
Model-aware reinforcement learning for high-performance Bayesian experimental design
in quantum metrology

Federico Belliardo
NEST, Scuola Normale Superiore, I-56126 Pisa, Italy

Fabio Zoratti
Scuola Normale Superiore, I-56126 Pisa, Italy

Florian Marquardt
Max Planck Institute for the Science of Light and Physics Department,

University of Erlangen-Nuremberg, 91058 Erlangen, Germany

Vittorio Giovannetti
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy

Quantum sensors offer control flexibility during estimation by allowing manipulation by the
experimenter across various parameters. For each sensing platform, pinpointing the optimal controls
to enhance the sensor’s precision remains a challenging task. While an analytical solution might
be out of reach, machine learning offers a promising avenue for many systems of interest, especially
given the capabilities of contemporary hardware. We have introduced a versatile procedure capable
of optimizing a wide range of problems in quantum metrology, estimation, and hypothesis testing
by combining model-aware reinforcement learning (RL) with Bayesian estimation based on particle
filtering. To achieve this, we had to address the challenge of incorporating the many non-differentiable
steps of the estimation in the training process, such as measurements and the resampling of the
particle filter. Model-aware RL is a gradient-based method, where the derivatives of the sensor’s
precision are obtained through automatic differentiation (AD) in the simulation of the experiment.
Our approach is suitable for optimizing both non-adaptive and adaptive strategies, using neural
networks or other agents. We provide an implementation of this technique in the form of a Python
library called qsensoropt, alongside several pre-made applications for relevant physical platforms,
namely NV centers, photonic circuits, and optical cavities. This library will be released soon on
PyPI. Leveraging our method, we’ve achieved results for many examples that surpass the current
state-of-the-art in experimental design. In addition to Bayesian estimation, leveraging model-aware
RL, it is also possible to find optimal controls for the minimization of the Cramér-Rao bound, based
on Fisher information.

I. INTRODUCTION

In recent times, the synergy between Machine Learning
and quantum information has gained increasing attention.
These two technological domains can be mutually benefi-
cial in multiple ways. On one hand, quantum technolo-
gies, especially quantum computers, have the potential
to address classic Machine Learning challenges, like clas-
sification and sampling, with both classical and quantum
data [1–3]. Conversely, traditional Machine Learning can
augment quantum information tasks such as state prepa-
ration [4–7], optimal quantum feedback [8], error correc-
tion [9], device calibration [10–13], characterization [14],
and quantum tomography [15–17]. This work fits in the
latter category, using model-aware reinforcement learn-
ing [8, 18–20] (RL) to find optimized adaptive and non-
adaptive control strategies for application-relevant tasks
of quantum metrology, estimation, and hypothesis testing.
The problem we are solving is that of optimal experi-
mental design [21], which has been already approached
with ML techniques [22–27]. It turns out that an esti-
mation involves many non-differentiable steps, such as
simulating the measurement and resampling from the

posterior distribution. This could potentially invalidate
the application of model-aware RL. To address this issue,
we propose an original combination of several techniques,
including importance sampling, adding the log-likelihood
of the sampled variables to the loss [8], employing the
reparametrization trick, and incorporating the ’Scibior
and Wood correction [28]. Given a certain physical plat-
form and metrological task, the set of tunable parameters
in the experiment is identified. Then, an agent learns
to optimally control them to minimize the error metric,
through a gradient descent optimization procedure, based
on the backpropagation of the derivatives through all the
history of the estimation. The agent in question can be
a small neural network, a decision tree, or a simple list
of trainable controls that are sequentially applied. We
abstracted this procedure, decoupled it from the partic-
ular sensor and physical platform, and packaged it in
the qsensoropt library, which will soon be available on
PyPI, which can be used as a Swiss army knife for the
optimization of quantum sensors. We demonstrate the
broad applicability of our methodology by optimising a
range of different examples on the nitrogen-vacancy (NV)
center platform [29, 30], for single and multiparameter

ar
X

iv
:2

31
2.

16
98

5v
1 

 [
qu

an
t-

ph
] 

 2
8 

D
ec

 2
02

3



2

metrology, including both DC [31] and AC magnetome-
try, decoherence estimation [32], and hyperfine coupling
characterization [33]. For the photonic circuits, we stud-
ied multiphase hypothesis testing, the agnostic Dolinar
receiver [34], and coherent states classification, both it
the case the states are classically known and in the case
in which they must be learnt from a quantum training
set. In the domain of frequentist estimation, we studied
the sensing of the detuning frequency in a driven optical
cavity [35]. In this work only the applications to DC
magnetometry and to the Dolinar receiver are presented,
while the rest will be published in a future work [36]. Our
findings indicate that model-aware RL outperforms tradi-
tional control strategies in multiple scenarios, beating also
model-free RL. This work paves the way for researchers
to speed up the search for optimal controls in quantum
sensors, potentially hastening the advent of their broad
industrial application.

The literature contains prior works addressing chal-
lenges similar to those addressed by our approach, which
can be categorized into the following four classes. The
first class encompasses the competitor approaches for
optimization in quantum metrology using gradient de-
scent. Meyer et al. proposed a variational toolbox for the
optimization of measurements and states in multiparame-
ter metrology [37], but in contrast to our approach this
doesn’t allow Bayesian estimation nor it considers adap-
tive strategies. A similar tool is QuantEstimation [38],
which can’t use neural networks as agents for the con-
trol. The two libraries QInfer [39] and Optbayesexpt [40]
can optimize the controls for a Bayesian experiment but
only greedily, i.e. one measurement at a time, via an
approximation of the information gain per measurement.
In [31] Fiderer, Schuff, and Braun studies the application
of model-free RL to the optimization of DC magnetometry.
In [41] a quantum comb-based approach to the simultane-
ous optimization of states and measurement for one-shot
Bayesian experiments is put forward. The second class are
those works that review the optimal control algorithms
for quantum metrology, which are mainly based on the
optimization of the Fisher information [30, 42–48]. These
either lack coverage on Bayesian estimation or on the
use of neural networks, or are applicable only to some
specific platforms (like NV centers). The third class en-
compasses those theoretical works that advocate for the
necessity of optimal control in quantum metrology and
more or less conceptually shape the working principles of
our approach, although without putting forward any im-
plementation [20, 23, 24, 49, 50]. The fourth class contains
the applications of variational quantum circuits to specific
platforms and tasks. These are in general non-adaptive
(with one exception [51]) and can be Bayesian [52–54] or
based on the quantum Fisher information [55, 56].

Encoding of the probe

In quantum metrology, we have an environment or a
process characterized by a fixed number of parameters
θ ∈ Θ. These parameters are unknown, and our objective
is to estimate them. To achieve this, a quantum probe with
known dynamics is made to interact with the environment
or undergo the process of interest. Upon measuring the
state of the probe, which now depends on θ, we can obtain
information about these parameters, provided that the
dynamics of the interactions are completely known. It
follows that quantum probes are systems that are well
characterized and easily manipulable, and often quite
simple. See the Supplementary Information Appendix A
for more information on the encoding of the probe. For
optimizing the controls, the evolution of the probe and the
extraction of the measurement outcomes are simulated,
whereas in the application, this occurs on the actual sensor
during the experiment.

Bayesian estimation and particle filter

In the domain of Bayesian estimation we start from
a prior distribution π(θ) for the parameters θ and up-
date it step by step with the information coming from
the measurements, thereby constructing the so called
posterior distribution P (θ). We employ the particle filter
method [57–59] (PF) to represent the posterior distri-
bution as an ensemble of points {θj}Nj=1 in the parame-
ter space Θ, with each point having an assigned weight
{wj}Nj=1, with N being the number of particles. Funda-
mentally, we are approximating the posterior distribution
with a sum of δ-functions, i.e.

P (θ) ≃
N∑
j=1

wt
jδ(θ − θj) , (1)

At the beginning the particles are sampled from π(θ) and
the weights are initialized to wj = 1

N . The update of
the posterior to account for new information becomes an

update of the weights. From the PF, the estimator θ̂ ∈ Θ
for θ is computed, which in our application is either the
mean of the posterior or the most likely value for θ. In
case the measurements on the quantum probe are weak
(as opposed to projective), it is also necessary to keep
track of the measurement backreaction for each possible
value of the unknowns θ. For more details, refer to the
Supplementary Information Appendix B.

Controlling agent

A “summary” of the information contained in the
Bayesian posterior represented by the PF, such as the
mean and covariance matrix of the distribution P (θ), is
provided to an agent, like a neural network (NN). This



3

agent then outputs the controls. It is essential for the
agent to be specifically trained for the experiments it is in-
tended to optimize. This means, for instance, that precise
values of the decoherence rates and visibilities should be
known and incorporated into the simulation, unless they
are included among the parameters θ to be estimated. In
this manner, the knowledge on θ, gained through mea-
surements, can be adaptively leveraged to control both
the evolution and the measurements performed on the
probe through the agent, with the aim of maximizing the
final precision of the estimation. We envision carrying
out experiments with a small trained agent programmed
on fast hardware, like a Field Programmable Gate Array
(FPGA), located in the proximity of the experiment.

The precision-resources paradigm

In our framework each measurement performed on the
probe consumes some amount r of a specific “resource”,
which is costly in the context of the experiment and must
be defined by the user, according to the limitation of the
setup. Once the total available resources R are depleted,
the estimation is concluded, and the final value of the

estimator θ̂ is computed. Some examples of resources
are the total estimation time, used for the NV center
platform, the average number of consumed photons, or
the amplitude of a signal, like in the Dolinar receiver. For
the optimization of the metrological task the definition
of the resource is as important as the precision figure of
merit. There is no right or wrong resource in an estimation
task, it depends on the experimentalist’s choices and on
their understanding of the laboratory limitations in the
implementation of the task.

Figure 1. Schematic representation of the three steps of information flow within the measurement loop. The labels refer to the
(t+ 1)-th iteration. In the first step (pink region of the figure), the summary information computed from the particle filter is fed
into the agent (here represented as a NN) which determines the control parameters for both the evolution and the measurement
of the probe in this iteration, collectively represented by the variable xt+1. In the second step (green region) the parameters θ
are encoded in the probe state and the measurement is conducted, producing the outcome yt+1. In the third step (yellow region)
this outcome is input into the particle filter leading to the update of the Bayesian posterior distribution on the parameters θ
and on state of the probe (if applicable).

The measurement loop

The metrological task, be it estimation or hypothesis
testing, is simulated as a loop of consecutive operations,
which we call the measurement loop, represented in Fig. 1.
Within this loop, for each iteration numbered from t = 0
toM−1, a single measurement is performed. We proceed
by describing the generic iteration of the loop (let it be

the t+ 1-th iteration), which is comprised of three steps.
As described in the caption of Fig. 1 we indicate with the
symbol xt+1 the controls produced by the agent for the
evolution of the probe and its measurement, while under
yt+1 we understand the outcome of the measurement,
both taken at the t + 1-th iterations of the loop. The
objects xt := (x0, x1, . . . , xt) and yt := (y0, y1, . . . , yt) are
tuples that contains the controls and the measurement



4

outcomes up to the time t. The distribution P (θ|xt,yt)
is the Bayesian posterior updated with the outcomes up
to step t of the measurement loop.

1. In the case of adaptive strategies, the choice of xt+1

operated by the agent shall be represented without
loss of generality via the mapping

xt+1 = Fλ{P (θ|xt,yt);yt;Rt; t} , (2)

where, defining rj the resource consumption at the
j-th step of the protocol, we compute the total
resource consumed up to the t-th step as Rt :=∑t

j=0 rj . Non-adaptive strategies are described by
maps F that carry no functional dependence upon
P (θ|xt,yt) or yt, i.e

xt+1 = Fλ{Rt; t} . (3)

The mapping Fλ depends on the trainable variables
of the strategy, collectively indicated with λ, that
are later optimized. These are the weights and bi-
ases for a NN. For the non-adaptive strategies of
this work the agent is just a list of controls which are
applied sequentially in the measurement loop, and
λ = xM−1. For all the examples the NN has by de-
fault 5 hidden layers with 64 neurons each, and the
activation function is tanh, which has been proved
to be good for approximating smooth functions [60].

2. Suppose that the measurements are projective, and
that the probe’s state is reinitialized after each itera-
tion. Then the probability of observing the outcome
yt+1 at the t+ 1-th step is given by p(yt+1|xt+1,θ),
which is computed from the Born rule according
to the known quantum dynamics of the probe that
has been coded in the simulation. This probability,
which we henceforth call the “model”, depends only
on the controls xt+1 and on the encoded parameters
to estimate θ. At this second step of the measure-
ment loop, the outcome yt+1, which is a stochastic
variable, is extracted from the model distribution,
i.e.

yt+1 ∼ p(yt+1|xt+1,θ) . (4)

If the probe is subject to a weak measurement,
then the outcome probability depends on the whole
sequence of previous controls and outcomes, because
of the measurement backreaction, i.e.

yt+1 ∼ p(yt+1|xt+1,yt,θ) . (5)

3. The observation of yt+1 is then incorporated into
the posterior through the Bayes rule, i.e.

P (θ|yt+1,xt+1) ∝ p(yt+1|xt+1,θ)P (θ|xt,yt) . (6)

At the first iteration the prior π(θ) appears instead
of the posterior. If the measurements are weak,
then the model probability has the form reported
in Eq. (5).

The stopping condition of the measurement loop can be
trivial, i.e. we assign a maximum number of iterations
M , or based on the amount of resources available, i.e. it
can be a limit on Rt.

Training with model-aware reinforcement learning

The figure of merit for the precision depends on the type
of metrological task. In the examples concerning the NV
center platform, where the parameters θ are continuous,
the mean square error (MSE) is used, i.e. the loss for a
single estimation is

ℓ(θ̂,θ) := tr
[
G · (θ̂ − θ)(θ̂ − θ)⊺

]
, (7)

with G ≥ 0 being a positive semidefinite weight matrix,

and θ̂ being the mean of the posterior. The weight matrix

G controls which errors contribute to the loss ℓ(θ̂,θ) and
how much. It discriminates therefore between parame-
ters of interest and nuisances, with the latter having the
corresponding entries in the G matrix set to zero. In
an hypothesis testing task, illustrated later in this work

for a photonic platform), both θ and θ̂ are discrete, i.e.

θ, θ̂ ∈ Θ = {θ1,θ2, . . . ,θk}. Accordingly, the loss for
a single instance of the task is expressed in terms of a
Kronecker delta, i.e.

ℓ(θ̂,θ) := 1− δ(θ̂,θ) , (8)

with

θ̂ := argmax
θ

P (θ|xt,yt) , (9)

being the maximum a posterior estimator. Optimizing
the control strategy entails identifying the agent that

minimizes the average loss E[ℓ(θ̂,θ)], averaged over all
possible choices of θ and over all the stochastic processes
involved in the estimation of θ, see the Supplementary
Material Appendix D. Each potential agent is character-
ized by the values of a set of trainable variables, denoted
as λ, that influence the individual losses of the problem

as well as the associated E[ℓ(θ̂,θ)]. The optimal strat-
egy can hence be abstractly identified with the value

λ⋆ := argminλE[ℓ(θ̂,θ)] that minimizes the average loss.
The training of the agent is an iterative algorithm that
aims to discover a strategy closely approximating the
performance of such optimal λ⋆ via a sequence TS(1),
TS(2), · · · , TS(I) of recursive updates,

λ0
TS(1)−→ λ1

TS(2)−→ · · · TS(I)−→ λI ≃ λ⋆ , (10)

with λ0 being an initial educated guess. The construction
of the learning trajectory Eq. (10) relies on the possi-
bility of computing an estimation L(λ) of the average

loss E[ℓ(θ̂,θ)] associated with a generic agent λ. This
is typically done simulating in parallel B estimations of



5

randomly selected values θ1, · · · , θB of the parameters θ.
Accordingly we can then write

L(λ) := 1

B

B∑
k=1

ℓ(θ̂k,θk) ≃ E[ℓ(θ̂,θ)] , (11)

where ℓ(θ̂k,θk) represents the local loss of the k-th estima-
tion which inherits a functional dependence upon λ from
the multiple operations that the agent has to perform in
order to recover θk. Exploiting such dependence we can
compute the gradient G(λ) := d

dλL(λ) of L(λ) via auto-
matic differentiation (AD), running in reverse through all
the operations of the measurement loop. The upgrade of
the agent parameters is performed at each training step
with stochastic gradient descent through the formula

λi
TS(i+1)−→ λi+1 = λi − αG(λi) , (12)

with α ∈ (10−4, 10−1) being the learning rate. Actually,
in the examples reported, the Adam [61] optimizer is
used, which prescribes a more complicated update step,
conceptually similar to Eq. (12). Also we use a learning
rate decreasing with the training step i. Since the deriva-
tives are propagated through the model for the sensor
in Eq. (4), this training is a form of model-aware policy
gradient reinforcement learning. The gradient descent
training of λ will converge to a minimum of the loss, how-
ever, we don’t have any guarantee that it will be λ⋆. Since
the loss is defined in terms of the stochastic outcomes yt,
special precautions are necessary to compute an unbiased
estimator for its gradient [8], which involve the addition of
the log-likelihood terms log p(yt+1|xt+1,yt,θ) to the loss.
See the Supplementary Material Appendix D for details
on the loss definition and on its gradient. When doing an
estimation with a fixed number of measurements Mmax

or a fixed maximal amount of resources Rmax, choosing
a loss L(θ) that is sensitive only to the performances of
the estimator θ at the very end of the simulations doesn’t
necessarily produce the optimal strategies for M < Mmax,
R < Rmax. The simplest solution would be to repeat the
optimization for each smaller Rmax we want to charac-
terize. There is, however, a way to find an approximate
solution ∀R ≤ Rmax, which requires just a training that
optimizes the cumulative loss instead of Eq. (11), i.e.

Lcum(λ) :=
1

MmaxB

Mmax−1∑
t=0

B∑
k=1

ℓ(θ̂k,t,θk) . (13)

This loss has the effect to pressure the agent to learn a
strategy that is optimal ∀R ≤ Rmax, and it has been used
in the examples on the NV center platform. A further
version of the loss is the logarithmic loss, which prescribes
the use of the logarithm of the average loss on the batch
instead of the average loss in Eq. (13). See Appendix D 4
for more details.

Differentiability of the particle filter

The main ingredient of our approach is the combination
of particle filter Bayes updates with model-based rein-
forcement learning. This represents a challenge, since PF
updates involve steps where it is not immediately obvious
how they could be made differentiable for gradient com-
putation. As the estimation proceeds, the weights of the
PF get concentrated on few particles only. To optimize
the memory usage we implement a resampling procedure,
that, when called, extracts a new sets of particles {θ′

j}Nj=1

according to the posterior P (θ) and resets the weights
to w′

j =
1
N . This resampling procedure consists of three

steps that can be toggled on and off at will. These are:
the resampling from the posterior P (θ), the perturbation
of the newly extracted particles, and the proposal of new
particles. We have optimally combined them through a
trial-and-error procedure, see Supplementary Information
Appendix B3. All these steps involve the extraction of
discrete stochastic variables, an operation that in prin-
ciple is not differentiable and would completely impede
the propagation of the gradient later needed for reinforce-
ment learning. While the last two steps can be trivially
made differentiable with the reparametrization trick (see
Supplementary Information Appendix C1), for circum-
venting the issue of resampling the discrete PF ensemble,
we could modify the loss by adding the log-likelihood of
the stochastic outcomes as we do for the measurements.
However, for a large number of particles N , this would
affect negatively the variance of the estimated gradient
in the simulations. Instead, we use importance sampling
to extract the new particles from a distribution Q(θ)
different from the posterior and we set the new weights

proportional to the factor P (θ)
Q(θ) , so that the PF always

represents the posterior [62]. In this way the gradient can
propagate through a resampling event via the term P (θ)
in the weights. Along with the importance sampling we
have implemented correction introduced by Ścibior and
Wood [28] to get differentiable resampling, and we proved
its efficacy for the mean square error loss, see Supple-
mentary Information Appendix C2. This correction is
complementary to importance sampling and its effect is to
add to the loss the least possible numbers of log-likelihood
terms for particle extraction events, so not to compromise
the stability of the training. The Bayes rule, being just
the product of the model probability and the previous
posterior, is trivially differentiable.

II. RESULTS

In this section we present two application of this tech-
nique, to static field magnetometry with NV center and
to quantum communication with the Dolinar receiver.



6

DC magnetometry with NV centers

The nitrogen-vacancy (NV) centre in diamond is a point
defect that enables initialisation, detection and control of
its electronic spin, featuring very long quantum coherence
time, even at room temperature. As such, it has been
used in applications such as magnetometry, thermometry,
and stress sensing [29, 63–66]. The electronic spin is sensi-
tive to magnetic fields; for example static fields determine
the electron Larmour frequency, which can be measured
as an accumulated phase by a Ramsey experiment. This
experiments are realizes by applying two π/2 pulse to the
spin, followed by illumination with green light and detec-
tion of the photoluminescence. A single measurement has
a binary outcome, yielding ±1 with probabilities

p(±1|ω, T ⋆
2 , τ) :=

1

2
± 1

2
e−τ/T⋆

2 cos (ωτ) . (14)

The free evolution time τ is controlled by a trainable
agent, while ω := γB represents the unknown precession
frequency to be estimated, which is proportional to the
static magnetic field B with γ ≃ 28MHz/mT. The pa-
rameter T ⋆

2 denotes the transverse relaxation time, serving
as the time scale for the dephasing induced by magnetic
noise. The optimization of the NV center as a magne-
tometer has been extensively studied in the literature
with analytical tools [67, 68], with numerics [69–81], and
with Machine Learning [31, 82, 83]. We conducted multi-
ple estimations over the same parameter ranges chosen
in the work of Fiderer et al. [31], in order to allow an
easy comparison of the results. The prior for the fre-
quency ω is uniform in (0, 1)MHz. Fig. 2 compares the
performances of the optimized adaptive (NN) and non-
adaptive strategies against the Particle Guess Heuristic
(PGH) [84], which is a commonly referenced strategy in
the literature. Additionally, we introduced a variant of
the σ−1 strategy [68], named σ−1&T−1, which accounts
for the finite coherence time. According to the σ−1&T−1

strategy, the next evolution time τ is computed from the
covariance matrix Σ of the current posterior distribution

as τ =
[
tr(Σ)

1
2 + 1/T ⋆

2

]−1

. For computing the controls of

the PGH strategy, two particles θ1 and θ2 are drawn from
the particle filter; the evolution time is then computed as
τ = (||θ1 − θ2||2 + ε)

−1
with ε := 10−5 µs−1.



7

Figure 2. These plots refer to static field magnetometry with an NV center, executed in different conditions. The MSE on ω is
plotted as a function of the total number of consumed resources, which are either the maximum number of measurements Mmax

or the maximum total free evolution time of the probe, i.e. Tmax ≥
∑M−1

t=0 τk. The adaptive (NN) and non-adaptive strategies
are optimized using model-aware RL. The description of the σ−1&T−1 and PGH strategies can be found in the main text.
With the label “Model-free RL” we denote the performances obtained in [31] with model-free RL, which are never better than
the non-adaptive strategy optimized with our techniques. The shaded grey area represent the (non-tight) ultimate precision
bound, computed either from the Cramér-Rao bound or from a bit-counting arguments, see the Supplementary Information
Appendix G3. The title of each plot contains the transverse relaxation time T ⋆

2 , which is the time scale of the dephasing noise,
along with the maximum amount of resources used in the simulations. The number of particle in the PF was N = 480 for the
first and third rows, and N = 1024 (left) and N = 1536 (right) for the second row, which are significantly smaller numbers than
the ones used in [31]. The weights and biases of the NN have been initialized randomly, while the initial τ for the non-adaptive
approach is a deterministic linear ramp increasing after each measurement.

For each plot, the best between our optimized adaptive
and non-adaptive strategies, outperforms all the other
approaches, as illustrated in Fig. 2. There are two com-
parisons to be made: on one hand we have the optimized
adaptive vs. the non-adaptive strategies, which are both
original results of this work; on the other hand we have
model-free vs model-aware RL, where application of the
latter to NV center magnetometry has been studied in [31].
We shall start with the first comparison. Notably, the opti-
mal results for extended coherence times (T ⋆

2 = 100µs,∞)
are achieved using non-adaptive strategies, which offer
several practical advantages in the experimental imple-
mentation. Primarily, since the controls are fixed offline

before the experiment, there’s no requirement for real-time
feedback via rapid electronics. Furthermore, there’s also
no need to update the Bayesian posterior on the fly given
the absence of adaptivity. Instead, the measurement out-
comes can be processed offline, post-measurement, using
more powerful hardware. This would significantly reduce
online memory usage as there’s no need for real-time up-
dates to the particle filter. In the third row of Fig. 2 we
see a gap between the performances of “Adaptive” and
“Non-adaptive”, and in [36] we give more examples of the
adaptivity being useful. Regarding the second compari-
son of model-aware and model-free RL, we observe that
no strategy trained with model-free RL can beat even



8

the non-adaptive strategy, which means that the results
of [31], although close to ours, cannot prove that the
NN has been trained to exploit adaptivity, and that it
hasn’t simply learned an optimal non-adaptive sequence
of measurement times τ . Beside this, we notice that our
“Adaptive” strategy and the “Model-free” approach give
results that are closer toward the end of the estimation,
while they differ for intermediate times. This is due to
our use of the cumulative loss. In the simulation with
T ⋆
2 = ∞, Mmax = 20, the NN strategy performs worse

than the non-adaptive one because it remains stuck in a
local minimum during the training. In Fig. 3 we reported
five examples of optimal adaptive trajectories for the es-
timation of ω = 0.2MHz referring to T ⋆

2 = 10, together
with the optimal non-adaptive strategy. We observe that
multiple runs of the agent training will produce consistent
performance but not necessarily the same optimized agent.
In conclusion we want to put forward an explanation to
why the adaptive control seems to give so little advantage
with respect to the optimized non-adaptive strategy. For
the adaptivity to be advantageous, the phase ωτ must be
known to some extent. As the error on ω goes down, the
evolution time increases, so that the uncertainty on ωτ
doesn’t go to zero even after many measurements, which
leaves very little room to adaptivity for improving the
estimation precision.

Agnostic Dolinar receiver

Consider the challenge of distinguishing between two
known coherent states, |−α⟩ and |α⟩, where α ∈ R and
α > 0, using a single copy of the signal |±α⟩. The Dolinar
receiver optimally addresses this problem through linear
optics and photon counting [85–91]. For this device mul-
tiple Machine Learning approaches can be found in the
literature [92, 93]. In some recent studies [34, 94], a vari-
ant of this device was introduced which doesn’t require a
local oscillator (LO) on the receiver side, which must be in
phase with the sender’s laser. This is the agnostic Dolinar
receiver, in which in place of the LO, n copies of |α⟩,
called the reference states, are sent to the receiver from
the sender, alongside the signal |±α⟩. We furthermore
assume that classical knowledge about the state |α⟩ is
missing, i.e. α is an unknown parameter of the estimation.
In Fig. 4 we represent schematically this device, which
leverages the states |α⟩⊗n

to perform the hypothesis test-
ing task on the sign of the signal |±α⟩. The signal |±α⟩
enters from the left and is sequentially combined with
one of the reference states |α⟩ on a programmable beam
splitter with adjustable reflectivity θi. At each beam
splitter, one of the two ports undergoes measurement by
a photon-counter, while the residual signal |ψi⟩ from the
other port is fed forward to the subsequent beam split-
ter. The photon counting result is used to update the
Bayesian posterior on α and on the signal’s sign, from
which the reflectivity for the upcoming beam splitter is
determined via a NN. In this task, which is a combination

0 500 1,000
2

4

6

8

10

T (µs)

τ (µs)

T ⋆
2 = 10µs, ω = 0.2MHz, Tmax = 1024µs

0 200 400

0

5

10

15

M

T ⋆
2 = 10µs, Mmax = 512

Figure 3. Control strategies for the estimation of ω in DC
magnetometry. For the time limited estimation (on the left)
five example trajectories produced by the NN are plotted for
ω = 0.2MHz. On the right, the optimal non-adaptive strategy
for the measurement-limited estimation is presented. This
prescribes a growing τ with a random pattern superimposed.

of estimation and hypothesis testing, there are two un-
determined parameters: one continuous, i.e. the signal’s
amplitude α ∈ R, and one discrete, i.e. the signal’s sign.
The receiver’s performance is assessed based on the error
probability in the task of signal classification, with the
loss being the one in Eq. (8), while the amplitude α is
a nuisance parameter. See [36] for the details about the
loss and the input to the NN.



9

Figure 4. Schematic representation of the agnostic Dolinar receiver: each thick diagonal line symbolizes a beam splitter with
programmable reflectivity θi. Each “D” device denotes a photon-counter. On the left side of the figure, the building block of
this apparatus is illustrated. Here, the input state at step i, named |ψi⟩, is combined with one of the n training states |α⟩. One
of the two ports undergoes measurement via photon-counting. At the device’s end the second output port is also measured,
ensuring no information is left unused.

Figure 5. Comparison of error probabilities for various strategies with different numbers of copies of |α⟩, specifically n = 4
and n = 8. The shaded gray area is the region excluded by the Helstrom bound [95, 96], which is the lowest error probability
theoretically achievable when assuming having an infinite number of reference states (n = ∞) at disposal. The solid red and
violet lines are the Helstrom bound calculated for a finite number of copies of |α⟩ [34], respectively n = 4 and n = 8. For the
details on the computation of the Helstrom bound see [36]. The black dashed line showcases the lowest error found in the old
work [34], without Machine Learning, while the black solid line is the performance achieved using the NN. The performances of
the optimal non-adaptive strategies haven’t been reported since they can’t rival the ones of the NN. For both the training and
the performances evaluation we used N = 512 particles. The weights and biases of the NN have been initialized randomly.

The simulation results are presented in Fig. 5. We com-
pared the performances of our adaptive procedure with
the current state-of-the-art solution for this problem [34].
In each scenario, we achieved superior results with the NN.
Notably, we nearly reached the theoretical bound in our
primary area of interest, relevant for long-distance com-
munications, i.e. the full quantum limit with α ≲ 1, and
a small number of reference states (specifically, n = 4).
For large α, the error probability is already very small
and we are in the classical limit.

Choice of the hyperparameters

In this section, we briefly comment on the choice of
hyperparameters for the examples reported here. These
include the batchsize B, the number of particles in the
PF N , and the initial learning rate α0. They must be cho-
sen according to the memory limitations of the computer
during training. Specifically, we first empirically fix the
number of particles to a value large enough to ensure that
the discretization of the posterior does not compromise
the precision of the estimation. This, in turn, determines
the batchsize, i.e., the number of simulations that can
be executed in parallel. The batchsize, along with the



10

type of loss, then determines the initial learning rate. For
example, in Fig. 2, we used B = 128 and α0 = 10−2 for
the cumulative loss, as well as B = 1024 and α0 = 10−3

for the logarithmic loss. These values are used for the
time and measurements-limited estimations respectively.
The batchsize can also be “artificially” increased via gradi-
ent accumulation, which involves averaging the gradients
from multiple executions of a batch of simulations for the
update in Eq. (12). For the Dolinar receiver, we used
α = 10−2 and B = 4096. Refer to Appendix E for more
information.

III. DISCUSSION

Overall, our research highlights the benefits of merging
Machine Learning with modern quantum technologies.
We introduced a framework, complemented by a versa-
tile library, capable of addressing a wide spectrum of
quantum parameter estimation, hypothesis testing, and
metrology challenges both in the Bayesian and in the fre-
quentist framework, applicable to a plethora of platforms.
Our methods have the potential to accelerate the devel-
opment of practical applications in quantum metrology.
The capability to precisely estimate physical parameters
through quantum systems could revolutionize numerous
sectors, including biology, fundamental physics, and quan-
tum communication. Through the tool of model-aware
reinforcement learning, we aspire to catalyse progress in
these domains, smoothing the shift of quantum-based
metrology from proof-of-principle experiments to indus-
trial applications. The technique of model-aware RL for
agent optimization could be in principle applied to a wide
range of problems in quantum information, including
quantum error correction and entanglement distillation,
which would require engineering other losses. The main
obstacle of extending this approach in other fields of
quantum information beyond metrology is, however, the
exploding dimensionality of the quantum systems states
that would need to be simulated.

IV. METHODS

The library qsensoropt has been implemented in Python
3 on the Tensorflow framework. All of the simulations
have been done on the High-Performance Computing
cluster of Scuola Normale Superiore. The simulations
ran on an NVIDIA Tesla GPU with 32GB of dedicated
VRAM. The training and evaluation of each strategy took
O(1) hours.

V. ACKNOWLEDGMENTS

We gratefully acknowledge the computational resources
of the Center for High Performance Computing (CHPC)
at SNS. F. B. thanks T. Shah for useful discussions.

We aknowledge finantial support by MUR (Ministero
dell’Istruzione, dell’Università e della Ricerca) through
the following projects: PNRR MUR project PE0000023-
NQSTI, PRIN 2017 Taming complexity via Quantum
Strategies: a Hybrid Integrated Photonic approach (QU-
SHIP) Id. 2017SRN-BRK.

VI. AUTHOR CONTRIBUTIONS

F. Belliardo conceived of the presented idea under the
supervision of F. Marquardt and V. Giovannetti. Fed-
erico B. and Fabio Z. have programmed the library and
performed the simulations, all the authors have discussed
the results and contributed to the final manuscript, with
F. Belliardo being the main contributor.

VII. COMPETING INTERESTS STATEMENT

The authors declare no competing interests.

VIII. BIBLIOGRAPHY

[1] Flamini, F. et al. Photonic architecture for reinforce-
ment learning. New Journal of Physics 22, 045002
(2020). URL https://iopscience.iop.org/article/

10.1088/1367-2630/ab783c.
[2] Broughton, M. et al. TensorFlow Quantum: A Software

Framework for Quantum Machine Learning (2021). URL
http://arxiv.org/abs/2003.02989.

[3] Bergholm, V. et al. PennyLane: Automatic differenti-
ation of hybrid quantum-classical computations (2022).
URL http://arxiv.org/abs/1811.04968.

[4] Bukov, M. et al. Reinforcement Learning in Differ-
ent Phases of Quantum Control. Physical Review X
8, 031086 (2018). URL https://link.aps.org/doi/10.

1103/PhysRevX.8.031086.
[5] Zhang, X.-M., Wei, Z., Asad, R., Yang, X.-C. & Wang, X.

When does reinforcement learning stand out in quantum
control? A comparative study on state preparation.
npj Quantum Information 5, 85 (2019). URL http:

//www.nature.com/articles/s41534-019-0201-8.
[6] Niu, M. Y., Boixo, S., Smelyanskiy, V. N. & Neven,

H. Universal quantum control through deep rein-
forcement learning. npj Quantum Information 5,
33 (2019). URL http://www.nature.com/articles/

s41534-019-0141-3.
[7] Porotti, R., Essig, A., Huard, B. & Marquardt, F. Deep

Reinforcement Learning for Quantum State Preparation
with Weak Nonlinear Measurements. Quantum 6, 747
(2022). URL https://quantum-journal.org/papers/

q-2022-06-28-747/.
[8] Porotti, R., Peano, V. & Marquardt, F. Gradient-Ascent

Pulse Engineering with Feedback. PRX Quantum 4,
030305 (2023). URL https://link.aps.org/doi/10.

1103/PRXQuantum.4.030305.
[9] Fösel, T., Tighineanu, P., Weiss, T. & Marquardt,

F. Reinforcement Learning with Neural Networks for
Quantum Feedback. Physical Review X 8, 031084

https://iopscience.iop.org/article/10.1088/1367-2630/ab783c
https://iopscience.iop.org/article/10.1088/1367-2630/ab783c
http://arxiv.org/abs/2003.02989
http://arxiv.org/abs/1811.04968
https://link.aps.org/doi/10.1103/PhysRevX.8.031086
https://link.aps.org/doi/10.1103/PhysRevX.8.031086
http://www.nature.com/articles/s41534-019-0201-8
http://www.nature.com/articles/s41534-019-0201-8
http://www.nature.com/articles/s41534-019-0141-3
http://www.nature.com/articles/s41534-019-0141-3
https://quantum-journal.org/papers/q-2022-06-28-747/
https://quantum-journal.org/papers/q-2022-06-28-747/
https://link.aps.org/doi/10.1103/PRXQuantum.4.030305
https://link.aps.org/doi/10.1103/PRXQuantum.4.030305


11

(2018). URL https://link.aps.org/doi/10.1103/

PhysRevX.8.031084.
[10] Cimini, V. et al. Calibration of Quantum Sensors

by Neural Networks. Physical Review Letters 123,
230502 (2019). URL https://link.aps.org/doi/10.

1103/PhysRevLett.123.230502.
[11] Ban, Y., Echanobe, J., Ding, Y., Puebla, R. & Casanova,

J. Neural-network-based parameter estimation for quan-
tum detection. Quantum Science and Technology 6,
045012 (2021). URL https://iopscience.iop.org/

article/10.1088/2058-9565/ac16ed.
[12] Nolan, S., Smerzi, A. & Pezzè, L. A machine learn-

ing approach to Bayesian parameter estimation. npj
Quantum Information 7, 169 (2021). URL https:

//www.nature.com/articles/s41534-021-00497-w.
[13] Nolan, S. P., Pezzè, L. & Smerzi, A. Frequentist param-

eter estimation with supervised learning. AVS Quantum
Science 3, 034401 (2021). URL https://avs.scitation.

org/doi/10.1116/5.0058163.
[14] Nguyen, V. et al. Deep reinforcement learning for effi-

cient measurement of quantum devices. npj Quantum
Information 7, 100 (2021). URL http://www.nature.

com/articles/s41534-021-00434-x.
[15] Palmieri, A. M. et al. Experimental neural network en-

hanced quantum tomography. npj Quantum Information
6, 20 (2020). URL http://www.nature.com/articles/

s41534-020-0248-6.
[16] Quek, Y., Fort, S. & Ng, H. K. Adaptive quantum

state tomography with neural networks. npj Quantum
Information 7, 105 (2021). URL http://www.nature.

com/articles/s41534-021-00436-9.
[17] Hsieh, H.-Y. et al. Direct Parameter Estimations

from Machine Learning-Enhanced Quantum State To-
mography. Symmetry 14, 874 (2022). URL https:

//www.mdpi.com/2073-8994/14/5/874.
[18] Marquardt, F. Machine learning and quantum devices.

SciPost Physics Lecture Notes 29 (2021). URL https:

//scipost.org/10.21468/SciPostPhysLectNotes.29.
[19] Marquardt, F. Online Course: Advanced Machine Learn-

ing for Physics, Science, and Artificial Scientific Discov-
ery (2021).

[20] Krenn, M., Landgraf, J., Foesel, T. & Marquardt, F.
Artificial intelligence and machine learning for quan-
tum technologies. Physical Review A 107, 010101
(2023). URL https://link.aps.org/doi/10.1103/

PhysRevA.107.010101.
[21] Fisher, R. A. The design of experiments. The design of

experiments (Oliver & Boyd, Oxford, England, 1935).
[22] Foster, A. E. Variational, Monte Carlo and policy-

based approaches to Bayesian experimental design.
http://purl.org/dc/dcmitype/Text, University of Oxford
(2021). URL https://ora.ox.ac.uk/objects/uuid:

4a3e13ca-e6c6-4669-955e-f1a87e201228.
[23] Baydin, A. G. et al. Toward Machine Learning Opti-

mization of Experimental Design. Nuclear Physics News
31, 25–28 (2021). URL https://www.tandfonline.com/

doi/full/10.1080/10619127.2021.1881364.
[24] Ballard, Z., Brown, C., Madni, A. M. & Ozcan, A.

Machine learning and computation-enabled intelligent
sensor design. Nature Machine Intelligence 3, 556–
565 (2021). URL http://www.nature.com/articles/

s42256-021-00360-9.
[25] Ivanova, D. R., Foster, A., Kleinegesse, S., Gut-

mann, M. U. & Rainforth, T. Implicit Deep

Adaptive Design: Policy-Based Experimental De-
sign without Likelihoods. In Advances in Neural
Information Processing Systems, vol. 34, 25785–
25798 (Curran Associates, Inc., 2021). URL
https://proceedings.neurips.cc/paper/2021/hash/

d811406316b669ad3d370d78b51b1d2e-Abstract.html.
[26] Sarra, L. & Marquardt, F. Deep Bayesian Experimental

Design for Quantum Many-Body Systems (2023). URL
http://arxiv.org/abs/2306.14510.

[27] Foster, A., Ivanova, D. R., Malik, I. & Rainforth, T.
Deep Adaptive Design: Amortizing Sequential Bayesian
Experimental Design. In Proceedings of the 38th Inter-
national Conference on Machine Learning, 3384–3395
(PMLR, 2021). URL https://proceedings.mlr.press/

v139/foster21a.html.
[28] Ścibior, A. & Wood, F. Differentiable Particle Filtering

without Modifying the Forward Pass (2021). URL http:

//arxiv.org/abs/2106.10314.
[29] Chen, M. et al. Quantum metrology with single spins

in diamond under ambient conditions. National Science
Review 5, 346–355 (2018). URL https://academic.oup.

com/nsr/article/5/3/346/4430770.
[30] Rembold, P. et al. Introduction to quantum optimal con-

trol for quantum sensing with nitrogen-vacancy centers in
diamond. AVS Quantum Science 2, 024701 (2020). URL
http://avs.scitation.org/doi/10.1116/5.0006785.

[31] Fiderer, L. J., Schuff, J. & Braun, D. Neural-Network
Heuristics for Adaptive Bayesian Quantum Estimation.
PRX Quantum 2, 020303 (2021). URL https://link.

aps.org/doi/10.1103/PRXQuantum.2.020303.
[32] Arshad, M. J. et al. Online adaptive estimation of

decoherence timescales for a single qubit (2022). URL
http://arxiv.org/abs/2210.06103.

[33] Joas, T. Online adaptive quantum characterization of a
nuclear spin. npj Quantum Information 8 (2021).

[34] Zoratti, F., Pozza, N. D., Fanizza, M. & Giovannetti, V.
An agnostic-Dolinar receiver for coherent states classi-
fication. Physical Review A 104, 042606 (2021). URL
http://arxiv.org/abs/2106.11909.

[35] Fallani, A., Rossi, M. A. C., Tamascelli, D. &
Genoni, M. G. Learning Feedback Control Strategies
for Quantum Metrology. PRX Quantum 3, 020310
(2022). URL https://link.aps.org/doi/10.1103/

PRXQuantum.3.020310.
[36] Belliardo, F., Zoratti, F., Marquardt, F. & Giovannetti,

V. In preparation: The qsensoropt library: examples
and applications .

[37] Meyer, J. J., Borregaard, J. & Eisert, J. A variational
toolbox for quantum multi-parameter estimation. npj
Quantum Information 7, 1–5 (2021). URL https://www.

nature.com/articles/s41534-021-00425-y.
[38] Zhang, M. et al. QuanEstimation: An open-source

toolkit for quantum parameter estimation. Physical
Review Research 4, 043057 (2022). URL https://link.

aps.org/doi/10.1103/PhysRevResearch.4.043057.
[39] Granade, C. et al. QInfer: Statistical inference software

for quantum applications. Quantum 1, 5 (2017). URL
http://arxiv.org/abs/1610.00336.

[40] McMichael, R. D., Blakley, S. M. & Dushenko, S. Opt-
bayesexpt: Sequential Bayesian Experiment Design for
Adaptive Measurements. Journal of Research of the Na-
tional Institute of Standards and Technology 126, 126002
(2021). URL https://nvlpubs.nist.gov/nistpubs/

jres/126/jres.126.002.pdf.

https://link.aps.org/doi/10.1103/PhysRevX.8.031084
https://link.aps.org/doi/10.1103/PhysRevX.8.031084
https://link.aps.org/doi/10.1103/PhysRevLett.123.230502
https://link.aps.org/doi/10.1103/PhysRevLett.123.230502
https://iopscience.iop.org/article/10.1088/2058-9565/ac16ed
https://iopscience.iop.org/article/10.1088/2058-9565/ac16ed
https://www.nature.com/articles/s41534-021-00497-w
https://www.nature.com/articles/s41534-021-00497-w
https://avs.scitation.org/doi/10.1116/5.0058163
https://avs.scitation.org/doi/10.1116/5.0058163
http://www.nature.com/articles/s41534-021-00434-x
http://www.nature.com/articles/s41534-021-00434-x
http://www.nature.com/articles/s41534-020-0248-6
http://www.nature.com/articles/s41534-020-0248-6
http://www.nature.com/articles/s41534-021-00436-9
http://www.nature.com/articles/s41534-021-00436-9
https://www.mdpi.com/2073-8994/14/5/874
https://www.mdpi.com/2073-8994/14/5/874
https://scipost.org/10.21468/SciPostPhysLectNotes.29
https://scipost.org/10.21468/SciPostPhysLectNotes.29
https://link.aps.org/doi/10.1103/PhysRevA.107.010101
https://link.aps.org/doi/10.1103/PhysRevA.107.010101
https://ora.ox.ac.uk/objects/uuid:4a3e13ca-e6c6-4669-955e-f1a87e201228
https://ora.ox.ac.uk/objects/uuid:4a3e13ca-e6c6-4669-955e-f1a87e201228
https://www.tandfonline.com/doi/full/10.1080/10619127.2021.1881364
https://www.tandfonline.com/doi/full/10.1080/10619127.2021.1881364
http://www.nature.com/articles/s42256-021-00360-9
http://www.nature.com/articles/s42256-021-00360-9
https://proceedings.neurips.cc/paper/2021/hash/d811406316b669ad3d370d78b51b1d2e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d811406316b669ad3d370d78b51b1d2e-Abstract.html
http://arxiv.org/abs/2306.14510
https://proceedings.mlr.press/v139/foster21a.html
https://proceedings.mlr.press/v139/foster21a.html
http://arxiv.org/abs/2106.10314
http://arxiv.org/abs/2106.10314
https://academic.oup.com/nsr/article/5/3/346/4430770
https://academic.oup.com/nsr/article/5/3/346/4430770
http://avs.scitation.org/doi/10.1116/5.0006785
https://link.aps.org/doi/10.1103/PRXQuantum.2.020303
https://link.aps.org/doi/10.1103/PRXQuantum.2.020303
http://arxiv.org/abs/2210.06103
http://arxiv.org/abs/2106.11909
https://link.aps.org/doi/10.1103/PRXQuantum.3.020310
https://link.aps.org/doi/10.1103/PRXQuantum.3.020310
https://www.nature.com/articles/s41534-021-00425-y
https://www.nature.com/articles/s41534-021-00425-y
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043057
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043057
http://arxiv.org/abs/1610.00336
https://nvlpubs.nist.gov/nistpubs/jres/126/jres.126.002.pdf
https://nvlpubs.nist.gov/nistpubs/jres/126/jres.126.002.pdf


12

[41] Bavaresco, J., Lipka-Bartosik, P., Sekatski, P. &
Mehboudi, M. Designing optimal protocols in Bayesian
quantum parameter estimation with higher-order opera-
tions (2023). URL http://arxiv.org/abs/2311.01513.

[42] Liu, J. & Yuan, H. Quantum parameter estima-
tion with optimal control. Physical Review A 96,
012117 (2017). URL http://link.aps.org/doi/10.

1103/PhysRevA.96.012117.
[43] Xu, H. et al. Generalizable control for quantum param-

eter estimation through reinforcement learning. npj
Quantum Information 5, 1–8 (2019). URL https:

//www.nature.com/articles/s41534-019-0198-z.
[44] Schuff, J., Fiderer, L. J. & Braun, D. Improv-

ing the dynamics of quantum sensors with reinforce-
ment learning. New Journal of Physics 22, 035001
(2020). URL https://iopscience.iop.org/article/

10.1088/1367-2630/ab6f1f.
[45] Xu, H., Wang, L., Yuan, H. & Wang, X. Generalizable

control for multiparameter quantum metrology. Physical
Review A 103, 042615 (2021). URL http://arxiv.org/

abs/2012.13377.
[46] Liu, J., Zhang, M., Chen, H., Wang, L. & Yuan, H.

Optimal Scheme for Quantum Metrology. Advanced
Quantum Technologies 5, 2100080 (2022). URL http:

//arxiv.org/abs/2111.12279.
[47] Xiao, T., Fan, J. & Zeng, G. Parameter estimation in

quantum sensing based on deep reinforcement learning.
npj Quantum Information 8, 1–12 (2022). URL https:

//www.nature.com/articles/s41534-021-00513-z.
[48] Qiu, Y., Zhuang, M., Huang, J. & Lee, C. Efficient and

robust entanglement generation with deep reinforcement
learning for quantum metrology. New Journal of Physics
24, 083011 (2022). URL https://dx.doi.org/10.1088/

1367-2630/ac8285.
[49] Vedaie, S. S., Dalal, A., Páez, E. J. & Sanders, B. C.

Framework for Learning and Control in the Classical
and Quantum Domains (2023). URL http://arxiv.

org/abs/2307.04256.
[50] Gebhart, V. et al. Learning quantum systems. Nature

Reviews Physics 5, 141–156 (2023). URL https://www.

nature.com/articles/s42254-022-00552-1.
[51] Ma, Z. et al. Adaptive Circuit Learning for Quantum

Metrology. In 2021 IEEE International Conference on
Quantum Computing and Engineering (QCE), 419–430
(2021). URL http://arxiv.org/abs/2010.08702.

[52] Kaubruegger, R., Vasilyev, D. V., Schulte, M., Ham-
merer, K. & Zoller, P. Quantum Variational Opti-
mization of Ramsey Interferometry and Atomic Clocks.
Physical Review X 11, 041045 (2021). URL https:

//link.aps.org/doi/10.1103/PhysRevX.11.041045.
[53] Marciniak, C. D. et al. Optimal metrology with

programmable quantum sensors. Nature 603, 604–
609 (2022). URL https://www.nature.com/articles/

s41586-022-04435-4.
[54] Kaubruegger, R., Shankar, A., Vasilyev, D. V. & Zoller,

P. Optimal and Variational Multi-Parameter Quantum
Metrology and Vector Field Sensing (2023). URL http:

//arxiv.org/abs/2302.07785.
[55] Köse, E. & Braun, D. Superresolution imaging with mul-

tiparameter quantum metrology in passive remote sens-
ing. Physical Review A 107, 032607 (2023). URL https:

//link.aps.org/doi/10.1103/PhysRevA.107.032607.
[56] Heras, A. M. d. l. et al. Photonic quantum metrology

with variational quantum optical non-linearities (2023).

URL http://arxiv.org/abs/2309.09841.
[57] Del Moral, P. Nonlinear filtering: Interacting par-

ticle resolution. Comptes Rendus de l’Académie
des Sciences - Series I - Mathematics 325, 653–
658 (1997). URL https://linkinghub.elsevier.com/

retrieve/pii/S0764444297847787.
[58] Arulampalam, M., Maskell, S., Gordon, N. & Clapp, T.

A tutorial on particle filters for online nonlinear/non-
Gaussian Bayesian tracking. IEEE Transactions on
Signal Processing 50, 174–188 (2002). URL https:

//ieeexplore.ieee.org/document/978374.
[59] Liu, J. S. & Chen, R. Sequential Monte Carlo Meth-

ods for Dynamic Systems. Journal of the American
Statistical Association 93, 1032–1044 (1998). URL
https://www.jstor.org/stable/2669847.

[60] De Ryck, T., Lanthaler, S. & Mishra, S. On the
approximation of functions by tanh neural net-
works. Neural Networks 143, 732–750 (2021). URL
https://www.sciencedirect.com/science/article/

pii/S0893608021003208.
[61] Kingma, D. P. & Ba, J. Adam: A Method for Stochas-

tic Optimization. In Bengio, Y. & LeCun, Y. (eds.)
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings (2015). URL
http://arxiv.org/abs/1412.6980.

[62] Karkus, P., Hsu, D. & Lee, W. S. Particle Filter Net-
works with Application to Visual Localization. In Pro-
ceedings of The 2nd Conference on Robot Learning, 169–
178 (PMLR, 2018). URL https://proceedings.mlr.

press/v87/karkus18a.html.
[63] Gali, A. Ab initio theory of the nitrogen-vacancy

center in diamond. Nanophotonics 8, 1907–1943
(2019). URL https://www.degruyter.com/document/

doi/10.1515/nanoph-2019-0154/html?lang=en.
[64] Doherty, M. W., Du, C. R. & Fuchs, G. D. Quan-

tum science and technology based on color centers
with accessible spin. Journal of Applied Physics 131,
010401 (2022). URL https://aip.scitation.org/doi/

10.1063/5.0082219.
[65] Maze, J. Quantum manipulation of nitrogen-vacancy

centers in diamond: From basic properties to applications.
Ph.D. thesis (2010).

[66] Barry, J. F. et al. Sensitivity optimization for NV-
diamond magnetometry. Rev. Mod. Phys. 92, 68 (2020).

[67] Schmitt, S. et al. Optimal frequency measurements
with quantum probes. npj Quantum Information 7,
55 (2021). URL http://www.nature.com/articles/

s41534-021-00391-5.
[68] Ferrie, C., Granade, C. E. & Cory, D. G. How to best

sample a periodic probability distribution, or on the
accuracy of Hamiltonian finding strategies. Quantum
Information Processing 12, 611–623 (2013). URL http:

//link.springer.com/10.1007/s11128-012-0407-6.
[69] Dushenko, S., Ambal, K. & McMichael, R. D. Sequential

Bayesian Experiment Design for Optically Detected Mag-
netic Resonance of Nitrogen-Vacancy Centers. Physical
Review Applied 14, 054036 (2020). URL https://link.

aps.org/doi/10.1103/PhysRevApplied.14.054036.
[70] McMichael, R. D., Dushenko, S. & Blakley, S. M. Sequen-

tial Bayesian experiment design for adaptive Ramsey
sequence measurements. Journal of Applied Physics 130,
144401 (2021). URL https://aip.scitation.org/doi/

10.1063/5.0055630.

http://arxiv.org/abs/2311.01513
http://link.aps.org/doi/10.1103/PhysRevA.96.012117
http://link.aps.org/doi/10.1103/PhysRevA.96.012117
https://www.nature.com/articles/s41534-019-0198-z
https://www.nature.com/articles/s41534-019-0198-z
https://iopscience.iop.org/article/10.1088/1367-2630/ab6f1f
https://iopscience.iop.org/article/10.1088/1367-2630/ab6f1f
http://arxiv.org/abs/2012.13377
http://arxiv.org/abs/2012.13377
http://arxiv.org/abs/2111.12279
http://arxiv.org/abs/2111.12279
https://www.nature.com/articles/s41534-021-00513-z
https://www.nature.com/articles/s41534-021-00513-z
https://dx.doi.org/10.1088/1367-2630/ac8285
https://dx.doi.org/10.1088/1367-2630/ac8285
http://arxiv.org/abs/2307.04256
http://arxiv.org/abs/2307.04256
https://www.nature.com/articles/s42254-022-00552-1
https://www.nature.com/articles/s42254-022-00552-1
http://arxiv.org/abs/2010.08702
https://link.aps.org/doi/10.1103/PhysRevX.11.041045
https://link.aps.org/doi/10.1103/PhysRevX.11.041045
https://www.nature.com/articles/s41586-022-04435-4
https://www.nature.com/articles/s41586-022-04435-4
http://arxiv.org/abs/2302.07785
http://arxiv.org/abs/2302.07785
https://link.aps.org/doi/10.1103/PhysRevA.107.032607
https://link.aps.org/doi/10.1103/PhysRevA.107.032607
http://arxiv.org/abs/2309.09841
https://linkinghub.elsevier.com/retrieve/pii/S0764444297847787
https://linkinghub.elsevier.com/retrieve/pii/S0764444297847787
https://ieeexplore.ieee.org/document/978374
https://ieeexplore.ieee.org/document/978374
https://www.jstor.org/stable/2669847
https://www.sciencedirect.com/science/article/pii/S0893608021003208
https://www.sciencedirect.com/science/article/pii/S0893608021003208
http://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v87/karkus18a.html
https://proceedings.mlr.press/v87/karkus18a.html
https://www.degruyter.com/document/doi/10.1515/nanoph-2019-0154/html?lang=en
https://www.degruyter.com/document/doi/10.1515/nanoph-2019-0154/html?lang=en
https://aip.scitation.org/doi/10.1063/5.0082219
https://aip.scitation.org/doi/10.1063/5.0082219
http://www.nature.com/articles/s41534-021-00391-5
http://www.nature.com/articles/s41534-021-00391-5
http://link.springer.com/10.1007/s11128-012-0407-6
http://link.springer.com/10.1007/s11128-012-0407-6
https://link.aps.org/doi/10.1103/PhysRevApplied.14.054036
https://link.aps.org/doi/10.1103/PhysRevApplied.14.054036
https://aip.scitation.org/doi/10.1063/5.0055630
https://aip.scitation.org/doi/10.1063/5.0055630


13

[71] Granade, C. E., Ferrie, C., Wiebe, N. & Cory, D. G.
Robust online Hamiltonian learning. New Journal of
Physics 14, 103013 (2012). URL https://dx.doi.org/

10.1088/1367-2630/14/10/103013.
[72] Oshnik, N. et al. Robust magnetometry with sin-

gle nitrogen-vacancy centers via two-step optimization.
Physical Review A 106, 013107 (2022). URL https:

//link.aps.org/doi/10.1103/PhysRevA.106.013107.
[73] Craigie, K., Gauger, E. M., Altmann, Y. & Bon-

ato, C. Resource-efficient adaptive Bayesian track-
ing of magnetic fields with a quantum sensor. Jour-
nal of Physics: Condensed Matter 33, 195801
(2021). URL https://iopscience.iop.org/article/

10.1088/1361-648X/abe34f.
[74] Bonato, C. et al. Optimized quantum sensing with a

single electron spin using real-time adaptive measure-
ments. Nature Nanotechnology 11, 247–252 (2016). URL
https://www.nature.com/articles/nnano.2015.261.

[75] Santagati, R. et al. Magnetic-Field Learning Using a
Single Electronic Spin in Diamond with One-Photon
Readout at Room Temperature. Physical Review X
9, 021019 (2019). URL https://link.aps.org/doi/10.

1103/PhysRevX.9.021019.
[76] Zohar, I. et al. Real-time frequency estimation of a

qubit without single-shot-readout. Quantum Science and
Technology 8, 035017 (2023). URL https://iopscience.

iop.org/article/10.1088/2058-9565/acd415.
[77] Nusran, N. M., Momeen, M. U. & Dutt, M. V. G. High-

dynamic-range magnetometry with a single electronic
spin in diamond. Nature Nanotechnology 7, 109–113
(2012). URL http://www.nature.com/articles/nnano.

2011.225.
[78] Wang, J. et al. Experimental quantum Hamiltonian

learning. Nature Physics 13, 551–555 (2017). URL
http://www.nature.com/articles/nphys4074.

[79] Dinani, H. T., Berry, D. W., Gonzalez, R., Maze, J. R. &
Bonato, C. Bayesian estimation for quantum sensing in
the absence of single-shot detection. Physical Review B
99, 125413 (2019). URL https://link.aps.org/doi/

10.1103/PhysRevB.99.125413.
[80] Bonato, C. & Berry, D. W. Adaptive tracking of a time-

varying field with a quantum sensor. Physical Review
A 95, 052348 (2017). URL http://link.aps.org/doi/

10.1103/PhysRevA.95.052348.
[81] Ferrie, C., Granade, C. E. & Cory, D. G. Adaptive

Hamiltonian estimation using Bayesian experimental
design. AIP Conference Proceedings 1443, 165–173
(2012). URL https://doi.org/10.1063/1.3703632.

[82] Liu, G., Chen, M., Liu, Y.-X., Layden, D. & Cappellaro,
P. Repetitive readout enhanced by machine learning.
Machine Learning: Science and Technology 1, 015003
(2020). URL https://iopscience.iop.org/article/

10.1088/2632-2153/ab4e24.
[83] Tsukamoto, M. et al. Machine-learning-enhanced quan-

tum sensors for accurate magnetic field imaging. Sci-
entific Reports 12, 13942 (2022). URL http://arxiv.

org/abs/2202.00380.
[84] Wiebe, N., Granade, C., Ferrie, C. & Cory, D. G.

Hamiltonian Learning and Certification Using Quan-
tum Resources. Physical Review Letters 112, 190501
(2014). URL https://link.aps.org/doi/10.1103/

PhysRevLett.112.190501.
[85] Dolinar, J., S. J. Processing and transmission of infor-

mation. Massachusetts Institute of Technology. Research

Laboratory of Electronics. Quarterly Progress Report, no.
111 (1973).

[86] Geremia, J. Distinguishing between optical coherent
states with imperfect detection. Physical Review A 70,
062303 (2004). URL https://link.aps.org/doi/10.

1103/PhysRevA.70.062303.
[87] Izumi, S. et al. Displacement receiver for phase-

shift-keyed coherent states. Physical Review A 86,
042328 (2012). URL https://link.aps.org/doi/10.

1103/PhysRevA.86.042328.
[88] Assalini, A., Dalla Pozza, N. & Pierobon, G. Re-

visiting the Dolinar receiver through multiple-copy
state discrimination theory. Physical Review A 84,
022342 (2011). URL https://link.aps.org/doi/10.

1103/PhysRevA.84.022342.
[89] Cook, R. L., Martin, P. J. & Geremia, J. M. Optical

coherent state discrimination using a closed-loop quan-
tum measurement. Nature 446, 774–777 (2007). URL
https://www.nature.com/articles/nature05655.

[90] Pozza, N. D. & Laurenti, N. Adaptive discrimination
scheme for quantum pulse-position-modulation signals.
Physical Review A 89, 012339 (2014). URL https://

link.aps.org/doi/10.1103/PhysRevA.89.012339.
[91] Takeoka, M., Sasaki, M., van Loock, P. & Lütkenhaus,

N. Implementation of projective measurements with
linear optics and continuous photon counting. Physical
Review A 71, 022318 (2005). URL https://link.aps.

org/doi/10.1103/PhysRevA.71.022318.
[92] Bilkis, M., Rosati, M., Yepes, R. M. & Calsamiglia, J.

Real-time calibration of coherent-state receivers: Learn-
ing by trial and error. Physical Review Research 2,
033295 (2020). URL https://link.aps.org/doi/10.

1103/PhysRevResearch.2.033295.
[93] Cui, C. et al. Quantum receiver enhanced by adap-

tive learning. Light: Science & Applications 11,
344 (2022). URL https://www.nature.com/articles/

s41377-022-01039-5.
[94] Sent́ıs, G., Guţă, M. & Adesso, G. Quantum learning of

coherent states. EPJ Quantum Technology 2, 17 (2015).
URL http://epjquantumtechnology.springeropen.

com/articles/10.1140/epjqt/s40507-015-0030-4.
[95] Helstrom, C. W. Quantum detection and estimation

theory. Journal of Statistical Physics 1, 231–252 (1969).
URL https://doi.org/10.1007/BF01007479.

[96] Holevo, A. S. Statistical problems in quantum physics. In
Maruyama, G. & Prokhorov, Y. V. (eds.) Proceedings of
the Second Japan-USSR Symposium on Probability The-
ory, Lecture Notes in Mathematics, 104–119 (Springer,
Berlin, Heidelberg, 1973).

[97] Hayashi, M. Asymptotic Theory of Quantum Statistical
Inference (WORLD SCIENTIFIC, 2005). URL https:

//www.worldscientific.com/doi/abs/10.1142/5630.
[98] Gentile, A. A. et al. Learning models of quantum

systems from experiments. Nature Physics 17, 837–
843 (2021). URL http://www.nature.com/articles/

s41567-021-01201-7.
[99] Li, T., Bolic, M. & Djuric, P. M. Resampling Meth-

ods for Particle Filtering: Classification, implementa-
tion, and strategies. IEEE Signal Processing Magazine
32, 70–86 (2015). URL https://ieeexplore.ieee.org/

document/7079001/.
[100] Zhu, M., Murphy, K. & Jonschkowski, R. Towards

Differentiable Resampling (2020). URL http://arxiv.

org/abs/2004.11938.

https://dx.doi.org/10.1088/1367-2630/14/10/103013
https://dx.doi.org/10.1088/1367-2630/14/10/103013
https://link.aps.org/doi/10.1103/PhysRevA.106.013107
https://link.aps.org/doi/10.1103/PhysRevA.106.013107
https://iopscience.iop.org/article/10.1088/1361-648X/abe34f
https://iopscience.iop.org/article/10.1088/1361-648X/abe34f
https://www.nature.com/articles/nnano.2015.261
https://link.aps.org/doi/10.1103/PhysRevX.9.021019
https://link.aps.org/doi/10.1103/PhysRevX.9.021019
https://iopscience.iop.org/article/10.1088/2058-9565/acd415
https://iopscience.iop.org/article/10.1088/2058-9565/acd415
http://www.nature.com/articles/nnano.2011.225
http://www.nature.com/articles/nnano.2011.225
http://www.nature.com/articles/nphys4074
https://link.aps.org/doi/10.1103/PhysRevB.99.125413
https://link.aps.org/doi/10.1103/PhysRevB.99.125413
http://link.aps.org/doi/10.1103/PhysRevA.95.052348
http://link.aps.org/doi/10.1103/PhysRevA.95.052348
https://doi.org/10.1063/1.3703632
https://iopscience.iop.org/article/10.1088/2632-2153/ab4e24
https://iopscience.iop.org/article/10.1088/2632-2153/ab4e24
http://arxiv.org/abs/2202.00380
http://arxiv.org/abs/2202.00380
https://link.aps.org/doi/10.1103/PhysRevLett.112.190501
https://link.aps.org/doi/10.1103/PhysRevLett.112.190501
https://link.aps.org/doi/10.1103/PhysRevA.70.062303
https://link.aps.org/doi/10.1103/PhysRevA.70.062303
https://link.aps.org/doi/10.1103/PhysRevA.86.042328
https://link.aps.org/doi/10.1103/PhysRevA.86.042328
https://link.aps.org/doi/10.1103/PhysRevA.84.022342
https://link.aps.org/doi/10.1103/PhysRevA.84.022342
https://www.nature.com/articles/nature05655
https://link.aps.org/doi/10.1103/PhysRevA.89.012339
https://link.aps.org/doi/10.1103/PhysRevA.89.012339
https://link.aps.org/doi/10.1103/PhysRevA.71.022318
https://link.aps.org/doi/10.1103/PhysRevA.71.022318
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033295
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033295
https://www.nature.com/articles/s41377-022-01039-5
https://www.nature.com/articles/s41377-022-01039-5
http://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-015-0030-4
http://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-015-0030-4
https://doi.org/10.1007/BF01007479
https://www.worldscientific.com/doi/abs/10.1142/5630
https://www.worldscientific.com/doi/abs/10.1142/5630
http://www.nature.com/articles/s41567-021-01201-7
http://www.nature.com/articles/s41567-021-01201-7
https://ieeexplore.ieee.org/document/7079001/
https://ieeexplore.ieee.org/document/7079001/
http://arxiv.org/abs/2004.11938
http://arxiv.org/abs/2004.11938


14

[101] Ma, X., Karkus, P. & Hsu, D. Particle Filter Recurrent
Neural Networks. Proceedings of the AAAI Conference
on Artificial Intelligence 34, 5101–5108 (2020).

[102] Holevo, A. S. Probabilistic and Statistical Aspects of
Quantum Theory. Monographs (Scuola Normale Su-
periore) (Edizioni della Normale, 2011). URL https:

//www.springer.com/gp/book/9788876423758.
[103] Sutton, R. S., McAllester, D., Singh, S. & Mansour, Y.

Policy Gradient Methods for Reinforcement Learning
with Function Approximation. In Advances in Neural In-
formation Processing Systems, vol. 12 (MIT Press, 1999).
URL https://papers.nips.cc/paper/1999/hash/

464d828b85b0bed98e80ade0a5c43b0f-Abstract.html.
[104] Farquhar, G., Whiteson, S. & Foerster, J. Loaded

DiCE: Trading off Bias and Variance in Any-Order

Score Function Gradient Estimators for Reinforcement
Learning. In Advances in Neural Information Processing
Systems, vol. 32 (Curran Associates, Inc., 2019). URL
https://proceedings.neurips.cc/paper/2019/hash/

6fd6b030c6afec018415662d0db43f9d-Abstract.html.
[105] Weaver, L. & Tao, N. The optimal reward baseline for

gradient-based reinforcement learning. In Proceedings
of the Seventeenth conference on Uncertainty in artifi-
cial intelligence, UAI’01, 538–545 (Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001).

[106] Cimini, V. et al. Experimental metrology beyond the
standard quantum limit for a wide resources range. npj
Quantum Information 9, 1–9 (2023). URL https://www.

nature.com/articles/s41534-023-00691-y.

Appendix A: Schematization of physical systems in qsensoropt

Encoding of the probe

Following the most common nomenclature in quantum metrology, we will define a quantum probe as a quantum
system initialized in a reference state ρ. This probe is used to encode the d-dimensional vector of parameters θ ∈ Θ of
interest, undergoing a controllable evolution, determined by the controls x, i.e. ρ→ ρx,θ = Ex,θ(ρ), where Ex,θ is a
general LCPT map. A control is a tunable parameter that can be adjusted during the experiment, this could be for
example the measurement duration, the detuning of the laser frequency driving a cavity, or a tunable phase in an
interferometer. In a pictorial sense, the control parameters are all the buttons and knobs on the electronics of the
experiment. A control can be continuous if it takes values in an interval, or discrete if it takes only a finite set of values
(like on and off). The encoded parameters θ can be a property of the environment, like a magnetic field acting on
a spin in the NV center platform, or some degrees of freedom of the probe’s initial state, like the parameter α of a
coherent state of light |α⟩ in the agnostic Dolinar receiver. The same scheme can also be seen as a communication
protocol, where Alice sends the state ρθ to Bob, which has to decode the θ vector. We will for the sake of generality
call the quantum system probe also in these cases. The idea is to perform a measurement on ρx,θ to gain information
about θ. An important distinction to be drawn here is that the term quantum parameter estimation refers in the
literature to the situation in which we are given the encoded probe ρθ, in other words, we start from there and we can’t
act on the encoding, as opposed to quantum metrology where we are given access to the encoding process Ex,θ and
not only to the final result. The implicit idea in parameter estimation [97] is that the encoding has been carried out
outside of the picture. Both in metrology and parameter estimation we assume that the encoding Ex,θ is applied many
times or that we are given many copies of ρθ, so that we can collect some statistically relevant data by measuring
all the copies, from which we infer the value of θ. Quantum metrology is a more general setting than parameter
estimation and since the techniques developed here apply to quantum metrology they are also useful for parameter
estimation. An example of parameter estimation would be receiving the radiation generated by a distribution of
currents on a plane, which depends on the properties of the source, like the temperature for example [55]. In this
scenario, the quantum probe is the radiation. Since the emission of the radiation happens by hypothesis in a far and
inaccessible region, we don’t have direct access to the quantum channel that performs the encoding, but only to the
encoded states, which is the state of the radiated field at detection. An example of a quantum metrological task is the
estimation of the environmental magnetic field with a spin, for which we can choose the initial state and the duration
of the interaction. A parameter can be continuous or discrete. Naturally continuous parameters are the magnetic
field and the temperature, for example. Some examples of discrete parameters are the sign of a signal and the type
of the interaction between two quantum systems [98]. When discrete parameters are present, we are in the domain
of hypothesis testing. In a metrological task, we may have a mix of continuous and discrete parameters, like in the
agnostic Dolinar receiver of Section II. A parameter can be a nuisance; which is an unknown parameter that needs
to be estimated, on which we however do not evaluate the precision of the procedure because we are not directly
interested in its value. An example of this is the fluctuating optical visibility of an interferometer when we are only
interested in the phase. Estimating the nuisance parameters is often necessary/useful to estimate the parameters of
interest.

https://www.springer.com/gp/book/9788876423758
https://www.springer.com/gp/book/9788876423758
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6fd6b030c6afec018415662d0db43f9d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6fd6b030c6afec018415662d0db43f9d-Abstract.html
https://www.nature.com/articles/s41534-023-00691-y
https://www.nature.com/articles/s41534-023-00691-y


15

Measurement on the probe

To obtain some information on θ it is necessary to perform a measurement on the encoded probe ρx,θ, which will be
represented by a POVMM := {Mx

y }, where x are the control parameters and y is the measurement outcome. For the
purpose of keeping the notation simple we indicate with x both the controls of the evolution and of the measurement.
The probability of obtaining y can be computed from the Born rule and it is

p(y|θ, x) := tr
(
Mx

y ρθ,x
)
. (A1)

If the measurement is projective, then we end up in a known state and we have extracted the maximum possible
amount of information from ρx,θ. The probe is then reinitialized in the reference state ρ, encoded, and measured
again, with the outcome probability given by same expression in Eq. (A1). If the measurement is weak (meaning
non-projective), then there is still information on θ encoded in the probe state and we do not reinitialize it. The
probe may or may not undergo the evolution Ex′,θ again, possibly with different controls x′. After that the probe is

measured again using a different POVMM′ := {Mx′

y′ }, leading to the outcome y′. This procedure can be iterated
multiple times, until a projective measurement is performed on the probe, and its state is reinitialized. For a weak
measurement the Born rule prescribes an outcome probability that depends on the whole trajectory of previous controls
and measurement outcomes. Let us indicate with xt := (x0, x1, . . . , xt) and yt := (y0, y1, . . . , yt) the tuples containing
respectively the controls and outcomes up to the t-th iterations. The probability of obtaining yt+1 at the t+ 1-th step
is

p(yt+1|xt+1,yt,θ) := tr
(
Mxt+1

yt+1
ρxt,yt,θ

)
. (A2)

The case of a continuous measurement can be simulated by taking the appropriate limits, but it is beyond the scope of
this work.

Appendix B: Implementation of the particle filter

1. Bayesian update

If we perform at each step a projective measurement on the probe, then the probability of observing the outcome y,
given the control x and the true value θ of the unknown parameters, is reported in Eq. (4). To recover the value of θ
we apply the principles of Bayesian estimation, that is, starting from the prior π(θ) on θ, we calculate the posterior
probability distribution with the Bayes rule, i.e.

P (θ|x, y) = p(y|x,θ)π(θ)
P (y)

=
p(y|x,θ)π(θ)∫
p(y|x,θ)π(θ) dθ

. (B1)

The denominator is just the normalization required for P (θ|x, y) to be a probability density. For a series of measurements
we apply repeatedly the Bayes rule by using the posterior computed at the previous step as the prior of the next
one. Given the tuple of controls xt+1 and of outcomes yt+1, we can compute the posterior at the t+ 1-th step from
posterior at the t-th step with the formula

P (θ|xt+1,yt+1) =
p(yt+1|xt+1,θ)P (θ|xt,yt)∫
p(yt+1|xt+1,θ)P (θ|xt,yt) dθ

. (B2)

Notice that for each measurement the probability of obtaining yt+1 as a result is independent on the outcomes and
controls up to that point and depends only on xt+1. This is precisely because of the reinitialization of the probe after
the projective measurements. In order to perform efficiently the Bayesian update on a computer we use the particle
filter method (PF), that is, we represent the posterior distribution with a discrete set of points in the space Θ of the
parameters, each with its own weight. Fundamentally this means, we approximate the posterior distribution with a
sum of δ-functions, i.e.

P (θ|xt,yt) ≃
N∑
j=1

wt
jδ(θ − θj) , (B3)

where the values {θj}Nj=1 are called particles and {wt
j}Nj=1 are the weights at the step t. The values of the particles are

to be sampled from the initial prior π(θ), while the weights are initialized uniformly on all the particles, i.e. ω0
j := 1

N .



16

The weights depend on the step because of the Bayesian update of the posterior in Eq. (B2), which on wt
j corresponds

to the transformation

wt+1
j =

p(yt+1|xt+1,θj)w
t
j∑N

j=1 p(yt+1|xt+1,θj)wt
j

, (B4)

The particles {θj}Nj=1 should also depend on the step t, in fact we will introduce a resampling procedure that when
triggered generates a new set of particles, which therefore don’t necessarily remain unvaried along the estimation.
Nevertheless for notational simplicity we avoid putting a time index on θj . We indicate to the set of particles and the
weights with pt := {θj , wt

j}Nj=1, which we call the PF ensemble.

2. Moments of the posterior

Computing the first moments of the posterior (the mean value and the covariance matrix) corresponds to simple
linear algebra operations on the PF ensemble, i.e.

θ̂t :=

∫
θP (θ|xt,yt) dθ ≃

N∑
j=1

wt
jθj , (B5)

and

Σt :=

∫
(θ − θ̂t)(θ − θ̂t)

⊺P (θ|xt,yt) dθ ≃
N∑
j=1

wt
j(θj − θ̂t)(θj − θ̂t)

⊺ . (B6)

The mean value of the posterior θ̂ is our estimator for all continuous parameters throughout the paper. As the
estimation proceeds the weights typically concentrate on few particles, while all the others do not play any role in the
estimation if not consuming memory. The precision is limited by the average distance between the points θj , which
depends on the prior π(θ) and on the number of particles N . We see in the next section how the introduction of a
resampling scheme can mitigate this issue by extracting a new set of particles {θ′

j}Nj=1 , which should be in the region
where the posterior distribution is concentrated. This means that the density of particles in this region increases
allowing for more resolution in distinguishing close values of θ. Throughout the paper we use the same symbols for the
“theoretical” moments of the posterior (which are not accessible) and the approximation of these quantities computed
from the PF. It will be clear from the contex which quantities we are referencing when.

3. Resampling scheme

While for a small number of unknown parameters we could still obtain good performances even if no resampling
procedure is performed, it is essential for larger dimensions. Indeed the density of particles, i.e. the resolution in θ,
after the initialization, is inversely proportional to the volume of the parameter space, which grows exponentially in
the number d of dimension of the Θ space. To solve this problem it is typical to perform during the estimation a
resampling of the particles according to the posterior distribution, which is triggered by the condition

Neff :=
1∑N

j=1(w
i
j)

2
< rtN , (B7)

where rt is the resampling threshold that is kept fixed at rt = 0.5 in all the simulations of the paper. The left hand
side of Eq. (B7) is sometimes called the effective number of particles Neff.

Soft resampling

The simplest resampling scheme prescribes the extraction of N samples with repetitions from the set of indexes
J = {1, · · · , N}, each weighted with the corresponding wj , j ∈ J . We will call ϕ(j) : J → J the map that gives the
outcome of the j-th extraction event. The indexes j ∈ J corresponding to the particles θj that have large weights
are extracted more frequently, while the particles with small weights tend to disappear. In our implementation we



17

considered a slightly more general version of this procedure which goes under the name of soft resampling [62], that is,
we mix the probability distribution represented by the weights {wj}Nj=1 with a uniform distribution on {θj}Nj=1 by
constructing the soft-weights qj defined as

qj := αwj + (1− α) 1
N

, (B8)

where α ∈ [0, 1] is a parameter characterizing the effectiveness of the resampling. With α = 1 we have the traditional
procedure, while with α = 0 no actual resampling is performed, because we extract the new particles from a uniform
distribution, just like at the beginning. With α = 0 the particles with low weights are not cut away from the ensemble
but persist after the process. With an intermediate value of α (by default we set α = 0.5) only a fraction α of the
particles are effective for the resampling, because the other fraction (1− α) is expected to be distributed uniformly.
We call θ′

j the new particles extracted from qj , i.e.

θ′
j = θϕ(j) . (B9)

Their corresponding weights are chosen, so that the ensemble of the PF represents the same distribution as before the
resampling. These are

w′
j ∝

wϕ(j)

qϕ(j)
=

wϕ(j)

αwϕ(j) + (1− α) 1
N

, (B10)

that still need to be normalized. With this choice for w′
j the PF represents the correct posterior even though the

particles have been sampled from a different distribution. The probability density function represented by the PF is,
roughly speaking, proportional to the product of the weights w′

j and the density of particles at the position θ′
j , i.e.

qϕ(j), which with our choice for w′
j is exactly wϕ(j), i.e. the weight of the particle θ′

j prior to the resampling step. In
the next section we detail this relation. The reader that is interested in the successive steps of the resampling can
however skip it. The soft resampling scheme, which is based on importance sampling [99], will be crucial in making
the PF differentiable [100, 101]. We might want, in general, to perform a subsampling of the particles, that is, we
sample from the distribution in Eq. (B8) not N but γN particles, with 0 < γ ≤ 1. We will later in the resampling
routine propose (1− γ)N new particles that will help us in representing the posterior better, so that we have in total

after the resampling step N particles again. In this case the weights in Eq. (B10) will be normalized as w′
j →

w′
j

C ,
where C is such that

1

C

γN∑
j=1

wj = γ , (B11)

By default we set γ = 0.99, that is, only 1% of the particles after the resampling are new.

Particle filters and importance sampling

In this section we review the core ideas underlying the functioning of a particle filter and the principle of importance
sampling, as it is applied in our implementation of the soft resampling. Consider a distribution P (θ), from which we
sample N particles θj with j = 1, · · · , N . Let us define an hypercube C of volume dθ centred around θ, and let us call
n(θ, dNθ) the number of particles in the said hypercube, i.e.

n(θ,dθ) :=

N∑
j=1

χC(θj) (B12)

with χC being the characteristic function of the hypercube. We can write

1

N
n(θ, dNθ)→ P (θ) dθ for N →∞ , (B13)

that is in the limit of large N the fraction of particles in the hypercube tends to the probability in such volume element.
In a PF we associate to each particle θi a weight wi and we can define the total weight in the hypercube C as

P (θ) dθ ≃ w(θ, dNθ) :=

N∑
j=1

wjχC(θj) . (B14)



18

This total weight is the probability distribution actually represented by the PF. In the limit of large N , for a
smooth distribution, we can consider the weight a function of the point w(θ), which varies smoothly in space and is
approximatively constant in the hypercube C. This leads us to write

P (θ) dθ ≃ w(θ)
N∑
j=1

χC(θj) = w(θ)n(θ,dθ) . (B15)

This means that the distribution represented by the particle filter is proportional to the product of the weights
and the density of the particles. This is however not the only way to represent P (θ). Suppose that for whatever
reason we sample the particles θj from Q(θ), but that we actually want to represent the distribution P (θ). Then
we can multiply the weights wj = 1/N of each particle θj with the corrective factor P (θj)/Q(θj), which remains
approximately constant inside the region C, i.e.

w(θ, dNθ) =
1

N

N∑
j=1

P (θj)

Q(θj)
χC(θj) ≃

P (θ)

Q(θ)

1

N

N∑
j=1

χC(θj) =
P (θ)

Q(θ)

n(θ, dNθ)

N
, (B16)

since now the particles are distributed spacially according to Q(θ) the density of particles will tend to Q(θ) for large
N that, according to Eq. (B13), gives w(θ, dNθ) → Q(θ), therefore we have w(θ, dNθ) ≃ P (θ). In the case of soft
resampling the distribution Q(θ) is constructed from P (θ) as

Q(θ) dθ :=

[
αw(θ) + (1− α) 1

N

]
n(θ,dθ) , (B17)

and the factor that multiplies the weights is P (θ)/Q(θ) = w(θ)/
[
αw(θ) + (1− α) 1

N

]
. The factor used in Eq. (B10)

for the particle at θ′
j contains wϕ(j) , which is the weight at this point in the original distribution P (θ).

Gaussian perturbation

After the soft resampling we add a perturbation to the particles as proposed in [71], that is, we define

θ′′
j := βθ′

j + (1− β)θ̂t + δ , (B18)

where β ∈ (0, 1], θ̂t is the mean of the posterior approximated in Eq. (B5) and δ is a random variable distributed
according to

δ ∼ N (0, (1− β2)Σt) . (B19)

With this expression we move the particles toward the mean of the posterior, which is our estimator for θ and at the
same time we lift the degeneracy of the θ′

j , that comes about because the particle θj with high weights appear many
times in the new particles ensemble. Were the degeneracy not removed, all these copies of the same particle wouldn’t
contribute much to improve resolution of the PF. This holds true unless they are perturbed, at which point they can
encode the small scale behaviour of the posterior. Because of the perturbation in Eq. (B18) the PF does not represent
anymore the posterior P (θ|xt,yt) exactly. We now compute the probability distribution for θ′′

j after the perturbation
step. The particles are distributed in the space according to the qj weights in Eq. (B8) and we call this distribution
Q(θ′). Let us write Eq. (B18) as θ′′

j = βθ′
j + δ′ with

δ′ ∼ N ((1− β)θ̂t, (1− β2)Σt) , (B20)

being a perturbation with non-null mean value. Then the probability density for θ′′
j is the convolution of the probability

of a particle being at position θ′ and the probability of the noise causing a displacement δ′ = θ′′ − βθ′, i.e.

Q̃(θ′′) =

∫
Q(θ′)gβ(θ

′′ − βθ′) dθ′ =

γN∑
j=1

qϕ(j)gβ(θ
′′ − βθ′

j) , (B21)

where gβ is the Gaussian probability density associated to δ′, i.e.

gβ(θ) := (2π)−
d
2 (1− β2)−

1
2 det(Σt)

− 1
2 exp

[
− 1

2(1− β2)

(
θ − (1− β)θ̂t

)⊺
Σ−1

t

(
θ − (1− β)θ̂t

)]
. (B22)



19

In Eq. (B21) we also substituted the integral with a summation being the probability Q(θ′) discrete. According to the
principles of importance sampling the distribution represented by a PF is the product of the weights and the density
of particles, which reads

P̃ (θj) ∝
P (θ)

Q(θ)
Q̃(θj) ≃ P (θ) , (B23)

In principle we could correct the distribution for this perturbation by computing exactly Eq. (B21) and accounting for
it in the weights w′

j , in our implementation we don’t do it however, since it would be very small anyway.

New particles proposal

We still need to produce (1− γ)N new particles and we do it by extracting them from the Gaussian distribution
with the same two first moments of the PF ensemble, i.e.

θ
′′

j ∼ N
(
θ̂,Σ

)
, (B24)

for j = γN, · · · , N . The mean and the covariance matrix are defined in Eq. (B5) and Eq. (B6) respectively. This is
done again to increase the density of particles in the region of high probability, but it works properly only for unimodal
distributions. The weights of these new particles are set to w′

j =
1
N , so that their normalization is

N∑
j=γN

w′
j = 1− γ . (B25)

This extra particles and weights are concatenated directly to {θ′′
j }

γN
j=1 and {w′

j}
γN
j=1. We then rename the new weights

and particles, i.e. w′
j → wj and θ′′

j → θj , and with that the resampling procedure is concluded. In doing the last
step of proposing new particles we are mixing the distribution represented by the PF P (θ) as it comes out of the
perturbation step in Eq. (B23) with the distribution g0 in Eq. (B22). At the end the PF ensemble represents the
distribution

P ′(θ) = γP (θ) + (1− γ)g0(θ) . (B26)

Again we do not correct for this distortion, which could be done by modifying the weights properly.

Resampling of the batch

In order to compute the precision of the estimation, we need the results of many runs of the simulation, possibly
executed in parallel on a GPU. In these circumstances the resampling is performed on all the instances of the estimation
as soon as the condition Eq. (B24) holds true for at least a fraction f of the estimations in the batch, which by default
is set to f = 0.98. The premature resampling of an estimation run will have a quite strong detrimental effect on the
goodness of the posterior represented by the PF, on the contrary a late resampling is much less probable to distort
the distribution, this is the reason why we set f so close to one, that is, we want to limit as much as possible the
number of simulations that are prematurely resampled. With the current implementation at each step either all the
simulations is the batch are resampled or none. An improvement to the PF would be to resample selectively only
those runs that are in need of resampling, and leave the other untouched until they satisfy Eq. (B24), so that whatever
number of runs could be resampled at each step. The complete resampling cycle, including the extraction and the new
particle and the importance sampling is represented in Fig. 6.

4. State particle filter

In this section we describe what happens when we are acting with weak (non-projective) measurements on the
probe. In this case the probability to observe the outcome yt+1 at the step t+ 1 depends on all the string of previous
outcomes and controls, that is on the whole trajectory τ := (xt,yt), as well as on the current control xt+1. This means
we must substitute p(yt+1|xt+1, vtheta) with p(yt+1|θ,xt+1,yt) in Eq. (B4). Since we avoid the reinitialization of the



20

Figure 6. The ensemble of the PF before the resampling is represented in a), the scatter plot are the points (θj , wj). This
plot doesn’t represent directly the posterior, because it doesn’t take into account the density of particles. In all the plots, the
inserted histogram is the actual posterior represented by the PF. Once the condition Eq. (B7) is satisfy the first step of the
resampling is executed, which is the transformation (1) and corresponds to sampling with repetitions from Eq. (B8), the plot b)
is the spatial density of particles after this action. The scatter plot c) is the distribution of the PF after the weights have been
corrected according to Eq. (B10) (transformation (2)). (3) is the application of the Gaussian noise in Eq. (B18) and (4) is the
sampling of the extra proposed particles in Eq. (B24). Plot e) is the distribution represented by the PF when the resampling
routine is complete, where in red the contribution of the new particles is highlighted. At last (5) is the repeated application of
the Bayes rule Eq. (B4), following some new measurement on the probe, that leads to the ensemble of the PF being again in
need of resampling. To emphasise the effect of each transformation we have set α = 0.5, β = 0.9, γ = 0.8. The total number
of particles was N = 103 and the effective number of particles in a), that is before the resampling, was Neff = 93.8. In the
histograms the interval [0, 1] of the scatter plots has been mapped to [0, 100].

probe, its state depends on all the evolution history. With this change in the outcome probability all the formulas of
the previous section remain valid. To compute p(yt+1|θ,xt+1,yt), we need to keep track of the state of the probe. In
order to do so we introduce the state particle filter. In this data structure we save for each particle θj the state of
probe had the system evolved under the action of Eθj ,x, with the controls and the outcomes being the ones actually
applied/observed in the evolution, we indicate this state with ρθj ,τt . To this state we associate the weight wj of
the particle θj . The state particle filter represents the posterior probability distribution for the state of the probe
conditioned on the trajectory τt. The expression for ρθj ,τt reads

ρθj ,τt =Mxt
yt
◦ Eθj ,xt

◦Mxt−1
yt−1
◦ Eθj ,xt−1

◦ · · · ◦Mx1
y1
◦ Eθj ,x1

(ρ) , (B27)

where

Mxt
yt
(ρ) :=

Mxt
yt
ρMxt†

yt

tr
[
Mxt

yt ρM
xt†
yt

] , (B28)



21

is the backreaction of the measurement on the state of the probe. The estimator for the probe state at the step t is

ρ̂τt :=

N∑
j=1

wjρθj ,τt , (B29)

that is, the mean of the state on the posterior distribution for the parameters. The estimator ρ̂τt can then be fed
to the agent, to contribute to the computation of the next control. When the resampling is performed on the PF
ensemble we get a new set of particles θ′

j and their corresponding states must be also updated. This means we have to
keep track of the vectors xt and yt in the simulations and recompute the evolution of the whole state particle filter
from the beginning, so that we get ρθ′

j ,τt
. From the computational point of view, the fact that we need these rather

memory intensive structures of the PF and the state PF tells us that the optimization loop presented here can be
applied only to rather small and simple quantum sensors.

5. Multimodal posterior distributions

The resampling procedure presented in the previous section has some limitation in dealing with multimodal
distributions. In this case the mean of the posterior may lay in a region of relatively low probability between two
peaks and the accumulation of particles in this region after a resampling would be detrimental to the precision of the
estimation. From its own design it would be difficult to modify the PF so that it accounts for multiple maxima. The
informations that we can easily extract from the PF are its moments and from them the actual positions of the maxima
are not straightforward to obtain. Multimodal posterior distributions are however common in quantum metrology.
For example in multiphase estimation, like the measurement of the hyperfine interaction in NV-13C. To promote the
preservation of secondary features in the posterior distribution we can use multiple particle filter at once. In this
situation a set of PFs, with different priors, are updated in parallel and only together represent the full Bayesian
posterior. To reduce the memory requirement of such approach we could consider simple Gaussian distributions instead
of full PFs. We start by approximating the prior distribution π(θ) with as a sum of L Gaussians:

π(θ) ≃
L∑

l=1

wlN (µl,σl) . (B30)

If the parameters µl,σl are fixed then the Bayesian update step can be done by solving a linear regression problem to
find the best new values for {wl}Ll=1 that represent the posterior. In this way the PF has however a limited resolution,
determined by the initial Gaussian. If we also let µl,σl change during the Bayesian update step, then we solve the
problem of having limited resolution, but we now have to deal with a non-linear regression problem.

Appendix C: Differentiability of the particle filter

In this section we discuss what happens when the resampling routine of the particle filter is switched on, and, in
particular, what we need to do to assure that the gradient produced by the automatic differentiation is correct.

1. Differentiable PF through reparametrization and soft resampling

Differentiability of the soft resampling

As seen in Appendix D3, the gradient can’t be propagated through randomly extracted variables, therefore when
the categorical resampling is executed, the particles θ′

j in Eq. (B9) don’t have any connection with the controls, i.e.

dθ′
j

dλ
= 0 . (C1)

Similarly, the weights are reinitialized and loose every dependence on the history of the estimation. At the moment of
taking the gradient we won’t be able to account for anything that happened before the last resampling. This means
that the training routine optimizes the agent only for the later steps, although what has been learnt in this context
may be useful also for the earlier measurements. The soft resampling with α < 1, introduced in Appendix B, is able to



22

partially remove this obstacle. With this trick the dependence on λ is passed from the old weights to the new ones
through Eq. (B10). However, the gradient doesn’t backpropagate entirely but it is attenuated by the factor 1− α. The
price to pay for propagating the gradient is that the N particles are not all fully effective for the resampling, instead
only a fraction α of them participate to it. As discussed in Appendix D 3, since we are extracting stochastic variables
from the distribution in Eq. (B8), we should also add the corresponding log-likelihood terms

∑
j log qϕ(j) to the loss.

However adding so many terms would increase too much the variance of the gradient. Either we don’t account for these
log-likelihoods and we accept the gradient to have a bias, or we use the correction introduced in [28], that prescribes to
substitute the definition of the new weights w′

j with an appropriate surrogate expressions. Introducing this correction

is the default behaviour of our code but it can be applied only if the loss ℓ(θ̂,θ) is of a certain form. It can be proved
that for the MSE defined in Eq. (7) this gives the correct gradient. See Appendix C 2 for a complete discussion.

Differentiability of the perturbation

The next transformation on the particles is the perturbation of Eq. (B18). Again we would be unable to propagate

the gradient through the perturbation δ′, if we extracted it directly from the Gaussian N (µ,Σ), with µ = (1− β)θ̂t
and Σ = (1− β2)Σt. For this reason we apply the reparametrization trick and write

δ′(yt,λ) = Σ(yt,λ)u+ µ(yt,λ) , (C2)

where u is extracted from the multivariate standard Gaussian u ∼ N (0,1). The perturbation is now a differentiable
functions of λ. For the extraction of u we do not need to add a corresponding log-likelihood term, as discussed in
Appendix D3, because its probability density function doesn’t depend on λ.

Differentiability of the proposed particles

For the last step of the resampling, which consists in proposing new particles θ′′
j , extracted from N (θ̂t,Σt), we again

exploit the reparametrization trick and write

θ′′
j (yt,λ) = Σt(yt,λ)uj + θ̂t(yt,λ) , (C3)

which is again differentiable and doesn’t require a log-likelihood term.

Differentiability of the state particle filter

Regarding the differentiability of the state particle filter discussed in Appendix B 4, we observe that its elements are
functions of λ through the trajectory τt(λ) = (xt(yt,λ),yt):

ρj(λ) := ρθj ,τt(λ) . (C4)

Under the assumption that the encoding and the measurements appearing in Eq. (B27) are differentiable we can
propagate the gradient through the evolution of the probe in Eq. (B27) . When the particles are resampled and the
new states are computed, the dependence of the new state ρj(λ) on the old weights of the PF, and therefore on λ,
persists through the measurement backreaction operatorsMyt

xt(λ). A new dependence on λ appears in the evolution

map Eθj(λ),xt(λ), coming from the new particles θj(λ), so that we can write

ρ′j(λ) := ρθj(λ),τt(λ) . (C5)

2. Differentiable PF through the correction of Ścibior and Wood

In [28] a correction was introduced to make the resampling procedure in a PF differentiable. This can be implemented
in place of the soft resampling, or alongside with it. The default behaviour of our software is to perform the soft
resampling with α = 0.5 alongside the Ścibor and Wood correction. With this choice only half of the gradient is



23

backpropagated through soft resampling, the other half is done by the Ścibor and Wood correction. The former
prescribes to modify the normalized weights w′

j of Eq. (B10) to

w̃′
j ← w′

j

qϕ(j)

sg
[
qϕ(j)

] , (C6)

where the meaning of the symbols is that of Appendix B 3. In this formula we are using the stop gradient operator
sg [·], which is an instruction that tells the automatic differentiation frameworks not to compute the derivatives
of the expression inside the operator. This correction has no effects in the forward pass, but produces additional
gradient terms in the backward pass. We see in this section, that for a MSE loss the extra terms in the gradient
appearing because of this surrogate expression are exactly the log-likelihoods that we would have to insert following
the conclusions of Appendix D3, although this observation can’t be extended to a generic loss. Let us start from the
expression for the MSE, when one and only one resampling is performed in the whole experiment, at step t, i.e.

∆2θ̂ =

∫
ℓ(θ̂,θ)P (τt+1:M−1|θ′

j ,θ)

 N∏
j=1

P (θ′
j |τ0:t)

P (τ0:t|θ)π(θ) dτM−1

 N∏
j=1

dθ′
j

 dθ . (C7)

We assume for clarity that the perturbation and the extraction of the extra particles, in Eq. (C2) and Eq. (C3)
respectively, are turned off, i.e. β = γ = 1. The object τα:β with α, β integers in [0,M −1] is the trajectory between the
steps α and β (extrema included), i.e. τα:β = (xα:β ,yα:β) with xα:β = (xα, xα+1, . . . , xβ) and yα:β = (yα, yα+1, . . . , yβ).
Reading Eq. (C7) from right to left we encounter the probability densities for all the random variable extractions in
chronological order. First the extraction of the true values θ for the simulation instance, then the trajectory up to the
resampling point, then the extraction of the new particles θ′

j , and finally the measurements after the resampling, i.e.
the trajectory after the t-th step until the end. This last probability depends also on the values of the new particles,
through the posterior distribution momenta, that are passed to the agent that decides the next control. We now insert

the expression for ℓ(θ̂,θ) found in Eq. (7) in Eq. (C7). We postpone the computation of the trace to the end and
expand the error matrix for the estimator in Eq. (B5), i.e.

(θ̂ − θ)(θ̂ − θ)⊺ =

N∑
i,j=1

w′
iw

′
jθ

′
iθ

′⊺
j − θ

 N∑
j=1

w′
jθ

′⊺
j

−
 N∑

j=1

w′
jθ

′
j

θ⊺ + θθ⊺ . (C8)

Each term in the first summation gives a contribution to ∆2θ̂ equal to∫
w′

iw
′
jθ

′
iθ

′⊺
j P (τt+1:M−1|θ)P (θ′

i|τ0:t)P (θ′
j |τ0:t)P (τ0:t|θ)π(θ) dτM−1 dθ

′
i dθ

′
j dθ , (C9)

where we neglect all the integrals on the variables θ′
α with index α ̸= i, j, because they do not appear in the integrand.

The gradient of this term with respect to λ gives rise to the usual likelihood terms for the measurement plus the
following extra terms coming from the resampling:

N∑
i,j

w′
iw

′
jθ

′
iθ

′⊺
j

(
d logP (θ′

i|τ0:t)
dλ

+
d logP (θ′

j |τ0:t)
dλ

)
, (C10)

for i, j = 1, . . . , N . Similarly the linear terms in Eq. (C8) give the following likelihood terms:

−
N∑
j=1

w′
j

(
θ′
jθ

⊺ + θθ′⊺
j

) d logP (θ′
j |τ0:t)

dλ
, (C11)

plus the same terms with θ′⊺
j . There is no likelihood terms associated to the constant θθ⊺ in Eq. (C8). Now we shall

see that deriving the surrogate expression gives the same terms in the gradient. Let us write the total derivative of the
error matrix:

d

dλ
(θ̂ − θ)(θ̂ − θ)⊺ =

dθ̂

dλ
(θ̂ − θ)⊺ + (θ̂ − θ)

dθ̂⊺

dλ

=

(
N∑
i=1

dw̃′
i

dλ
θ′
i

) N∑
j=1

w′
jθ

′
j − θ

⊺

+

(
N∑
i=1

w′
iθ

′
i − θ

) N∑
j=1

dw̃′
j

dλ
θ′⊺
j

 .



24

Where the derivative doesn’t act the weights w̃′
j become w′

j . From the definition of w̃′
j in Eq. (C6) we compute the

derivative of the surrogate expression, that is

dw̃′
j

dλ
=
dw′

j

dλ
+ w′

j

d log qϕ(j)

dλ
. (C12)

We know keep track only of the extra likelihood terms coming from the surrogate part of the weights w̃′
j and organize

the terms according to the order in θ′
j . We have the second order terms:

N∑
i,j

w′
iw

′
jθ

′
iθ

′⊺
j

(
d log qϕ(i)

dλ
+

d log qϕ(j)

dλ

)
, (C13)

and the first order ones:

N∑
j=1

w′
j

(
θ′
jθ

⊺ + θθ′⊺
j

) d log qϕ(j)
dλ

, (C14)

which correspond respectively to Eq. (C10) and Eq. (C11), once we realize that P (θ′
j |τ0:t) = qϕ(j). One of the

advantages of this approach is the reduce variance of the gradient estimator, which would explode, where we to insert
all the likelihood terms for the new particle extractions at the end of the estimation. The correction, however, doesn’t

produce always the correct gradient for the loss, but only when ℓ(θ̂,θ) is a polynomial function of the weights w̃′
j .

Consider the estimation of single parameter θ ∈ [0, 2π), we might want to use a loss functions l(θ̂, θ) that respect the
circular nature of the parameter, like

l(θ̂, θ) := sin(θ̂ − θ)2 . (C15)

The gradient with respect to λ, when the correction is implemented, is

d

dλ
l(θ̂, θ) = 2 sin(θ̂ − θ) cos(θ̂ − θ) dθ̂

dλ
(C16)

= sin(2θ̂ − 2θ)

N∑
j=1

dw̃′
j

dλ
θ′j (C17)

= sin(2θ̂ − 2θ)

N∑
j=1

(
dw′

j

dλ
θ′j + w′

jθ
′
j

d log qϕ(j)

dλ

)
, (C18)

so that the likelihood term in the gradient is

sin(2θ̂ − 2θ)

N∑
j=1

w′
jθ

′
j

d log qϕ(j)

dλ
, (C19)

while it should be

sin(θ̂ − θ)2
N∑
j=1

d log qϕ(j)

dλ
. (C20)

Another example where the correction fails in the loss of Eq. (8). Let us take θ̂ to be the maximum likelihood estimator,
then, since a small perturbation in the posterior distribution won’t change it we have

dθ̂

dλ
=

dθ̂

dwj

dwj

dλ
= 0 , (C21)

therefore the correction is useless to backpropagate the gradient through the resampling step and we must rely only
on the importance sampling. Incidentally we notice that the loss for Eq. (8) is a pure-likelihood expression, analogous
to the loss in regular Policy Gradient RL.



25

Appendix D: Computation and differentiation of the loss function

As in most optimization problems, the trainable variables of the agent are updated with a version of the stochastic
gradient descent. In this section, we define the loss function for this training, compute its gradient, and comment on
the computational resources required by the training.

1. Definition of the loss function

The two scalar losses that we used in this work are the MSE, defined in Eq. (7), used for continuous parameters,
and the hypothesis-testing loss of Eq. (8), used for discrete parameters, that converges to the error probability when
averaged. If the parameter to be estimated is a phase we might want to take as loss the circular variance [102]. In the

following section we adopt the symbol ℓ(θ̂,θ) for the loss and keep the discussion completely general. We mention that
this analysis would apply also to a more general class of losses, being functions of the of the PF ensemble, i.e. ℓ(p,θ),
provided they are well-behaved as functions. The expected value of the loss on the trajectory is

∆2θ̂τ :=

∫
ℓ(θ̂,θ)P (θ̂|τM−1,θ) dθ̂ , (D1)

with τM−1 := (xM−1,yM−1) indicating the complete trajectory. This definition presumes a stochastic dependence of

the estimator θ̂ computed from the PF on the outcomes and the controls of the measurements, collectively denominated

τM−1. This is codified by the probability density P (θ̂|τM−1,θ). This stochasticity can be due to the resampling

routine or, in general, to the construction of the estimator θ̂, which could entail the sampling from a distribution,

which is however never the case in our examples. The quantity ∆2θ̂τ refers to a single trajectory of the PF, the one
indicated with τM−1. We wish however to consider the average of the MSE over all the possible trajectories τM−1

weighted appropriately. The expectation value over τM−1 is expressed by the following operator

Eτ [·] :=
∫
·P (xM−1,yM−1|θ) dxM−1 dyM−1 , (D2)

which applied to Eq. (D1) gives

Eτ

[
∆2θ̂τ

]
=

∫
ℓ(θ̂,θ)P (θ̂|θ) dθ̂ , (D3)

where we have defined

P (θ̂|θ) :=
∫
P (θ̂|τM−1,θ)P (τM−1|θ) dxM−1 dyM−1 . (D4)

We also want to take the expectation value of θ̂ on the prior π(θ) through the operator

Eθ [·] :=
∫
·π(θ) dθ , (D5)

which applied to Eτ

[
∆2θ̂τ

]
gives the figure of merit for the error

∆2θ̂ := Eθ

[
Eτ

[
∆2θ̂τ

]]
=

∫
ℓ(θ̂,θ)P (θ̂) dθ̂ , (D6)

with

P (θ̂) :=

∫
P (θ̂|τM−1)P (τM−1|θ)π(θ) dxM−1 dyM−1 dθ . (D7)

This is the probability density for the final estimator θ̂, given that the true value θ is extracted from the prior π(θ) at
the beginning and we average over the trajectory τM−1 that is stochastically generated in the simulation, through
the actions of the agent and the measurements. The expression in Eq. (D6) suggests us a straightforward way to
approximate the error from the numerical simulation (à la Monte Carlo), i.e.

∆2θ̂ ≃ 1

B

B∑
k=1

ℓ(θ̂k,θk) , (D8)



26

where θk is the true value of the parameters in the k-th simulation and θ̂k is the corresponding final estimator. By
carrying out the complete estimation in a batch of B simulated experiments, with each θk extracted from π(θ), we are

effectively sampling θ̂ from P (θ̂) so that by the law of large number we can approximate the expectation value of the
loss function in Eq. (D6) with the empirical mean on the batch. Each simulation in the batch follows its particular
trajectory, which will be different from the ones of the other simulations, because the randomly extracted measurement
outcomes are different. Notice that in distinction with the notation of the previous sections the subscript in Eq. (D8)

doesn’t refer to the step of the measurement cycle, but to the index of the simulation in the batch: the estimators θ̂k
are always evaluated at the last step t =M − 1. We call B the batchsize of the simulation. The right-hand side of
Eq. (D8) will be the loss to be minimized by the training procedure. A natural question that arises here, is why aren’t
we using the covariance matrix as estimated from the PF in the computation of the MSE? The answer is that the PF
may be imprecise for the evaluation of the variance, in particular, it tends to underestimate it, because some tails of

the distribution P (θ̂|τM−1) may not be very well represented. We prefer to estimate the MSE empirically from the

sampled θ̂k, extracted from the true distribution P (θ̂), in order to avoid biases. The loss of Eq. (D8) is the closest it
can be to the precision we would observe in an experiment.

Definition of the loss for limited resources

In the previous paragraph we have implicitly assumed that the stopping condition of the estimation was based
on the number of measurement M , i.e. we had a fixed number of measurement in each instance of the estimation.
If, however, the resources are not simply related to the number of measurement steps, since each estimation in the
batch follows its own trajectory, we may have different termination times, which correspond to the sensor employing a
different number of measurement steps to consume all the available resources. In this section we introduce the notation

θ̂k,t, where the first subscript k is the index in the batch, and the second t is the measurement step. Whatever the
nature of the resource chosen, to avoid having infinite loops we always fix a maximum number of measurement steps
M in the simulation, that should to be much larger than the expected number of iterations before the resources run
out. At each step only the PF ensemble of those estimations which haven’t terminated yet are updated with the
Bayes rule, all the others, which have already consumed the available amount of resources, remain “freezed”, since no
measurement is performed and therefore no update is applied. Nevertheless all the quantities computed from the PF

ensemble, e.g. θ̂k,t and Σk,t are defined potentially for all the estimation steps t = 0, · · · ,M − 1. To put it simply
if t⋆k was the index of the last measurement for the k-th estimation in the batch before it running out of resources,

then θ̂k,t = θ̂t⋆k,k, Σk,t = Σt⋆k,k
for t ≥ t⋆k. In general, the PF ensemble remains the same if no new measurement

outcomes are incorporated, i.e. pk,t = pt⋆k,k for t ≥ t⋆k. The simplest stopping condition for the measurement cycle is
now that all the B estimations in the batch have concluded, but to reduce the simulation time we only ask for at least
a fraction ν = 0.98 of estimations to have terminated. These would exclude those simulations that are taking too long
to terminate. We define M ′ the realized number of iterations in the measurement loop determined by this condition,
so that the loss in Eq. (D8) becomes

∆2θ̂ ≃ 1

B′

B′∑
k=1

ℓ(θ̂k,M ′ ,θk) , (D9)

where the summation is taken only on those B′ = ⌈νB⌉ estimations in the batch that have terminated.

2. Dependence of the loss on the trainable variables

We go on by deriving from Eq. (D6) an expression for the MSE, that is more directly related to the quantities
simulated, under the hypothesis that the resampling has been turned off, i.e. rt = 0, and that the computation of

θ̂ from the ensemble of the PF doesn’t require any stochastic operation. These are working hypothesis, which will
allow to make useful observations and generalizations, whose domain of applications is however not limited by the
said hypothesis. We begin observing that the controls xM−1 produced by the agent are deterministic functions of the
ensemble of the PF, for example through the mean and the covariance matrix. Therefore, the weights of the PF are in
turn deterministic functions of the measurement outcomes, as they are computed with Eq. (B4), so that we can write

the controls xt and the estimator θ̂t at step t as

xt = g1(yt−1,λ) and θ̂t = g2(yt,λ) , (D10)



27

for two appropriate functions g1 and g2. Beside the outcomes both the controls and the estimators depend on
the trainable variables of the agent, indicated with λ, for the aforementioned reasons. Under these hypothesis the
probabilities appearing in Eq. (D7) can be rewritten as

P (xM−1,yM−1|θ) = δ(xM−1 − g1(yM−2,λ))p(yM−1|θ,λ) , (D11)

P (θ̂|xM−1,yM−1) = δ(θ̂ − g2(yM−1,λ)) . (D12)

Solving the integrals in dxM−1 and in dθ̂ in Eq. (D6), we get the following expression for the MSE

∆2θ̂ =

∫
ℓ(θ̂(yM−1,λ),θ)p(yM−1|θ,λ)π(θ) dyM−1 dθ . (D13)

This is an expectation value on the probability distribution of the tuple of outcomes yM−1. We introduce ω := (yM−1,θ)
and redefine the loss for the next sections as

ℓ(ω,λ) := ℓ(θ̂(yM−1,λ),λ) . (D14)

The object ω contains all the variables that depend on the specific instance of the simulation so that the empirical

approximation of ∆2θ̂ from Eq. (D13) is

L(λ) := 1

B

B∑
k=1

ℓ(ωk,λ) , (D15)

with ωk := (yk,M−1,θk). The true values θk are sampled from π(θ) at the beginning of the run. In case the agent
is a NN the trainable variables are the weights and the biases, while for the non-adaptive strategy the variables are
directly the tuple of all the controls, i.e. λ = (x1, x2, . . . , xM−1). The average loss in Eq. (D15) will be also named the
scalar loss, in contrast to ℓ(ωk,λ), which is the individual loss or the vector loss, since it has a free index k.

3. Gradient of the loss

The simulation of the quantum sensor, the particle filter, and the evaluation of the NN are implemented in the
chosen automatic differentiation (AD) environment, i.e. TensorFlow (TF), so that at the end of the simulation we can
take the gradient of the loss in Eq. (D15) with respect to λ with no effort and obtain

dL(λ)
dλ

=
1

B

d

dλ

B∑
k=1

ℓ(ωk,λ) . (D16)

The automatic differentiation framework does all the derivatives automatically, that we would need to evaluate
analytically or numerically otherwise. Even if the outcomes yk,M−1 are extracted from a probability distribution that
depends on λ, as it is because each of them is sampled from p(yk,t+1|xk,t+1,yt,θk) and the controls xk,t+1 depend on
λ, in TF and other similar frameworks their derivatives with respect to λ are always null by construction, i.e.

d

dλ
yk,t+1 = 0 , (D17)

in other words, the gradient cannot propagate through the extraction of random variables. This is a consistent behaviour
of automatic differentiation frameworks, and has to do with the fact that the sampled variables are considered constant
tensors in the construction of the graph, on the same level as other numerical constants fixed by the programmer. We
will show now, that much like in [8], the gradient of the loss produced by AD in Eq. (D16) is not correct and will lead
to a suboptimal training routine. Another term must be added that keeps track of the sampled variables during the

evolution. To understand why this is so, let us start from the theoretical definition of ∆2θ̂ in Eq. (D13) and take its

gradient with respect to λ. The two terms p(yM−1|θ,λ) and θ̂(yM−1,λ) both depend on λ. The first one can be
expanded as follows:

p(yM−1|θ,λ) =
M−1∏
t=0

p(yt|xt,yt−1,θ) , (D18)



28

and the dependence on the controls xt is a dependence on the trainable variables of the agent λ. The second term

θ̂(yM−1,λ) depends on λ through the PF weights, which are updated with the Bayes rule Eq. (B4), that features
the term p(yt+1|xt+1,yt,θ), where again the controls xt+1 are λ-dependent. The complete gradient of the right-hand
term of Eq. (D13) reads therefore∫

d

dλ
ℓ(θ̂(yM−1,λ),θ)p(yM−1|θ,λ) dyM−1 +

∫
ℓ(θ̂(yM−1,λ),θ)

dp(yM−1|θ,λ)
dλ

dyM−1 . (D19)

The first term is in the form of an expectation value and can be straightforwardly approximated in a Monte Carlo
simulation. It corresponds exactly to the näıve gradient of the loss in Eq. (D16) computed by the AD framework. The
second term can be written as∫

ℓ(θ̂(yM−1,λ),θ)
d log p(yM−1|θ,λ)

dλ
p(yM−1|θ,λ) dyM−1 , (D20)

which is now in the form of an expectation value on the trajectories of the simulation and can be evaluated simultaneously
with the first term, provided we keep track of log p(yM−1|θ,λ). This second contribution to the gradient can be
approximated as

1

B

B∑
k=1

ℓ(ωk,λ)
d log p(yk,M−1|θk,λ)

dλ
, (D21)

on a batch of B simulations. The term log p(yk,M−1|θk,λ) is the sum

log p(yk,M−1|θk,λ) =
M−1∑
t=0

log p(yk,t|yk,t−1,θk,λ) , (D22)

where we exchanged the dependence on xk,t of the factors p(yk,t|xk,t,yk,t−1,θk) for the dependence on λ. This
logarithm can be accumulated step by step in the simulation, after the extraction of each measurement outcome.
Notice that for B simulations in the batch, we have to compute B cumulated probabilities, because each trajectory is
different. In conclusion, the total gradient is

1

B

B∑
k=1

[
d

dλ
ℓ(ωk,λ) + ℓ(ωk,λ)

d log p(yk,M−1|θk,λ)
dλ

]
. (D23)

By introducing the stop gradient operation we can write it in the convenient form

1

B

d

dλ

B∑
k=1

{ℓ(ωk,λ) + sg [ℓ(ωk,λ),θ)] log p(yk,M−1|θk,λ)} , (D24)

that requires only one gradient, which makes it more straightforward to implement in the AD framework. In this
formula we are using the stop gradient operator sg [·], which is an instruction that tells the automatic differentiation
frameworks not to compute the derivatives of the expression inside the operator. We are therefore naturally led to

introducing the modified loss L̃(λ), i.e.

L̃(λ) := 1

B

B∑
k=1

ℓ̃(ωk,λ) , (D25)

with

ℓ̃(ωk,λ) := ℓ(ωk,λ) + sg [ℓ(ωk,λ)] log p(yk,M−1|θk,λ) . (D26)

which is the correct function to be minimized. For a resource limited estimation the modified loss is the average
of the B′ simulations that have terminated. In Appendix E 1 we comment on the gradient descent process, on the
choice of the hyper-parameters, and the typical behaviour of the loss in the training. The second term of the gradient
in Eq. (D24) is similar to the loss of the Policy Gradient method in reinforcement learning [103] (RL), where the
probabilities arise because of the stochastic extraction of the policy, while here the NN produces directly the action
and the stochasticity comes from the measurement outcome extraction. The necessity of introducing such terms
when dealing with the gradient of expressions involving non-reparametrizable random variables has been known in
the Machine Learning literature for a while [104] and the expressions involving stop-gradient operators go under the
name of surrogate expressions. However, the first time this has appeared in the physics literature is in [8], applied to
quantum feedback. Had we neglected the log-likelihood term of Eq. (D24) we would have introduced a bias in the
gradient. Not adding the log-likelihood terms means not only a slower convergence in the training but possibly also
converging to a worse minimum.



29

Log-likelihood terms in the loss

We can generalize and say that whatever extraction of random variables we perform during the simulation, we
need to add a corresponding log-likelihood term, but only if the probability distribution from which they have been
extracted depends on λ, implicitly or explicitly. With growing number of extracted variables the variance of the
gradient grows and if the batchsize is too small this can severely affect the training, then we might loose convergence
and end up in a bad local minimum. If possible we advice to reparametrize the random variables and account for the
backpropagation of the gradient in a more direct way. Depending on the quantum sensor we are simulating we might
be able to implement the extraction of the measurement outcomes through a differentiable reparametrization. If we
can write the measurement outcome yt as

yt = g(ut, xt,θ) , (D27)

where ut is a random variable extracted from a probability distribution independent on λ, i.e. d
dλp(ut) = 0, then

we can omit the corresponding log-likelihood term in Eq. (D24). The gradient propagates now directly through the
measurement outcome, i.e.

d

dλ
yt ̸= 0 , (D28)

and we can differentiate the loss in Eq. (D15) as it is. The log-likelihood term would be log p(ut), which is independent
on λ. The reparametrization can however be applied only to continuous variables, see [8] for more details. In
Appendix C we apply this technique in the resampling step of the particle filter.

Adding a baseline

We can also try to add a baseline to Eq. (D24), as suggested in [105] for RL with Policy Gradient. This means
modifying the gradient to

1

B

d

dλ

B∑
k=1

[ℓ(ωk,λ) + sg [ℓ(ωk,λ)− B] log p(yk,M−1|θk,λ)] , (D29)

with the standard choice for the baseline B being

B :=
1

B

B∑
k=1

ℓ(ωk,λ) , (D30)

that is, inside the stop gradient we subtract to each loss in the batch the mean value of the loss on the batch. It
is important for B to be a constant across the simulations indexed by k. We briefly see in the following that the
introduction of B doesn’t change the expected value gradient, while it can be proved that it reduces the variance of
the gradient [105]. Consider the following chain of equalities

0 =
d

dλ

∫
p(yM−1|θ,λ) dyM−1 =

∫
1

p(yM−1|θ,λ)
dp(yM−1|θ,λ)

dλ
p(yM−1|θ,λ) dyM−1 , (D31)

where the first one comes from the normalization of p(yM−1|θk,λ) and in the second we divided and multiplied for
p(yM−1|θk,λ) upon swapping the integral and the derivate. The rightmost term of Eq. (D31) is now in the form of an
expectation value, that can be approximated by the following summation in the simulation:∫

1

p(yM−1|θ,λ)
dp(yM−1|θ,λ)

dλ
p(yM−1|θ,λ) dyM−1 ≃

1

B

B∑
k=1

1

p(yk,M−1|θk,λ)
dp(yk,M−1|θk,λ)

dλ
. (D32)

Where the term in the right-hand summation is the derivative of the log-likelihood, so that we expect

d

dλ

B∑
k=1

log p(yk,M−1|θk,λ) ≃ 0 , (D33)

for large B. Adding the baseline in Eq. (D30), means adding a terms proportional to the derivative of the log-likelihood,
with the proportionality constant being B, which has null expectation value.



30

Discrete control space

In this section we briefly comment on the case in which the control space is discrete, that is, xt can be chosen only
among finitely many elements, i.e xt ∈ χ = {x1, x2, . . . , xR}. This happens for example in the experiment presented
in [106], where the control parameter was the topological charge of the q-plate. In this case the agent produces a
probability distribution on the set χ as outcome, just like in Policy Learning, and a random xt is extracted from
this categorical distribution. In this scenario we need to revisit the Eq. (D11) and Eq. (D12), that now need to
accommodate also for the probability of extracting a particular xt:

P (xM−1,yM−1|θ) =
M−1∏
t=0

p(yt|xt,yt−1,θ)g(xt|yt−1,xt−1,λ) (D34)

P (θ̂|xM−1,yM−1) = δ(θ̂ − g2(yM−1,xM−1)) . (D35)

Substituting this expressions in Eq. (D6) we get

∆2θ̂ =

∫
ℓ(θ̂(yM−1,xM−1),θ)

M−1∏
t=0

p(yt|xt,yt−1,θ)g(xt|yt−1,xt−1,λ) dxM−1 dyM−1 . (D36)

By repeating the derivation of the loss, considering that p(yt|xt,yt−1,θ) doesn’t depend on λ anymore, the log-likelihood
term of Eq. (D24) becomes

M−1∑
t=0

sg [ℓ(ωk,λ)] log g(xk,t|yt−1,k,xt−1,k,λ) . (D37)

Stochastic estimator

In all the applications of this work the estimator θ̂ is always a deterministic function of the PF ensemble. Even for
the case of hypothesis testing, this is computed as the most likely hypothesis at the end of the experiment, which
doesn’t require any sampling. A perfectly valid estimator for θ would be one sample extracted from the Bayesian
posterior P (θ|yM−1,λ). Doing so requires adding a term to the log-likelihood term in the loss in Eq. (D24), which
now becomes

M−1∑
t=0

sg [ℓ(ωk,λ)]
[
log p(yk,M−1|θk,λ) + logP (θ̂k|yk,M−1,λ)

]
. (D38)

A differentiable expression for the posterior distribution at θ̂ might not be accessible if the parameters are continuous,

but if they are discrete, the term P (θ̂|yM−1,λ) is just the weight corresponding to the discrete hypothesis θ̂.

4. Definition of the cumulative and logarithmic losses

When doing a simulation for a certain M , if we want the result of the training to give us the optimal strategy also
for M2 < M we can introduce the cumulative loss, that also takes into account the loss at intermediate steps. A näıve
approach is to extend the MSE to all steps between t = 0 and t =M − 1, and write

Lcum(λ) :=
1

MB

M−1∑
t=0

B∑
k=1

ℓ(θ̂k,t,θk) , (D39)

where θ̂k,t is the estimator at step t of the k-th simulation. With this loss the agent is incentivized to make the

estimator θ̂ converge to the value θ as soon as possible. However the error on the first time steps of the estimation
dominates the later errors in the summation, and this puts pressure on the agent to optimize the first steps of the



31

procedure at the expense of the later precision. To solve this problem we divide each terms in the sum Eq. (D39) by a
function η(θ, t), i.e.

Lcum(λ) :=
1

MB

M−1∑
t=0

B∑
k=1

ℓ(θ̂k,t,θk)

η(θk, t)
, (D40)

where η(θk, t) is the expected precision of the estimation at step t given the true value θk, or an approximation to it,
in the form of a lower bound for example, like the Cramér-Rao bound. This new loss measures the relative variation of
the error from the reference value. Even if η(θk, t) is a rigorous lower bound on the MSE we can’t expect the inequality

ℓ(θ̂k,t,θk) ≥ η(θk, t) , (D41)

to hold exactly for every t and k, as there will be fluctuations due to the finite batchsize. From the practical point of
view this means that it is possible for the loss of some training steps to be L(λ) < 1, which doesn’t necessarily point
toward a bug in the implementation of the training. With Eq. (D40) we still incentivise the agent to be as fast as
possible in reaching a good precision, and not wait until the end, because then it will be rewarded by the reduced loss
for all the duration of the experiment. Another possibility to account fairly for the MSE at intermediate times is to
take the logarithm of the mean error on the batch and write the cumulative loss as

Llog(λ) :=
1

M

M−1∑
t=0

log

[
1

B

B∑
k=1

ℓ(θ̂k,t,θk)

]
. (D42)

The advantage of this approach is that it doesn’t require any prior known reference value for the error. Notice that

this loss is not in the form of an expectation value of ℓ(θ̂,θ) over a batch.

5. Cumulative and logarithmic losses for a resource limited estimation

In this section we comment on the form taken by the cumulative and logarithmic losses in the case of a limited
number of resources. Given M ′ the realized number of iterations of the measurement loop Eq. (D40) becomes

Lcum(λ) :=
1

M ′B

M ′−1∑
t=0

B∑
k=1

ℓ(θ̂k,t,θk)

η(θk, t)
, (D43)

notice, that at difference with Eq. (D9) all the simulations in the batch are considerer, not only those B′ that were
already ended as the measurement loop stopped. If one estimation in the batch is ended prematurely with respect
to all the other, with all the resources consumed to obtain a bad estimator for θ this will have a huge weight in the
loss, since the squared error will appear multiple times, until all the other estimations are ended. This means that an
unwise use of the resources, which are consumed early to reach a poor result will be strongly penalized. One may
think, that since the number of iterations M ′ is stochastic then teh cumulative loss is a form of “existential loss” which
would put pressure on th agent to terminate with the smallest number of measurement step possible, this would be at
odd with the actual goal of optimizing with fixed resources irrespective of the number of measurements, but indeed
the loss is normalized according to M ′, so that having a short or a long cycle doesn’t matter for the computation of
L(λ). Similarly to the cumulative loss, the logarithmic loss for an estimation with a limited number of resources can
be expressed as

Llog(λ) :=
1

M ′

M ′−1∑
t=0

log

[
1

B

B∑
k=1

ℓ(θ̂k,t,θk)

]
, (D44)

where again M ′ is the actual number of executed iterations of the loop.

6. Gradients of the cumulative and logarithmic losses

In this section we comment on the expression of the gradient of the cumulative and logarithmic losses, and of the
role of the log-likelihood terms that we had inserted in Eq. (D26). The modified cumulative loss, from which the AD



32

framework can directly compute the gradient, reads

L̃cum(λ) :=
1

MB

B∑
k=1

{M−1∑
t=0

ℓ(θ̂k,t,θk) + sg

[
M−1∑
t=0

ℓ(θ̂k,t,θk)

]
M−1∑
t=0

log p(yk,t|θk,yt−1,k,λ)
}
. (D45)

Given that the stop gradient operator is linear, we now make the important observation that the gradient of the
log-likelihood terms in the form

sg
[
ℓ(θ̂α,k,θk)

]
log p(yβ,k|θk,yβ−1,k,λ) . (D46)

with β > α have null expectation value on the batch of simulations, that is

1

B

B∑
k=1

ℓ(θ̂α,k,θk)
d log p(yβ,k|θk,yβ−1,k,λ)

dλ
≃ 0 , (D47)

The expression in Eq. (D47) is an approximation of the true expectation value∫
ℓ(θ̂α,θ)

d log p(yβ |θ,yβ−1,λ)

dλ
π(θ)dθ

β∏
t=0

p(yt|θ,yt−1,λ) dyt . (D48)

All the integral for yt for t > β can be simplified in the above formula, since the integrand doesn’t depend on these
variables. Let us first solve the integral for dyβ . The loss term doesn’t depend on this variable, so that we can pull it
out of the integral and write

ℓ(θ̂α,θ)

∫
d log p(yβ |θk,yβ−1,λ)

dλ
p(yβ |θ,yt−1,λ) dyβ , (D49)

which is equal to ∫
dp(yβ |θ,yt−1,λ)

dλ
dyβ =

d

dλ

∫
p(yβ |θ,yt−1,λ) dyβ = 0 . (D50)

Since the summation Eq. (D47) tends to zero for large B, we can write the loss as following

L̃cum(λ) :=
1

MB

B∑
k=1

{M−1∑
t=0

ℓ(θ̂k,t,θk) +

M−1∑
t=0

sg
[
ℓ(θ̂k,t,θk)

]
log p(yk,t|θk,λ)

}
. (D51)

which is the expression implemented in the library. Since we have removed some of the stochastic terms in the
loss, which average to zero, but nevertheless contribute to the fluctuations, using expression Eq. (D51) we expect to

have reduced the variance of the gradient, just like we did with the correction of Ścibior and Wood for the particle
resampling. From this derivation we learn that in general the log-likelihood terms of variables extracted in the future
with respect to the terms they multiply can be simplified. Notice that in this derivation we haven’t assumed projective
measurements, that would have meant p(yt|θk,yt−1,λ) = p(yt|θk,λ), instead our derivation works in the most general
case of a weakly measured probe. We now turn to the gradient of the logarithm loss of Eq. (D44). This is somewhat
different from the previous cases since now the mean on the batch is inside the logarithm. The expectation value of
the loss is

1

M

M−1∑
t=0

log

[∫
ℓ(θ̂t,θ)p(yt|θ,λ) dyt

]
, (D52)

which has the following gradient

1

M

M−1∑
t=0

∫
d
dλℓ(θ̂t,θ)p(yt|θ,λ) dyt +

∫
ℓ(θ̂t,θ)

d log p(yt|θ,λ)
dλ p(yt|θ,λ) dyt∫

ℓ(θ̂t,θ)p(yt|θ,λ) dyt
. (D53)

This expression can be obtained on the batch of simulations with the modified loss

L̃log(λ) :=
1

M

M−1∑
t=0

∑B
k=1 ℓ(θ̂k,t,θk) +

∑B
k=1 sg

[
ℓ(θ̂k,t,θk)

]
log p(yk,t|θk,λ)

sg
[∑B

k=1 ℓ(θ̂k,t,θk)
] . (D54)

To get the results for the resources limited estimation we substitute M with M ′ in the whole section.



33

0 25 50 75 100 125 150 175 200

(a) Three phases of the training. (b) Implementations of the trainable variables.

Figure 7. On the left picture the three phases of the learning process explained in Appendix E 1 are plotted. One tick on the
x-axis corresponds to 500 update steps. The agent first learns the rough form of the optimal strategy and later the fine details,
before converging. On the right the three agents used in this work are represented, i.e a NN, a ternary decision tree, and a table
containing the values of the controls x, indexed by the measurement step t.

Appendix E: Details on the simulations

1. Tuning of the hyperparameters

We mentioned in the main text that the update of the agent’s trainable variables is not actually done through
Eq. (12), but via a more sophisticated optimizator called Adam. We observed empirically that a decaying learning rate
is beneficial when using the Adam optimizer. This is because the agent first learns the rough features of the optimal
solution with a relatively large update step for the variables. Subsequently, with a smaller learning rate, the solution is
fine tuned. The Adam optimized, however, already has an internal adaptive update step that is different for every
variables, therefore the learning rate should be really only understood as a broad indication of the training speed given
to the optimizer. In the original Adam paper [61] the authors consider a learning rate decaying with the inverse square
root of the number of update steps. This was also our choice. Let us define i = 1, 2, · · · , I the index of the update step
in the training process, then the learning rate at the i-th iteration of the gradient descent is

αi :=
α0√
i
. (E1)

We observe empirically, that the initial value of the learning rate α0 for a NN should depend on the batchsize B.
For B ∼ O(103) we use α0 ∼ O(10−2), while for B ∼ O(102) a value of α0 ∼ O(10−3) is more appropriate. For the
non-adaptive strategy we use an initial learning rate that is one order of magnitude larger than the one used for the
NN at equal batchsize. The minimum number of training steps I depend strongly on the application, but we observed
in all our examples that it should of order I ∼ O(103 − 104) to reach convergence. We observed some universal feature
in the behaviour of the loss as the training proceeds, which can be associated to three different phases in the training,
see Fig. 7. First we have an initial phase of fast learning, which is the shortest one, coloured in pink, followed by the
fine tuning phase in yellow and the plateau at the end, with the loss remaining on average constant. As a final note,
we mention that when the resampling routine is active we might expect a slow-down of the simulation speed as the
training session proceeds. This happens because as the agent is perfected and the loss is reduced, it is more probable
that a resampling event is triggered (because the increasing precision means also more concentrated weights in the PF
ensemble), which slows down the simulation. In other words, the amount of code that has to be executed in a run
is not fixed a priori, but depends dynamically on the resampling condition that is checked at run-time. To end the
section we briefly recap the three possible implementations that the trainable variables λ have taken in this work, see
Fig. 7. In the case the agent is a NN λ are the weights and the biases of the network When the agent is a decision
tree, the controls xt are associated to each node of the tree, and they are the λ variables. Finally, for a non-adaptive
strategy, there is no adaptivity and the controls x are codified in a list, indexed by the measurement step t. In this
case the controls and the training variables coincide, i.e. λ = xM−1.



34

(a) Clustering of the precision point cloud. (b) Fit of the precision point cloud.

Figure 8. On the left side we represent the precision plot where the cloud of points has been clustered to obtain the red crosses.
On the right we use a NN to interpolate and get the average loss at a given value of the resources.

2. Fit of the precision

In this section we briefly comment on the way the precision plot are realized throughout the work. The definition of
the resources doesn’t only impact the stopping condition of the measurement loop, but it defines how the performances
of an agent are visualized, since by default we plot the mean loss as a function of the consumed resources. After having
trained the agent we simulate many times the estimation and we keep track of the tuples S := {(Rj ,Lj)}Sj=1 after
each measurement step, containing the consumed resources Rt and the loss L. Since the experiment is a stochastic
process we will collect a cloud of points from which a simple relation between the expected precision and the resources
must be obtained, see Fig. 8. The first possibility is to divide the x-axis of the resources in intervals of size δ, and
compute the barycenters of all the points (Rj ,Lj) falling in this interval, these would be the red crosses of Fig. 8. The
second possibility is to fit this cloud of points with a NN. We set the training loss to be the MSE, i.e.

Lfit :=
1

S

S∑
j=1

[Lj − fNN(Rj)]
2
, (E2)

which, for a single value of the resource, i.e. Rj = R ∀j, would converge to fNN(R) =
1
S

∑S
j=1 Lj , that is a NN will

approximate the mean loss. This won’t be exactly true for a cloud of points, but with Eq. (E2) we incentivise the NN
to converge toward the average loss for every value of the resources. All the plots in this paper have been produced
with the first method, choosing an appropriate δ, except for those plots on the NV center platform with T ⋆

2 =∞ and
referring to the time-limited estimation. In the PGH line of the first plot in Fig. 2 there is a non-monotonicity for
small T , that is a defect in the plot and an artifact on this way of interpolating with a NN.

3. Scaling of the time and memory requirements

Since the B estimations in a batch can be performed in parallel we will benefit from the use of a GPU or a TPU
(Tensor Processing Unit) in the training of the agent. The main difference between the CPU and the GPU is that a
CPU has fewer (∼ O(10)) faster cores, while a GPU has many (∼ O(103)) slower cores. With a large batchsize the use
of hardware acceleration through a GPU will turn out to be essential and we will first examine the resource requirements
of model-aware RL assuming that everything that can be parallelized has been is indeed executed in parallel. In this
case the time requirement of the simulation is mainly influenced linearly by the number of measurements M in the
training loop, that have to be executed necessarily sequentially. The update of the PF and the computation of the
distributions moments all require O(N) multiplications each but can be done in parallel, where N is the number of
particles. The memory requirement depends on the batchsize B and the number of particles N in the PF. Nevertheless
because of the construction of the gradient, for which we need to keep in memory the results of all the intermediate
computations, the number of measurements M has also an almost linear influence on the required memory. Finally,
the total time used in the training is also proportional to the number of update steps I. Each update step comprises
the complete run of an estimation batch together with the evaluation of the gradient and the update of the controls.
The size of the NN has little impact on the training time and memory. We can summarise the above considerations as

Memory ∼ O(BMN) , TimePar ∼ O(IM) . (E3)



35

Assuming that nothing can be parallelized (we have a single core) and therefore everything is sequential, if, as usual,
the computational time in the CPU is dominated by the number of floating point multiplications, we instead have the
time scaling

TimeSeq ∼ O(IBMN) , (E4)

while the memory requirement is unchanged. Neither a GPU nor a CPU will perfectly reproduce these theoretical
scalings, because the GPU has a limited number of cores, but there is a tendency for a GPU to follow the scaling of
TimePar and for a CPU TimeSeq. If the batchsize B is very large (or the GPU not very powerful) the simulations in
the batch can’t all be executed in parallel and B starts to affect also the time requirements. If B and N are small a
CPU may complete the training before a GPU, because of the smaller proportionality factor for the time requirement
in Eq. (E4) with respect to Eq. (E3), due to the faster cores of the CPU. This analysis applies also to the training
of a non-adaptive strategy, which is not resource-saving compared to the training of the NN. In the applications we
expect our agent to run on a small controller near the sensor, where most definitely we won’t have access to a GPU
and lots of memory, which anyway are required only in the training phase. In this situation we have no batch and only
one iteration, i.e. I = B = 1. Furthermore there is no extra M in the memory requirement appearing because of the
automatic differentiation, so that the resource scaling in the application will be

Memory ∼ O(dN +N) , TimeSeq ∼ O(MN) , (E5)

where d is the number of parameters. For an estimation limited by the resources instead of the number of measurements,
M must be intended as the average number of measurements employed for a fixed amount of resources. In general
thanks to the resampling routine we can keep the number of particles fixed while increasing the precision arbitrarily. It
is a good practise although to choose N proportional to the number of parameters to estimate, i.e. N ∼ O(d). In the
applications the memory requirement of the NN, and the multiplications needed to evaluate it at each step contribute
respectively with additional O(nlnu) memory and O(nln2u) time (per step), where nl is the number of layers and nu
the number of units per layer, so that we have

Memory ∼ O(dN +N + nlnu) , TimeSeq ∼ O(MN +Mnln
2
u) . (E6)

If the control is non-adaptive we don’t need this extra computations, and if the PF is removed from the picture
(because we don’t need real time feedback) we have that the memory and time requirements trivialize, i.e they scale
respectively as O(1) and O(M). Of course the total time of estimation would be influenced also by the time it takes to
perform the physical measurement on the probe, but here we are referring only to the computational time.

Appendix F: Optimal strategies for frequentist optimization

The qsensoropt library can also optimize the Cramér-Rao bound (based on the Fisher information matrix) for the
local estimation of the parameters θ. This is frequentist inference instead of Bayesian inference, this last being the
main topic of this work. The multiparameter Cramér-Rao bound (CR bound) is a lower bound on the Mean Square

Error matrix of the frequentist estimator θ̂ at the position θ, expressed in terms of the FI matrix, i.e.

K := E
[
(θ̂ − θ)(θ̂ − θ)⊺

]
≥ F−1(θ) , (F1)

with

Fij(θ) := Ey

[
∂ log pθ(y)

∂θi

∂ log pθ(y)

∂θj

]
. (F2)

This result sets the maximum achievable precision of an estimator around θ, in other words, it limits the ability
to distinguish reliably two close values θ and θ + δθ. The expectation value is taken on many realizations of the
experiment, i.e. on the probability distribution of the trajectories for the outcomes and the controls. Let us introduce
the tuple x and y containing respectively the entirety of the controls and the outcomes of the measurements done in
the experiment, then the FI matrix has the following expression

Fij(θ) := Ey

[
∂ log p(y|x,θ)

∂θi

∂ log p(y|x,θ)
∂θj

]
, (F3)



36

being p(y|x,θ) the probability of the observed trajectory of outcomes at the point θ. Notice that the expectation
value is taken on the whole trajectory of the experiment. By contracting Eq. (F1) with the weight matrix G ≥ 0 we
get the scalar version of the CR bound, i.e.

tr(G ·K) ≥ tr(G · F−1) := L(λ) , (F4)

where we have defined the loss to be optimized in the training, as a function of the trainable variables of the agent λ.
The gradient of the loss is

∂L
∂λ

= tr

(
F−1GF−1 · ∂F

∂λ

)
. (F5)

The expectation value in the definition of F is approximated in the simulation by averaging the product of the
log-likelihoods derivatives on a batch of estimations, i.e.

F ≃ F̂ =
1

B

B∑
k=1

∂ log p(yk|xk,θ)

∂θi

∂ log p(yk|xk,θ)

∂θj
=

1

B

B∑
k=1

fk . (F6)

where (xk,yk) is the trajectory of a particular realization of the experiment in the batch of simulations and fk is called
the observed Fisher information. The unbiased gradient of the loss, that takes into account also the gradient of the
probability distribution in the expectation value, can be computed as following

∂L
∂λ
≃ 1

B

∂

∂λ
tr
{
sg
(
F̂−1GF̂−1

) B∑
k=1

[fk + sg(fk) log p(xk,yk|θ)]
}
. (F7)

The sg(·) is the stop gradient operator, and the probability p(xk,yk|θ) is the likelihood of the particular trajectory, that
contains both the probability of the stochastic outcome and that of the control (in case it is stochastically generated).
This is the gradient used in the update step of the stochastic gradient descent procedure for the optimization of
frequentist estimation. We can also introduce the logarithmic loss, i.e.

Llog(λ) := log tr(G · F−1) , (F8)

which is particularly useful to stabilize the training when the FI spans multiple orders of magnitude. If we have a
broad prior on θ, but we are stile interested in local estimation, we can introduce the average FI, i.e.

F :=

∫
F (θ)π(θ) dθ , (F9)

and optimize the loss

L(λ) := tr
[
G · F−1

]
≤
∫

tr
[
G · F−1(θ)

]
dθ , (F10)

which is a lower bound on the expectation value of the CR bound, because of the Jensen inequality applied to the
matrix inverse. In the case of a single parameter the training would maximize the expected value of the Fisher
information on the prior π(θ). It is possible to use a custom distribution p̃(y|x,θ) for extracting the measurements
outcomes instead of p(y|x,θ) by using importance sampling. In this case the FI matrix is computed as

Fij(θ) = Ep̃

[
∂ log p(y|x,θ)

∂θi

∂ log p(y|x,θ)
∂θj

· p(y|x,θ)
p̃(y|x,θ, )

]
, (F11)

which can be approximated on a batch as

F ≃ 1

B

B∑
k=1

fk
p(yk|xk,θ)

p̃(yk|xk,θ)
, (F12)

with fk defined in Eq. (F6). Also the gradient of F is changed accordingly. Typically the distribution p̃ is some
perturbation of p, for example it can be obtained by mixing p with a uniform distribution on the outcomes. The
importance sampling is useful when some trajectories have vanishingly small probability of occurring according to the
model p but contribute significantly to the Fisher information. If these trajectories have some probability of occurring



37

sampling with p̃, then the estimator of the FI might be more accurate. The drawback is that the perturbed probability
of the complete trajectory p̃(y|x,θ) might be too different from the real probability (because of the accumulation of
the perturbation at each step), so that the simulation might entirely miss the region in the space of trajectories in
which the system state moves, thus delivering a bad estimate of the FI and a bad control strategy, upon completion
of the training. Whether or not the importance sampling can be beneficial to the optimization should be checked
case by case. The derivative with respect to θ in the definition of fk in Eq. (F6) are computed through automatic
differentiation. This means there there are two nested automatic differentiation environments, one for the parameter
and one for the training variables of the agent.

Appendix G: Precision lower bounds of the examples

In this section we apply the Bayesian Cramér-Rao bound to the estimation of various parameters on the NV center
platform. This bounds will be based on the Fisher information [21], which we briefly define in the following. Refer to
the literature for more details. Consider a stochastic variable y, which is extracted from a probability distribution
pθ(y), where θ is a parameter we want to estimate. This is a model for an experiment leading to a stochastic outcome.
The information on θ available from y can be measured by the Fisher information (FI), defined as

I(θ) := Ey

[(
∂ log pθ(y)

∂θ

)2
]
, (G1)

where the expectation value is taken over the distribution pθ(y). If the experiment allows to be controlled through the
parameter x, then the outcome probability is pθ(y|x) and the FI inherits such dependence, i.e. we write I(θ|x). If the
control parameter x is computed from a strategy h, which could be the Particle Guess Heuristic the a neural network,
then we indicate it explicitly in the control xh.

1. Bayesian Cramér-Rao bound

Given θ a single parameter to estimate, we call I(θ|xh) the Fisher information of a sequence of measurements with
controls xh = (xh0 , x

h
1 , · · · , xhM−1), which are computed from a strategy h. The quantity I(θ|xh), together with the

Fisher information of the prior π(θ), i.e. I(π), defines a lower bound on the precision ∆2θ̂ of whatever estimator θ̂,
that contains the expectation value of I(θ|xh) on π(θ), and is optimized on the strategy h. This lower bounds reads

∆2θ̂ ≥ 1

suph Eθ [I(θ|xh)] + I(π)
. (G2)

This definition appears in the work of Fiderer et al. [31]. For the NV centers the controls are the evolution time τ and
the phase φ, this last however doesn’t play any role in the computation of the lower bound, and it will be omitted in
the following. The Fisher information of a sequence of measurements is always additive, even if the quantum probe is
only measured weakly, but in dealing with projective measurements, as it is the case for NV center, the advantage is
that the measurements are uncorrelated, and the same expression for the Fisher information applies to all of them,
independently on the results of the previous measurements, i.e.

I(θ|τ ) =
M∑
t=1

I(θ|τt) ≤M sup
τ
I(θ|τ) , (G3)

where M is the total number of measurements. The optimization of the single measurement FI gives directly the
precision bound for the measurement-limited estimation:

∆2θ̂ ≥ 1

suph Eθ [I(θ|τh)] + I(π)
≥ 1

M Eθ [supτ I(θ|τ)] + I(π)
. (G4)

If the total evolution time is the limiting resource, then, the expression for the total FI is

I(θ|τ ) = T

M∑
t=1

τt
T

[
I(θ|τt)
τt

]
≤ T sup

τ

I(θ|τ)
τ

, (G5)



38

with
∑M

t=1 τt = T . In this expression the total FI is the weighted sum of the renormalized FI of each measurement, i.e.
I(θ|τt)

τt
, and can be manifestly upper bounded by concentrating all the weights on the supremum of the renormalized

FI. This gives the lower bound for the precision of the time-limited estimation:

∆2θ̂ ≥ 1

suph Eθ [I(θ|τh)] + I(π)
≥ 1

T Eθ

[
supτ

I(θ|τ)
τ

]
+ I(π)

. (G6)

In the following we will apply this general observations to the derivation of the numerical bounds for DC magnetometry.

2. Evaluation of the Fisher information

Since the measurement outcome in the NV center is binary, we can compute the Fisher information for a parameter
θ, given the control τ , as

I(θ|τ) = E

[(
∂ log p(±1|θ, τ)

∂ω

)2
]
=

(
∂p
∂θ

)2
p(1− p)

=

(
∂p
∂θ

)2
1
4 − (p− 1

2 )
2
, (G7)

where we have used the definition in Eq. (G1), and where p := p(+1|θ, τ). For example, for a decoherence free

estimation of the precession frequency ω we have p := cos2
(
ωτ
2

)
, from which ∂p

∂θ = τ sin(ωτ
2 ) cos(ωτ

2 ), and finally

I(ω|τ) = τ2.

3. DC magnetometry

The lower bounds on the estimation of the frequency ω are reported in Table I, and are represented in Fig. 2
of Section II as the shaded grey area. The left column of this table contains the bounds for a finite number of
measurements M , while right column refers to the estimation with a fixed total evolution time T . The first row refers
to the estimation of ω with perfect coherence while the second row refers to the estimation of ω with a finite and know
T ⋆
2 . The symbol I(ω) indicate the FI of the prior for the precession frequency ω. The numerical values of the quantities

Measurement Time

T2 = ∞ 2−2(M+1)

3
G8 1

T2+I(ω)
G9

T2 <∞ max
{

1
µM(T⋆

2 )2+I(ω)
, 2−2(M+1)

3

}
G10 1

0.5TT⋆
2 +I(ω)

G11

Table I. Lower bounds for the precision of the frequency estimation in DC magnetometry on an NV center.

appearing in Table I, for ω ∈ (0, 1)MHz are: µ = 0.1619, I(ω) = 12µs2. In the following we derive these four bounds.

• The Fisher information for the decoherence-free precession frequency ω is given by I(ω|τ) = τ2, so that
supτ I(ω|τ) =∞ and the analysis based on the Cramèr-Rao bound doesn’t gives a useful bound. Eq. (G8) can
be found by observing that each measurement gives at most one bit of information about the value of ω, because
the measurement has a binary outcomes [31]. This bound is applied also for T ⋆

2 <∞ in addiction to the one
coming from the Fisher information.

• With a finite decoherence time T ⋆
2 <∞ the FI for the frequency ω is

I(ω|τ, T ⋆
2 ) =

τ2e
− 2τ

T⋆
2 cos2

(
ωτ
2

)
sin2

(
ωτ
2

)[
e
− τ

T⋆
2 cos2

(
ωτ
2

)
+ 1−e

− τ
T⋆
2

2

] [
e
− τ

T⋆
2 sin2

(
ωτ
2

)
+ 1−e

− τ
T⋆
2

2

] , (G12)

which, by defining C := cos2
(
ωτ
2

)
, can be bounded in the following way

I(ω|τ, T ⋆
2 ) =

τ2e
− 2τ

T⋆
2 C(1− C)[

1
4 − e

− 2τ
T⋆
2 (C − 1

2 )
2
] ≤ τ2e

− 2τ
T⋆
2

1− e−
2τ
T⋆
2

= (T ⋆
2 )

2 x2e−2x

1− e−2x
, (G13)



39

where x = τ
T⋆
2
. The maximization in x ∈ R+ gives supτ I(ω|τ, T ⋆

2 ) = µ(T ⋆
2 )

2 with µ = 0.1619. Inserting this

expression in Eq. (G4) gives the first term in the maximum of Eq. (G10), the second term was explained in the
previous point.

• Regarding the time-constrained lower bounds, for T ⋆
2 = ∞, the total FI is maximized by performing a single

measurement of time duration τ = T , which gives Eq. (G9), through the application of Eq. (G6).

• For T ⋆
2 <∞ we have to maximize the normalized FI in x ∈ R+, i.e.

I(ω|τ, T ⋆
2 )

τ
≤ τe

− 2τ
T⋆
2

1− e−
2τ
T⋆
2

≤ T ⋆
2

xe−2x

1− e−2x
≤ TT ⋆

2

2
, (G14)

from which Eq. (G11) follows from Eq. (G6).

Appendix H: Backward recursion method for the optimization of the strategy

In this section we set the stage to understand what function the agent must approximate by formulating the problem
in terms of a backward recursion. In this section we will see how the optimal control could theoretically be derived in
other ways, so that the training will appear less as an unintelligible black-box and more as the solution to a well-posed
problem (though we won’t probably have uniqueness). The output of the agent at the t+1-th steps is xt+1, that is, the
control of the current evolutions and measurements. In the following we will define formally the function that the agent
must learn to approximate, in doing this we will assume that the control x of the quantum sensor is a continuos real
variable. Consider an estimation with M measurements, i.e. t = 0, 1, . . . ,M − 1. Let us focus on the last one only and
recall the definition of the particle filter ensemble before after the last measure M − 1, i.e. pM := {θM−1

j , wM−1
j }Nj=1.

Then we can write the ensemble of the PF at the final step t =M − 1 as

pM = B(pM−1, xM−1, yM−1) , (H1)

where B encodes the application of the Bayes rule in Eq. (B4). The ensemble pM inherits the stochasticity from
the random measurement outcome yM−1. Per definition p0 is the initial PF ensemble that represents the prior π(θ).
In Appendix D1 we mentioned that the final loss is a scalar function ℓ(pM ,θ) of the final PF ensemble and of the
true value θ, like the squared derivation of the estimator from the true value. The final loss can be expressed as
ℓ(B(pM−1, xM−1, yM−1),θ) and it’s expectation value on yM−1 (the expected loss), computed with the density in
Eq. (A1), reads

ℓ(pM−1, xM−1,θ) :=

∫
ℓ(B(pM−1, xM−1, yM−1),θ)p(yM−1|xM−1,θ)dyM−1 . (H2)

If the outcome probability, the prior and the loss are continuos functions we can also expect ℓ(pM−1, xM−1,θ) to be
continuous in its parameters. Without aiming at full rigour, we say that the regularity properties of the probability
densities are passed down to the expectation value. Now we look for the minimum of this function, which is realized
by solving

dℓ(pM−1, x
⋆
M−1,θ)

dxM−1
= 0 . (H3)

This equation defines implicitly the optimal control x⋆M−1 := rM−1(pM−1,θ), where x
⋆
M−1 realizes the absolute

minimum of the expected loss. rM−1 inherits some regularity property (at least locally) from ℓ(pM−1, xM−1,θ) thanks
to the implicit function theorem. The control x⋆M−1 can still have discontinuities in pM−1 if the expected loss has
multiple competing minima. The dependence on θ is rather inconvenient, because it is unknown, but we can think

of substituting θ with its estimator θ̂M−2 to get x⋆M−1 = rM−1(pM−1, θ̂M−2). We will however never do explicit
optimizations with this approach, the introduction of Machine Learning in quantum metrology serves precisely to
avoid these cumbersome computations. Until now we have only optimized the last control, but fortunately all these
operations can be repeated with minor changes for the t =M − 2 measurement step. Let us start from pM−1 expressed
as function of the ensemble pM−2:

pM−1 = B(pM−2, xM−2, yM−2) , (H4)



40

we insert this expression in Eq. (H1) to get

pM = B(B(pM−2, xM−2, yM−2), xM−1, yM−1) . (H5)

By substituting this in the loss ℓ(pM ,θ) we get ℓ(B(B(pM−2, xM−2, yM−2), xM−1, yM−1),θ), but the optimal xM−1

has been already computed as a function of the PF ensemble. Whatever control we suggest for the step t =M − 2 it
doesn’t change the optimal control at the following step. In other words whatever control xM−2 gets applied, the
optimal action for the last time step is always x⋆M−1, we can therefore insert it in the loss at the step M − 2, i.e.

ℓ(pM−2, xM−2, yM−2, yM−1,θ) := ℓ(B(B(pM−2, xM−2, yM−2), rM−1(B(pM−2, xM−2, yM−2),θ), yM−1),θ) , (H6)

where we have also used the expression for pM−1 of Eq. (H4) in the definition of x⋆M−1, and we have redefined the
parameters of ℓ. Again we take the expectation value on the measurement outcomes, i.e.

ℓ(pM−2, xM−2,θ) :=

∫
ℓ(pM−2, xM−2, yM−2, yM−1,θ)p(yM−1|θ, x⋆M−1)p(yM−2|θ, xM−2)dyM−1dyM−2 . (H7)

By taking the derivative of this expected loss with respect to xM−2, we define implicitly the optimal control
x⋆M−2 = rM−2(pM−2,θ) as the solution of

dℓ(pM−2, x
⋆
M−2,θ)

dxM−2
= 0 , (H8)

where x⋆M−2 realizes the absolute minimum of ℓ. Notice that this is not a greedy optimization: the value of xM−2

is not chosen to optimize the loss one step head in the future but the final loss, knowing what the strategy in the
next step will be. We could treat all the previous measurements in the same manner, if it wasn’t for the expectation
values of the loss, that become more and more complicated. In this way we can inductively proceed in reverse to
the start of the estimation t = 0 and find in the process the family of functions rt(pt,θt−1) that express the optimal

controls x⋆t . As discussed previously we can redefine rt(pt) = rt(pt, θ̂t−1), in order to get rid of the dependence on
the unknown value of the parameters θ. We then introduce r(pt, t) = rt(pt), which is the function that the agent is
trying to approximate in the training, i.e. the map that spits out the optimal control at a given measurement step t,
provided the ensemble PF at the previous step. Heuristically we expect the optimal control to be inhomogeneous in
time because like in many application of RL a good strategy encompasses a phase of “exploration” followed by a phase
of “exploitation” of what has been learned [18, 19].

Appendix I: Backpropagation of the gradient

With the help of an automatic differentiation framework we compute the gradient of the modified loss in Eq. (D25) in
order to perform the training. Let us for the moment neglect the log-likelihood terms in this expression and concentrate
only on the first part. If the loss is computed only from the ensemble at the last measurement step, then it takes the
form

ℓθ ◦BxM−1,yM−1
◦BxM−1,yM−1

◦ · · · ◦Bx0,y0
(p0) . (I1)

where ℓθ(p) := ℓ(p,θ) acts on the ensemble PF and is the individual loss of each simulation, e.g. the square error.
The function Bxt,yt(p) := B(p, xt, yt) applies the Bayesian update to the PF, which depends on the outcome of the
measurement yt and on the control xt. The initial ensemble of the PF is named p0. From a theoretical point of view
differentiating this expression means applying repeatedly the rule for the derivation of the composite function and
propagating the derivative through the various stages of the estimation, this is called backpropagation. Let us compute
explicitly the derivative of the loss for the last two steps of the estimation. We define pM = BxM−1,yM−1

(pM−1)
and pM−1 = BxM−2,yM−2

(pM−2), and apply the chain rule. We will indicate with the partial derivative symbol the

derivatives with respect to the parameters of a function (which can also appear in the subscript), while the symbol d
dλ

is reserved to the total derivative with respect to λ.

d

dλ
ℓθ(pM ) =

∂ℓθ(pM )

∂p

d

dλ
BxM−1,yM−1

(pM−1) . (I2)

The total derivate in the right-hand term an be expanded again with the chain rule:

∂BxM−1,yM−1
(pM−1)

∂xM−1

d

dλ
xM−1(λ, pM−1) +

∂BxM−1,yM−1
(pM−1)

∂p

d

dλ
BxM−2,yM−2

(pM−2) . (I3)



41

Only the parameters xM−1 and pM−1 can carry a dependence on λ. Regarding the measurement outcomes yM−1 we
already discussed their independence on λ, expressed by Eq. (D17). The control xM−1 has an explicit dependence on
λ because it has been produced by the agents, but also has a dependence on λ through the PF ensemble, so that we
can expand the total derivative in the following way

d

dλ
xM−1(λ, pM−1) =

∂xM−1(λ, pM−1)

∂λ
+
∂xM−1(λ, pM−1)

∂p

d

dλ
BxM−2,yM−2

(pM−2) . (I4)

The first piece of the derivative is the dependence on λ that comes from the last application of the agent, while
the second piece represent the backpropagation through the input of the agent and the Bayesian update of the PF
ensemble. In general, the gradient is backpropagated through all the applications of the agent until it reaches the
beginning. We notice that we can write the total derivative of pM as a function of the total derivative of pM−1, i.e.

d

dλ
BxM−1,yM−1

(pM−1) = QM−1 +HM−1
d

dλ
BxM−2,yM−2

(pM−2) (I5)

where

QM−1 :=
∂BxM−1,yM−1

(pM−1)

∂xM−1

∂xM−1(λ, pM−1)

∂λ
, (I6)

HM−1 :=
∂BxM−1,yM−1

(pM−1)

∂xM−1

∂xM−1(λ, pM−1)

∂p
+
∂BxM−1,yM−1

(pM−1)

∂p
. (I7)

We have arrived to a family of recurrence equations, which have the solution

d

dλ
BxM−1,yM−1

(pM−1) =

M−1∑
t=0

Qt

M−1∏
m=t+1

Hm , (I8)

where Qt and Hm are defined analogously to QM−1 and HM−1. The Hm terms have each two summand, and when
multiplied together the number of terms in the gradient grows exponentially in the number of measurement M , and
generates gradient terms corresponding to multiple repeated backpropagations through the agents. This are a kind of
“higher order” gradient terms. In our implementation of the training we simplify the gradient by introducing a stop
gradient operation before the input of the agent, so that Eq. (2) is actually implemented as

xt+1 = F{sg [P (θ|xt,yt);Rt; t]} , (I9)

This modification doesn’t change the forward pass, that is, the results of simulations are the same, but it affects the
backpropagation of the gradient, in particular it makes the first term of Hm disappear, because

∂xm (λ, sg [pm])

∂p
= 0 . (I10)

Such simplification reduces considerably the training time and doesn’t really affect, at least from a theoretical point of
view, the ability of the agent to learn the optimal strategy, on the contrary it might even improve it. Before we back
up this last assertions we want to recapitulate our analysis of the backpropagation with the help of Fig. 9. A control
strategy is called myopic if it optimizes the information gained from the next measurement only, while it is non-myopic
if it optimizes many steps ahead in the future. It might seem that by cutting the gradient propagation through the
green arrows we limit the optimization to the class of myopic strategies, but this is not true because the optimization
is always done for the final precision. The input of the agent is basically a constant now and the t-th term in the
summation of Eq. (I8) pulls the weights of the NN to minimize the final loss given the PF ensemble at the t− 1-th step.
In order to have non-myopic adaptive strategy backpropagating the gradient through the green arrows is redundant.
The gradient of the log-likelihood terms in the loss of Eq. (D26) is also simplified when the stop gradient is acting
in Eq. (I10). In the model p(yt|xt,θ) the only term that depends on λ is the control, and the gradient propagates
through a single application of the agent. Had we not inserted the stop gradient, the gradient of each summands in
the log-likelihood would have been propagated through all the past applications of the agent, a scenario that happens
anyway if the probe state is not reinitialized between measurements. Before ending the discussion on the gradient
backpropagation we want to consider yet another possibility of truncating the gradient. We could indeed image to
stop the flow of the derivative through the evolution of the PF ensemble, which means cutting the red line in Eq. (I3).
This eliminates the recurrence equation and trivializes the gradient, which now accounts only for the very last control.
That is, with such modification, the agent will learn to optimize only the last measurement. If the loss is cumulative



42

Figure 9. The fat empty arrow in the middle of the picture represents the PF, which is updated via the Bayes rule, indicated
with the function B in the text, after it receive an outcome from the measurement on the probe. The second term of Eq. (I3),
underlined in red, corresponds to the backpropagation of the gradient along the history of the PF ensemble, whose weights and
particles inherits a dependence on λ from the actions of the agent. Visually this corresponds to backpropagation along the red
arrow. Through the match between the underlined terms in Eq. (I4) and Eq. (I3) and the arrows in the figure can visualize the
origin of each term of the gradient. The blue term of Eq. (I4) accounts for the dependence on λ that comes from the controls
computed by the agent and propagated through the application of the Bayes rule and the computation of xt. The green term of
Eq. (I4) is the gradient propagating from the input of the agent to the previous PF ensemble. This term is responsible for the
“higher-order” terms of the gradient, that propagate multiple times through the agent. Inserting the stop gradient in Eq. (I10)
means cutting the green line. The yellow line represents the propagation of the gradient through the state of the probe, when
this is not reinitialized between the measurements.

however, like in Eq. (D39), all the controls will be optimized, but in a myopic way. In this scenario we introduce the
modified logarithmic loss, i.e.

L̃log(λ) :=
1

TB

M−1∑
t=1

log

 ∑B
k=1 ℓ(θ̂k,t,θk)

sg
[∑B

k=1 ℓ(θ̂t−1,k,θk)
]
 . (I11)

Each term in this summation is the empirical information gain for a Gaussian posterior. In the forward pass the loss is
the total empirical information gain, because the stop gradient operators don’t play any role, and the series can be
resummed. In the computation of the gradient, however, the information gain for each measurement is optimized
greedily, as done in [71] and in the package optbayesexpt [40]. If the stop gradient in the denominator is applied only
every n measurement, then we are optimizing the information gain planning n steps ahead in the future. It is advisable
to put a regularization at the denominator of the loss in Eq. (I11) to avoid dividing by zero.


	Model-aware reinforcement learning for high-performance Bayesian experimental design in quantum metrology
	Abstract
	Introduction
	Encoding of the probe
	Bayesian estimation and particle filter
	Controlling agent
	The precision-resources paradigm
	The measurement loop
	Training with model-aware reinforcement learning
	Differentiability of the particle filter

	Results
	DC magnetometry with NV centers
	Agnostic Dolinar receiver
	Choice of the hyperparameters

	Discussion
	Methods
	Acknowledgments
	Author Contributions
	Competing interests statement
	Bibliography
	Schematization of physical systems in qsensoropt
	Encoding of the probe
	Measurement on the probe

	Implementation of the particle filter
	Bayesian update
	Moments of the posterior
	Resampling scheme
	Soft resampling
	Particle filters and importance sampling
	Gaussian perturbation
	New particles proposal
	Resampling of the batch

	State particle filter
	Multimodal posterior distributions

	Differentiability of the particle filter
	Differentiable PF through reparametrization and soft resampling
	Differentiability of the soft resampling
	Differentiability of the perturbation
	Differentiability of the proposed particles
	Differentiability of the state particle filter

	Differentiable PF through the correction of Ścibior and Wood

	Computation and differentiation of the loss function
	Definition of the loss function
	Definition of the loss for limited resources
	Dependence of the loss on the trainable variables
	Gradient of the loss
	Log-likelihood terms in the loss
	Adding a baseline
	Discrete control space
	Stochastic estimator

	Definition of the cumulative and logarithmic losses
	Cumulative and logarithmic losses for a resource limited estimation
	Gradients of the cumulative and logarithmic losses

	Details on the simulations
	Tuning of the hyperparameters
	Fit of the precision
	Scaling of the time and memory requirements

	Optimal strategies for frequentist optimization
	Precision lower bounds of the examples
	Bayesian Cramér-Rao bound
	Evaluation of the Fisher information
	DC magnetometry

	Backward recursion method for the optimization of the strategy
	Backpropagation of the gradient


