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Abstract

Despite the huge theoretical potential of neural quantum states, their use in describing generic, highly-

correlated quantum many-body systems still often poses practical difficulties. Customized network ar-

chitectures are under active investigation to address these issues. For a guided search of suited network

architectures a deepened understanding of the link between neural network properties and attributes of

the physical system one is trying to describe, is imperative. Drawing inspiration from the field of machine

learning, in this work we show how information propagation in deep neural networks impacts the physical

entanglement properties of deep neural quantum states. In fact, we link a previously identified information

propagation phase transition of a neural network to a similar transition of entanglement in neural quantum

states. With this bridge we can identify optimal neural quantum state hyperparameter regimes for repre-

senting area as well as volume law entangled states. The former are easily accessed by alternative methods,

such as tensor network representations, at least in low physical dimensions, while the latter are challenging

to describe generally due to their extensive quantum entanglement. This advance of our understanding of

network configurations for accurate quantum state representation helps to develop effective representations

to deal with volume-law quantum states, and we apply these findings to describe the ground state (area law

state) vs. the excited state (volume law state) properties of the prototypical next-nearest neighbor spin-1/2

Heisenberg model.

INTRODUCTION

In recent years neural quantum states (NQS) have gained tremendous attention as a new promis-

ing technique for the exact representation of quantum many-body wave functions1–19. Initial studies

focused on shallow architectures, such as Restricted Boltzmann Machines (RBM)1,2. Remarkably,

these studies demonstrated how RBMs can efficiently represent quantum states with volume law

entanglement in certain special cases2,3,13,20–22. This was a significant advancement in the research

of numerical ansätze for representing complex quantum many-body states and their unique prop-

erties elevated NQSs as a potential complementary numerical technique to tensor network-related

methods or others13, which are often bound by low-entanglement constraints.

However, there exists also known limitations of shallow network architectures such as RBMs,

which have been rigorously characterized20,21. In this context is was shown that RBMs cannot effi-

ciently represent quantum states generated by generic polynomial-size quantum circuits. Therefore,

it is nowadays well-established that shallow networks are insufficient to address generic problems of

quantum many-body physics20,21. To remedy these limitations of shallow architectures using deep
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network architectures was established. Here, it has been demonstrated that increasing a network’s

depth, introducing more hidden layers, enables a higher efficiency of representation, for generic

states in many cases20,21,23. In fact, deep neural networks are known to exhibit an exponential

increase in expressivity as the depth of the network increases24; a property that is crucial for their

ability to model complex, high-dimensional functions25–27. To train these deep networks efficiently

a sophisticated network architecture, such as Convolutional Neural Networks (CNN) or Recurrent

Neural Networks (RNN) can be beneficial21.

However, there is a tradeoff. (i) Deep neural networks are computationally expensive, require

large amounts of data for training and are delicate to handle due to the large number of layers and

(hyper-)parameters27,28. (ii) Despite the high potential of the method, it has been recently pointed

out that some complex states are hard to learn for NQS29,30. (iii) Unlike traditional algorithms

with rather transparent decision-making processes, the inner workings of deep neural networks

are often considered ’black boxes’, and the characterization of how deep neural networks make

decisions remains an open problem31.

To remedy (iii) a deepened theoretical understanding of neural networks and their workings

needs to be established and has gained intense attention under the general umbrella of ”under-

standable AI”. To address this problem a physics-inspired statistical field theory approach has

been successfully applied32 within a mean field approximation. Within such a mean field analysis

it was understood that tuning hyperparameters can trigger an information phase transition. This

transitions separates an ordered from a disordered phase, in the sense that two inputs are either

correlated or not by the network, in the ordered and disordered phase, respectively. In a physics-

inspired language this corresponds to the emergence of a mean field order parameter. Deep in

either the ordered or disordered phase the number of layers required to represent this correlation

is exponentially small, while the number of involved layers diverges at the transition. This is akin

to the behavior of the fluctuations at second order phase transitions in physical systems. This

motivates to use networks tuned to this transition point in order to harness the full power of deep

neural networks24,32,33. Therefore, understanding these phase transitions and other properties of

deep neural networks is key to comprehending their behavior, to demystify their inner processes

and last but not least to improve their performance32–34.

As we aim to design state-of-the-art deep learning architectures for the description of quantum

many-body physics, it becomes essential to adapt the existing knowledge from the broader ma-

chine learning community. More specifically, there is a pressing need to fine-tune neural networks to

achieve efficient and advantageous representations of quantum many-body wave functions. In com-
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putational physics, representability of wavefunctions is often linked to their entanglement proper-

ties. For local, gapped Hamiltonians it has been shown that ground states exhibit low-entanglement

restricted by the so called area law35; limiting the entanglement between two subparts of a system

to the surface they share. Excited states generically feature a much more unfavorable entanglement

scaling with system size described a volume law36.

In this paper, we show that ordered to chaotic deep network phase transitions in the sense of

Refs.32–34 transduces a phase transition in the physical properties of corresponding deep NQSs.

In the chaotic vs. ordered phase of the neural network, the behavior of the entanglement entropy

scaling of the corresponding NQS is markedly different in the sense that the ordered and the

chaotic phase of the network can best represent area-law and volume-law states, respectively. Our

work, thus, provides a reliable prescription on how to initialize a deep NQS with the desired scaling

properties. We put our deepened understanding of the network’s properties to use by demonstrating

that the tuning of the network properties to either the ordered or chaotic phase allows us to better

approximate the energy of physical ground states or excited states, respectively. We choose the

physically relevant J1 − J2 Heisenberg model and its ground state (area law) and mid-spectrum

excited state (volume law) as our work horse to illustrate this point.

MAIN

Ordered to Chaotic Phase Transition in Deep Neural Networks

We briefly review some aspects of the mean field formalism developed to study phase transitions

in infinitely deep Feed Forward Neural Network (FFNN) as far as they are relevant to understanding

our new findings. For further details, we refer to Refs.32,33. We consider a deep FFNN defined by

a composition of µ ∈ N layers where the lth network layer, 1 ≤ l ≤ µ, applies the transformation

z
(l)
i =

∑
j

W
(l)
ij y

(l)
j + b

(l)
i , y

(l+1)
i = ϕ(z

(l)
i ), l = 1, . . . , µ (1)

from input y
(l)
i to output signal y

(l+1)
i . This is an affine transformation with weight matrix (or

kernel) W (l), bias b(l), and a nonlinear activation function ϕ. The networks weights and biases are

drawn from zero mean Gaussian distribution such that W l
ij ∼ N(0, σ2w/Nl−1) and b

(l)
i ∼ N(0, σ2b ).

Considering an initial input vector z
(0)
i;α it has been analyzed how its magnitude is propagated

along the network32. This, in fact, is mathematically equivalent to monitoring the second moment
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of the distribution, which at each layer l reads E
[
z
(l)
i;αz

(l)
j;α

]
= qlαδij ,where

qlα = σ2w

∫
Dzϕ2

(√
ql−1
α z

)
+ σ2b (2)

with
∫
Dz = 1√

2π

∫
dze−

1
2
z2 . For any arbitrary choice of σ2w and σ2b and bounded activation

functions ϕ Eq. (2) has a fixed point at q∗ = liml→∞ qlα
32. To quantify how two different in-

put vectors get correlated across each layer of the network, one can consider two different initial

input vectors z
(0)
i;α and z

(0)
i;β , and look at the covariance of the layer defined pre-activation vec-

tors E
[
z
(l)
i;αz

(l)
j;β

]
= qlαβδij . The covariance function qlαβ is then related to the correlation function

clαβ = qlαβ/
√
qlαq

l
β and can be evaluated through the recurrence relation

qlαβ = σ2w

∫
Dz1Dz2ϕ (u1)ϕ (u2) + σ2b (3)

with u1 =

√
ql−1
α zα and u2 =

√
ql−1
β

(
cl−1
αβ z1 +

√
1− (cl−1

αβ )2z2

)
. It has been shown how the fix

point c∗ = liml→∞ clαβ allows to distinguish between an ordered phase characterized by c∗ = 1

and a chaotic phase where32 c∗ = 0. As pointed out by Schoenholz et al.33 correlations decay

exponentially, see Fig. 1 a), through a network to their asymptotic value according to

c = |clαβ − c∗| = e−l/ξc . (4)

The behaviour of ξc is reported in figure 1 b). We find, in correspondence to the information phase

transition between ordered and chaotic phase, a divergence of the correlation decay length33.

Deep feed forward Neural Quantum States

We apply the general FFNN architecture presented in the previous paragraph to define a deep

NQS describing spin-1/2 quantum states. The weight matrices, introduced in Eq.(1), are now

complex-valued, with elements still drawn from a Gaussian distribution. For simplicity, we restrict

to the case of σb = 0. The input vectors represent configurations of a spin chain, with a total

number of spins L. The last layer of the network is transformed into probability amplitudes using

an exponential sum. Details of this implementation are presented in the Methods section.

As depicted in Fig. 2(a) we then consider a bipartition of the spin chain, where the subpar-

tition A of the chain contains the first L
2 spins of the chain and the subpartition B is simply

the complementary subpartition. Following the standard prescription, from any given quantum

state represented by |ψθ⟩ the associated density matrix ρθ = |ψθ⟩ ⟨ψθ| allows to write the bipartite

entanglement entropy as
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(a) (b)

FIG. 1: (a) Qualitative behavior for the propagation of the correlation function c (defined by

Eq. (4)) through a deep FFNN, the pink area illustrates the typical exponential decay

characterized by the decay length ξc. (b) Order parameter c∗ (red line) and Dependence of the

decay length ξc (black line) on σw, in the asymptotic limit of infinitely many layers. At the

transition point from the ordered phase to the chaotic phase tracked by c∗, the decay length ξc

diverges. The figure shown is obtained by setting σb = 0.01.

SAB = −Tr [ρA log ρA] , ρA = TrB [ρ] where TrB is the trace operation with respect to the

degrees of freedom of the subpartition B. We begin our analysis by showing that for a given fixed

physical system size L we observe that the profile for the average bipartite entanglement entropy

SAB for the NQS associated to random neural networks, has a dependence on σW that exhibit

a peak at the information phase transition point of the network, Fig. 2(b). The height of the

entanglement entropy peak increases together with the network depth µ considered as expected

for a physical phase transition in the entanglement properties. The resulting profile obtained

simulating finite network realizations, approaches the theoretical prediction of ξc for increasing

numbers of layers.
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(a) (b)

FIG. 2: (a) Schematics of the setup considered, a deep FFNN represents the wave function for a

spin chain. We consider the bipartition of the A and B halves of the chain, as sketched in the

figure. (b) Bipartite entanglement entropy SAB and correlation decay length ξc varying σw, for

different values of network layers µ (coloured lines, scale shown by left vertical axis). We see that

upon increasing the network depth, going toward the limit of an infinitely deep network, the

profile of the entanglement entropy converges toward that of ξc (black line, scale shown by the

right vertical axis). Each data point has been averaged over 103 independent realizations; the

error bar corresponds to the standard deviation.

Connection between entanglement and information propagation transitions

Next, we study how the bipartite entanglement entropy depends on the number of spins rep-

resented by L. This scaling analysis allows to determine whether the quantum states that are

represented by random network states satisfy a volume or an area law. While in volume law states

the SAB grows linearly with the number of spins L, for an area law state SAB should in general scale

much weaker with systems size (and approach a constant for example in the one-dimensional case

considered later). The result of this analysis is presented in Fig.. In the same figure we compare

the results with the Page entropy that corresponds to the entanglement entropy for a completely

random quantum state and in the special case of bipartite entanglement is given by

SPage = L log(2)− 1

2
. (5)
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(a) (b)

FIG. 3: (a) Scaling of the bipartite entanglement entropy SAB for deep FFNN of µ = 20 layers.

Labelled different colors correspond to different value for σw, two behaviors are observed: For

values of σW in the ordered phase the bipartite entanglement entropy converges to a finite value,

as for a 1D area law state. At σw ≈ 1.5 the bipartite entanglement entropy almost saturates the

Page value, and in the chaotic phase the entanglement displays still a volume law scaling. (b) Top

panel: Bipartite entanglement entropy SAB for random networks with µ = 20 layers, as function

of σw. Bottom panel: Considering the same random network realizations we evaluate the energy

expectation with respect to the hamiltonians HJ1−J2 (defined by Eq. 6) plotted with respect to

the left axis, and (HJ1−J2)
2 (right axis). We set J1 = 1 and J2 = 0.2. Each data point has been

averaged over 103 independent realizations, the error bar corresponds to the standard deviation.

As we can see, for values of the variance smaller than σw ≈ 1.4, thus in the FFNN ordered phase,

SAB converges to a constant value, corresponding to an area law state. Across the phase transition

we see that in the chaotic case SAB follows the same scaling behaviour as that of the Page entropy,

thus following a volume law scaling. In the chaotic phase, as the system approaches the phase

transition point, SAB increases and almost saturates to the Page value for σw ≈ 1.5. Deep FFNNs

that are near the critical point, and thus can build up correlations between two distinct inputs, are

then naturally mapped to deep random NQS which display volume law entanglement entropy. To
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further emphasize how the deep network properties are directly translated into physical properties

once the network is cast into the language of a NQS we next consider the physical Hamiltonian

operator

HJ1−J2 = J1
∑
⟨ij⟩

Si · Sj + J2
∑
⟨⟨ij⟩⟩

·Si · Sj (6)

with Si the vector of spin-1/2 Pauli matrices. This corresponds to the J1 − J2 model, which is

equivalent to the Heisenberg model with the addition of spin-spin interactions between next-to-

nearest neighbour spins. The ground state of this local Hamiltonian is known to be described

by an area law for the entanglement entropy, up to logarithmic corrections when the system is

tuned to be critical. Highly excited states lying in the middle of the energy spectrum are instead

typically described by a volume law for the entanglement entropy36. Because of this, the squared

Hamiltonian operator (HJ1−J2)
2 is characterized by a volume law ground state. Now we compare

the σw dependence of the energy expectation value for random deep NQS. This is shown in Fig. 3b,

demonstrating a direct correspondence between the entanglement transition of the random NQS

and the energy associated to the Hamiltonian as well as its square. Importantly, the energy profile

has an opposite behaviour in the two cases: (i) In the ordered phase, the network is closer in energy

to the area law ground state of HJ1−J2 . (ii) In the chaotic phase, the network is closer in energy

to the volume law ground state of (HJ1−J2)
2. We demonstrated that the chaotic to order phase

transition of the deep FFNN is mapped into a transition of the entanglement scaling properties

for the associated NQS architecture, and that this allows to tailor the ansatz wave functions to be

closer in energy to the physical quantum states that share the same entanglement properties.

DISCUSSION

We have investigated the entanglement characteristics of NQS constructed as deep FFNN with

weight parameters drawn from a normal distribution. Our studies have revealed that the informa-

tion propagation phase transition, originally explored in the context of random deep networks32,33,

is directly related to the bipartite entanglement entropy as a function of the standard deviation of

the network weights. Our results provide a direct demonstration that the correlations established

between independent input vectors and propagated through networks in proximity to the critical

point are effectively translated into the generation of highly entangled quantum states.

This discovery leads to a prescription for the preparation of initial wave function ansätze that

exhibit closer energy proximity to specific target ground state wave functions. In fact, we demon-
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strate that transitioning the network from an ordered phase to a chaotic phase facilitates the

description of states with energy characteristics resembling area law ground states (in the ordered

phase) or volume law states (in the chaotic phase).

Ground state search training protocols of challenging models are sensitive to the fine-tuning of

many hyper-parameters30. An understandable connection, such as the one we describe here, is a

central step forward in the NQS architecture development, where currently limits of learnability

and representability are under heavy investigation23,30. Our results pave the way for future investi-

gations on potential boosts in the performance of optimization protocols that can efficiently target

ground and excited states.

I. METHODS

We summarize here the prescriptions defining the NQS architecture studied in the main part.

We start from a conventional FFNN defined by

z
(l)
i =

∑
j

W
(l)
ij y

(l)
j + b

(l)
i , y

(l+1)
i = ϕ(z

(l)
i ), l = 1, . . . , µ. (7)

For this, we consider the weight matrices appearing in Eq. (1) to be complex valued, such that

W
(l)
ij = w

(l)
R;ij+iw

(l)
I;ij is defined with w

(l)
R;ij and w

(l)
I;ij independently drawn from Gaussian distribution,

setting σ2R = σ2I = σ2w/N
l−1. We consider configurations with no biases such that b

(l)
i = 0 and we

choose the scaled exponential linear unit (SELU)37 as the activation function ϕ. The contraction

of a network with a specific vector of the Hilbert space basis is then converted to the associated

probability amplitude by applying an exponential sum, that, together with the definition in Eq. (7),

converts the last layer to the amplitude and is defined by log ⟨x|ψθ⟩ = log
∑αL

i=1 exp
[
y
(µ)
i

]
, z(1) =∑

j W
(1)
ij xi + b(1). The input vectors represent configurations of a spin chain, with a total number

of spins L. Therefore, each possible spin configuration consists of a vector x ∈ {0, 1}L , where 0

and 1 have been arbitrarily associated with spin down and up. Since we restrict to system sizes L

that allow to numerically represent the base of the full Hilbert space, both the evaluations of the

bipartite entanglement entropy reported in Figs.2b-3a and the energy expectation value reported

in Fig.3b are obtained exactly.
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