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Nonreciprocal interactions are commonplace in continuum-level descriptions of both biological and
synthetic active matter, yet studies addressing their implications for time reversibility have so far been
limited to microscopic models. Here, we derive a general expression for the average rate of informational
entropy production in the most generic mixture of conserved phase fields with nonreciprocal couplings and
additive conservative noise. For the particular case of a binary system with Cahn-Hilliard dynamics
augmented by nonreciprocal cross-diffusion terms, we observe a nontrivial scaling of the entropy
production rate across a parity-time symmetry breaking phase transition. We derive a closed-form analytic
expression in the weak-noise regime for the entropy production rate due to the emergence of a macroscopic
dynamic phase, showing it can be written in terms of the global polar order parameter, a measure of parity-
time symmetry breaking.
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Though microscopic forces respect the action-reaction
principle, effective reciprocity-breaking interactions com-
monly arise at the mesoscopic scale. In living matter, one
may even argue that reciprocity-breaking interactions are the
rule rather than the exception, such as in classical predator-
prey and promoter-inhibitor models [1–4]. Similarly, non-
reciprocity arises in systems whose dynamics depend on
information propagation as in crowds of social animals
[5–8]. Furthermore, nonreciprocal interactions generically
emerge from microscopic interactions mediated by a non-
equilibrium medium [9–12], leading to fundamentally non-
equilibrium physics [13–16].
This breaking of reciprocal-symmetry generically leads

to directed motion as seen in diffusiophoretic colloidal
mixtures [17–19] and binary systems of active and passive
particles [20,21]. Self-propelling mesoscopic clusters
emerge from an imbalance of attraction-repulsion inter-
actions between microscopic agents [22,23]. In biology, the
chase-and-run behavior displayed by neural crest cells and
placodal cells provides a generic mechanism of coordinated
cell migration, driving many fundamental morphogenetic
and physiological processes [24]. In particular, the emer-
gence of dynamical phases in systems with nonreciprocal
interactions has been associated with the breaking of parity-
time (PT ) symmetry [13,20], where solutions to the

governing equations are no longer invariant under a joint
parity-time inversion PT ∶ r; t ↦ −r;−t. These represent
another example of PT -symmetry breaking transitions
[25], which includes optical systems [26], directional
interface growth [27–29] and polar swarm models [13,30].
While coarse graining a microscopic model is generally

arduous, approaches based on conservation and symmetry
principles used to model dynamic critical phenomena at
equilibrium can be extended to active systems [31–34]. For
example, the scalar active field theories Active Model B [35]
and Bþ [36] describe nonequilibrium liquid-gas phase
separation phenomena [37,38]. Owing to their simplicity
and generality, active field theories present an attractive
starting point for analyzing the nonequilibrium thermody-
namic properties of living systems. However, at the level of
these continuum descriptions, the dynamics are formulated
in terms of macroscopic order parameters (such as the agent
density); while they generically capture accurately densities
and correlations, no direct connection can be made between
time-reversal-symmetry (TRS) breaking and the rate of
microscopic energy dissipation, as this requires a notion of
particle entity [39,40]. It was recently argued that calculat-
ing the entropy production rate for those effective field
theories (even if stemming from the coarse graining of a
microscopic dynamics) will not in general provide mean-
ingful information about the work done at the scale of the
microscopic particles unless Doi-Peliti field theories are
used [41]. This problem has also been illustrated explicitly
for nonreciprocal particle systems [42]. Despite this, the
extent to which TRS is broken, given by the informational
entropy production rate (IEPR), still provides a metric for
the distance from equilibrium in nonequilibrium systems at
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the level of the macroscopic dynamics [39,43–49]. Of
particular interest are the effects of phase transitions in
active systems, where nontrivial scalings of the entropy
production have recently been observed [50–53].
In this Letter, we elucidate the impact of nonreciprocal

interactions and the resulting PT -symmetry breaking
transition on the time reversibility of dynamics in a scalar
active field theory. First, we derive a general result for the
average informational entropy production rate in a mixture
of conserved scalar fields, then apply this to a scalar field
theory of nonreciprocal interactions [54]. In the case of a
binary system, we show that this entropy production rate
exhibits nontrivial scaling across a transition from a static
to a dynamic phase. We identify explicitly a contribution
stemming from the breaking of PT symmetry, i.e., the
emergence of macroscopic dynamics, which scales quad-
ratically with the speed of the dynamic phase, mirroring the
relation between self-propulsion speed and TRS breaking
observed in active particle systems [45,46,55].
Informational entropy production in scalar active mix-

tures.—We consider a system of N interacting, conserved
active fields fϕiðr; tÞgi∈ ½1;N�, with governing equations

ϕ̇iðr; tÞ ¼ ∇2μiðr; tÞ þ∇ · Λiðr; tÞ; ð1Þ

where μiðr; tÞ is a chemical potential which can include
passive and active contributions and Λi is a noise term
capturing thermal fluctuations in the system. For the sake of
tractability, the noise is taken to be additive as is commonly
done in field theories of active phase separation [17,34–
36,48,56]. In practice, the conserved noise terms appearing
in Eq. (1) require careful regularization since their power
spectrum is unbound in the ultraviolet, which may lead to
divergences. While this is often done by regularizing the
noise correlator (without affecting the conservative nature
of the noise), we show importantly that divergences in the
entropy production rate originate from the infinite dimen-
sionality of the continuum field and can only be cured by
imposing finite dimensionality [41]. To do so, we employ a
suitable spatial discretization scheme when analyzing the
dynamics below, effectively imposing a UV cutoff (see
Ref. [57] for an extended discussion). Note that we keep
notation pertaining to continuous space here for read-
ability [59].
For our system, the extent of TRS breaking is quanti-

fied by the Kullback-Leibler divergence per unit time
[44,47,60]:

Ṡ ¼ lim
τ→∞

1

τ

�
log

PF½fϕi¼f1;…;Nggt¼τ
t¼0�

PB½fϕi¼f1;…;Nggt¼τ
t¼0�

�
; ð2Þ

where PF½·� and PB½·� denote the path probability for the
forward and backward paths, respectively, for the combined
dynamics of the N fields. The average of the log-ratio is
taken over realizations of the noise terms Λi¼f1;…;Ng. In a

thermodynamically consistent microscopic theory, Ṡ would
correspond to the total rate at which entropy is produced.
However, here it shall be understood only in the informa-
tional sense, i.e., as a measure of TRS breaking in the
dynamics, as argued.
Employing the usual approach for the treatment of

stochastic field theories, the log-ratio of these two path-
probabilities [Eq. (2)] can be written as the difference of
two dynamical actions which take the form of Onsager-
Machlup functionals [45,47,59]. Suppose that the noise
terms Λi in Eq. (1) have a diagonal correlation matrix
Θij¼hΛiðr;tÞΛjðr0;t0Þi¼2Dδijδðr0−rÞδðt0−tÞ, then each
of the path probabilities can be decomposed into products
of independent contributions from the realizations of each
noise term. As shown in [57], we treat Eq. (2) in the usual
way [34,47,48,59] and write the IEPR as a sum of these
individual contributions

Ṡ ¼ − lim
τ→∞

1

Dτ

Z
τ

0

dt
Z

dr
XN
i¼1

�
μiϕ̇i

�
: ð3Þ

If we decompose each chemical potential μi into equili-

brium and nonequilibrium contributions μi ¼ μðeqÞi þ μðneqÞi
and define the free-energy functional, F ½fϕi¼f1;…;Ngg�
such that the equilibrium contribution is written as

μðeqÞi ¼ δF=δϕi, then
R
drϕ̇μðeqÞi ¼ Ḟ and Eq. (3) simpli-

fies to

Ṡ ¼ − lim
τ→∞

1

Dτ

Z
τ

0

dt
Z

dr
XN
i¼1

�
μðneqÞi ϕ̇i

�
; ð4Þ

provided that the free energy F is bounded in time
[34,47,57]. As expected, Eq. (4) shows that the dynamics
are symmetric in time (Ṡ ¼ 0) in the absence of non-
equilibrium contributions to the chemical potential. Our
result holds for arbitrary nonequilibrium terms, e.g., we
recover the result for Active Model B by setting N ¼ 1 and

substituting in the active term μðneqÞ1 ¼ λj∇ϕ1j2 [47].
Scalar active mixtures with nonreciprocal couplings.—

To study the link between TRS breaking and nonreciproc-
ity, we consider the nonreciprocal scalar field theory
introduced in [54], which extends the classical Cahn-
Hilliard model [31,32] to include nonreciprocal linear
couplings (cross diffusion). As such, the field theory
describes phase separation in a wide class of systems
where reciprocal-symmetry breaking interactions appear at
the continuum level [61–64].
The governing equations for this field theory take the

form [54]

ϕ̇iðr; tÞ ¼ ∇2

�
δF
δϕi

þ
X
j

αijϕjðr; tÞ
�
þ∇ · Λiðr; tÞ; ð5Þ
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where, as before, i∈ f1;…; Ng and we have defined the
global free-energy-like functional as

F ½fϕig� ¼
Z

dr

�X
i

fiðϕiÞ þ
X
i<j

κijϕiϕj

	
ð6Þ

and fαijgi;j∈ ½1;N� is an antisymmetric matrix. The functional
includes two contributions: the first determines how each
field evolves in isolation and the second describes the (reci-
procal) enthalpic interactions between fields. Henceforth,
we suppose that the free energy densities take a Landau
square gradient, ϕ4 form: fiðϕiÞ ¼ χiϕ

2
i =2þ ϕ4

i =12þ
γij∇ϕj2=2, where the sign of χi controls whether the field
phase separates and γi sets the effective surface tensionwhen
interfaces arise in the system [33,36]. This results inModel
B-like dynamics augmented by nonreciprocal couplings.
Breaking TRS through nonreciprocity.—We call upon

Eq. (4) to write an expression for the entropy production
rate in our system with nonreciprocal couplings:

Ṡ ¼ − lim
τ→∞

1

Dτ

Z
τ

0

dt
Z

dr
XN
i¼1

X
j≠i

�
αijϕjϕ̇i

�
: ð7Þ

Note that Ṡ vanishes as expected when αij ¼ 0 for all i and
j, as this describes equilibrium dynamics. While linear-
order couplings were studied in [54], our result [Eq. (4)]
holds for arbitrary nonreciprocal couplings and is thus valid
beyond the class of systems described by Eq. (5) (see
Ref. [65] for a recent work on nonlinear nonreciprocity).
To illustrate our result, we confine our system to one

spatial dimension on ½0; LÞ with periodic boundary con-
ditions and set N ¼ 2. In this case, a single parameter
controls the strength of the nonreciprocal coupling. Indeed,
we can write the coupling coefficients as κ12 ¼ κ21 ¼ κ and
α12 ¼ −α21 ¼ α. The resulting equations governing the
dynamics of the fields, which we denote ϕ1ðr; tÞ and
ϕ2ðr; tÞ, take the form

ϕ̇1ðr; tÞ ¼ ∂
2
rμ

ðeqÞ
1 ðr; tÞ þ α∂2rϕ2ðr; tÞ þ ∂rΛ1ðr; tÞ; ð8aÞ

ϕ̇2ðr; tÞ ¼ ∂
2
rμ

ðeqÞ
2 ðr; tÞ − α∂2rϕ1ðr; tÞ þ ∂rΛ2ðr; tÞ; ð8bÞ

where the chemical potentials are again defined as the

following functional derivatives μðeqÞi ¼ ðδF=δϕiÞ and
Λiðr; tÞ are zero-mean Gaussian white noise terms with co-
variance matrix Θijðr− r0; t− t0Þ ¼ 2Dδijδðr− r0Þδðt− t0Þ.
From Eq. (7) we write the steady-state IEPR for this binary
system as

Ṡ ¼ − lim
τ→∞

α

Dτ

Z
τ

0

dt
Z

L

0

dr
�
ϕ2ϕ̇1 − ϕ1ϕ̇2

�
: ð9Þ

We first explore the entropy production rate in this
system numerically, quantifying how Ṡ scales with the
strength of the nonreciprocal coupling. In what follows, we

work in the limit of weak noise and further place ourselves
in the case where (i) ϕ1 phase separates (by fixing χ1 < 0

and γ1 > 0) and (ii) ϕ2 is purely diffusive (by imposing

μðeqÞ2 ¼ χ2ϕ2). We also suppose that the two fields feel a
weak (reciprocal) repulsion (κ > 0) [20]. We solve Eq. (8)
(see details of our numerical method in [57]) then evaluate
the integral in Eq. (9) numerically. As seen in Fig. 1(a), the
entropy production rate initially scales as Ṡ ∝ α2. At a
critical value of the nonreciprocal coupling α ¼ αc, this
scaling disappears and Ṡ quickly increases continuously by
several orders of magnitude. As α ≫ αc, we recover a
quadratic scaling.
To explain this nontrivial scaling, we explore in more

detail the dynamics of the system governed by Eq. (8) (see
also [20]). In particular, we turn momentarily to the
deterministic case, D ¼ 0, and observe that for α < αc,
the system reaches a static stationary state, where the two
fields phase separate and exhibit demixing behavior [see
Fig. 1(c)]. For α > αc, the system instead displays a
traveling wave solution and we observe the emergence

FIG. 1. Nontrivial scaling of Ṡ across a PT -breaking phase
transition in a nonreciprocal system. (a) For D ¼ 10−7, we
identify a non-trivial scaling in the entropy production rate in
the binary system governed by Eq. (8), with a discontinuous
derivative (inset) at a critical value of the nonreciprocal coupling
α ¼ αc. [Numerical simulations: symbols; analytic results from
Eqs. (13) and (15): solid lines.] (b) Discontinuity in the scaling of
Ṡ coinciding with the breaking of PT symmetry, characterized
by the nonzero value of the polar order parameter J ð0Þ for the
deterministic equations [i.e., D ¼ 0 in Eq. (8)]. The critical
nonreciprocal coupling corresponds to a transition between
(c) static states and (d) dynamic states (traveling waves). The
simulations were run for parameter values L ¼ 2π, γ1 ¼ 0.04,
γ2 ¼ 0, χ1 ¼ −0.05, χ2 ¼ 0.005, and κ ¼ 0.005.
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of a nonzero global polar order J [see Figs. 1(b)–1(d)], as
defined by

J ¼ 1

τ

Z
τ

0

dt
Z

L

0

drhϕ2∂rϕ1 − ϕ1∂rϕ2i ð10Þ

Indeed, the integrand in (10) represents the net flux
through a point in space averaged over realizations of the
noise and is derived as the real-space representation of the
probability current for the complex-valued field A ¼ ϕ1 þ
iϕ2 (see Ref. [54] for details). Thus, this order parameter
becomes nonzero when the stationary interacting fields are
out of phase in such a way that explicitly breaks the joint
PT ∶ r; t ↦ −r;−t symmetry. As discussed in [20], this
transition to a dynamic phase is thus an example of PT -
symmetry breaking transition, where the asymmetric dis-
tribution of the fields leads to an imbalance of effective
forces and thus persistent motion in the macroscopic
dynamics [17–20,66]. In principle, adding noise to the
systemwill induce a nonzero rate of reversals in the traveling
wave solutions. Although these are rare in the weak noise
strength regime, the thermodynamic quantities derived
below are valid for the dynamics between reversal events.
Emergence of macroscopic dynamics and entropy pro-

duction.—This second-order transition to motion controlled
by α coincides with the nontrivial scaling of the entropy
production rate as seen in Fig. 1. We now formally connect
these two phenomena by identifying the contribution of the
macroscopic dynamics to the steady-state entropy produc-
tion rate. To do so, we consider a change of variables to
rewrite Eq. (9) in the comoving frame of reference. We let
vðαÞ denote the velocity of the traveling wave solution [see
Fig. 2(a)] and proceed to the transformation ðr0; t0Þ ¼
½r − vðαÞt; t�. We denote the fields ϕi in this new frame
of reference by Φi, such that the time derivatives in Eq. (9)
take the form ϕ̇i → Φ̇i − vðαÞ∂r0Φi and the entropy pro-
duction rate now takes the form Ṡ ¼ ṠAðαÞ þ ṠBðαÞ with

ṠA ¼ lim
τ→∞

α

Dτ

Z
τ

0

dt0
Z

L

0

dr0
�
Φ1Φ̇2 −Φ2Φ̇1

�
; ð11aÞ

ṠB ¼ lim
τ→∞

αvðαÞ
Dτ

Z
τ

0

dt0
Z

L

0

dr0
�
Φ2∂r0Φ1 −Φ1∂r0Φ2

�
:

ð11bÞ
As seen in Fig. 2(b), we observe that ṠA ∝ α2 inde-

pendently of the traveling wave speed; it describes the
entropy production due to the nonequilibrium suppression
of fluctuations in a stationary phase-separated system,
reminiscent of the entropy production observed in Active
Model B [34,35], which also scaled quadratically with the
nonequilibrium contribution to the dynamics [47].
The second term ṠB captures the contribution of the

macroscopic motion to the total entropy production rate,
vanishing when vðαÞ ¼ 0. Strikingly, the integral contri-
bution to ṠB is exactly the global polar order parameter

defined in Eq. (10), which implies ṠB ¼ αvðαÞJ =D and
thus provides a direct link between the macroscopic
dynamics and IEPR, i.e., TRS breaking.
Weak-noise expansion.—From Eq. (4), we expect that

signatures of TRS breaking are most striking when the
noise is weak. In this regime, we can make progress
towards evaluating Eq. (11) analytically by expanding each
of the fields perturbatively around the deterministic sol-
ution (D ¼ 0):

Φiðr0; t0Þ ¼ Φð0Þ
i ðr0Þ þ

ffiffiffiffi
D

p
Φð1Þ

i ðr0; t0Þ
þDΦð2Þ

i ðr0; t0Þ þOðD3=2Þ: ð12Þ

Taking a time derivative of Eq. (12), one can derive

governing equations for the dynamics of each field ΦðjÞ
i ,

which are independent of D [57]. The two distributions

Φð0Þ
i are given by the deterministic solutions to Eq. (8) in

the frame of reference ðr0; t0Þ.
Substituting Eq. (12) into Eq. (11a), the terms of order

OðD−1Þ andOðD−1=2Þ disappear in the expansion for ṠA at
steady state [57]; to leading order, this contribution reads

ṠA ¼ αIAðαÞ þOðD1=2Þ ð13Þ

with

FIG. 2. Evaluation of contributions to entropy production rate
Ṡ. (a) Transition to motion for nonreciprocal coupling strengths
exceeding critical value, αc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ χ22

p
. (b) Numerically evalu-

ated contribution ṠA shown to scale quadratically with the
nonreciprocal parameter α. (c) A second contribution ṠB to
the entropy production rate stems directly from the emergence of
macroscopic dynamics as exhibited in (a).

PHYSICAL REVIEW LETTERS 131, 258301 (2023)

258301-4



IAðαÞ ¼ lim
τ→∞

1

τ

Z
τ

0

dt
Z

L

0

dr
�
Φð1Þ

1 Φ̇ð1Þ
2 −Φð1Þ

2 Φ̇ð1Þ
1

�
: ð14Þ

Therefore, ṠA ∝ D0 in the small D regime, which we
confirm against numerical results in Fig. 3. To obtain a

closed analytic expression, we require the form of Φð1Þ
i , but

the governing equations for these fields (derived in [57]) do
not generally admit analytic solutions.
To leading order, we further write that

ṠB ¼ αvðαÞ
D

J ð0Þ þOðD−1=2Þ; ð15Þ

where J ð0Þ denotes the global polar order parameter
evaluated in the deterministic limit

J ð0Þ ¼ lim
τ→∞

1

τ

Z
τ

0

dt0
Z

L

0

dr0
�
Φð0Þ

2 ∂r0Φ
ð0Þ
1 −Φð0Þ

1 ∂r0Φ
ð0Þ
2

�
;

ð16Þ

Note that we have discarded the average over noise
realizations as—by construction of the expansion in
Eq. (12)—we only require analytic expressions for the

deterministic solutions Φð0Þ
1 and Φð0Þ

2 to Eq. (8) to write the
leading order contribution to ṠB.
When jχ1=γ1j≳ ð2π=LÞ2, one can argue that only the

lowest allowed wave number mode q ¼ 2π=L is linearly
unstable and it is expected to dominate the structure of the
stationary distributions in a Fourier series expansion [57],
which is not expected in general [67]. We can then proceed
to a one-mode approximation for the stationary distribu-

tions, in effect writing Φð0Þ
i ðr0Þ ∝ cosð2πr0=L − θiÞ, where

θ1 can be set to zero by translational invariance and θ2 sets
the difference in phase of the distributions [20].
In the case where L ¼ 2π, we find under this one-mode

approximation that

J ð0Þ ¼ 8πvðαÞðχ1 þ χ2 þ γ1Þ
ðκ − αÞ ; ð17Þ

giving us a closed-form analytic expression for ṠB to
leading order [57]. Overall, we conclude that ṠB ∝ D−1 in
the small D regime which agrees with our numerical
results. Interestingly, the parameter space corresponding
to the existence of a traveling wave solution is a subset of
the space required for ṠB > 0, guaranteeing that the second
law of thermodynamics is strictly satisfied. Strikingly, we
also recover an expression relating the entropy production
rate, the traveling wave velocity and diffusion coefficient:
ṠB ∝ v2ðαÞ=D, which becomes more accurate when
α ≫ κ. This exact scaling relation appears when studying
the entropy production rate for a self-propelled particle with
propulsion speed v and diffusion coefficient D [45,46].
Discussion and outlook.—We have studied the TRS

breaking implications of nonreciprocal couplings in active
field theories. Using our results for generic mixtures of
conserved active fields with additive and independent noise
terms, we quantified TRS breaking in a binary mixture of
nonreciprocally coupled scalar fields. We observed non-
trivial scaling in the IEPR across the transition from a static
to dynamic phase, driven by the breaking of PT symmetry.
We quantify precisely the scaling of the informational
entropy production across the exceptional point, a previ-
ously unexplored perspective in addressing phase transi-
tions for scalar active matter models, where perturbative
renormalization group approaches have been employed
[68,69]. Similar nontrivial scalings have been observed in
self-propelled microscopic systems at the transition to
collective motion [50,51], suggesting a more general link
between the thermodynamic properties of nonequilibrium
systems and PT -symmetry breaking transitions. We elu-
cidate this in the nonreciprocal Cahn-Hilliard (NRCH)
model, identifying a contribution to the IEPR that depends
explicitly on the order parameter quantifying the emer-
gence of motion at the macroscale. The deterministic
NRCH model has also been shown to capture the universal
amplitude dynamics near a conserved-Hopf instability,
ubiquitous in active systems with two conservation laws
[73]. We note that a recent study obtained independently
results consistent with the theory we present in this Letter,
see Refs. [70–72]. As we focused on the weak-noise limit, a
regime which displays model-independent universality, we
thus believe that our analytical results may hold for other
out-of-equilibrium pattern-forming systems in biology.
Future studies will extend this work to a broader class of

active mixtures, including, for instance, the presence of
nonconservative dynamics, such as Markovian switching

FIG. 3. Scaling of ṠA and ṠB in the weak-noise regime. Given
in the regime α > αc to ensure that both contributions to Ṡ are
nonzero, we confirm through the numerical simulations (sym-
bols) the analytic results obtained through the one-mode approxi-
mation (solid lines): ṠA ∝ D0 [Eq. (13)] (prefactor determined by
fitting numerical data) and ṠB ∝ D−1 [Eq. (15)].
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modeling chemical reactions [74–76] or microscopic
changes of state [38,77–79]. Extending the methodology
to systems with correlated or multiplicative noise remains a
challenge; the corresponding problem for isolated active
fields was recently studied [80–83]. Altogether, we expect
that establishing a framework to analyze the nonequili-
brium thermodynamic properties of complex active and
living systems will quickly draw considerable attention.
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