Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pushing the Ag-loading of CO2 electrolyzers to the minimum via molecularly tuned environments

MPG-Autoren
/persons/resource/persons227610

Rettenmaier,  Clara
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22020

Roldan Cuenya,  Beatriz       
Interface Science, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1-s2.0-S266638642300591X-main.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pellumbi, K., Krisch, D., Rettenmaier, C., Awada, H., Sun, H., Song, L., et al. (2023). Pushing the Ag-loading of CO2 electrolyzers to the minimum via molecularly tuned environments. Cell Reports Physical Science, 4(12): 101746. doi:10.1016/j.xcrp.2023.101746.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-275E-E
Zusammenfassung
Electrochemically converting CO2 to renewable synthons is steadily becoming a globally scalable and important CO2 utilization technology. Nevertheless, most industrial endeavors employ catalysts based on metallic Ag or Au, with few catalytically competitive alternatives, showing similar activity, high mass activity, and cost efficiency. Similarly, this effort is hindered by insufficient testing of promising materials in application-oriented conditions. We herein present a holistic pathway starting from the conceptualization of different Ag(I)-based molecular catalysts to their complete integration into directly industrially applicable cell assemblies. Notably, optimization of not only the catalyst but also the operational conditions allowed us to achieve CO2 electrolysis for at least 110 h at 300 mA cm−2 and 80 h at 600 mA cm−2 with an FECO decay rate of 0.01% h−1. Beyond significant mass activity improvements for CO production, we provide the community with a broad toolbox toward improving catalytic and cell performance directly between different cell sizes.