation
operators for the Raman mode of frequency ωR and g is the
coupling strength between the cavity and Raman mode. To
connect these operators to the electric field in the cavity we
require that Ê2

cav = E2
0 (â + â†)2, where E2

0 is the nonzero
quantum noise of the electric field in the cavity that can be
measured experimentally [37], while the cavity itself is in
equilibrium, ⟨Êcav⟩ = 0 and the Raman coordinate is given

by Q̂ = b̂†
+b̂

√

2ωR
. The last term of strength g4 is an Ê4

cav type
of nonlinearity necessary to make the system stable for finite
coupling g < √g4ωR/2, a condition that is found analytically
in the Supplementary Information (SI).

We propose Raman spectroscopy as a natural probe for
Raman polaritons (see Fig. 1 (a)). The spectroscopic protocol
consists of an incoming probe laser of frequency ωp that can
be scattered to free space as outgoing photons with frequency
ωs after interacting with the Raman medium through a
Stimulated Raman Scattering (SRS) (shown scematically in
Fig. 1 (a)).

The probe is assumed to be a coherent light-source with
an associated electric field Ep(t) = E0

psin(ωpt) whereas the
scattered photons are described by the Hamiltonian Hs/h̵ =
ωsâ

†
sâs. The SRS Hamiltonian can be written as:

Hp

h̵
= gsEp(t) (b̂† + b̂) (â†

s + âs) (2)

Figure 1. Parametric Raman Polaritons. (a) Sketch of a Raman
medium (blue) coupled to a single-photon cavity mode of frequency
ωc (light-red shading) with a constant coupling g. Light can leak out
of the cavity at a total decay rate κ while γ represents the damping
associated to the Raman mode ωR. The wavy lines at the top and
bottom represent a Raman spectroscopy scheme in which a probe
field Ep(t) of frequency ωp is sent into the sample, and a detector
(in green) collects the scattered photons at different frequencies
ωs giving information about the hybrid Raman-cavity system. (b)
Representative Raman spectrum (in purple) in which an avoided
crossing appears at the resonant condition ωR = 2ωc indicating
the existence of two branches, the upper (URP) and lower (LRP)
Raman polaritons. (c) Sketch of how Raman (blue) and cavity (red)
properties are modified due to the coupling g. Full circles represent
the equilibrium position and shaded regions indicate fluctuations. In
the resonant regime the cavity fluctuations are amplified while the
Raman mode is statically shifted and localized, i.e. its fluctuations
decrease.

where â†
s (âs) is the creation (annihilation) operator for

scattered photons and gs the coupling between the Raman
mode and photons being scattered. The requirement for weak
probing is that gsE0

p is much smaller than the magnitude of
the energies of the system such as g, as we will choose in the
following.

Considering the total Hamiltonian Ht = H + Hp + Hs

we derive the corresponding Heisenberg-Langevin equations
of motion and use the open TWA method to solve the
dynamics. This semi-classical phase-space method captures
the lowest order quantum effects beyond mean-field treatment
as extensively demonstrated in different contexts [52–54,
56] and consists of sampling the initial states from the
corresponding Wigner distribution to take into account the
quantum uncertainty. The semiclassical equations of motion
for the complex fields a, b and as associated with cavity
photons, Raman motion and scattered photons operators are
given by

i∂ta =ωca + 2g(a + a∗)(b + b∗) + g4(a + a∗)3

− iκa + iξa,
(3)

i∂tb =ωRb + g(a + a∗)2 + gsEp(t)(as + a∗s)
− iγ(b − b∗)/2 − ξb,

(4)

i∂tas =ωsas + gsEp(t)(b + b∗) − iκsas + iξs, (5)
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Figure 2. (a) Raman spectra ns (ω) for different cavity frequencies
ωc. We consider a probe laser of strength gsE

0
p = 0.04ωR and

frequency ωp = 5ωR with g = 0.04ωR, g4 = κ = γ = κs = 0.01ωR.
(b) Raman polariton branches at resonance as a function of the
coupling g on resonance, ωc = ωR/2. In both panels, the dashed
black lines correspond to an analytical solution using a Gaussian
approximation theory.

Here κ, γ and κs are the decay rates associated with the
cavity, Raman and scattered photon field while ξa, ξb and
ξs are sources of Gaussian noise obeying the autocorrelation
relations ⟨ξ∗a(t1)ξa(t2)⟩ = κδ(t1 − t2), ⟨ξb(t1)ξb(t2)⟩ =
γδ(t1 − t2) and ⟨ξ∗s (t1)ξs(t2)⟩ = κsδ(t1 − t2). ξa and ξs
are complex-valued whereas ξb is real-valued and, along with
the damping term, enters only in the equation of motion for
the imaginary part of the Raman field which is associated
with the momentum of the Raman mode. The choice for the
Raman mode is motivated by the Brownian motion in which
the frictional force is proportional to the velocity.

We simulate the quantum Langevin Eqs. (3-5) using a
stochastic ordinary differential equation (ODE) solver and
compute relevant observables in the steady state. To initiate
the dynamics we ramp out the coupling g from zero to a finite
value and wait for the steady state before turning on the probe
field Ep(t) (see SI for details). In particular, we define the
Raman spectrum as the number of scattered photons ns = ∣as∣2
as a function of their frequencies which is computed after a
certain time of exposure to the probe field (see SI).

Parametric Raman polaritons.- In Fig. 2 (a) we show the
Raman spectra ns(ω) for different cavity frequencies and a
fixed coupling strength where ω = ωp − ωs is the Raman
shift. Away from resonance we see only one peak at ω ≈ ωR,
which corresponds to the Stokes peak [57, 58] of the Raman
mode [59]. Near the resonance at ωc = ωR/2 a second
peak appears showing an avoided crossing, which signals the
existence of a Raman polariton. To gain insight into the two
polariton branches found numerically using the TWA method,
we employ a Gaussian approximation. Within this method,
outlined in the SI, we find that the two polariton branches arise
from resonant coupling between the Raman phonon mode
oscillating at ωR and Gaussian squeezing oscillations of the
photon, oscillating at 2ωc leading to a new hybrid Raman
polariton. We have computed analytically the dispersion
of the lower and upper Raman polariton branches which
are plotted with black dashed lines in Fig. 2(a), showing
good agreement with the two numerical peaks in the Raman
spectrum (indicated by ϵLRP and ϵURP ). The exact position

of the avoided crossing is shifted to the left compared to the
condition ωc = ωR/2, due to the renormalization of the cavity
frequency by nonlinear interactions. Within the Gaussian
approximation the effective cavity frequency is found to be
ω̄c = ωc − 12g2/ωR + 3g4 so the improved estimate of the
resonance condition is ω̄c = ωR/2.

To quantify the strength of the Raman-cavity coupling, we
define the Raman Rabi splitting as the difference between
the upper and lower Raman polaritons on resonance, 2δ =
ϵURP (ω̄c = ωR/2) − ϵLRP (ω̄c = ωR/2). In Fig. 2(b) we plot
the dependence of the Raman polariton branches on resonance
ϵrURP = ϵURP (ω̄c = ωR/2) and ϵrLRP = ϵLRP (ω̄c = ωR/2) on
the coupling strength g, and overlay the analytical prediction
in black dashed lines. The Rabi splitting grows linearly
with the coupling strength g and is given analytically by the
expression:

δ =
√
2⟨x̂2⟩ωR (1 − 27g4⟨x̂2⟩3/2) g +O(g3). (6)

Interestingly, the Gaussian theory suggests that the Rabi
splitting could be parametrically enhanced by the cavity
quantum fluctuations ⟨x̂2⟩, where x̂ = a+a†

√

2ωc
. Perturbatively,

⟨x̂2⟩ = 1
2ωc
+O(g2), which is the value we use in Eq. (6) to

plot the dashed lines in Fig.2(b).
Equilibrium parametric amplification- While Raman

spectroscopy provides experimental evidence for strong
Raman-cavity coupling, we now expand the discussion to
the equilibrium properties of the Raman polariton system
which exhibit equilibrium parametric amplification. This
phenomenology corresponds to the amplification of photon
fluctuations accompanied by a localization of Raman mode
fluctuations, i.e. suppression of fluctuations, depicted
schematically in Fig. 1 (c).

To illustrate the modification of each subsystem due to
the Raman-cavity coupling, we determine the deviation of
the Raman and cavity fluctuations δQ2 and δx2 from the
uncoupled case given by

δQ2 =
⟨Q̂2⟩ − ⟨Q̂2⟩

0

⟨Q̂2⟩
0

, δx2 =
⟨x̂2⟩ − ⟨x̂2⟩

0

⟨x̂2⟩0
(7)

where ⟨...⟩ denotes the expectation value for a finite coupling
g and ⟨...⟩0 the expectation value in the absence of coupling
and cavity nonlinearities (g = g4 = 0). As in the previous
section, x̂ = â†

+â
√

2ωc
, is the cavity coordinate which is related to

the electric field, Êcav =
√
2ωcE0x̂, where E0 is the electric

field amplitude of the noise of the cavity mode. Note that also
δx2 = ⟨Ê2

cav⟩−⟨Ê
2
cav⟩0

⟨Ê2
cav⟩0

, and denotes the amplification of the
quantum fluctuations in the electric field. To compute these
Raman and cavity fluctuations we set the probe field Ep(t)
in Eqs. (3-5) to zero and average over steady states of the
Langevin equations of motion (see SI for details).

In Fig. 3 we show δQ2 and δx2 as well as the Raman
coordinate Q = ⟨Q̂⟩ for different cavity frequencies and
coupling strengths g. In all cases, a clear resonance can
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Figure 3. (a), (b) Variation of Raman and cavity fluctuations
compared to the uncoupled case g = 0 (see text) for different cavity
frequencies and coupling strengths g. (c) Raman displacement. The
dashed lines represent the parametric resonant condition ωR = 2ω̄c.
On resonance, the main features of parametric Raman polaritons
appear: localization (a) and shift (c) of the Raman mode in favor
of cavity field amplification (b). The decay rates and nonlinear
interaction g4 are the same as in Fig. 2.

be seen around ωc ≈ ωR/2 indicating a resonant regime
in which both the Raman mode and cavity fluctuations are
strongly modified. In this regime, the Raman fluctuations are
suppressed by the cavity, δQ2 < 0, so the Raman mode is
localized while the cavity fluctuations are amplified by the
Raman mode δx2 > 0. Outside this resonant region the Raman
fluctuations are unaffected and remain the same as in free
space (δQ2 ≈ 0). In a similar way, for off-resonant cavity
frequencies, quantum vacuum fluctuations remain practically
unchanged meaning that the Raman medium barely perturbs
the photon field (δx2 ≈ 0). This observation justifies our
choice to consider the coupling of a single cavity mode with
a single Raman mode: due to the resonant character of the
interaction, we expect that other off-resonant modes do not
contribute.

For the parameters used in Fig. 3, on resonance and
close to the instability g ≈ √g4ωR/2, the Raman mode is
strongly localized by ∼ 20% compared to the case of Raman
fluctuations in free space while the photon field increases by
the same amount with respect to the empty cavity case, even
though the coupling is only g ∼ 4%ωR. We would like to
emphasize that the coupling values g used in Fig. 2 and Fig. 3
are of the same order of magnitude as the decay rates γ and κ.
Therefore the system is between the weak and strong coupling
regime but not in the ultrastrong coupling situation (g > ωc)
where these resonant effects may be more pronounced [60].

In Fig. 3 (c) the expectation value of the Raman coordinate
Q is shown as a function of coupling strength g and cavity
frequency ωc. A clear shift of the Raman coordinate is
observed for large values of g which represents another form
of control of the Raman mode by the cavity field. Therefore,
the Raman mode is not only localized but also its coordinate
is shifted by the quantum vacuum fluctuations. This shift is
an off-resonant process and therefore depends only weakly
on the parametric resonance compared to the fluctuations in
Fig. 3 (a-b).

For the sake of completeness we have also checked that

these parametric resonances in δQ2, δx2 and shift in Q survive
for stronger nonlinearties g4 and larger decay rates (see SI).

Experimental platforms.- Our mechanism can be realized
in materials hosting Raman phonon modes, coupled
resonantly with a Fabry-Pérot cavity in the THz range.
Interestingly, the strong coupling regime between infrared
phonons and a tunable THz cavity has been experimentally
demonstrated [36] opening the door to the study of
Raman-active materials in this setup. Possible Raman
candidates might be functionalized graphene nanoribbons
with Raman activity around 6 THz [61], twisted bilayer
graphene with low Raman modes ≲ 3 THz [62] or transition
metal dichalcogenides (TMDs) with ultralow breathing and
shear modes even below 1 THz due to the weak van der Waals
coupling between the layers. All these examples lie in the
experimental frequency range of up to ∼8 THz in different
types of cavities [36, 37, 63, 64].

The Raman-cavity coupling between the cavity mode and
the zero-momentum Raman mode can be computed from first
principles through the Raman tensor (see SI for derivation)
and is given by:

g

ωR
=
√
N

2

ϵ0E
2
0Vcell

ωR
R̃ (8)

where ϵ0 is the vacuum permittivity, E0 is the electric field
noise amplitude measured in different photonic structures,
Vcell is the volume of the unit cell of the material hosting
the phonon mode and N = Vsamp

Vcell
is the total number of

unit cells in the sample of volume Vsamp. The dimensionless
Raman coupling is given by R̃ ∝ e⃗c ⋅ ∂Qϵ(Q) ⋅ e⃗c which
measures the change in electric permittivity ϵ as a function
of a shift of the Raman phonon coordinate Q per unit cell,
and e⃗c is the polarization vector of the cavity. The electric
field noise of a cavity is given by, E0 ∼

√
ωc

ϵ0Veff
[37] and

therefore, on parametric resonance ωR = 2ωc, we estimate

that g
ωR
∼
√

VsampVcell

Veff
R̃.

To circumvent the possible limitation of weak
photon-matter coupling g in Fabry-Pérot cavities, due to
the small value of Vcell/Veff , split-ring resonators (SRRs)
cavities could be a solution where large cavity mode
volume compression has been experimentally demonstrated.
Typically, SRRs are build with cavity frequencies between
0.5-1 THz [63–65] which matches the range of breathing
Raman modes of the order of 1 THz in twisted-TMDs like
MoSe2 or WSe2 [66, 67]. Thus the condition 2ωc = ωR can
be satisfied. From the above expression we may expect that
also the coupling strength will be particularly increased for
these twisted bilayer system of triangular lattices for twist
angles around 0° or 60°, where the unit cell becomes very
large. Considering 10nm x 10nm for the area of the unit cell,
1 µm2 for the effective cavity area of SRRs, g/ωR ∼ 0.01
assuming a Raman tensor of the order of 1 as estimated for
twisted TMDs using Density Functional Theory (DFT) [67].

Conclusion.- We have presented how parametric
resonances in Raman-cavity hybrids can be exploited to
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amplify photon quantum noise and localize Raman modes at
equilibrium. Our study represents a proof of principle of how
this nonlinear type of hybridization between Raman modes
and photons, at the quantum fluctuation level, gives rise to
equilibrium parametric amplification that can be leveraged to
control quantum materials. In particular, the cavity control
of Raman-active phonons demonstrated here is a crucial
step towards cavity-material engineering in more complex
systems. Strongly coupled Raman phonons are responsible
for superconductivity in K3C60 [68], and statically shifting
one of these modes was proposed as a mechanism for
photo-induced superconductivity [13, 39]. More broadly,
Raman phonons can change lattice symmetries, lift electronic
orbital degeneracies [69], gap out gapless electronic
systems [70] and manipulate spin-spin interactions [71]. Our
work paves the way to new studies on all of these topics and
the search of similar equilibrium parametric amplification
phenomena in different scenarios such as Higgs-light hybrids
in superconducting systems and in the quantum information
and quantum sensing realm using the recent three-photon
quantum-optics development [72, 73].
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Supplementary Information to ”Equilibrium parametric amplification in Raman-cavity hybrids”

Protocols and numerical implementation

We solve the stochastic Heisenberg-Langevin equations of motion introduced in the main text using the truncated Wigner
approximation (TWA) method [52, 53]. The equations read

∂ta = − iωca − 2ig(a + a∗)(b + b∗) − ig4(a + a∗)3 − κa + ξa, (S1)

∂tbr =ωRbi, (S2)

∂tbi = − ωRbr − g(a + a∗)2 − 2gsEp(t)as,r − γbi + ξb, (S3)
∂tas,r =ωsas,i − κsas,r + ξs,r, (S4)
∂tas,i = − ωsas,r − 2gsEp(t)br − κsas,i + ξs,i. (S5)

where the subscripts r, i denote the real and imaginary part of the field. To initialize the modes we sample from the corresponding
Wigner distributions. We assume that all our modes have an expectation value of zero. Hence, the Wigner distribution from
which we sample corresponds to a Gaussian distribution with mean zero and standard deviation of 1/2. For each set of parameter
we sample over 15000 trajectories. We further include stochastic delta-correlated noise ξa, ξb and ξs satisfying ⟨ξ∗a(t1)ξa(t2)⟩ =
κδ(t1 − t2), ⟨ξb(t1)ξb(t2)⟩ = γδ(t1 − t2) and ⟨ξ∗s (t1)ξs(t2)⟩ = κsδ(t1 − t2). Initially we ramp up the Raman-cavity coupling g
from zero to its final value at time t0 as:

g(t) = g(tanh((t − t0)/τ) + 1)/2. (S6)

We hold this coupling for the rest of the dynamics until the steady state is reached and turn on the probing field at time tp
afterwards. We consider a probing field with an associated electric field Ep(t) = E0

p(t) sin(ωpt) with

E0
p(t) = E0

p(tanh((t − tp)/τ) + 1)/2. (S7)

Finally, to obtain the Raman spectra, we compute the number of scattered photons ns = a∗sas = a2s,r +a2s,i at a fixed time t∗ ≫ tp
by averaging over all the realizations. We take ωRt0 = 10 and for the decay rates that we use in the main text ωRtp ≈ 100
is enough to be in the steady state. We use τ = 1/ωR and checked that same results can be obtained for very different values
τ = 10/ωR. We choose ωRt

∗ = 250 which means the system is under the probing field during a time window t∗ − tp = 150/ωR.
With these parameters we obtain clear Raman spectra.

To compute the modification of cavity and Raman fluctuations; δx2 and δQ2, as well as Raman shift Q shown in Fig. 3 of the
main text, we drop the probe field (Ep(t) = 0) in the equation of motion and solve the dynamics to compute such observables at
the steady state ωRtp ≈ 100.

Raman spectra in the presence of thermal noise

Here we present the Raman spectra for the combined system in the presence of thermal noise associated to both the cavity and
Raman mode. In this case we solve the dynamics Eq. (S1)-(S5) but now considering white noises satisfying

⟨ξ∗a(t1)ξa(t2)⟩ = κ coth(ωc/kBT )δ(t1 − t2), (S8)

⟨ξb(t1)ξb(t2)⟩ = γ coth(ωR/kBT )δ(t1 − t2) (S9)

where kB is the Boltzmann constant. These autocorrelation relations guarantee the fluctuation-dissipation theorem hold for both
subsystem (in the uncoupled case) assuming they are connected to a reservoir at temperature T and considering a Markovian
approximation [74].

In Fig. S1(a) we plot the same Raman spectra shown in the main text (in the quantum noise limit) to be contrasted with the
Raman spectra in the presence of thermal noise shown in Fig. S1(b). In both cases we show the raw data ns(ωs) instead of
ns(ω) with ω = ωp − ωs being the Raman shift. It allows us to see Stoke and anti-Stoke contributions separately. As discussed
in the main text, in the quantum noise limit (Fig. S1(a)), only a Stoke peak appears in the spectra around ωs = ωp − ωR = 4ωR.
In contrast, if thermal noise is added anti-Stoke processes also occur and we find additional peaks around ωs = ωp + ωR = 6ωR

(see Fig. S1(b)).
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Figure S1. (a) Raman spectra ns (ωs) for different cavity frequencies ωc in the quantum noise limit. (b) Raman spectra including thermal
noise with kBT = 2.5h̵ωR. In both cases we consider a probe laser of strength gsE

0
p = 0.04ωR and frequency ωp = 5ωR with g = 0.04ωR,

g4 = κ = γ = κs = 0.01ωR.

Gaussian theory for cavity fluctuations

The semi-classical Langevin equations of motion, able to capture vacuum fluctuations for bosonic modes are given by the
equations (S1)-(S3) where the noise terms, ξa and ξb are delta-correlated noise, ⟨ξ∗a(t1)ξa(t2)⟩ = κδ(t1 − t2), ⟨ξb(t1)ξb(t2)⟩ =
γδ(t1 − t2) and ⟨ξa(t1)ξb(t2)⟩ = 0. The equations of motion in terms of the frequency Fourier components defined as: a(ω) =
∫ dteiωta(t) and a(t) = ∫ dω

2π
e−iωta(ω), are given for the Raman mode by combining equations (S2)-(S3) as:

(−ω2 − iγω + ω2
R) br = − gωR ∫

dω′

2π
(a + a∗)(ω − ω′)(a + a∗)(ω′) + ωRξb(ω). (S10)

Replacing this expression into equation (S1) for the cavity we find:

−iωa(ω) = − iωca(ω) − ka(ω) + ξa(ω)

− 2ig∫
dω′

2π
(a(ω − ω′) + a∗(ω′ − ω))

⎛
⎝

2ωR

−(ω′)2 − iγω′ + ω2
R

ξb(ω′)

− 2gωR

−(ω′)2 − iγω′ + ω2
R
∫

dω′′

2π
(a(ω′ − ω′′) + a∗(ω′′ − ω′))(a(ω′′) + a∗(−ω′′))

⎞
⎠

− ig4 ∫
dω′dω′′

(2π)2 (a(ω − ω
′) + a∗(ω′ − ω))(a(ω′ − ω′′) + a∗(ω′′ − ω′)(a(ω′′) + a∗(−ω′′)).

(S11)

In the absence of any interactions, g = g4 = 0, the first line recovers the expectation value of the vacuum fluctuations:
⟨a
∗
(t)a(t)+a(t)a∗(t)

2
⟩ = ∫ dωdω′

(2π)2
eit(ω−ω

′
)a∗(ω)a(ω′) = ∫ dω

2π
κ

κ2+(ω−ωc)
2 = 1

2
. To include fluctuations analytically, we use

a Gaussian ansatz for the equilibrium fluctuations: ⟨a(t)⟩ = 0 in equilibrium and ⟨a∗(ω)a(ω′)⟩ = 2πδ(ω − ω′)n(ω),
⟨a(ω)a(ω′)⟩ = 2πδ(ω + ω)f(ω) and ⟨b(t)⟩ = b0. This form is fixed by symmetry and time-translation invariance in the
equilibrium state. The Gaussian approximation ignores higher order non-linear correlations and uses Wick’s theorem to derive a
self-consistent equations for n(ω), f(ω) and b0. Furthermore, on symmetry grounds the quantities a(ω) and ξb are assumed to
be statistically independent to gaussian order. This gives rise to the result:

−iωa(ω) = − iωca(ω) − ka(ω) + ξa(ω)

i
4g2

ωR
(a(ω) + a∗(−ω))(∫

dω′

2π
(2n(ω′) + f(ω′) + f∗(ω′)))

i8g2 (a(ω) + a∗(−ω))∫
dω′

2π

ωR

−(ω′)2 − iγω + ω2
R

(2n(ω − ω′) + f(ω − ω′) + f∗(ω − ω′))

− i3g4 (a(ω) + a∗(−ω))(∫
dω′′

2π
(2n(ω′) + f(ω′) + f∗(ω′))) .

(S12)

the above result can be compactly re-written in terms of an effective cavity frequency, ω̄c(ω) and a squeezing parameter ∆(ω):

(−iω + κ)a(ω) = −iω̄c(ω)a(ω) − i∆(ω)a∗(−ω) + ξa(ω), (S13)
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where the effective parameters are given by:

ω̄c(ω) =ωc + (−
4g2

ωR
+ 3g4)(∫

dω′

2π
(2n(ω′) + f(ω′) + f∗(ω′)))

− 8g2 (∫
dω′

2π

ωR

−(ω′)2 − iγω′ + ω2
R

(2n(ω − ω′) + f(ω − ω′) + f∗(ω − ω′)))
, (S14)

∆(ω) =(−4g
2

ωR
+ 3g4)(∫

dω′

2π
(2n(ω′) + f(ω′) + f∗(ω′)))

− 8g2 (∫
dω′

2π

ωR

−(ω′)2 − iγω′ + ω2
R

(2n(ω − ω′) + f(ω − ω′) + f∗(ω − ω′))) .
(S15)

The fluctuations are determined through the dependence of a(ω), a∗(−ω) to the noise terms ξ(ω) and ξ∗(−ω) :

(−iω + κ + iω̄c(ω) i∆(ω)
−i∆(−ω) −iω + κ − iω̄c(−ω)

) ⋅ ( a(ω)
a∗(−ω)) = (

ξa(ω)
ξ∗a(−ω)

) , (S16)

which leads to:

a(ω) = (−iω + κ − iω̄c(−ω)ξa(ω) + i∆(ω)ξ∗a(−ω)
∆(−ω)∆(ω) + (−iω + κ − iω̄c(−ω)(−iω + κ + iω̄c(ω))

. (S17)

Finally, the ground state fluctuations are found by solving the self consistent equations: ⟨a∗(ω)a(ω′)⟩ = 2πδ(ω − ω′)n(ω),
⟨a(ω)a(ω′)⟩ = 2πδ(ω + ω′)f(ω).

Renormalized cavity frequency

We explore the normalized cavity frequency quoted in the main text analytically by using perturbation theory in g2 and g4.
We express the fluctuations as a series expansion, n(ω) ≈ n0(ω) + n1(ω) and f(ω) = f0(ω) + f1(ω), where in the absence of
any coupling to the Raman mode, the fluctuations take the form:

n0(ω) =
κ

κ2 + (ω − ωc)2
, (S18)

f0(ω) =0, (S19)

To leading order in the couplings, the renormalized frequency, ω̄c(ω), and squeezing parameter, ∆(ω) are given by:

ω̄c(ω) = ωc −
4g2

ωR
+ 3g4 − 8g2

ωR

ω2
R − (ω − ωc)2 − (iγ + 2iκ)(ω − ωc) + γκ + κ2

, (S20)

∆(ω) = − 4g2

ωR
+ 3g4 − 8g2

ωR

ω2
R − (ω − ωc)2 − (iγ + 2iκ)(ω − ωc) + γκ + κ2

(S21)

for small κ and γ. Similarly, to leading order, the squeezing parameter is given by ∆ = ∆(ωc) = − 12g2

ωR
+ 3g4. Corrections

in the frequency of the cavity mode due to the squeezing go as ∣∆(ω)∣2 ∼ O(g4, g4g2, g24), and corresponds to a higher order
contribution. As a result, to leading order in the couplings the cavity response frequency is given by:

ω̄c(ω) = ω̄c(ω = ωc) = ωc −
12g2

ωR
+ 3g4. (S22)

Parametric enhancement of cavity fluctuations

To linear order in g2 and g4, the fluctuation functions take the form:

n(ω) = κ

κ2 + (ω − ω̄c)2
, (S23)

f(ω) = i∆(ω)
(iω + κ − iωc)(−iω + κ − iωc)(−iω + κ + iωc)

+ i∆(−ω)
(−iω + κ − iωc)(iω + κ − iωc)(iω + κ + iωc)

(S24)
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The squeezing term, f(ω), is resonantly amplified when ωc ≈ ωR/2, showing that Gaussian theory can indeed capture the
non-trivial equilibrium amplification process. On resonance, perturbation theory breaks down and one should self-consistently
solve for f(ω) and n(ω). In this Letter, we instead rely on the numerically evaluated solution.

Raman-cavity polariton frequency

As mentioned in the main text, the Raman coherent oscillations linearly hybridized with squeezing fluctuations of the cavity
mode. Here for convenience we write the Hamiltonian in the alternative but equivalent form

H = ω2
R

2
Q̂2 + P̂ 2

2
+ g × 2ωc

√
2ωRQ̂X̂2

c + ω2
c

X̂2
c

2
+ P̂ 2

c

2
+ g4ω2

c X̂
4
c (S25)

where the Raman coordinate is defined as Q̂ = b̂+b̂†
√

2ωR
, the Raman conjugate momentum as P̂ = i

√
ωR(b̂

†
−b̂)

√

2
, the cavity coordinate

as X̂c = â+â†
√

2ωc
and the cavity conjugate momentum as P̂c = i

√
ωc(â

†
−â)

√

2
. In this basis, completing the square in Eq. (S25) the

Hamiltonian reads:

H = ω2
R

2
(Q̂ + g 2

√
2ωRωc

ω2
R

X̂2
c )

2

+ (g4ω2
c −

4g2ω2
c

ωR
) X̂4

c +
P̂ 2

2
+ ω2

c

X̂2
c

2
+ P̂ 2

c

2
, (S26)

which leads to the condition for stability quoted in the main text, g4 > 4g2

ωR
.

The equations of motion for the Raman mode, Q̂, and the fluctuations of the cavity mode, (X̂2
c ,{X̂c, P̂c}, P̂ 2

c ) are given by:

dQ̂

dt
=P̂ , (S27)

dP̂

dt
= − ω2

RQ̂ − g × 2ωc

√
2ωRX̂

2
c , (S28)

dX̂2
c

dt
={X̂c, P̂c}, (S29)

d{X̂c, P̂c}
dt

=2P̂ 2
c − 2ω2

c X̂
2
c − 4g × 2ωc

√
2ωRX̂

2
c Q̂ − 2g4 × 4ω2

c X̂
4
c , (S30)

dP̂ 2
c

dt
= − ω2

c{X̂c, P̂c} − 2g × 2ωc

√
2ωRQ̂{X̂c, P̂c} − g4 × 4ω2

c{X̂3
c , P̂c} (S31)

where {Â, B̂} = ÂB̂ + B̂Â is the anti-commutator. Within a Gaussian approximation theory, the Raman coordinate and cavity
fluctuations form a complete system of equations in terms of the variables, {⟨Q̂⟩, ⟨P̂ ⟩, ⟨X̂2

c ⟩, ⟨{X̂c, P̂c}⟩, ⟨P̂ 2
c ⟩}:

d⟨Q̂⟩
dt
=⟨P̂ ⟩, (S32)

d⟨P̂ ⟩
dt
= − ⟨Q̂⟩ω2

R − g × 2ωc

√
2ωR⟨X̂2

c ⟩, (S33)

d⟨X̂2
c ⟩

dt
=⟨{X̂c, P̂c}⟩, (S34)

d⟨{X̂c, P̂c}⟩
dt

=2⟨P̂ 2
c ⟩ − 2ω2

c ⟨X̂2
c ⟩ − 4g × 2ωc

√
2ωR⟨X̂2

c ⟩⟨Q̂⟩ − 6g4 × 4ω2
c ⟨X̂2

c ⟩2, (S35)

d⟨P̂ 2
c ⟩

dt
= − ω2

c ⟨{X̂c, P̂c}⟩ − 2g × 2ωc

√
2ωR⟨Q̂⟩⟨{X̂c, P̂c}⟩ − 3g4 × 4ω2

c ⟨X̂2
c ⟩⟨{X̂c, P̂c}⟩. (S36)

To make progress we first compute the equilibrium correlations, ⟨Q̂⟩ = Q0, ⟨X̂2
c ⟩ = X2

0 and ⟨P̂ 2
c ⟩ = P 2

0 within the Gaussian
self-consistent approximation theory by taking the derivative of all quantities equal to zero in the above expressions which
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produces:

Q0 = −
g × 2ωc

√
2ωR

ω2
R

X2
0 , (S37)

P 2
0 =ω2

cX
2
0 − 2

(g × 2ωc

√
2ωR)2

ω2
R

X2
0 + 3g4 × 4ω2

cX
2
0 , (S38)

⟨{Xc, Pc}⟩0 =0. (S39)

Finally, we linearize around the equilibrium, to find the collective modes:

∂tδQ =δP, (S40)

∂tδP = − ω2
RδQ − (2gωc

√
2ωR) δX2

c , (S41)

∂tδX
2
c =δ{Xc, Pc}, (S42)

∂tδ{Xc, Pc} = − 8gωc

√
2ωRX

2
0δQ − 2ω2

c (1 + (−16
g2

ωR
+ 24g4)X2

0) δX2
c + 2δP 2

c , (S43)

∂tδP
2
c = (−ω2

c − 4gωc

√
2ωRQ0 − 12g4ω2

cX
2
0) δ{Xc, Pc}. (S44)

Considering an oscillating ansatz of the type X ∼ eiωt, we find two distinct solutions corresponding to the hybridized Raman
mode with photon fluctuations (Raman polariton branches):

ω2
±
= 1

2ωR

⎛
⎝
4ω2

cωR + ω3
R + 72g4ω2

cωRX
2
0 − 64g2ω2

cX
2
0

±
√
−16ω2

cω
3
R (−24g2X2

0 + 18g4X2
0ωR + ωR) + (−64g2X2

0ω
2
c + (4 + 72g4X2

0)ω2
cωR + ω3

R)
2⎞
⎠

(S45)

Nonlinearities and dissipation effects on the parametric resonances

For the sake of completeness here we show the effects of increasing the nonlinear interaction and decay rates on the parametric
resonance discussed in the main text.

Fig. S2 (a-c) shows δQ2, δx2 and Q for a larger value of g4. The main effect is a shift on the parametric resonance to the
left while how much localize the Raman mode is, how much it is shifted and how much the cavity field is amplified remain
practically the same. This shift to the left results from the analytical resonant condition ωR/2 = ω̄c = ωc − 12g2/ωR + 3g4 which
is the dashed line that matches nicely with the numerical TWA simulations (in color). For larger values of couplings g and g4,
not only the linear dependence of the parametric resonance on g4 is well described by this analytical expression, but also the
slow quadratic dependence on g.

In Fig. S2(d-f) we show how by increasing κ and γ four times while keeping g4 constant, the resonance weakens with the
Raman mode being less localized and cavity field less amplified in the steady state. Here the Raman and cavity fluctuations are
modified by ∼ 10% in resonance. Also the onset of the resonance is pushed to higher coupling strengths g which is reminiscent
of the physics of a periodically driven parametric oscillator in the presence of damping, where a critical amplitude of the external
drive is needed to overcome dissipation and get into the zone of amplification [75]. For these larger decay rates the Raman shift
decreases and becomes more independent on the cavity frequency (see Fig. S2 (f)).

We have checked that even for stronger nonlinearities (higher value of g4) and/or strong dissipation the parametric resonance
can still be seen so there is a resonant regime in which Raman mode fluctuations decrease in favor of cavity field amplification.

Raman phonon-cavity coupling strength

Following the references [67, 76], Raman phonons are coupled the electric field of light E⃗(x) through the Raman tensor R.
The Hamiltonian reads

H = ∫ d3x
ϵ0E⃗(x) ⋅ ϵ(Q) ⋅ E⃗(x)

2
≈H0 + ϵ0∑

i

E⃗i ⋅R ⋅ E⃗i

2
Qi, (S46)
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Figure S2. Nonlinearities and dissipation effects on the parametric resonances. (a), (b), (c) The same as Fig. 3 of the main text but increasing
the quartic nonlinearity to g4 = 0.04ωR keeping the same decay rates. (d), (e), (f) The same as Fig. 3 but in this case the decay rates have been
increased to κ = γ = 0.06ωR keeping the same g4. Dashed lines are ωR = 2ω̄c.

where ϵ0 is the vacuum permittivity and ϵ(Q) is the phonon-coordinate dependent polarizability tensor (dielectric tensor).

Expanding linearly in the phonon coordinate Q one obtains a first term H0 = ∫ d3x
ϵ0E⃗(x)⋅ϵ(Q=0)⋅E⃗(x)

2
and the Raman-light

coupling which is given by the second term in the right hand side of Eq. (S46). We employ the dipole approximation for the
cavity mode where we assume that the electric field is constant over one unit cell and given by E⃗i = 1

Vcell
∫V i d

3xE⃗(x) where
Vcell is the volume of the unit cell and V i the volume of the i-th unit cell. The Raman tensor is defined as

Rαβ = Vcell

N

∑
µ=1

3

∑
l=1

∂ϵαβ

∂rl(µ)
ejl (µ)√
Mµ

(S47)

where rl(µ) is the position of the µth atom along the direction l, ∂ϵαβ

∂rl(µ)
is the first derivative of the dielectric tensor over the

atomic displacement, el(µ) is the displacement of the µth atom along the direction l of the Raman phonon and Mµ is the mass
of the µth atom. Considering that the cavity mode has a constant electric field over the entire sample, Êcav,i = E0e⃗c(â + â†),
the Raman-light coupling only involves the q = 0 phonon. Thus ∑i Q̂i =

√
NQ̂q=0 =

√
N b̂+b̂†
√

2ωR
, where N = Vsamp

Vcell
is the total

number of unit cells (Vsamp is the volume of the sample), giving rise to the coupling:

g

ωR
=
ϵ0E

2
0

√
VsampVcell

2ωR
R̃, (S48)

R̃ =e⃗c ⋅
N

∑
µ=1

3

∑
l=1

∂ϵ

∂rl(µ)
ejl (µ)√
Mµ

√
2ωR

⋅ e⃗c, (S49)

where R̃ is the dimensionless Raman coupling and e⃗c is the polarization vector of the cavity field. Following references [67, 76]
R̃ ∼ 1 − 10 for TMDs. The electric field of cavities is given by the relationship:

E2
0 =

ωc

ϵ0Veff
, (S50)

where on parametric resonance ωc = ωR/2, leading to the final result:

g

ωR
= 1

4
R̃

√
VsampVcell

Veff
. (S51)

These arguments are rather crude and detailed research needs to be carried out for different cavity designs and Raman-active
materials on a case by case basis.
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