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Abstract

Decreased long-range temporal correlations (LRTC) in brain signals can be used to

measure cognitive effort during task execution. Here, we examined how learning a

motor sequence affects long-range temporal memory within resting-state functional

magnetic resonance imaging signal. Using the Hurst exponent (HE), we estimated

voxel-wise LRTC and assessed changes over 5 consecutive days of training, followed

by a retention scan 12 days later. The experimental group learned a complex visuo-

motor sequence while a complementary control group performed tightly matched

movements. An interaction analysis revealed that HE decreases were specific to the

complex sequence and occurred in well-known motor sequence learning associated

regions including left supplementary motor area, left premotor cortex, left M1, left
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pars opercularis, bilateral thalamus, and right striatum. Five regions exhibited moder-

ate to strong negative correlations with overall behavioral performance improve-

ments. Following learning, HE values returned to pretraining levels in some regions,

whereas in others, they remained decreased even 2 weeks after training. Our study

presents new evidence of HE's possible relevance for functional plasticity during the

resting-state and suggests that a cortical subset of sequence-specific regions may

continue to represent a functional signature of learning reflected in decreased long-

range temporal dependence after a period of inactivity.

K E YWORD S

Hurst Exponent, Learning, long-range temporal correlations, Motor Sequence Learning,
Plasticity, resting-state, self-similarity

1 | INTRODUCTION

Brain activity from blood oxygenation level dependent (BOLD) func-

tional magnetic resonance imaging (fMRI) data has been shown to

exhibit long-range temporal correlations (LRTC) indicating self-similar

properties—a phenomenon whereby small components of a complex

system share the same structure and behavior as their larger counter-

parts (see Campbell & Weber, 2022, for a comprehensive review).

A growing body of research in fMRI and electroencephalography

(Barnes et al., 2009; Churchill et al., 2014; Churchill et al., 2016;

Colosio et al., 2017; He, 2011; Irrmischer et al., 2018; Wink

et al., 2006) has shown that more effortful/stressful conditions exhibit

greater reductions in long-range temporal dependence during tasks.

Based on this work, the “suppression” of signal self-similarity has

been proposed as a generalizable neuroimaging marker for neuronal

recruitment or higher cognitive effort (Kardan et al., 2020). Interest-

ingly, higher temporal signal variability—which itself is reflected in

lower self-similarity—has been linked to greater brain efficiency and

cognitive flexibility (McIntosh et al., 2010; Tognoli & Scott

Kelso, 2014). Due to its relevance in demanding conditions and its

association with cognitive effort, brain efficiency, and cognitive flexi-

bility, the Hurst exponent (HE) holds promise for studying learning

and neuroplasticity. This raises the question: Are neuroplastic pro-

cesses reflected by the long-range temporal memory in task-related

brain regions following skill learning?

Previous studies have demonstrated that increasing external

input to the brain, such as through eyes-open versus eyes-closed con-

ditions (Nikulin & Brismar, 2004) or median nerve stimulation

(Linkenkaer-Hansen et al., 2004), leads to temporary transient

decreases in LRTC as measured by the HE. Similarly, Barnes et al.

(2009) observed lower LRTC during cognitive performance that was

followed by recovery to baseline levels �15 min after completing the

task. These and similar studies have proposed that there are baseline

levels of self-similarity that are temporarily disturbed by active tasks

/cognitive effort (Barnes et al., 2009; Churchill et al., 2016; Tetereva

et al., 2020; Wenger et al., 2017). Other studies have reported that

increased LRTC in resting state data is reflective of prior task

performance (Mahjoory et al., 2019; Samek et al., 2016; Wink

et al., 2006). In addition, baseline self-similarity levels have also been

shown to be altered in clinical populations and as an effect of aging

(Dong et al., 2018; Maxim et al., 2005; Sokunbi et al., 2014; Suckling

et al., 2008; Wei et al., 2013; Wink et al., 2006) providing further evi-

dence that they are subject to change. Finally, recent research has

shown that LRTC's at rest in cortical areas are at least partially

explained by the eigenvector centrality (EC) of the connected white

matter (Neudorf et al., 2020), supporting the idea that structural

changes may also be paralleled by changes in long-range temporal

dependence. Here, we sought to investigate directly how and whether

self-similar baseline levels at rest would be affected by an ongoing

active learning period and if so, whether changes in LRTC's properties

would return to pretraining levels after some time without training.

In our recent study (Jäger et al., 2022), we explored functional

neuroplasticity following sequence-specific motor sequence learning

(MSL) using time series cross-correlations and graph network-based

analysis with EC mapping and found a prominent role for the supple-

mentary motor area (SMA). The current study builds upon this work

to establish the utility and efficacy of HE as a potential new indicator

of identifying functional neuroplasticity in response to MSL. Given

that HE is computed on a single region/voxel's time series, and that

fluctuations in the time series signal are a function of activity in con-

nected regions, we hypothesize that HE changes across learning will

reflect altered training-related connectivity and information proces-

sing in the brain. The longitudinal design of our experiment also gave

us the opportunity to investigate the progression of long-range tem-

poral dependence in rs-fMRI over time.

2 | METHODS

As a brief overview, twenty participants were trained on a complex

visuomotor pinch-force MSL task (Gryga et al., 2012) and matched to

a nonlearning control group to precisely identify task-specific changes

in self-similarity. The task was trained on 5 consecutive days (�12 min

per day), with two additional sessions: one familiarization session
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3 days prior and one retention session after the training period

(12 days later). We assessed scale-free dynamics with the HE esti-

mated from detrended fluctuation analysis (DFA), a mathematical

method used to investigate the presence of long-range correlations,

or fractal-like patterns, in time series data (for a more detailed descrip-

tion see the section “Detrended Fluctuation Analysis”). Whole brain

HE maps were computed before (on day 1) and after learning the task

(on day 5) as well as 12 days after no additional training took place.

The present data has been published in previous studies, which

focused on measures of functional connectivity and white matter

changes, respectively (Jäger et al., 2022; Tremblay et al., 2021). The

majority of the methods have previously been described in detail in

(Jäger et al., 2022) and will briefly be presented here.

2.1 | Participants

Participants were recruited at the Max Planck Institute for Human

Cognitive and Brain Sciences (Leipzig, Germany) and the study design

was approved by the Leipzig University ethics review board. The sam-

ple size was 40 (22 females, right-handed) with 20 participants

(11 females) being randomly assigned to the experimental group and

20 (10 females) to the control group (age range = 20–32). While the

experimental group learned a complex visuomotor sequence (first pre-

sented in Gryga et al., 2012, see Figure 1a), the control group exe-

cuted a simple sinusoidal sequence matched for motor execution. The

experimental design consisted of a familiarization session, 5 consecu-

tive days of training, and a retention session after 12 days, see

Figure 1c.

3 | EXPERIMENTAL DESIGN

3.1 | Task and stimuli: Sequential pinch force task

Participants used their index fingers and thumb to generate a pinching

force onto a device that measured force 80 times per second. On a

screen, participants were presented with a rectangular yellow force

bar (FOR) representing the pinching force. Movement of the bar

(height of the bar over time) was controlled by pinching the device

(see Figure 1b)—where stronger force led to greater height of the bar.

The level of force was set to 5%–30% of each participant's measured

maximum force (measured at the start of the first session) to match

relative effort across participants. Participants were instructed to

match the height of the FOR bar to the height of an adjacent blue

rectangular reference (REF) bar that moved up and down according to

a preprogrammed sequence by pinching the device accordingly. The

movement of REF was controlled under three different conditions:

learning (LRN: complex sequence, REF bar moves according to a com-

plex pattern), simple control (SMP: simple sequence, REF moves up

and down in a sinusoidal manner), and rest (RST: resting condition, no

moving bars) (Gryga et al., 2012). SMP was matched to LRN for the

total magnitude of force, frequency of maximum power, duration, and

range of force. Therefore, both groups executed the same type of

movements by varying pinch force over time but differed in the

extent of learning required to accurately perform the sequence. Con-

sequently, the behavioral improvement during LRN provides informa-

tion about sequence-specific learning when contrasted with SMP.

During training, each condition was administered for 18 s per trial and

structured into blocks, where one block consisted of three LRN, SMP,

and RST trials. For each training day, the LRN group performed three

blocks (nine trials), whereas the SMP group performed the same

amount of blocks without the LRN condition (LRN was replaced by

SMP). Participants received feedback on their performance in terms

of average accuracy in matching the heights of the FOR and REF bars

in the LRN and SMP condition at the end of each block.

3.2 | Training and experimental procedure

MSL trials consisted of participants performing the sequential pinch

force task (SPFT) during five training sessions (d1–d5) preceded by a

familiarization session (d0) and followed after 12 days by a retention

session (d17). The measurements took place inside the MRI scanner

on five of the seven training days (d0, d1, d2, d5, and d17), whereas

two sessions took place inside a testing room outside of the scanner

(d3 and d4). We included three of these MRI measurements in the

current analyses (d1, d5, and d17) representing the overall learning

period as well as retention (Jäger et al., 2022). We chose those three

timepoints because the behavioral analysis and our previous results

F IGURE 1 (a) The two
sequences: LRN (blue) & SMP
(green), (b) the pinch force device,
and (c) the general procedure and
study design. Behavioral training
took place on 5 consecutive days
and again 12 days later, whereas
rsfMRI data were collected on d1,
d5, and d17.
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demonstrated an accurate representation of performance improve-

ments representative of learning the task between d1 and d5 and

because we were further interested in the temporal dynamics of

learning-related self-similarity following the training period.

3.3 | Scanning protocol

MRI scans were conducted using a 7 Tesla MAGNETOM scanner

from Siemens Healthcare situated at the Max Planck Institute for

Human Cognitive and Brain Sciences in Leipzig, Germany with a

32-channel Nova head coil was also utilized. RsfMRI scans comprised

of echo planar imaging (EPI) BOLD with 1.2 � 1.2 � 1.2 mm resolu-

tion, 512 volumes, field of view (FOV) = 192 � 192 mm2, slice accel-

eration factor: 2 and 102 slices; generalized autocalibrating partial

parallel acquisition (GRAPPA) = 2 and partial Fourier 6/8; repetition

time (TR) = 1130 ms; echo (TE) = 22 ms; flip angle = 40� and band-

width 1562 Hz/Px. They were acquired over 10 min while partici-

pants kept their eyes open and attended to a fixation cross

approximately 20 min prior to acquiring the task-based fMRI data.

Additionally MP2RAGE images had 0.7 � 0.7 � 0.7 mm resolution,

with an FOV = 224 � 224 � 240 mm3, 240 slices; TR = 5000 ms;

TE = 2.45 ms; flip angle 1 = 5�, flip angle 2 = 3�, bandwidth 250 Hz/

Px. Fieldmaps had a 2 � 2 � 2 mm resolution with an FOV

256 � 256 mm2 having 80 slices; TR 18 ms; TE1 4.08 ms;TE2

918 ms; flip angle 10� bandwidth 300 Hz/Px.

3.4 | Image processing

Preprocessing of functional images was implemented using Nipype

(Gorgolewski et al., 2016) and Nilearn (v0.2.3, Abraham et al., 2014;

Pedregosa et al., 2011). The first five volumes of the rsfMRI EPI

sequence were removed and the remaining images underwent motion

correction (Roche, 2011) as well as fieldmap correction with FUGUE

(Jenkinson, 2004; Jenkinson et al., 2012). Average brain signal and

motion-related outliers were removed through ArtifactDetect along-

side white matter and cerebrospinal fluid signals (high_variance_con-

founds/Nilearn). Afterward, the time series' variance was normalized,

bandpass filtered between 0.01 and 0.1 Hz and smoothed with a

3.6 mm Gaussian kernel (Poldrack et al., 2011) before DFA computa-

tion for HE maps generation in native space. To bring these maps into

montreal neurological institute (MNI) space for group analysis, Jäger

et al.'s (2022) longitudinal co-registration pipeline were used, which

included 12 d of linear transformation nonlinear SYN transformations

conducted with advanced normalization tools (Avants et al., 2009)

and implemented with the CBS Tools (Bazin et al., 2014). Intermediate

procedures such as tissue segmentation, masking, or generating trans-

formation maps between native/group/MNI spaces were also con-

ducted with CBS Tools. All scripts related to this preprocessing are

available at https://github.com/AthSchmidt/MMPI/tree/master/

preprocessing.

3.5 | Detrended fluctuation analysis

DFA is a commonly used method to study self-similarity based on

analyzing the temporal autocorrelation of time series (Hardstone

et al., 2012). It calculates the HE, a robust estimate of the degree of

self-similarity of a temporal signal (Churchill et al., 2016; Eke

et al., 2012; He, 2011). For brain imaging data, DFA provides a univar-

iate representation of each region's intrinsic time-varying dynamic

activity, with higher HE indicating highly temporally autocorrelated

signals (greater LRTC), and lower HE indicating lower temporal auto-

correlation (lower LRTC, often interpreted as greater complexity and

variability). Specifically, for time series data, HE reflects the slope

(i.e., least squares fit) of the log–log relationship between the time

window size and the mean variance of linearly detrended cumulative

signal measured in windows of different sizes (Hardstone et al., 2012;

Schaworonkow et al., 2015). In this study, we computed HE using

15 log-spaced windows ranging from a minimum of 10 samples to a

maximum of 57, corresponding to the following number of samples in

each windowing step: 10, 11, 12, 14, 16, 18, 20, 23, 26, 28, 32, 39,

43, 47, and 57. HE values in the range of 0.5–1 reflect persistent

long-range dependencies increasing toward 1, whereas 0.5 reflects a

random (white noise) uncorrelated process (Campbell & Weber, 2022;

Hardstone et al., 2012).

4 | STATISTICAL ANALYSIS

4.1 | Baseline HE changes prior to training

We first set out to confirm that baseline HE maps between the two

groups did not differ before the training period by conducting inde-

pendent t-tests on d0 and d1 (d0: LRN vs. SMP; d1: LRN vs. SMP)

with SPM (Friston et al., 1994). All whole brain analyses were

assessed for significance using cluster correction (primary cluster-

forming threshold = p < .001) and false discovery rate (fdr) correction

(p < .05) (Woo et al., 2014).

4.2 | Behavioral analysis

The results of the behavioral data analysis conducted in two earlier

studies (Jäger et al., 2022; Tremblay et al., 2021) were used for visuali-

zation (Figure 2) and to determine which timepoints should be corre-

lated with behavior. Further details can be found in those prior

studies.

4.3 | Sequence-specific learning

To conduct the interaction analysis, a flexible factorial design for lon-

gitudinal data from the CAT12 toolbox (http://www.neuro.uni-jena.

de/cat/) was used. The design included two factors, group (LRN/SMP)

4 JÄGER ET AL.
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and time (d1 and d5), and we conducted separate analyses to identify

both increases and decreases across time. Subsequently, to under-

stand which group was driving the effect, the magnitudes of HE

changes were calculated within any significant region of interest (ROI)

and compared between groups. Consistent with our previous work

(Jäger et al., 2022), we defined sequence-specific change as any signif-

icant interaction where change was greater in the LRN group than it

was in the SMP group.

4.4 | Quality control—Impact of motion on results

Framewise displacement (FD) was computed to assess the potential

influence of in-scanner motion on the results. Mean FD (meanFD)

was separately calculated for d1 and d5 (the sessions of interest) in

each participant of the learning group. The absolute translational dis-

placement was calculated by finding the absolute differences in the

translation parameters between consecutive time points, representing

the subject's movement in the x, y, and z directions. Absolute rota-

tional displacement was calculated similarly, by determining the abso-

lute differences in the rotation parameters between consecutive time

points, with a conversion from radians to millimeters. The absolute

translational and rotational displacements were combined to derive

the absolute FD for each time point. Finally, the mean FD was

obtained as the average of all absolute FD values across all time

points (Power et al., 2012). MeanFD value changes between d1 and

d5 were then correlated with the corresponding HE changes from all

significant clusters obtained in the initial interaction analysis and cor-

rected for multiple comparisons.

4.5 | Correlations with behavioural improvement

Significant clusters from the interaction analysis were considered

ROIs that constitute the sequence-specific learning network. To test

whether the change in HE in those regions was related to behavioral

improvement, we correlated (using Pearson's coefficient) the overall

performance improvements with values from the identified

sequence-specific learning network. In our previous study, we found

that learning plateaued on d4 of the training period (Figure 2), providing

evidence that the overall behavioral learning period took place between

d1 and d4. Therefore we operationalized overall learning as the differ-

ence between the last block of d4 and the first block of d1 (d4b3-d1b1)

on temporal synchronization (SYN). Considering that MR data was not

collected on d4 and that on scanning days the rsfMRI acquisition was

collected before task performance, we chose d5 as the most appropri-

ate measurement to represent the brain's functional state at this time

point. The mean difference (d5–d1) was calculated for each ROI in each

participant and then correlated with the performance improvement in

SYN using pearsonr from Scipy (Virtanen et al., 2020).

Additional correlation analyses were conducted to test whether

HE values before, during, and after learning were correlated with

behavioral improvements (Mahjoory et al., 2019; Samek et al., 2016;

Wink et al., 2006) to identify potential behavioral relevance. For these

analyses, we correlated mean HE within each ROI on d1, d5, and d17

with the previously calculated behavioral improvement (SYN

d4b3-d1b1). The resulting correlations were corrected with fdr cor-

rection for multiple comparisons using the p.adjust function in R

(R Core Team, 2021). Visualizations were created in Python with sea-

born (Waskom, 2021) and matplotlib (Hunter, 2007).

4.6 | Maintenance versus recovery at posttraining
retention

Finally, to examine the HE trajectories after training, namely whether

HE would return to baseline levels (Barnes et al., 2009) or stay altered

after 2 weeks without training, ROI mean values were extracted from

all significant clusters previously found in the interaction analysis

and single sample paired t-tests were conducted between d1/d17 and

d5/d17 within the LRN group. When there was a significant differ-

ence between d1 and d17 but not d5 and d17, clusters were catego-

rized as showing no recovery to baseline. When there was no

significant difference between d1 and d17 but there was between d5

and d17, ROIs were categorized as returning to baseline. For valida-

tion purposes, we also further explored the retention period with an

interaction analysis and have included these results in Supplementary

Figure S2.

5 | RESULTS

5.1 | Baseline HE changes prior to training and the
potential effects of motion

There were no significant differences in HE between groups before

training on either d0 (all p[fdr] > .673, k < 86) or d1 (all p[fdr] > .184,

all k < 63). There was also no significant correlation between meanFD

changes between d1 and d5 and HE changes between d1 and d5 (all p

[bonferroni] > 0.47).

F IGURE 2 The temporal synchronization (SYN, in ms) results for
both groups (LRN and SMP) across all days (d1–d17). Error bars
reflect the standard error of the mean, with LRN values calculated by
averaging 3 trials � 3 blocks per day and SMP values obtained from
averaging 6 trials � 3 blocks per day.
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5.2 | Sequence-specific learning

Significant between-group interaction effects from d1 (prior to active

training) to d5 (after active training) were found in the left SMA & pars

opercularis (PO), left premotor cortex, left primary motor cortex (M1),

bilateral thalamus, right striatum (with a cluster covering the caudate

nucleus and putamen), and left cerebellar lobule H VI/ Crus I

(Figure 3). In all cases, HE values decreased over the course of learn-

ing in the LRN group while they exhibited mean increases in the SMP

group. HE trajectories over the course of the experiment for both

groups in all significant ROIs can be found in the supplementary mate-

rials (Figure S1). Sequence-specific learning effects (i.e., where LRN

elicited a greater change in HE during learning compared to SMP)

were found in all clusters except the Striatum and lobule H VI/Crus I

(Table 1, all p < .05).

5.3 | Correlations with behavioural improvement

There were no significant findings from the initial correlation analyses

between ROI HE difference values (d5–d1) and performance improve-

ment (d4–d1) (all fdr corrected: L SMA: p > .42; L PMC: p > .86; L M1:

p > .88; L PO: p > .30; R thalamus: p > .63; L thalamus: p > .42; R S:

p > .24, L H VI/Crus I: p > .86). However, the subsequent exploratory

correlation analysis between mean HE from sequence-specific learn-

ing clusters (R & L thalamus, R striatum, L SMA & PO) on d5 and the

observed behavioral overall performance improvements in SYN

between between d1 (Block1) and d4 (Block3) d1 and d4 (reflecting

overall performance improvements before data acquisition on d5)

showed significant associations in several of the regions (Figure 4).

Improvements in behavioral performance were negatively correlated

with HE on d5 in the left SMA (all p's fdr corrected: r = 0.63, p = .01),

F IGURE 3 Interaction
effects: Decreases in HE in the
LRN group between d1 and d5 in
the left SMA (slices 50 and 45),
left premotor cortex (slice 69), left
M1 (slice 60), left PO, bilateral
thalamus and right striatum (slice
10) as well as left lobule H
VI/Crus I (slice 27).

TABLE 1 Summary statistics for clusters exhibiting significant time-by-group interactions. Mean differences between d1 and d5 and the
standard error of the mean difference are shown. Sequence-specific regions (where LRN exhibited greater change than SMP, top) and regions
that were not to be found sequence-specific (bottom) are grouped together.

Region MNI coordinates

LRN SMP

Mean change SEM 95% CI Mean change SEM 95% CI

Sequence‐specific clusters

L SMA −14 −13 43 −0.1 0.02 −0.15 to −0.06 0.03 0.02 −0.01 to 0.07

L PO −35 −18 13 −0.1 0.03 −0.14 to −0.04 0.04 0.03 −0.01 to 0.09

R thalamus 13 −17 17 −0.07 0.02 −0.11 to −0.03 0.05 0.03 0.004 to 0.11

L thalamus −8 −14 14 −0.07 0.02 −0.12 to −0.03 0.05 0.03 −0.01 to 0.11

L M1 −17 −14 68 −0.09 0.03 −0.14 to −0.04 0.04 0.03 −0.02 to 0.09

L premotor cortex −18 −26 61 −0.08 0.02 −0.14 to −0.03 0.04 0.03 −0.02 to 0.1

Clusters not showing sequence‐specificity

R striatum 20 8 8 −0.06 0.02 −0.09 to −0.02 0.07 0.02 0.03 to 0.11

L H VI/Crus I −41 −70 −26 −0.06 0.01 −0.09 to −0.03 0.07 0.03 0.01 to 0.13

Note: Mean differences between d1 and d5 and the standard error of the mean difference are shown. Sequence‐specific regions (where LRN exhibited

greater change than SMP, top) and regions that were not to be found sequence‐specific (bottom) are grouped together.
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left PO (r = 0.65, p = .01), right thalamus (r = 0.54, p = .03), left thal-

amus (r = 0.53, p = .03) and right striatum (r = 0.56, p = .03) indicat-

ing that lower self-similarity of the rsfMRI signal following learning

was reflective of higher overall performance improvements.

When investigating the predictive qualities of HE for overall

improvement, further exploratory correlational analyses between HE

on d1 with behavioral improvement did not yield significant results (all

p[fdr] > .623). When investigating whether the maintained decreases

after 2 weeks also correlated with the overall behavioral improve-

ments, we also found no significant relationships (all p[fdr] > .74).

5.4 | Maintenance versus recovery at posttraining
retention

Further investigations of recovery of HE following training showed

region-specific effects. Post hoc tests (d1–d5, d5–d17, and d1–d17)

confirmed significant HE differences between d1 and d5, as previ-

ously identified in the interaction analysis. In five regions including the

left SMA, left M1, left premotor cortex, left PO, and left striatum,

the paired sample t-tests showed a significant difference between d1

and d17 (SMA: p = .0004, M1: p = .008, premotor: p = .015, PO:

p = .011, striatum: p = .039) but not d5 and d17 (all p > .15), suggest-

ing no evidence for the recovery of HE to baseline levels and implying

that the change between d1 and d5 persisted for at least 12 days

without training (Figure 5). On the other hand, HE in the right thala-

mus was significantly different between d5 and d17 (right thalamus:

p = .048) but not between d1 and d17 (p > .2), indicating an HE

recovery towards pretraining levels after 12 days without training.

Finally, d17 HE in the left thalamus and left lobule H VI/Crus I was

neither significantly different from d1 or d5 (all p > .09).

6 | DISCUSSION

This study investigated how changes in LRTC in the rsfMRI BOLD sig-

nal reflect ongoing functional plasticity related to complex sequence

learning. The identified regions displayed a decrease in LRTC, reflec-

tive of sequence-specific learning and performance improvements.

Following a 2-week break from training, LRTC of most regions show-

ing sequence-specific changes did not return to baseline, suggesting

that training-induced specific alterations in functional dynamics may

represent the newly learned skill. We conclude that decreased LRTC

may present as a sensitive measure of neuroplastic change resulting

from complex motor learning.

6.1 | HE is a relevant measure for studying MSL
and plasticity

Our interaction analysis confirmed the involvement of regions often

identified to show learning in the MSL literature (e.g., Bernard &

Seidler, 2013; Dayan & Cohen, 2011; Hardwick et al., 2013; Janacsek

et al., 2020; Kawai et al., 2015; Kornysheva & Diedrichsen, 2014;

Krakauer et al., 2019; Lehéricy et al., 2005; Matsuzaka et al., 2007;

Reithler et al., 2010; Steele & Penhune, 2010; Tanji & Shima, 1994);

including the left SMA, M1, premotor cortex, PO, lobule H VI/Crus I

of the cerebellum, bilateral thalamus and right striatum. These clusters

were characterized by significant decreases in HE over the learning

period from d1 to d5 for the experimental group in contrast to the

control group. By specifying our results to those regions where

the training group exhibited greater change than the control group

(i.e., regions exhibiting sequence-specific plasticity), we identified a

sequence-specific learning network including the SMA, M1, premotor

cortex, left PO, and bilateral thalamus. The SMA, PO, thalamus, and

striatum were also significantly correlated with behavioral perfor-

mance improvements over the learning period. SMA and premotor

cortex have repeatedly been linked to sequence-specific learning

(Berlot et al., 2020; Elsinger et al., 2006; Gaymard et al., 1990; Gerloff

et al., 1997; Grafton et al., 2002; Hardwick et al., 2013; Hikosaka

et al., 1999; Honda et al., 1998; Jenkins et al., 1994; Kincses

et al., 2008; Lee & Quessy, 2003; Mushiake et al., 1991; Penhune &

Steele, 2012; Shibasaki et al., 1993; Shima & Tanji, 2000; Steele &

Penhune, 2010; Tanaka et al., 2010; Vollmann et al., 2013; Wu

et al., 2014; Yokoi & Diedrichsen, 2019). Yet, debates exist regarding

the involvement of M1 (Floyer-Lea & Matthews, 2005; Kami

et al., 1995; Karni et al., 1998; Kawai et al., 2015; Lehéricy

et al., 2005; Penhune & Doyon, 2002; Picard et al., 2013; Wiestler &

Diedrichsen, 2013; Yokoi et al., 2018). Our data suggests that M1 is

involved as evidenced by a larger decrease in LRTC in learners as

compared to the control group. However, activity within M1 and pre-

motor cortex did not correlate with performance. It has been pro-

posed that M1 may be most important for individual finger

movements (Yokoi & Diedrichsen, 2019), which could explain our

findings given LRN had a higher frequency of movements compared

to SMP. Future studies should consider alternative sequences match-

ing each other's movement frequencies to fully understand how M1

contributes to sequence-specific learning mechanisms. Taken

together, our sequence-specific results combined with the significant

relationships with performance improvement strongly support the

SMA, PO, thalamus, and striatum as key regions involved in sequence-

specific learning.

F IGURE 4 Correlations: Significant negative relationships between D5 HE and SYN decreases were observed in left SMA (first row, left
[r = 0.63, p = .01]), left PO (first row, right [r = 0.63, p = .01]), left thalamus (second row, left [r = 0.53, p = .03]), right thalamus (second row,
right [r = 0.54, p{fdr} = .03]) and right striatum (third row, left [r = 0.56, p = .03]). D5 HE values showed no correlation with overall performance
decrease in SYN in the left premotor cortex (third row, right), left M1 (fourth row, left), and left cerebellar lobule H VI/Crus I(fourth row, right).
The shaded areas around the linear slopes represent the confidence interval.
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Our previous study (Jäger et al., 2022) found the right SMA to be

relevant for sequence-specific learning using EC, as supported by

structural data from the same cohort (Tremblay et al., 2021). The cur-

rent results showed HE decreases in left SMA with the identified clus-

ter spanning across both hemispheres, extending our findings to this

region, which has been found relevant for right-hand tasks in prior

studies. HE was found to be more sensitive than EC in detecting

sequence-specific changes. While the use of EC uncovered a notable

sequence-specific effect within a single cluster during an interaction

analysis, the majority of identified clusters displayed more pro-

nounced changes in the control group, thus not meeting the criteria

for being labeled as sequence-specific. In contrast, the HE analysis

predominantly featured results influenced by the learning group,

leading to their classification as a sequence- and, therefore, learning-

specific. This suggests that HE might be a better measure for investi-

gating functional neuroplastic changes following learning. Some first

evidence also suggests, that HE might be less susceptible to the influ-

ence of venous biases (Huck et al., 2023). The high agreement

between our results and the MSL literature supports the hypothesis

that decreases in LRTC reflect cognitive function and neuroplasticity.

6.2 | Understanding HE changes in the context of
plasticity and learning

Our findings have two main implications for neuroplasticity research.

First, decreased LRTC in the resting state can indicate learning. This is

consistent with previous research showing that lower LRTC of brain

signals reflects cognitive effort (Barnes et al., 2009; Churchill

et al., 2014, 2016; He, 2011; Kardan et al., 2020). Our study extends

these findings by showing that this effect persists even while the task

is not being performed. Interestingly, LRTC increased in many of the

ROI's in the control group who only performed the simple sequence

task and experienced no detectable behavioral improvement. We

hypothesize that this increase reflects the release from effortful learn-

ing as a result of automatization and neural efficiency – providing

additional support for the idea that LRTC can be used as an index of

relative cognitive effort and learning. Second, posttask HE values

were negatively correlated with preceding performance enhance-

ments suggesting that behavioral improvements are also reflected in

LRTC and the timing (i.e., decreased LRTC after performance improve-

ment) indicates that it is a plastic change in response to training (Wink

et al., 2006). To our knowledge, our study is the first to show

decreases in LRTC outside of the active training context and during

rest, which in the context of our controlled design can be interpreted

as an indicator of learning.

Interestingly, previous work has linked increased LRTC with bet-

ter behavioral performance (Mahjoory et al., 2019; Samek et al., 2016;

Wink et al., 2006) and, similarly, Tagliazucchi et al. (2013) proposed

that their observed decrease in long-range temporal memory during

non-rapid eye movement (non-REM) sleep was the result of

decreased conscious awareness. Our findings, which reveal decreased

LRTC as a consequence of learning during the resting-state, may ini-

tially appear at odds with these studies – as they suggest that greater

LRTC during rest benefits complex neural information processing and

cognitive processes. However, these studies did not include a tightly

matched control group nor utilize ROIS that were selected to be spe-

cific for the behavioral task for their analyses (but instead used large

networks/areas and whole brain correlations). Taken together with

our findings of increased LRTC in the control group, we hypothesize

that increased LRTC may be a general indicator of overall perfor-

mance/cognitive flexibility, whereas decreased LRTC is a specific indi-

cator of ongoing plasticity in regions that are actively engaged in

processing new information. Furthermore, given the key importance

of sleep in motor learning consolidation (Vahdat et al., 2017), it is

plausible that decreased LRTC during non-REM sleep and the wakeful

resting-state both reflect the ongoing learning process and consolida-

tion. As such, gaining further insights into these questions through

future research would be highly valuable. An intriguing question raised

by our findings is how to understand the meaning of decreases in

temporal self-similarity after learning. Although we currently lack a

complete understanding of the exact mechanisms involved, various

neuroscientific theories shed light on potential explanations for the

observed phenomenon. We can think of lower HE as indicating

greater complexity and variability in the signals over time, essentially

as increased noise in the signal, as opposed to higher similarity, which

corresponds to more consistent, stable, and repetitive signal.

Increased signal variability and noise have been shown to be benefi-

cial for effective brain function and learning (Garrett et al., 2013;

Pinneo, 1966). For instance, research in neural network dynamics and

cellular interactions suggests that networks formed in the presence of

increased noise show an enhanced ability to handle disturbances. This

resilience contributes to better learning, adaptability, and overall opti-

mal function (Basalyga & Salinas, 2006; Faisal et al., 2008) and might

stem from noise reducing the impact of individual nodes within the

network, thus offering protection against disruptions. Another con-

cept, known as stochastic resonance, proposes that introducing mod-

erate noise into a learning system can aid in detecting weak signals,

enhancing the learning processes. (Kitajo et al., 2003; Li et al., 2006;

Lugo et al., 2008; McDonnell & Abbott, 2009; Ward et al., 2006).

Specifically, stochastic facilitation, observed across computational,

animal, and human research, reveals that neural processes can be

F IGURE 5 Paired samples t-tests of ROI timepoints in LRN: Paired sample t-tests were conducted between d5/d17 and d1/d17 in all ROIs of
the identified sequence-specific network. In left SMA (first row, left), left PO (first row, right), left premotor cortex (second row, left), left M1
(second row, right), and right striatum (third row, left) significant differences in mean HE were found when comparing d1 and d17 but not
between d5 and d17. In the right thalamus (third row, left), a significant difference was observed between d5 and d17, but not between d1
and d17.
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more effective when influenced by biologically relevant noise

(McDonnell & Ward, 2011; Ward et al., 2006). Furthermore, higher

signal variability also guarantees a wider dynamic range of responses,

which is crucial for adaptability. Essentially, increased signal variability

can enhance learning by strengthening networks, improving weak sig-

nal detection, and broadening the dynamic range—ultimately facilitat-

ing the brain's adaptability and flexibility.

Another prominent theory for how optimal signal variability is

able to represent brain processing is that of criticality within neuronal

networks (Beggs & Plenz, 2003; He, 2011; Linkenkaer-Hansen, 2003;

Shew & Plenz, 2013; Simola et al., 2017). Brain criticality indicates

that neural networks operate near a tipping point between order and

disorder, allowing for flexibility and adaptation. According to the criti-

cality hypothesis, temporal brain dynamics can be homeostatically

maintained within an optimal (critical/subcritical) dynamic range that

allows for maximally optimized processing, and which can be modu-

lated by task performance.

In this light, our HE decreases from d1 to d5 reflect a perturbation

away from a more critical state during sequence learning – lending

support to previous studies linking decreased HE to higher processing

load or sensory input (e.g., Churchill et al., 2016; Ciuciu et al., 2014;

He, 2011; He et al., 2010; Linkenkaer-Hansen et al., 2004; Nikulin &

Brismar, 2004). In other words, the suppression of HE may be reflec-

tive of changes in functional networks as a result of ongoing synaptic

plasticity related to learning. This appears to be true for cognitive

effort during tasks (Barnes et al., 2009; Churchill et al., 2014; Churchill

et al., 2016; Colosio et al., 2017; He, 2011; Irrmischer et al., 2018;

Wink et al., 2008) and, as our results provide evidence for, throughout

the entire learning period. However, the underlying mechanisms of

this phenomenon are not clear and should explicitly be addressed by

future studies.

Interestingly, our results provide some initial evidence that

task-related regions may continue to play a role in functional repre-

sentation even after training has ceased, potentially indicating their

involvement in long-term sequence representations. However, as per

theories of homeostasis, these maintained changes are unlikely to be

permanent (Churchill et al., 2016; Dong et al., 2018; Ma et al., 2019).

Future research should investigate the persistence of these changes

by exploring long-range temporal memory across different timelines.

Our findings suggest that HE may potentially serve as a biomarker for

neuroplasticity, providing exciting opportunities for investigations in

basic science and clinical rehabilitation research.

6.3 | Limitations

Our study offers valuable preliminary insights into the temporal

dynamics underlying MSL. However, it is important to acknowledge

certain limitations that may impact the interpretation of our findings.

Firstly, the relatively small sample sizes in both the group undergoing

MSL and the control group may affect the statistical power of our

analyses, making it challenging to detect small or moderate effect

sizes. Caution should be exercised when generalizing the results to

larger populations, and future studies with larger sample sizes are

needed to validate and replicate our findings. Secondly, a significant

portion of our analyses were exploratory in nature, driven by the nov-

elty of investigating the HE as a marker of plasticity in MSL. While

these exploratory analyses can provide valuable hypotheses and

insights for the future, they may also suffer from an increased risk of

false positives and the potential for spurious findings. Therefore, our

findings should be considered preliminary and form the basis for tar-

geted hypotheses for future work.

7 | CONCLUSION

Our findings tentatively suggest that decreased LRTC in BOLD rsfMRI

time series indicates functional plasticity after learning, with SMA, PO,

striatum, and thalamus playing a critical role in sequence-specific

motor learning.

We provide evidence to suggest that HE could be considered as

a potentially sensitive regional indicator of learning that is linked to

behavioral improvement—which fits with and extends a wider body

of research highlighting the importance of decreased LRTC as an

indicator for cognitive effort and learning—potentially reflecting a

localized and lasting move away from homeostasis as the task is

mastered and performance improved. Lastly, our results offer initial

insights indicating that decreased long-range temporal memory

resulting from learning may persist for at least 2 weeks after the

conclusion of training.
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