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One of the most common tools for proving behavioral refinements between transition systems is the method

of simulation proofs, which has been explored extensively over the past several decades. Stuttering simulations

are an extension of traditional simulations—used, for example, in CompCert—in which either the source or

target of the simulation is permitted to “stutter” (stay in place) while the other side steps forward. In the

interest of ensuring soundness, however, existing stuttering simulations restrict proofs to only perform a finite

number of stuttering steps before making synchronous progress—a step of reasoning in which both sides of

the simulation progress forward together. This restriction guarantees that a terminating program cannot be

proven to simulate a non-terminating one.

In this paper, we observe that the requirement to eventually achieve synchronous progress is burdensome

and, what’s more, unnecessary: it is possible to ensure soundness of stuttering simulations while only requiring

asynchronous progress (progress on both sides of the simulation that may be achieved with only stuttering

steps). Building on this observation, we develop a new simulation technique we call FreeSim (short for “freely-

stuttering simulations”), mechanized in Coq, and we demonstrate its effectiveness on a range of interesting

case studies. These include a simplification of the meta-theory of CompCert, as well as the DTrees library,

which enriches the ITrees (Interaction Trees) library with dual non-determinism.
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1 INTRODUCTION

Behavioral refinement is a widely-used notion in formal verification for relating two transition
systems. For a given notion of behavior—e.g., (non-)termination, a trace of visible events—a target
system behaviorally refines a source system if the set of behaviors of the target is included in the
set of behaviors of the source. For example, the correctness of a compiler is usually stated as a
behavioral refinement between the source program and the compiled target program, and indeed
verified compilers such as CompCert [Leroy 2006] establish such a result formally. Refinement can
also be used as a technique for program verification; for instance, the verification frameworks [Gu
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Endt[a,b] := print(a).print(b).stop

Runt[a,b] := g.Endt[a,b] +

g.GoPickB[0] + g.GoPickB[1]
GoPickB[a] := g.Runt[a,0] + g.Runt[a,1]

INITIAL: Runt[0,0]

Ends[a,b] := print(a).print(b).stop

Runs[a,b] := g.Ends[a,b] +

g.GoPickA[0] + g.GoPickA[1]
GoPickA[b] := g.Runs[0,b] + g.Runs[1,b]

INITIAL: Runs[0,0]

Fig. 1. An example where asynchronous execution is useful.

et al. 2015; Lorch et al. 2020; Sammler et al. 2019; Turon et al. 2013] establish program correctness by
showing that the program in question refines a more abstract mathematical specification formulated
as a state transition system (STS).
One of the most common tools for proving behavioral refinements is the method of simula-

tions [Milner 1971]. In its simplest form, the simulation technique requires us to (i) specify a relation
C ≾ B on source states B and target states C (called the simulation relation), (ii) ensure that the initial
states of the source and target systems are related by the simulation relation, and (iii) prove that for
any given pair of related states C ≾ B , if the target C can execute a step to C ′, then the source B can
simulate this behavior by stepping to B′, such that again C ′ ≾ B′, while emitting the same visible
events. In this way, simulations offer a way to prove behavioral refinement—a global property
about the entire traces of execution of the two programs—in a temporally local fashion.
Going beyond the basic simulation technique, many extensions have been proposed with the

aim of making simulation proofs simpler and easier to carry out. One example is the large class of
“up-to” techniques, which weaken the proof obligation in condition (iii) above so that C ′ and B′ need
not be related by the simulation relation itself but rather by some larger relation [Pous 2016].
In this paper, we focus on a different but also commonly used extension of the simulation

technique, namely the ability to “stutter”. Specifically, stuttering simulations [Namjoshi 1997]
loosen the requirement in condition (iii) that the steps of the source and target programs must
be synchronous—i.e., matched up one-to-one. Instead, stuttering simulations support what we call
asynchronous reasoning: so long as either the source or target program is only making a “g-step”
(i.e., a step that does not emit a visible event), the other program is allowed to “stutter” (i.e., stay
in its current state and not take a step). This flexibility has been shown to come in very handy in
many proofs [Leroy 2006].

Of course, such stuttering cannot be allowed without any restrictions: if a proof were allowed to
take infinitely many stuttering steps in a row, it would be trivially easy to prove that a terminating
program is in simulation with a program that makes an infinite sequence of g-steps. Hence, to
ensure soundness of the simulation method, stuttering simulations somehow have to ensure that
the proof argument only stutters finitely before eventually taking a step of synchronous progress:
a reasoning step, à la condition (iii), where both source and target programs progress forward
together. As we will see in §2, there are multiple ways to ensure this, either explicitly (using a
well-founded “stutter budget” that decreases at each stuttering step) or implicitly (using a mixed
inductive-coinductive definition to ensure termination of stuttering).

The need for asynchronous progress. In this paper, we observe that the requirement to even-
tually (after finite stuttering) achieve synchronous progress is burdensome and, what’s more, un-
necessary: it is possible to ensure soundness of stuttering simulations without requiring eventual
synchronous progress. In particular, we propose a new proof technique that we call freely stuttering
simulations, which relaxes the condition of synchronous progress to one of asynchronous progress.
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Tomotivate asynchronous progress, let us consider a concrete example: the two transition systems
shown in Fig. 1, expressed in CCS [Milner 1989]. At a high level, both systems nondeterministically
pick two boolean numbers, a and b, using CCS’s choice operator p + q. Initially, a and b are
initialized to zero. After choosing a and b, the systems then nondeterministically either print the
numbers (in the subprocess End[a,b]), or choose new numbers.

The two systems only differ in the order in which they choose a and b: the left system first picks
a, before picking b in the subprocess GoPickB. On the other hand, the right system first picks b,
before picking a in the subprocess GoPickA. Intuitively, both systems are behaviorally equivalent:
the order in which a and b are picked is not part of the system’s visible behavior, as only silent g
actions are taken—only the final print events are visible.
When proving a simulation between these two systems, existing simulations unnecessarily

restrict the proof strategy. To explain the limitation, we focus on the key part of proving the
simulation, starting with the simulation goal Runt[a,b] ≾ Runs[a,b]. In the case that the system
does not terminate and continues execution (GoPickB[0] + GoPickB[1]), we should prove that
we can come back to the original goal (Runt[a,b] ≾ Runs[a,b]) by executing the target (left)
and source (right) systems, and then conclude the proof by coinduction. Ideally, the verification
should work independently of the order in which we execute the target and the source systems.
In particular, due to the non-deterministic choices in this system, we would like to be able to
execute the target and source sides asynchronously: that is, to first execute the target until it reaches
Runt[a,b] in order to witness the values picked for a and b, and only after that execute the source.

However, such a verification is not possible in existing simulations! The reason is simple: existing
simulations require the proof to eventually make synchronous progress, which is achieved when
the source and the target systems take a synchronous step but not when they execute stuttering
steps asynchronously! As a result, the only way to prove this example in existing simulations is to
(1) execute one stuttering step in the target, (2) execute one synchronous step (both in the target
and in the source), and then (3) execute one stuttering step in the source.1 This is clearly fiddly and
inconvenient: it means that the user needs to understand the system in detail before starting the
verification in order to execute a synchronous step at just the right point.

Introducing: freely-stu�ering simulations. In this paper, we propose a new approach to
ensuring soundness of stuttering simulations, which we dub FreeSim (short for “freely-stuttering
simulations”).
With FreeSim, we lift the rigid restrictions of existing simulations and allow proofs to stutter

freely so long as they eventually make asynchronous progress. In FreeSim’s simplest form, the
simulation is equipped with two boolean flags, denoting whether the target and source programs
have taken a step, respectively. Executing a step in the target sets the target flag to true, while
executing a step in the source does the same for the source flag. Finally, when applying a coinductive
hypothesis (e.g., when reaching Run[a,b] on both sides in the above example), FreeSim ensures
that asynchronous progress has been made by requiring both boolean flags to be set to true. This
prevents unsound circular reasoning much like the requirement for synchronous progress in
previous simulations, but—crucially—it allows progress to be achieved even when the target and the
source steps are made completely independently (as stuttering steps). For example, in the context
of our motivating example, FreeSim allows us to write the proof the way we wanted: the target
can first freely execute stuttering steps until it reaches Runt[a,b], then the source freely executes
stuttering steps until it reaches Runs[a,b], and since each side independently took at least one
step, asynchronous progress has been achieved, and we can conclude the proof.

1“Executing a stuttering step” is a shorthand for saying “executing a (g-)step while the counterpart stutters”.
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In addition, FreeSim is designed to subsume both explicit and implicit stuttering: the proofs
enabled by simulations with implicit and explicit stuttering can be exactly replayed in simulations
designed with FreeSim. This in turn means that FreeSim enjoys the complementary benefits of
both, enabling new kinds of proofs that combine the benefits of both sides.
We emphasize that it is not our goal to come up with a simulation that has additional proof

power over existing ones: indeed, we prove that simulations with explicit and implicit stuttering
are equivalent to FreeSim. However, FreeSim provides a better interface to the user, allowing more
flexibility in completing the proof.

Enabling metatheoretic results. A further major benefit of FreeSim is that it allows one to
simplify the simulation’s definition, making the proof of meta-theoretic results about the simulation
much more feasible. This holds especially true once our simulation needs to handle more primitives
for more complex systems. As a case in point, we consider Interaction Trees [Xia et al. 2019] (which
can be seen as state transition systems with additional structure, thus enjoying more interesting
metaproperties) with dual non-determinism (both demonic and the angelic non-determinism). As a
result, we provide the first equational theory for Interaction Trees with dual non-determinism. The
proofs involve non-trivial induction-coinduction techniques, and our simplified simulation relation
was indeed the key enabler for this result.

Contributions. This paper develops the idea of FreeSim, making the following contributions:

• FreeSim: we propose a novel stuttering simulation allowing fully asynchronous reasoning (§3).
• We show that while FreeSim is propositionally equivalent to existing stuttering simulations (§5),
it strictly subsumes existing ones in terms of user interface (§3.3). To formally capture the idea of
such a “subsumption” in user interface, we devise a novel notion dubbed replayability.
• We show that FreeSim allows new forms of reasoning via stronger reasoning principles (§3.2).
• We show that FreeSim supports simpler definitions, especially when adding new primitives (§3.4
and §5).
• We formalize FreeSim and prove its key properties including adequacy (§4).
• We showcase the utility of FreeSim with two case studies: we use it to simplify the meta-theory
of CompCert, and develop the DTrees library, which is an extension of the ITrees (Interaction
Trees) library enriched with dual non-determinism (§6).

All our results are formalized in Coq and available in the accompanying supplementary mate-
rial [Cho et al. 2023].

2 BACKGROUND

Before we begin, we first setup a few basic notations and definitions for the rest of the paper. The
simulation relations we discuss in this paper are centered around STS, which are defined as follows:

{- ∈ Set, G0
4
↩→ G1 ∈ P(- × E × - ), init ∈ -, sort ∈ - → Sort}

Sort ≜ { Tau } ⊎ { Vis } ⊎ { Ret(r) }
(State Transition System)

- is a set of states, G0
4
↩→ G1 denotes a transition from a state G0 to G1 emitting an event 4 (which

could be a silent event, g), and “init” is the initial state. Additionally, without loss of generality,
we assume that each state is classified (by the “sort” component) as one of the sorts Tau, Vis, or
Ret. Ret states are final and do not have any outgoing transitions. Tau states can have an arbitrary
number of outgoing transitions, but all of them should be silent (g ). Conversely, Vis states can have
at most one outgoing transition, and this transition is observable. Any STS can be normalized (with
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step-tgt
sort(t) = Tau ∀C

g
↩→ C ′ . ∃8′ < 8 . SR ⊢ C ′ −≾8′ B

SR? ⊢ C −≾8 B

step-src
sort(s) = Tau ∃B

g
↩→ B′ . ∃8′ < 8 . SR ⊢ C −≾8 B

′

SR? ⊢ C −≾8′ B

step-both
∀C

4
↩→ C ′ .∃B

4
↩→ B′ . ∃8′ . SR ⊢ C ′ −≾8′ B

′

SR? ⊢ C −≾8 B

return
sort(t) = sort(s) = Ret(r)

SR? ⊢ C −≾8 B

Rules for program execution

adeqacy

(init(T), init(S), 8) ∈ SR ∀(C, B, 8) ∈ SR. SR ⊢ C −≾8 B

T ⊑beh S

coind
(C, B, 8) ∈ SR

SR ⊢ C −≾8 B

Rules for coinduction

Fig. 2. Interface of the explicit stu�ering simulation.

minor local adjustments) to a (behaviorally) equivalent STS satisfying these axioms around Sort.
We assume these axioms to simplify our presentation.

In the rest of the section, we discuss existing definitions for stuttering simulations on STS, i.e.,
relations that relate a target and source STS. We start by explaining the “interfaces” (in terms of
proof rules) of the existing techniques with a focus on how they enforce finite stuttering: we discuss
explicit/implicit stuttering simulations (ESim/ISim) in §2.1/§2.2. While ESim and ISim both have a
sophisticated coinductive definition, their high level user interfaces are easy to understand. Finally,
we revisit the example from Fig. 1 to understand their limitations (§2.3).

2.1 Explicit Stu�ering Simulation

The interface for the ESim (using notation
−
≾) is given in Fig. 2. With these rules, a simulation proof

proceeds as follows. It begins by applying adeqacy with the simulation relation SR of choice. SR
is a ternary relation between target states, source states, and “stuttering indices” I equipped with

a well-founded order <. Then, one is left with proving SR ⊢ C
−
≾8 B for each triple (C, B, 8) ∈ SR

where the boxed SR on the left denotes guarded coinductive hypotheses. Each proof proceeds by
applying the rules for program execution (upper box in Fig. 2) and can be concluded by either
reaching a final state (return) or appealing to the coinductive hypothesis (coind). For the latter to
work, coinductive hypotheses should have been unguarded as denoted by the dashed-box notation.
Coinductive hypotheses get unguarded whenever a program execution rule is applied.
Now we explain the program execution rules, consider how coinductive progress is made, and

see where the stuttering index comes in. First and foremost, the step-both executes a target step
(∀C

4
↩→ C ′), finds a matching step in the source (∃B

4
↩→ B′), and proceeds with the proof with a fresh

stuttering index 8′ (we will see its use soon). The rule is applicable regardless of whether coinductive
hypotheses are guarded or not, as noted by the question mark ('?), and the rule unguards the

coinductive hypotheses ( SR ⊢ C ′
−
≾8′ B

′).
Since this rule alone cannot relate STS that do not perfectly line up, there are rules for asynchro-

nous execution. Consider the following example where ⊑beh denotes behavioral refinement:

! ≜ loop { skip; print(42) } ⊑beh loop { print(42) } ≜ ' (SOUND)

One should be able to verify the above by utilizing the step-tgt rule which would only execute the
target step skip on the left side. However, one should not be able to verify the following:

loop { loop { skip }; print(42) } ⊑beh loop { print(42) } (UNSOUND)
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because the target has a different behavior (silent divergence) from the source (infinitely printing
“42”).

This is precisely what the stuttering index ensures. The stuttering index 8 allows one to execute C
and B (step-tgt and step-src) independently of each other for at most 8 steps. For instance, SOUND
could be verified as follows:

! ⊑beh '

⇐= {(!, ', 1)} ⊢ !
−
≾1' by adeqacy

⇐⇒ {(!, ', 1)} ⊢ skip; print(42);!
−
≾1 print(42);' by unfolding

⇐= {(!, ', 1)} ⊢ print(42);!
−
≾0 print(42);' by step-tgt

⇐= {(!, ', 1)} ⊢ !
−
≾1' by step-both

⇐= (!, ', 1) ∈ {(!, ', 1)} by coind

Note that step-both refreshes the index to 1, which is needed to conclude the proof with coind.
Moreover, it is easy to see that one indeed cannot verify UNSOUND with ESim: no matter which

stuttering index one chooses, one can apply step-tgt only a finite number of times (since 8 is an
element of a well-founded order) and cannot execute infinite loops like loop { skip } with this.

Annoyance with managing index. One big disadvantage of the explicit stuttering interface is
that the user of the proof rules has to reason about indices for every step of execution. Even worse,
every time a synchronous step is performed with step-both, the new index has to be carefully
chosen large enough to last until the next synchronous step. To see it more clearly, consider the
following example adapted from a tutorial in ITrees [Xia et al. 2019]:

! ≜ loop { print(fib(n)) } ⊑beh loop { print(FIB(n)) } ≜ ' (FIB)

For an arbitrary natural number n, both the target (left) and the source (right) print the =-th
Fibonacci number in an infinite loop. In the source program, FIB(=) is a mathematical value
representing the =-th Fibonacci number, while in the target program, fib is itself implemented in
the programming language as follows:

def fib(n) ≡ if n >= 2 then fib(n-1) + fib(n-2) else 1

That is, the refinement is abstracting a more concrete program into a more abstract program.
Now we consider the verification of FIB using ESim. For this, we need to know upfront how many

reduction steps the target will take in order to set up a sufficient stuttering index. This clearly is an
inconvenience especially given that making the right choice requires semantic understanding of
the program. Specifically, a minimal stuttering index for the above is defined recursively as follows:

I= = 2 + I=−1 + I=−2 (when = ≥ 2) && I= = 2 (otherwise)

where the number 2 in both cases corresponds to taking one step each for (i) evaluating the condition
of the if statement, and (ii) evaluating the if statement itself. Note that I= is not simply the same
as FIB(=) and one needs semantic understanding of the program upfront to come up with such a
construction. With this choice, FIB could be verified with SR ≜ {(!, ', I=)}.

2.2 Implicit Stu�ering Simulation

Implicit stuttering simulation (ISim) circumvents the inconvenience of ESim by completely removing
indices from the simulation interface. Rules for the ISim (using notation ≾ ) are presented in Fig. 3.

Of course, completely removing the stuttering index has repercussions: as demonstrated by UN-
SOUND, simply removing the stuttering index from the proof rules would lead to an unsound proof
system. Thus, in ISim, the rules step-src and step-tgt do not unguard the coinductive hypotheses

anymore (i.e., SR and SR remain unchanged). In an attempt to prove UNSOUND using ISim, this
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step-tgt

sort(t) = Tau ∀C
g
↩→ C ′ . SR? ⊢ C ′≾B

SR? ⊢ C ≾B

step-src

sort(s) = Tau ∃B
g
↩→ B′ . SR? ⊢ C ≾B′

SR? ⊢ C ≾B

step-both
∀C

4
↩→ C ′ .∃B

4
↩→ B′ . SR ⊢ C ′≾B′

SR? ⊢ C ≾B

return
sort(t) = sort(s) = Ret(r)

SR? ⊢ C ≾B

Rules for program execution

adeqacy

(init(T), init(S)) ∈ SR ∀(C, B) ∈ SR. SR ⊢ C ≾B

T ⊑beh S

coind
(C, B) ∈ SR

SR ⊢ C ≾B

Rules for coinduction

Fig. 3. Interface of the implicit stu�ering simulation.

would be reflected by the coinductive hypotheses never getting unguarded, and thus concluding
the proof by coind would be rightly forbidden.

Now, with ISim, FIB could be verified much more easily as follows:

! ⊑beh '

⇐= {(!, ')} ⊢ !≾' by adeqacy

⇐⇒ {(!, ')} ⊢ print(fib(n));!≾print(FIB(n));' by unfolding

⇐= {(!, ')} ⊢ print(FIB(n));!≾print(FIB(n));' by repeating step-tgt

⇐= {(!, ')} ⊢ !≾' by step-both

⇐= (!, ') ∈ {(!, ')} by coind □

First, we apply adeqacy to turn the behavioral refinement into a simulation proof. Then, we
apply step-tgt repeatedly to evaluate fib(n) in the target to the value FIB(n). Now, we can
execute print(FIB(n)) synchronously on both sides with step-both, in the process unguarding the
coinductive hypothesis. Finally, we conclude the proof with coind using unguarded hypothesis.
While ESim and ISim have different interfaces, they share the same crux:

To conclude the proof by coming back to the original proof state,

one must have executed step-both somewhere before.

2.3 Problem Revisited

With this observation, let us revisit the problematic example from the introduction (Fig. 1). Using
ISim (similar arguments apply to ESim), we would like to conduct the following proof:

Runt[a,b] ⊑beh Runs[a,b]

⇐=
⋃

a b∈{0,1} {(Runt[a,b], Runs[a,b])} ⊢ ∀a b. Runt[a,b]≾Runs[a,b] by adeqacy

⇐=
⋃

a b∈{0,1} {(Runt[a,b], Runs[a,b])} ⊢ ∀a b a’ b’. Runt[a’,b’]≾Runs[a,b] by step-tgt (twice)

⇐=
⋃

a b∈{0,1} {(Runt[a,b], Runs[a,b])} ⊢ ∀a’ b’. Runt[a’,b’]≾Runs[a’,b’] by step-src (twice)

⇍= ∀a’ b’. Runt[a’,b’]≾Runs[a’,b’] ∈
⋃

a b∈{0,1} {(Runt[a,b], Runs[a,b])} by coind?

where a trivial case for executing End[a,b] is omitted.
The proof starts by putting the matching Run[a,b] s into the coinductive hypothesis, using

adeqacy. First, we execute the target until the end (i.e., until it reaches the coinductive hypothesis)
and witness the freshly picked values, a’ and b’. Then, we execute the source until the end, utilizing
the freshly picked values a’ and b’ from the target to take matching steps in the source.
However, the proof has an issue: the coinductive hypothesis never gets unguarded during the

execution! Specifically, we cannot conclude the proof with coind at the end, because the coinductive
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hypothesis is still guarded. The only way out is to refactor the proof as follows:

Runt[a,b] ⊑beh Runs[a,b]

⇐=
⋃

a b∈{0,1} {(Runt[a,b], Runs[a,b])} ⊢ ∀a b. Runt[a,b]≾Runs[a,b] by adeqacy

⇐=
⋃

a b∈{0,1} {(Runt[a,b], Runs[a,b])} ⊢ ∀a b a’. PickB[a’]≾Runs[a,b] by step-tgt

⇐=
⋃

a b∈{0,1} {(Runt[a,b], Runs[a,b])} ⊢ ∀a b a’ b’. Runt[a’,b’]≾PickA[b’] by step-both

⇐=
⋃

a b∈{0,1} {(Runt[a,b], Runs[a,b])} ⊢ ∀a’ b’. Runt[a’,b’]≾Runs[a’,b’] by step-src

⇐= ∀a’ b’. Runt[a’,b’]≾Runs[a’,b’] ∈
⋃

a b∈{0,1} {(Runt[a,b], Runs[a,b])} by coind □

Note also that yet another attempt for verification which applies the step-both rule twice would
also not work: in order to choose the correct branch in the first source step, we must know the
value b’ picked from the second target step beforehand.

To put it more generally, the problem with existing stuttering simulations is as follows. First,
there are multiple ways to execute the program with the given simulation interface: given a target
program step, sometimes it needs to be executed with step-tgt, and at other times with step-both.
We cannot always use step-tgt, as it does not allow us to make coinductive progress. On the other
hand, we cannot always use step-both, as this may require us to execute the source too early. Then,
knowing which rule to use requires foreseeing later proof steps! Even foreseeing a single step is
non-trivial when it requires a case analysis on a symbolic variable. The situation is even worse in
simulations where a transition encodes mathematical conditions [Back and Wright 2012; Sammler
et al. 2023; Song et al. 2023] and requires nontrivial reasoning to execute even a single step, or in
the context of interactive theorem proving [The Coq Development Team 2021] where executing a
step could involve nontrivial reductions in terms.

We now demonstrate FreeSim, which not only resolves this issue but also has useful properties.

3 FREELY-STUTTERING SIMULATION

In this section, we introduce our FreeSim interface and explain how it solves the aforementioned
issue (§3.1). Furthermore, we show that FreeSim provides stronger compositional reasoning prin-
ciples (§3.2). We also show that FreeSim subsumes both ESim and ISim, enjoying the benefits of
both (§3.3). Finally, we remark on how FreeSim scales better when adding new primitives to the
underlying notion of STS, using the example of dual non-determinism (§3.4).

3.1 Interface of Freely-Stu�ering Simulation

Fig. 4 shows the interface of FreeSim (using notation
+
≾). The simulation is parameterized over an

index type I equipped with a well-founded order <I and a greatest element ⊤. We use ≤I to refer to

the reflexive closure of <I. Now, the simulation
+

?B≾?C carries two indices from I, which we call the
“progress indices” for source (?B) and target (?C ). For this subsection, it suffices to consider a simple
well-founded order consisting of just ⊥ < ⊤.

Progress indices are different from stuttering indices: they are used to track “partial coinductive
progress” made on each side of the simulation. As such, progress indices get incremented as
execution goes on (thus the plus sign in the notation), while stuttering indices get decremented
(thus the minus sign in the notation). Specifically, executing the target (source) will raise ?C (?B) to
the greatest element ⊤.

With progress indices, step-tgt and step-src are strengthened from ISim by now recording partial
progress in ?C and ?B . These indices are then utilized by a new rule, coind-prog: it decrements both
indices and in return unguards the coinductive hypotheses, without executing the program.

Since step-tgt and step-src (together with coind-prog) can now establish coinductive progress,
we no longer need to execute two silent steps synchronously in order to constitute coinductive
progress. Consequently, step-both is now reduced to step-event which is applicable only when
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step-tgt

sort(t) = Tau ∀C
g
↩→ C ′ . SR? ⊢ C ′

+
⊤≾?B B

SR? ⊢ C
+

?C≾?B B

step-src

sort(s) = Tau ∃B
g
↩→ B′ . SR? ⊢ C

+
?C≾⊤ B

′

SR? ⊢ C
+

?C≾?B B

step-event
sort(s) = sort(t) = Vis ∀C

4
↩→ C ′ .∃B

4
↩→ B′ . SR ⊢ C ′

+
⊤≾⊤ B

′

SR? ⊢ C
+

?C≾?B B

return
sort(t) = sort(s) = Ret(r)

SR? ⊢ C
+

?C≾?B B

Rules for program execution

coind-prog
?C ′ <I ?C ?B′ <I ?B SR ⊢ C

+
?C ’≾?B’ B

SR? ⊢ C
+

?C≾?B B

idx-mono

SR? ⊢ C
+

?C ’≾?B’ B ?C ′ ≤I ?C ?B′ ≤I ?B

SR? ⊢ C
+

?C≾?B B

adeqacy

(init(T), init(S), ?C, ?B) ∈ SR ∀(C, B, ?C, ?B) ∈ SR. SR ⊢ C
+

?C≾?B B

T ⊑beh S

coind
(C, B, ?C, ?B) ∈ SR

SR ⊢ C
+

?C≾?B B

Rules for coinduction

Fig. 4. Interface of freely-stu�ering simulation.

both source and target are emitting a visible event (i.e., are of sort Vis). In other words, step-both
could be derived from the above rules and we choose a minimal core for FreeSim.
Another way to understand progress indices are that they decouple program execution from

coinductive reasoning (unguarding). We will see the virtue of this decoupling more clearly in §3.4.
The rest of the rules are basically the same as ISim. We additionally have a minor rule idx-mono

that decrements progress indices, which comes in handy when proving metatheoretical results.

Problem revisited. Now, we revisit the problematic example (Fig. 1) and show how FreeSim
handles it. With SR ≜

⋃
a b∈{0,1}{(Runt[a,b], Runs[a,b], ⊥, ⊥)}, the proof proceeds as follows:

Runt[a,b] ⊑beh Runs[a,b]

⇐= SR ⊢ ∀a b. Runt[a,b]
+
⊥≾⊥ Runs[a,b] by adeqacy

⇐= SR ⊢ ∀a b a’ b’. Runt[a’,b’]
+
⊤≾⊥ Runs[a,b] by step-tgt (twice)

⇐= SR ⊢ ∀a’ b’. Runt[a’,b’]
+
⊤≾⊤ Runs[a’,b’] by step-src (twice)

⇐= SR ⊢ ∀a’ b’. Runt[a’,b’]
+
⊥≾⊥ Runs[a’,b’] by coind-prog

⇐= ∀a’ b’. Runt[a’,b’]
+
⊥≾⊥ Runs[a’,b’] ∈ SR by coind □

The proof is basically the same as the failed proof attempt in §2.3: we execute two target steps
with step-tgt and two source steps with step-src. However, this time these stuttering steps record
partial progress, turning the indices into ⊤. Thanks to this, we can apply coind-prog right before
the coind to unguard coinductive hypothesis, and the following coind indeed concludes the proof.

Soundness. The intuition behind the soundness of FreeSim is (again) best understood by looking
at how it prevents a proof of UNSOUND. For a given SR, consider an element with minimal ?B .
Then, since step-tgt cannot be applied infinitely, one must appeal to coinductive reasoning to
conclude the proof. Thus, one must apply coind-prog, but this results in ?B lower than the original
state and one cannot conclude the proof with coind. More details can be found in §4.4.

3.2 Stronger Compositional Reasoning

In this subsection, we show a new style of proof in FreeSim made possible with its stronger

compositional reasoning principles. These stronger reasoning principles allow communicating
partial progresses (progress indices) across different subproofs.
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For expository purposes, here we consider a very simple “sequence” operator: given a pair of
STS ℎ3 and C; , ℎ3 ; C; substitutes return states of ℎ3—ignoring the return values—with the initial
state of C; . We will consider a general composition operator >>= that respects return values later in
§6.2. For the sequence operator, one would typically come up with the following “sequence” rule:

Γ ⊢ ℎ3t≾ℎ3s ∧ Γ ⊢ C;t≾C;s =⇒ Γ ⊢ ℎ3t; C;t≾ℎ3s; C;t (SEQ)

which splits the proof into two parts: one for the ℎ3 and the other for C; .
A drawback of this formulation is that there is no way for the subproof about ℎ3 to deliver

coinductive progress to the latter subproof about C; . Any coinductive progress made in ℎ3 gets lost.
To see this more clearly, consider the following example inspired from compiler optimizations

(loop rotation or polyhedral optimization) where the skip means an unfolding step for the while
loop in underlying operational semantics.

! ≜ loop { skip; x; y }; x ⊑beh x; loop { skip; y; x } ≜ ' (REORDER)

Our goal is to prove the above while keeping these unknown code chunks, x and y, as opaque: in
other words, we want to prove it without resorting to case-analysis on x and y. In ISim, our best
effort is as follows, with SR ≜ {(!, ')}:

SR ⊢ loop { skip; x; y }; x ≾ x; loop { skip; y; x }

⇐⇒ SR ⊢ skip; x; y; L ≾ x; skip; y; R by unfolding

⇐= SR ⊢ x; y; L ≾ x; skip; y; R by step-tgt

⇐= SR ⊢ y; L ≾ skip; y; R by SEQ and reflexivity

⇐= SR ⊢ y; L ≾ y; R by step-src

⇐= SR ⊢ L ≾ R by SEQ and reflexivity

⇍= (!, ') ∈ SR by coind?

We first execute skip with step-tgt, discharge the same x on both sides with SEQ and reflexivity,
execute skip with step-src, and discharge the same y as we did with x. Now we have reached the
original state, but we cannot conclude the proof with coind since coinductive hypotheses are still
guarded! However, it is clear that—morally—there was coinductive progress since we have at least
executed skip on both sides.

Intuitively, the problem here is as follows. We want to make coinductive progress out of skips on
both sides by executing them synchronously via step-both. Unfortunately, this attempt is blocked
by the opaque code chunk x—it stands against us as a ‘wall’ that needs to be executed synchronously
(via SEQ and reflexivity). This forces us to execute skips separately, wasting “partial progresses.”

At the high-level, the way we address this issue in FreeSim is as follows:

[TGT] skip x

[SRC] x skip

While x still act as a wall in FreeSim and we execute skips separately, (i) each skip now contributes
partial progress (a dashed arrow turning into a solid arrow in the diagram), and (ii) our stronger
reasoning principles allow these partial progresses to “penetrate” the wall.
Specifically, we can formulate the following stronger versions of SEQ rule and reflexivity:

refl+
⊤

Γ
? ⊢ 4

+
?C≾?B 4 {?C

′ ?B′ . ?C ′ = ?C ∧ ?B′ = ?B}

seq+

Γ
? ⊢ ℎ3t

+
?C≾?B ℎ3s {Ψ} ∀(?C ′, ?B′) ∈ Ψ. Γ? ⊢ C;t

+
?C ’≾?B’ C;s

Γ
? ⊢ ℎ3t; C;t

+
?C≾?B ℎ3s; C;t

First, to state such an additional power of transferring partial progresses from one to another (i.e.,
penetrating the wall), we equip FreeSim with postcondition. Postcondition, optionally given in the
parenthesis after the simulation notation, states possible values of progress indices when it returns.
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With this, the strengthened reflexivity (refl+) now additionally ensures that it preserves the
given progress indices: i.e., given the indices ?C and ?B , it returns (?C ’ and ?B’) the same indices.
Then, the strengthened sequence rule (seq+) now additionally allows picking a “contract” Ψ between
these two separate verifications: the former verification ensures that it returns indices satisfying Ψ,
and the later relies upon it that it begins simulation with progress indices satisfying Ψ.
Now we revisit REORDER with FreeSim. With SR ≜ {(!, ',⊥,⊥)}, the proof is as follows:

SR ⊢ loop { skip; X; Y }; X
+
⊥≾⊥ X; loop { skip; Y; X }

⇐⇒ SR ⊢ skip; X; Y; L
+
⊥≾⊥ X; skip; Y; R by unfolding

⇐= SR ⊢ X; Y; L
+
⊤≾⊥ X; skip; Y; R by step-tgt

⇐= SR ⊢ Y; L
+
⊤≾⊥ skip; Y; R by seq+ and refl+

⇐= SR ⊢ Y; L
+
⊤≾⊤ Y; R by step-src

⇐= SR ⊢ L
+
⊤≾⊤ R by seq+ and refl+

⇐= SR ⊢ L
+
⊥≾⊥ R by coind-prog

⇐= (!, ',⊥,⊥) ∈ SR by coind □

The proof has a similar structure as before, with the difference that (i) executing skip now makes
partial progress (setting the flag to⊤), and (ii) that partial progress is preserved along the applications
of seq+ and refl+. These together constitute full coinductive progress at the end and we can now
conclude the proof with coinduction.
In this subsection, we have seen how stronger reasoning principles in FreeSim allowed a new

style of proof. The key difference comes from our additional ability to state partial progress. In our
experience, this is in general useful that it facilitates unary (asynchronous) reasoning.

3.3 Replayability

As shown in previous sections, FreeSim sets itself apart fromESim or ISim in terms of usability. At the
same time, however, it turns out that these three simulations are propositionally equivalent (see: §5):
a statement provable in one simulation is “somehow” also provable in others. This discrepancy led
us to devise a stronger notion than mere propositional implication, dubbed stepwise replayability

(“replayability” for short).

Replayability. Intuitively, given two proof techniques � and �, replayability � � (read as
“� is replayable in �” or “� can replay �”) says that � can emulate �, meaning that � can provide
the same user interface as that of �. Specifically, � � states that

Given the same proof state in � and �, whichever rule � executes,

� can execute a sequence of rules that results in the same proof state again.

It is clear that replayability (� �) implies propositional implication (� =⇒ �): any proof
in � (a sequence of rule applications) can be translated into � via the above rule-wise (i.e., local)
translations. Then, what are the key differences between these two notions?

First, in propositional implication, the proof in � can be constructed after looking at the full (i.e.,
global) proof in �. Indeed, in our proof of implication from ISim to ESim (see §5), we look at the
full (global) proof in ISim in order to set up a proper stuttering index upfront. To put it another
way, one is allowed to construct a proof in � by looking into the future via the given full proof in
�. Replayability removes this ability to look into the future—recall that replayability requires a
rule-wise (i.e., local) translation—and adequately compares the usability of � and �. Second, in
propositional implication, it is okay to find a proof in � that takes a very different intermediate
proof states from the given proof in �. One well-known such an example is an implication proof in
CompCert [Leroy 2006] (see §6 for more). This is in contrast to replayability, where the translated
proof follows exactly the same intermediate proof states as the given one.
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To see this more concretely, consider the following minimal, contrived game. The game begins
in (0, 0) and the player wins the game if the player reaches certain states, called “winning state”s.
The player can choose one of two characters, � and � , with the following actions:

[�0] (G,~) ⇝ (G + 1, ~) [�1] (G,~) ⇝ (G,~ + 1) [�0] ∀= ∈ #, (G,~) ⇝ (G + =,~ + 1)

Winning states have positive coordinates and are initially invisible to the player. When a character
reaches (G,~), the player notices all winning states in (G, -). Now, consider a play with a character
� when the winning state is in (2, 1).

(0, 0) // Realizes there is no winning state in (0, -).
⇝�0 (1, 0) // Realizes there is no winning state in (1, -).
⇝�0 (2, 0) // Realizes there is a winning state in (2, 1).
⇝�1 (2, 1) // Wins the game.

However, if one plays with the character � , it gets tricky.

(0, 0) // Realizes there is no winning state in (0, -).
// Unclear which = to use for the next step, just pick 1.

⇝�0 (1, 1) // Realizes there is no winning state in (1, -).
// Unclear which = to use for the next step, just pick 1.

⇝�0 (2, 2) // Realizes there is a winning state in (2, 1).
// However, (2, 1) already became unreachable. Need to restart the game.

Without knowing (2, 1) is a winning state in advance, the player easily ends up in an unprovable
goal, and the player needs to restart the game (backtracking). Note, however, that any game that is
winnable with � is also winnable with � (though it may require few restarts).

This example captures the difference between propositional implication and replayability. Here,
� and � are propositionally equivalent (� ⇐⇒ �). Yet, the notion of replayability is sensitive
enough to distinguish � and � . Check that � � holds while � � does not hold (the
action [�0] does not have a matching action in �). This is in contrast to propositional implication,
where � =⇒ � holds. Such an implication proof indeed (i) looks the given full play in � (to figure
out the winning states in advance), and (ii) takes a different path from the given play in � .

In the rest of this section, we aim to show ESim FreeSim and ISim FreeSim; the reverse
does not hold since there is no matching rule for coind-prog. In Fig. 5, we present how a selected
rules of ESim and ISim can be translated into a sequence of rules of the FreeSim.

Replaying ESim. Replayability proof very much resembles simulation proof, in the sense that it
‘simulates’ simulations: (i) we define an embedding from the original proof state into the replayer’s
proof state (just like defining SR), and (ii) prove that for any rule application in the original
simulation, there exists a matching rule application(s) in the replayer that results in a proof state
satisfying (i) again.
Thus, we start by defining such an embedding. Given a well-founded order J for ESim, we use

I ≜ {⊤} ⊎ J and >0 <I >1 ≜ (>0 ≠ ⊤∧>1 = ⊤) ∨ (>0 <J >1) for FreeSim. Then, we use the following:

Γ
? ⊢ B

−
≾8 C −→ {(B, C, 8, 8) | (B, C, 8) ∈ Γ}? ⊢ B

+
i≾i C (EMBEDDING)

That is, we pick both progress indices to be equal to the stuttering index.
Now we explain how to replay a few selected rules. For the step-tgt rule of ESim, we apply

step-tgt, followed by coind-prog: since our progress indices match the stuttering index, coind-prog
allows us to unguard the coinductive hypothesis by decrementing both indices to 8′. The resulting
proof state is again an embedding (EMBEDDING) of the original proof state.
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exp-step-tgt
sort(t) = Tau ∀C

g
↩→ C ′ . ∃8′ < 8 . Γ ⊢ C ′

−
≾8′ B

Γ ⊢ C
−
≾8 B

−→




Γ ⊢ C ′
+

i’≾i’ B by coind-prog

Γ ⊢ C ′
+
⊤≾i B by step-tgt

Γ ⊢ C
+
i≾i B

exp-step-both
∀C

4
↩→ C ′ .∃B

4
↩→ B′ . ∃8′ . Γ ⊢ C ′

−
≾8′ B

′

Γ ⊢ C
−
≾8 B

−→




Γ ⊢ C ′
+

i’≾i’ B
′ by coind-prog

Γ ⊢ C ′
+
⊤≾⊤ B

′ by step-src

Γ ⊢ C ′
+
⊤≾i B by step-tgt

Γ ⊢ C
+
i≾i B

if: e = g .

Γ ⊢ C ′
+

i’≾i’ B
′ by idx-mono

Γ ⊢ C ′
+
⊤≾⊤ B

′ by step-event

Γ ⊢ C
+
i≾i B

if: e ≠ g .

imp-step-tgt
sort(t) = Tau ∀C

g
↩→ C ′ . Γ ⊢ C ′≾B

Γ ⊢ C ≾B
−→





Γ ⊢ C ′
+
⊥≾⊥ B by idx-mono

Γ ⊢ C ′
+
⊤≾⊥ B by step-tgt

Γ ⊢ C
+
⊥≾⊥ B

Fig. 5. Replaying previous simulations in freely-stu�ering simulation.

Similarly, we replay step-both of ESim as follows. We start with a case analysis on the event
4 emitted in source and target. If it is a silent event g , we asynchronously step the target and the
source with step-src and step-tgt, respectively, and apply coind-prog to unguard the coinductive
hypothesis. Otherwise, step-event allows us to step synchronously for a visible event.

Replaying ISim. When replaying ISim, we simply pick a well-founded order I consisting of two
comparable elements: ⊥ <I ⊤. Then, we use the following embedding which puts ⊥to both indices:

Γ ⊢ B≾C −→ {(B, C,⊥,⊥) | (B, C) ∈ Γ} ⊢ B
+
⊥≾⊥ C (EMBEDDING)

For the step-tgt rule of ISim, we apply step-tgt, followed by idx-mono: since the original rule
does not unguard coinductive hypothesis, we do not need to (and cannot) apply coind-prog. Instead,
we apply idx-mono to “forget” the partial progress we have made, which results in the proof state
again an embedding (EMBEDDING) of the original proof state.

The fact that FreeSim can replay both styles not only shows that FreeSim subsumes both styles,
but also suggests that one can “mix” these two styles in a single proof (see: §5.2 and §6.1).

3.4 Adding New Primitives: A Case With Dual Non-Determinism

Finally, we consider how FreeSim scales better than ESim and ISim when adding new primitives
to the notion of STS. Recall that FreeSim has decoupled the program execution and coinductive
progress, making step-both obsolete. Now, suppose we add a new Sort, say - , to the notion of STS.
In FreeSim, we just need to add two rules for asynchronously executing - in target and source.
However, in ISim and ESim, one needs to further add rules to synchronously execute (i) both - in
target and source, (ii) - in target and Tau in source, and (iii) vice versa. These synchronous rules
are largely a duplication of asynchronous rules and make the definition unnecessarily complex.
To make this argument concrete, we extend our STS (and FreeSim, correspondingly) to handle

dual non-determinism which is recently being rediscovered and finding interesting uses [Koenig
and Shao 2020; Sammler et al. 2023; Song et al. 2023]. Specifically, we extend the Sort component
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step-tgt-ang

sort(t) = ATau ∃C
g
↩→ C ′ . Γ? ⊢ C ′

+
⊤≾?B B

Γ
? ⊢ C

+
?C≾?B B

step-src-ang

sort(s) = ATau ∀B
g
↩→ B′ . Γ? ⊢ C

+
?C≾⊤ B

′

Γ
? ⊢ C

+
?C≾?B B

Rules for program execution

Fig. 6. Freely-stu�ering simulation extended for dual non-determinism.

of our STS as follows:

Sort ≜ { DTau } ⊎ { ATau } ⊎ { Vis } ⊎ { Ret }

To highlight the symmetric nature, we rename Tau into DTau (for “demonic”) and add a new Sort,
ATau (for “angelic”). Similarly to DTau, states of sort ATau can only take silent steps.

ATau is interpreted as the dual of DTau: the behavior of a state in DTau is a union of the behaviors
of successor states, and for ATau it is an intersection (the dual of union). Correspondingly, the rules
for ATau (shown in Fig. 6) are exactly the dual of the rules for DTau. That is, step-tgt-ang performs
an angelic step in the target and is dual to step-tgt: the universal quantifier has been swapped to
an existential quantifier (and similarly for step-src-ang).
Adding these two rules is all we need to fully support dual non-determinism. As we will see

in §6, this simple definition satisfies all the meta-theoretic properties one would expect. Actually,
the simplicity of this definition is the key to proving non-trivial properties such as transitivity.

Comparison with ESim/ISim. For comparison, let us consider adding angelic non-determinism
to ISim. As mentioned above, we need two rules for asynchronous execution and three additional
rules for synchronous execution. That is, we end up with four rules for synchronous execution: we
have two cases (DTau or ATau in the target) multiplied by two cases (DTau or ATau in the source).
An astute reader might ask: why do we care about supporting all four synchronous rules? It is

clear that symmetric synchronous rules (one for executing DTau on both sides and one for ATau
on both sides) are essential for the reflexivity to hold. Then, asymmetric synchronous rules (the
other two) are essential for the transitivity to hold. To see this, consider the following example:

DTau

g

≾
DTau ATau

g

g

≾
ATau

g

These three STS all represent silent divergence. Suppose that transitivity holds but we do not have
asymmetric rules. Still, the above two stepwise simulations are easily provable (using symmetric
rules and asynchronous rules). Then, by transitive composition of step-wise simulations, an end-to-
end simulation between the left and the right STS holds. However, since we do not have asymmetric
rules, the end-to-end simulation cannot actually be proven, which leads to a contradiction.

Indeed, our best efforts to define ESim/ISim supporting dual non-determinism have resulted in a
definition that has all four cases. Note that we had to work on these definitions when proving the
aforementioned equivalence results, presented in §5.

In a more general sense, having synchronous rules (as in ESim/ISim) is less ideal for the following
reasons. First, it leads to a combinatorial blow-up when adding a new primitive, and this could be
a practical problem when proving properties that require case-analysis on the definition of the
simulation (e.g., transitivity). Second, there will be a lot of duplication between synchronous rules
and asynchronous rules. Third, it is not modular: adding a new primitive requires considering its
interaction with existing primitives (those asymmetric rules). FreeSim is free from these problems.
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FreeSimF(Ψ ∈ P(I × I × Val × Val)) (� ∈ P(-T × -S × I × I))
ind
= {(C, B, ?C, ?B) |

(sort(t) = DTau ∧ ∀ C
g
↩→ C ′ . (C ′, B,⊤, ?B) ∈ FreeSimF(Ψ) (�)) // (1) step-tgt

∨ (sort(t) = ATau ∧ ∃ C
g
↩→ C ′ . (C ′, B,⊤, ?B) ∈ FreeSimF(Ψ) (�)) // (2) step-tgt-ang

∨ (sort(s) = DTau ∧ ∃ B
g
↩→ B′ . (C, B′, ?C,⊤) ∈ FreeSimF(Ψ) (�)) // (3) step-src

∨ (sort(s) = ATau ∧ ∀ B
g
↩→ B′ . (C, B′, ?C,⊤) ∈ FreeSimF(Ψ) (�)) // (4) step-src-ang

∨ (sort(t) = sort(s) = Vis ∧ ∀ C
4
↩→ C ′ .∃ B

4
↩→ B′ . (C ′, B′,⊤,⊤) ∈ FreeSimF(Ψ) (�)) // (5) step-event

∨ (∃ rt rs (?C
′ ≤?C) (?B′ ≤?B). sort(t) = Ret(rt) ∧ sort(s) = Ret(rs) ∧ (?C

′, ?B′, rt, rs) ∈ Ψ) // (6) return

∨ (∃ (?C ′ <?C) (?B′ <?B) . (C, B, ?C ′, ?B′) ∈ �)} // (7) coind-prog

C
+

?C≾?B B {Ψ} ≜ (C, B, ?C, ?B) ∈ a FreeSimF(Ψ) C
+

?C≾?B B ≜ C
+

?C≾?B B {_ _ _ rt rs . rt = rs }

Fig. 7. Definitions of FreeSim.

4 FORMALIZATION AND KEY LEMMAS

In this section, we present the formal definition of FreeSim and the proof system for it.

4.1 Definition of FreeSim

As mentioned, FreeSim is defined in a coinductive manner, which formally means that it is defined
as a greatest fixed point of some functor. In general, for a given set C and a monotone functor
� ∈ P(C) → P(C), its greatest fixed point a� ∈ P(C) is defined as the largest set satisfying the
equation a� = � (a� ). Given a postcondition Ψ, FreeSim can be defined as the greatest fixed point
of FreeSimF(Ψ) (given in Fig. 7) which is a functor over a powerset of a quadruple comprising
target state, source state, and progress indices. We omit Ψ when it is simply equality.

One can see that each case of FreeSimF corresponds to the rules in Fig. 4 and Fig. 6. Recall that
the only rule that unguards coinductive hypothesis is coind-prog. Such a fact is reflected in the
above definition that the corresponding case (7) is making a corecursion to C, while all other cases
are making a recursion to FreeSimF.

4.2 Proof System

Admittedly, however, the above definition looks quite different from the interface we presented
throughout the paper. Specifically, there are two questions remaining to be answered: (i) how
are the guarded/unguarded hypotheses formalized, and (ii) where is the rule idx-mono, which is
missing in Fig. 7? In this subsection, we aim to answer these questions, by making use of features
commonly provided by modern coinduction libraries [Hur et al. 2013; Pous 2016; Zakowski et al.
2020]: parameterized coinduction and up-to techniques.
Among these libraries, we pick GPaco [Zakowski et al. 2020] (an extension of Paco [Hur et al.

2013]) as the basis of our presentation: our Coq development is based on GPaco and we would like
to keep the presentation close.2 The core proof system of GPaco is presented in Fig. 8.3 Note that
the coinduction library [Pous 2016] also provides a similar proof system.

Intuitively, the proof system of GPaco could be understood by contrasting it with the proof system
for strong induction. Strong induction allows one to conclude the proof when the argument has
decreased. Similarly, in coinduction proofs, one can conclude the proof with coinductive hypotheses
when coinductive progress has been made. GPaco comes with the notion of guarded/unguarded
coinductive hypotheses to represent the coinductive hypotheses before/after coinductive progress.
Specifically, this is achieved by generalizing the vanilla greatest fixed point (a� ) into a parameterized

2Paco is a shorthand for parameterized coinduction, and GPaco for generalized parameterized coinduction.
3Both our Coq development and the original GPaco proof system allows incremental reasoning [Hur et al. 2013], meaning that

it can add more guarded coinductive hypotheses during the proof. However, this requires adding an additional parameter in

our notation as follows: [ Γ0 Γ1 ⊢ a� ]. Thus, we omit it in our presentation for uniformity and simplicity.
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C ∈ Set �,� ∈ P(C) → P(C) Γ, a�, Γ? ⊨ a� ∈ P(C)

gpaco-init
Γ ⊆ ( Γ ⊨ a� )

Γ ⊆ a�

gpaco-step
⊤

� ( Γ ⊨ a� ) ⊆ Γ
? ⊨ a�

gpaco-coind
⊤

Γ ⊆ ( Γ ⊨ a� )

gpaco-upto
� is compatible with F

� (Γ? ⊨ a� ) ⊆ Γ
? ⊨ a�

Rules in GPaco proof system

Fig. 8. GPaco proof system.

greatest fixed point which parameterizes over coinductive hypotheses that could be either guarded

( Γ ⊨ a� ) or unguarded ( Γ ⊨ a� ).
Now we look at the rules in Fig. 8. In order to establish that Γ is contained in a� , one can

initialize the coinduction proof by putting Γ into the coinductive hypothesis (gpaco-init). The
coinductive hypothesis is initially guarded, and so can not be used directly to complete the proof.
After coinductive progress has been made by gpaco-step, the hypothesis becomes unguarded.
Finally, gpaco-coind can complete the proof using the unguarded hypothesis.
As an example, consider Tarski’s theorem, a basic reasoning principle for the vanilla greatest

fixed point:
Γ ⊆ � Γ =⇒ Γ ⊆ a� (tarski)

Such a reasoning principle could be replayed in GPaco as follows. By applying gpaco-init and gpaco-

step in the goal, it remains to prove: Γ ⊆ � ( Γ ⊨ a� ). By applying gpaco-coind with monotonicity
of � , it suffices to prove Γ ⊆ � Γ, which is the premise of tarski.
Now, let us get back to our first question. With GPaco, we define FreeSim equipped with

coinductive hypotheses as follows:

( Γ ⊢ C
+

?C≾?B B {Ψ}) ≜ ( Γ ⊨ a FreeSimF(Ψ)) (C, B, ?C, ?B)

( Γ ⊢ C
+

?C≾?B B {Ψ}) ≜ ( Γ ⊨ a FreeSimF(Ψ)) (C, B, ?C, ?B)

Now, it is easy to see the connection between the rules in Fig. 4 and the rules in Fig. 8. First, if we
think of adeqacy in two steps:

{
(∀(C, B, ?C, ?B) ∈ SR. SR ⊢ C

+
?C≾?B B) =⇒ (∀(C, B, ?C, ?B) ∈ SR. C

+
?C≾?B B)

(C
+

?C≾?B B) =⇒ (Beh(C) ⊆ Beh(B))

The former directly corresponds to gpaco-init. The latter will be discussed in Theorem 4.1. Similarly,
coind is realized with the rule gpaco-coind. Finally, coind-prog, together with program execution
rules (which are already reflected in the definition of FreeSimF), is realized with gpaco-step.
Now, for the second question: idx-mono is derived using gpaco-upto. Up-to techniques [Milner

1989; Pous 2016; Pous and Sangiorgi 2011; Sangiorgi 1998] make coinduction proofs easier by
extending (parameterized) greatest fixed point in the goal by putting a compatible up-to functor � .
GPaco has native support for up-to techniques, and we use it to derive idx-mono (and much more
in §6.2). Since gpaco-upto does not unguard hypotheses, the same goes for idx-mono.

4.3 Behavior

Now we define the notion of behavior for STS, and then discuss the adequacy of FreeSim. Our
definition of behavior, given in Fig. 9, follows literature [Gäher et al. 2022; Leroy 2006; Song et al.
2023; Zhao et al. 2012] and there is nothing novel here. Thus, we keep the discussion short.

The behavior of a program state, Beh, denotes the set of possible traces the state can invoke when
executed. Trace is a set of traces, where a trace records visible events of type E and can (i) have
infinitely many events, (ii) terminate with a return value (Term), or (iii) silently diverge (Diverge).
The definition of Beh is a mixture of recursion and corecursion. That is, Beh is defined as a

greatest fixpoint of BehF (like FreeSim is defined with FreeSimF) where BehF itself is inductively
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Trace
coind
= {4 :: CA | 4 ∈ E, CA ∈ Trace} ⊎ {Term E | E ∈ Val} ⊎ {Diverge}

Beh� (� ∈ - → P(Trace)) ∈ - → P(Trace)
ind
= _B. {Diverge}|B∈div ∪ (

⋃
{B′ | B

g
↩→B′ } Beh� (B

′)) |sort(B )=DTau ∪

(
⋂
{B′ | B

g
↩→B′ } Beh� (B

′)) |sort(B )=ATau ∪ (
⋃
{ (4, B′ ) | B

4
↩→B′ } 4 :: � (B

′)) |sort(B )=Vis ∪ {Term E | sort(B) = Ret(E)}

Beh ≜ a Beh�

div ∈ P(- )
coind
= {B | (sort(B) = DTau ∧ ∃B′ .B

g
↩→ B′ ∧ B′ ∈ div) ∨ (sort(B) = ATau ∧ ∀B′ .B

g
↩→ B′ → B′ ∈ div)}

Fig. 9. Definitions of trace and behavior.

defined (like FreeSimF). In the definition of Beh� , the recursive occurrences via Beh� are (inductive)
recursions, and the recursive occurrence via � is a (coinductive) corecursion. Then the behavior
Beh(B) of a state B contains every possible trace of B . If the state B silently diverges, judged by
div predicate, it emits the trace Diverge. If sort(B) is DTau/ATau, it takes the union/intersection
of every possible successive behavior of B . If sort(B) is Vis, it appends the visible event 4 to each
possible successive behavior of B . If sort(B) is Ret, it emits the trace Term.

4.4 Adequacy

Now we state the adequacy theorem which says that FreeSim implies behavioral refinement.

Theorem 4.1 (Adeqacy). For every C , B , ?C , and ?B , C
+

?C≾?B B ⇒ Beh(C) ⊆ Beh(B).

Proof. For the sake of space, we outline the proof for terminating and silently diverging cases:
it can be easily extended to handle visible events. That is, we prove the following two propositions:

(i) ∀ C B ?C ?B. C
+

?C≾?B B ⇒ (∀ r. Term r ∈ Beh(C) ⇒ Term r ∈ Beh(B))

(ii) ∀ C B ?C ?B. C
+

?C≾?B B ⇒ (Diverge ∈ Beh(C) ⇒ Diverge ∈ Beh(B))

Proof outline of (i): we use triple nested inductions. (A) Target terminates within finite number
of steps, and we use induction on the remaining number of steps. (B)We use induction on target

progress index.4 (C) We use structural induction on the simulation. The structural induction gives
us three cases, all of which are directly discharged by induction hypotheses: (1) when target takes
a step, it gets discharged with (A), (2) when progress indices get decremented (making coinductive
progress), it gets discharged with (B), and (3) when source takes a step, it gets discharged with (C).

Proof outline of (ii): we use one coinduction and two inductions. (A) Source diverges, and we use
coinduction on div. (B)We use induction on source progress index. (C)We use structural induction
on the simulation. The structural induction gives us three cases, all of which are directly discharged
by (co)induction hypotheses: (1) when source takes a step, it gets discharged with (A). (2) when
progress indices get decremented (making coinductive progress), it gets discharged with (B), and
(3) when target takes a step, it gets discharged with (C).

□

5 COMPARISON BETWEEN DIFFERENT SIMULATIONS

Now we investigate the relationship between FreeSim and other simulations (ISim and ESim).

5.1 Definition of ISim

Similar to FreeSim, ISim is defined as a greatest fixed point induced by a functor ISimF (Fig. 10).
Here we consider the full definition considering dual non-determinism for comparison with

FreeSim. A definition considering only the demonic non-determinism (corresponding to the interface
given in Fig. 3) can be simply obtained by ignoring all the cases with ATau.
There are two things to note in this definition. First, recall how ISim ensured finiteness of

stuttering: it did not unguard coinductive hypotheses in asynchronous steps. That can be checked in

4Recall that progress indices are well-founded; we use standard well-founded induction.
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ISimF(Ψ ∈ P(Val × Val) ) (� ∈ P(-T × -S ) )
ind
= { (C, B ) |

(sort(t) = DTau ∧ ∀ C
g
↩→ C ′ .

( (C ′, B ) ∈ ISimF(Ψ) (� ) ∨ (sort(s) = DTau ∧ ∃ B
g
↩→ B′ . (C ′, B′ ) ∈ � ) ∨ (sort(s) = ATau ∧ ∀ B

g
↩→ B′ . (C ′, B′ ) ∈ � ) ) )

∨ (sort(s) = ATau ∧ ∀ B
g
↩→ B′ .

( (C, B′ ) ∈ ISimF(Ψ) (� ) ∨ (sort(t) = DTau ∧ ∀ C
g
↩→ C ′ . (C ′, B′ ) ∈ � ) ∨ (sort(t) = ATau ∧ ∃ C

g
↩→ C ′ . (C ′, B′ ) ∈ � ) ) )

∨ (sort(t) = ATau ∧ ∃ C
g
↩→ C ′ .

( (C ′, B ) ∈ ISimF(Ψ) (� ) ∨ (sort(s) = DTau ∧ ∃ B
g
↩→ B′ . (C ′, B′ ) ∈ � ) ∨ (sort(s) = ATau ∧ ∀ B

g
↩→ B′ . (C ′, B′ ) ∈ � ) ) )

∨ (sort(s) = DTau ∧ ∃ B
g
↩→ B′ .

( (C, B′ ) ∈ ISimF(Ψ) (� ) ∨ (sort(t) = DTau ∧ ∀ C
g
↩→ C ′ . (C ′, B′ ) ∈ � ) ∨ (sort(t) = ATau ∧ ∃ C

g
↩→ C ′ . (C ′, B′ ) ∈ � ) ) )

∨ (sort(t) = sort(s) = Vis ∧ ∀ C
4
↩→ C ′ .∃ B

4
↩→ B′ . (C ′, B′ ) ∈ � )

∨ (∃ rt rs . sort(t) = Ret(rt) ∧ sort(s) = Ret(rs) ∧ (rt, rs ) ∈ Ψ) }

C ≾B {Φ} ≜ (C, B ) ∈ a ISimF(Ψ) Gray-colored parts are duplication and can be safely removed (see text).

Fig. 10. Definitions of ISim.

rpl-refl
⊤

�
(id,id)

�

rpl-trans

�
U0

� �
U1

�

�
U1◦U0

�

rpl-coind-step

�
(U,W )

�

(U ◦ � ◦ W) [ Γ ⊢ a�] ⊆ [Γ? ⊢ a�]

rpl-adeqacy

�
(U,W )

�

a� ⊆ W (a�)

Fig. 11. Properties of replayability.

the above definition that all the asynchronous cases are making recursion (ISimF), not corecursion
(C): only the synchronous cases are making corecursion. Second, recall our claim in §3.4 about
the combinatorial blow-up in adding new primitives. The definition indeed contains four cases
for asynchronous executions and four cases for synchronous (both symmetric and asymmetric)
executions. Furthermore, it contains few duplicated (colored gray) cases to keep the definition
symmetric. Such a definition is a result of our best effort to simplify the proof (Theorem 5.4).

Similarly, we can define a functor ESimF(Ψ ∈ P(I × Val × Val)) whose type is (P(-T×-S×I) →

P(-T×-S×I)), and derive a simulation with explicit stuttering as C
−
≾8 B {Ψ} ≜ (C, B, 8) ∈ a ESimF(Ψ).

The definition of ESimF is the same with ISimF except for stuttering index, and we omit it for space.

5.2 Replayability

In this section, we formally define replayability and use it to compare FreeSim with ESim and ISim.
Replayability is a relation between two functors (which we use to define greatest fixed points).

Suppose there are two monotone functors � ∈ P(�) → P(�) and � ∈ P(�) → P(�). Since
their base set cannot be compared directly (P(�) and P(�)), we use Galois connection to lift P(�)
to P(�) and to compare � and � . A Galois connection consists of a pair of monotone functions
(U ∈ P(�) → P(�), W ∈ P(�) → P(�)) satisfying U ◦ W ⊆ id ∧ id ⊆ W ◦ U . As W is uniquely
determined by U , we omit W unless necessary. Then, we define replayability with respect to a Galois
connection as follows.

Definition 5.1 (Replayability). A functor � ∈ P(�) → P(�) is replayable by a functor � ∈

P(�) → P(�) with respect to (U,W), denoted by �
(U,W )

� , if the following holds: U ◦ � ⊆ � ◦ U .

By the property of Galois connection, the above condition is equivalent to: � ⊆ W ◦ � ◦ U ,
U ◦ � ◦ W ⊆ � , and � ◦ W ⊆ W ◦� . Moreover, the above condition is also equivalent to the following:

∀0 ∈ P(�), 1 ∈ P(�), 0 ⊑ 1 =⇒ �0 ⊑ �1

where 0 ⊑ 1 ≜ U0 ⊆ 1. This formulation connects more clearly to the explanation we gave in §3.3:
given the related proof state (0 ⊑ 1), executing � and � on each side results in the related proof
state again (�0 ⊑ �1).
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As can be seen in Fig. 11, replayability is reflexive and transitively composable. rpl-adeqacy

says a whole proof in the replayed functor F (e.g., G ⊆ a� ) could be transferred to the host functor
G. In other words, replayability implies implication. rpl-coind-step says something stronger: it
generalizes gpaco-step to use any replayable functor, not just the host functor. That is, the host
functor can dynamically (in the middle of the coinductive proof) employ any replayable functor
only for a single step (not the whole proof). Therefore, multiple different replayable functors and
the host functor can be freely mixed in a single proof. Such a flexibility plays a key role in §6.1.
Now, we can formalize the replayability of ESim and ISim in Fig. 5 as:

ESimF((_ _. Ψ))
U

FreeSimF(_ _ _. Ψ) with U (�) = {(C, B, ?C, ?B) | ∃ 8 . (C, B, 8) ∈ � ∧ 8 ≤ ?C ∧ 8 ≤ ?B)}

ISimF(Ψ)
U

FreeSimF(_ _ _. Ψ) with U (�) = {(C, B, ?C, ?B) | (C, B) ∈ � ∧ ?C ′ ≤ ?C ∧ ?B′ ≤ ?B)}

Note that we restrict postcondition Ψ to ignore indices. Replayability of ISim is proven for any
given constant index ?C ′ and ?B′ smaller than ⊤. By rpl-adeqacy, we get the following corollaries:

Corollary 5.2 (ESim implies FreeSim). For any C , B , and index 8 , C
−
≾8 B {_ _. Ψ} ⇒ C

+
i≾i B {_ _. Ψ}.

Corollary 5.3 (ISim implies FreeSim). For any C , B , and (?C < ⊤), (?B < ⊤), C ≾B {Ψ} ⇒ C
+

?C≾?B B {_ _. Ψ}.

5.3 Equivalence Between Simulations

As have hinted few times, despite clear differences in usability, FreeSim is propositionally equivalent
to ESim and ISim. We use a classical trick to prove this equivalence, namely showing that (i) ESim
implies ISim, (ii) ISim implies FreeSim, and (iii) FreeSim implies ESim. That is, we show:

(i) (∃ 8 . C
−
≾8 B {_ _. Ψ}) =⇒ (C ≾B {Ψ})

(ii) (C ≾B {Ψ}) =⇒ (∀ (?C < ⊤) (?B < ⊤) . C
+

?C≾?B B {_ _ _. Ψ})

(iii) (∃ ?C ?B. C
+

?C≾?B B {_ _ _. Ψ}) =⇒ (∃ 8 . C
−
≾8 B {_ _. Ψ})

One can prove (i) by induction on the index of ESim (together with coinduction); observe that ESim
and ISim have the same interface, only differing by how they enforce stuttering. ESim decreases
the index with stuttering, enabling the induction hypothesis to conclude the proof, and when ESim
makes coinductive progress, ISim can make the same progress to conclude the proof by coinduction.
Note that this proof is not replayable.5 (ii) is already proven in Corollary 5.3. Proving (iii) is the
most interesting part, where we had to construct the maximum stuttering possible by FreeSim and
establish ESim with it. Interested readers can refer to the supplementary material [Cho et al. 2023].
All in all, we obtain the following:

Theorem 5.4 (Simulation Eqivalence). The three simulations are propositionally equivalent:

∀ C B Ψ. (∃ ?C ?B. C
+

?C≾?B B{_ _ _. Ψ}) ⇔ (∃ 8 . C
−
≾8 B{_ _. Ψ}) ⇔ (C ≾B{Ψ})

In fact, the three implications above have proven stronger result than the equivalence. Note
the universal quantification of ?C and ?B in (ii), and existential quantification in (iii). Composing

(iii), (i), and (ii) in order, we obtain that (∃ ?C ?B. C
+

?C≾?B B{_ _ _. Ψ}) implies (∀ (?C <I ⊤) (?B <I
⊤). C

+
?C≾?B B {_ _ _. Ψ}). This means that FreeSim is irrelevant to the index when (i) there is no

coinductive hypotheses (i.e., coinductive proof has not started yet), and (ii) the postcondition is
also irrelevant to the index. With idx-mono, we have the following:

Theorem 5.5 (Index Irrelevance). ∀?C ?B ?C ′ ?B′ . C +
?C≾?B B{_ _ _. Ψ} ⇔ C

+
?C ’≾?B’ B{_ _ _. Ψ}

This theorem is handy when proving metatheoretical properties like transitivity.

5ISim cannot replay ESim because there is no matching rule for step-src and step-tgt. These two rules unguard

coinductive hypotheses, while the matching ones in ISim (step-src and step-tgt) do not.
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Mixed Simulation (MSim)

Eventual Forward Simulation (EFSim) Forward Simulation (FSim)

Backward Simulation (BSim) FreeSim

BehRef

Fig. 12. Simulation techniques of CompCert (and CompCertM).

6 CASE STUDIES

We demonstrate the usefulness of FreeSim with two case studies. First, we apply FreeSim in
CompCert (§6.1). Second, using FreeSim, we develop DTrees (Dual non-deterministic ITrees) library
(§6.2).

6.1 Unifying Various Simulation Techniques in CompCert

Arguably, CompCert is one of the most realistic applications of formal verification techniques to
date. CompCert is a multi-pass compiler, and to deal with different desiderata from different passes,
CompCert and its variants employ a number of different simulations as shown in Fig. 12. In the
second column are what we call “backbone” simulations of CompCert: FSim (Forward Simulation)
and BSim (Backward Simulation). In the first column are more “advanced” simulations: EFSim
(Eventual Simulation) and MSim (Mixed Simulation, developed in CompCertM [Song et al. 2019]).
These advanced simulations are specialized simulations defined on top of backbone simulations by
adding more features. All these simulations imply BehRef (behavioral refinement) shown at the
bottom right, proven via transitively composing implications shown in the figure.
In this case study, we demonstrate that FreeSim could (i) simplify the adequacy proof of the

above simulations, and also (ii) make it more reusable. We show this in two steps.
First, we show that both backbone simulations are replayable in FreeSim. As indicated by the

definition of replayability, this proof is just a simple translation on a per-rule basis. In contrast,
the implication proof from FSim to BSim necessitates a non-local translation of rules using a
meticulously designed simulation relation.

Second, we show that both advanced simulations are replayable in FreeSim, but this time reusing
backbone simulations and ISim via rpl-coind-step. In fact, advanced simulations are no more than
a direct mixture of backbone simulations and ISim, and they do not merit their own definition
anymore.

In summary, we no more need the gray-colored definitions and implications in Fig. 12 since they
are direct consequences of FreeSim and three arrows around it.

6.1.1 Replaying Backbone Simulations. The core parts6 of BSim and FSim are as follows:

(BSim) ∀ C
−
≾8 B .∀ C

4
↩→ C ′ . ∃ B

4
↩→

=
B′ . ∃ 8′ . (= = 0 =⇒ 8′ < 8) ∧ C ′

−
≾8′ B

′

(FSim) ∀ C
−
≾8 B .∀ B

4
↩→ B′ . ∃ C

4
↩→→

=
C ′ . ∃ 8′ . (= = 0 =⇒ 8′ < 8) ∧ C ′

−
≾8′ B

′

where
4
↩→

=
means taking = consecutive steps while emitting an event 4 (possibly g) and

4
↩→→

=

additionally requires that all the states it went through should be deterministic.7 As the name
suggests, BSimmatches a given target step into multiple source steps and vice versa for FSim. Above
two diagrams show typical proofs in FSim and BSim, respectively. FSim is handy when a single

6There are other conditions to ensure non-stuckness but we choose to ignore stuck states in this subsection for brevity.
7CompCert assumes the target state to be always deterministic, but we present this general form for consistency with MSim.
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s0 s1 s2 s3

t0 t3

FSim8 + 1 8 9 + 1 9

g e g

e +

s0 s3

t0 t1 t2 t3

BSim8 + 1 8 9 + 1 9

e +

g e g

instruction in the source is compiled to multiple instructions in the target, but requires determinacy
in the target. BSim is less convenient but could be used in non-deterministic languages.
As shown above, FSim and BSim have very different user interfaces, and even the implication

proof from FSim and BSim involves highly non-trivial construction on the simulation relation.8

Unlike propositional implication, replayability properly distinguishes the two as expected: i.e.,
FSim implies BSim but BSim does not replay FSim. Even when the source and the target are
both deterministic, FSim and BSim cannot simply replay each other. In FSim, in order to make a
coinductive progress it must take a source step, and in BSim a target step. Thus, stuttering source

steps in FSim (e.g., from C0
−
≾8+1 B0 to C0

−
≾8 B1 on the left) cannot be replayed in BSim and, similarly,

stuttering target steps in BSim cannot be replayed in FSim.
However, FreeSim can easily replay both FSim and BSim thanks to the asynchronous nature of

FreeSim (§3.1). That is, both stuttering source steps and stuttering target steps are easily replayable
in FreeSim. These replayability proof largely follow §3.3 and are omitted here for brevity.

6.1.2 Replaying Advanced Simulations. Now we see how we can replay EFSim and MSim using
already replayable simulations. Core parts of these simulations are as follows:

(MSim) ∀ C
−
≾8 B . (∀ C

4
↩→ C ′ . ∃ B

4
↩→

=
B′ . ∃ 8′ . (= = 0 =⇒ 8′ < 8) ∧ C ′

−
≾8′ B

′)

∨ (∀ B
4
↩→ B′ . ∃ C

4
↩→→

=
C ′ . ∃ 8′ . (= = 0 =⇒ 8′ < 8) ∧ C ′

−
≾8′ B

′)

(EFSim) ∀ C
−
≾8 B . ∀ B

4
↩→ B′ . ∃ C

4
↩→

=
C ′ . ∃ 8′ . (= = 0 =⇒ 8′ < 8) ∧ ∃<.∀ B′

g
↩→

<
B′′ . C ′

−
≾8′ B

′′

Note that MSim is merely a mixture of FSim and BSim: for each given state, one can choose whether
to use FSim or BSim. However, note also that its implication proof (to BSim) is non-trivial. Especially,
despite the innate similarity between the implication proof from FSim to BSim and MSim to BSim,
it is unclear how to reuse the proof of the former in the latter. Indeed, CompCertM proves the latter
from scratch, despite many overlaps with the former.

With FreeSim, this situation can be improved a lot. Since FreeSim can replay both FSim and BSim
with the same embedding, MSim is also replayable (with the same embedding) by rpl-coind-step.
This makes both the definition and implication proof of MSim obsolete.

Similarly, EFSim could be seen as a mixture of FSim and ISim. It proceeds the same with FSim, but
at the end, it takes few more stuttering steps in the source while not decrementing the stuttering
index, as in ISim. Thus, EFSim is also easily replayable in FreeSim.
We conclude this subsection with a remark that these two advanced simulations are only two

instances of possible mixtures of backbone simulations: we can come up with many more, such as
mixing ISim with BSim (EBSim?), mixing EFSim and EBSim (EMSim?), or adding target stuttering
steps at the end of execution in EFSim (EEFSim?). We believe FreeSim and its replayability results
are a meaningful first step to show how to modularly derive different variants of simulations instead
of defining and proving them in an ad-hoc way. It will be an interesting future work to further
refine and develop theories around replayability.

6.2 DTrees: ITrees With Dual Non-Determinism

In the context of program refinement, it is common to write abstract, mathematical specifications of
the given system in STS directly in terms of states and transitions [Gu et al. 2015; Song et al. 2019].

8The proof is available in CompCert codebase [Leroy 2023].
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k ∈ ktree � � ktree � � ≜ �→ dtree �

d ∈ dtree '
coind
= Ret(A ∈ ') | Tau(d) | Eff(- ∈ Set, 4 ∈ � -, k ∈ ktree - ') constructors in ITrees

| ∃(- ∈ Set, k ∈ ktree - ') | ∀(- ∈ Set, k ∈ ktree - ') new ones in DTrees

(ℎ3 ∈ ktree � � >>> C; ∈ ktree � �) ∈ ktree � � ≜ _0. (ℎ3 0 >>= C;)

(ℎ3 ∈ dtree � >>= C; ∈ ktree � �) ∈ dtree �
coind
=




If ℎ3 = Ret(0) : C; 0

If ℎ3 = Tau(d) : Tau(d >>= C;)

If ℎ3 = Eff(-, 4, k) : Eff(-, 4, k >>> C;)

If ℎ3 = ∃(-, k) : ∃(-, k >>> C;)

If ℎ3 = ∀(-, k) : ∀(-, k >>> C;)

kop ≜ _0. (k 0)op

dop
coind
=




If d = Ret(0) : Ret(0)

If d = Tau(d′) : Tau(d′op)

If d = Eff(-, 4, k) : Tau; Eff(-, 4, kop)

If d = ∀(-, k) : Tau; ∃(-, kop)

If d = ∃(-, k) : Tau; ∀(-, kop)

iter (k ∈ ktree � (� + ')) ∈ ktree � ' ≜ . . .

� ; � ≜ ∀- . � - → � -

interp (H ∈ � ; dtree� ) ∈ dtree� ; dtree� ≜ . . .

stateT( " - ≜ ( → " (( × - )

interp_stateT (H ∈ � ; stateT( dtree� ) ∈

dtree� ; stateT( dtree� ≜ . . .

Fig. 13. Core definitions of DTrees

Note that we do not want to write these abstractions with traditional programming languages
which contaminates abstractions with too much details (e.g., checking integer overflow). However,
writing STS directly turns out to be too tedious and makes it rather hard to reason about.

This situation has been greatly improved with the advent of ITrees, which now serves as a perfect
specification language in multiple projects [Sammler et al. 2023; Song et al. 2023]. In this context,
ITrees could be seen as a more enriched formulation of STS accompanied with (bi)simulations, rich
combinators and (equational) theories around them. These combinators and theories greatly simplify
writing and reasoning about mathematical STS. Specifically, in ITrees many of the verification
could be carried out using elementary rewrites (utilizing transitivity of the simulation).

However, the potential of ITrees have not been fully utilized yet in this context. The problem is
that ITrees does not come up with native support for non-determinism. While the definitions of
ITrees could easily be extended to model (dual) non-determinism (done in previous works [Lee
et al. 2023; Song et al. 2023]), having desired simulation and theories (esp., transitivity) for such a
definition is challenging and they were missing. Specifically, we want (directed) simulation (not
bisimulation, which is too restrictive in this context) for dual non-deterministc ITrees and theories
for it in the style of ITrees.

That is precisely the goal of this section: we develop DTrees library providing such. This result
is made possible largely due to the simpler formulation of simulation with FreeSim (§3.4 and §5).
Proving properties like transitivity is quite involved and the simpler formulation made it down to a
manageable level of complexity. Moreover, since our simulation is based on FreeSim, it naturally
enjoys all the benefits of FreeSim (§3) which should be useful to the user of this library.

Definitions. As mentioned, one way to understand ITrees is to think of it as another formulation
of (deterministc) STSs that has additional structure (user-defined effects), rich combinators, and
equational theories around them. Specifically, an itree of type “itree� '” is parameterized over
effects type � and return type '; in general � can contain arbitrary user-defined algebraic effects
(e.g., put/get operators for accessing states), and can also contain visible events E of STS. In this
understanding, all user-defined effects will eventually be handled (thus removed) with user-defined
handlers and will leave “itreeE '”, which correspond [Song et al. 2023] to deterministic STS.
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DTrees add dual non-determinism to ITrees, and thus can represent STSwith dual non-determinism.
DTrees are defined on top of ITrees to directly piggy-back on existing combinators (importantly,
iter and interp) and theories. That is, “dtree� '” is defined simply as “itree�+=>=34C� '” where
=>=34C� comprises effects representing dual non-determinism, not visible events.

We provide the definition of dtree, unfolded, in Fig. 13, and we implicitly use an effect type �
everywhere (unless explicitly written) hereafter. Then, a dtree is coinductively defined with five
constructors each corresponding to these “sort”s in STS. First three constructors are inherited from
ITrees: (i) Ret case for returning with a return value, (ii) Tau case for a silent step to the next state
(dtree), (iii) Eff case for an effectful step to the next state, and second two constructor are newly
added in DTrees: (iv) ∃ case for demonic non-determinism, (v) ∀ case for angelic non-determinism.
Semantically, Tau constructor is equivalent to (iv) or (v) given - as a unit, but is still needed to
piggy-back on ITrees. Following DimSum [Sammler et al. 2023], we use ∃ notation for demonic case
since if there exists G ∈ - such that the continuation (k G ) has certain trace, then it is considered a
trace of ∃(-, k), and vice versa for ∀.
Then, the monadic bind operator (>>=) for DTrees is defined in Fig. 13. For a given dtree ℎ3

and its continuation C; , bind operator computes ℎ3 and if it terminates with Ret case, continues
execution with C; with the return value. We use standard punctuation notation for ∃/∀ cases, and
standard monadic notations (including ; for sequential composition) for DTrees. For instance, the
following dtree represents a computation that either returns minus one or zero:

∃1 ∈ B. Tau; A ← (if 1 then Ret(1) else Ret(0)); Ret(−A )

The dualize operator, −op, simply swaps demonic and angelic non-determinism of the given dtree
(added Taus are consequences of piggy-backing on ITrees). iter and interp are the core combi-
nators from ITrees. iter computes (possibly infinitely) the given computation, k, until it returns
(i.e., returning a value with right). interp translates a dtree with effect type � into that with
effect type � by applying the provided handlerH for every effect invocations. interp_state is a
more advanced version whereH could be stateful, as manifested with the use of standard state
transformer, stateT. For an example, the following dtree represents a computation that repeatedly
prints “42” for indefinite (possibly infinite) amount of times.

(iter (__. Eff(Print(42)); ∀1 ∈ B. if 1 then Ret(left ()) else Ret(right ())))op

Finally, there is a denotation operator J−K that maps a dtreeE into a STS [Song et al. 2023].
Moreover, this operator is surjective: meaning that dtreeE is at least as expressible as STS.

Simulation and adequacy. We use
+
≿ notation for simulation for dtrees. Its definition directly

follows §4 (except that event case is extended to arbitrary effect �, not just E) and is omitted for

brevity. Indeed, the adequacy result directly relates
+
≿ with

+
≾ .

Theorem 6.1 (Lifting). For DTrees dt, ds of type dtreeE and a postcondition Ψ, the following holds:

dt
+
≿ds{_ _ _. Ψ} =⇒ init JdtK

+
≾ init JdsK{_ _ _. Ψ}

Corollary 6.2 (Adeqacy). For a pair of DTrees dt, ds of type dtreeE , we have:

dt
+
≿ds =⇒ JdtK ⊑beh JdsK

Theories. Nowwe present the selected core theories for DTrees given in Fig. 14. Our rules largely

follow the style of ITrees (where its bisimulation, ≈, is changed to
+
≿) unless explicitly mentioned.

eutt and euttge are rules that allow us to piggy-back on a large body of theories in original ITrees.
eutt allows rewriting with ≈ where 0 ≈ 1 means that 0 and 1 have equal structure (everything
except Tau) but can differ in finite number of Taus in between. To put it simply, eutt allows
attaching/removing finite number of Tau’s for a proven simulation. This is useful since combinators
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eutt
dt ≈ d′t ds ≈ d′s d′t

+
?C ≿?Bd

′
s {Ψ}

dt
+

?C ≿?Bds {Ψ}

bind
Γ
? ⊢ ℎ3t

+
?C ≿?Bℎ3s {Ψ} ∀ (?C ′, ?B′, rt, rs ) ∈ Ψ. Γ

? ⊢ C;t rt
+

?C ’ ≿?B’C;s rs

Γ
? ⊢ ℎ3t >>= C;t

+
?C ≿?Bℎ3s >>= C;t

euttge
dt ≳ d′t ds ≳ d′s Γ

? ⊢ d′t
+

?C ≿?Bd
′
s {Ψ}

Γ
? ⊢ dt

+
?C ≿?Bds {Ψ}

trans
d0
+
≿d1 d1

+
≿d2

d0
+
≿d2

dual
Γ
? ⊢ dt

+
?C ≿?Bds {Ψ}

Γ
? ⊢ d

op
s

+
?B ≿?Cd

op
t {?B

′ ?C ′ rs rt . Ψ ?C ′ ?B′ rt rs}

Core Theories

iter
∀E. kt E

+
≿ks E

∀E. (iter kt ) E
+
≿ (iter ks ) E

interp
dt
+
≿ds

interp H dt
+
≿interp H ds

interp-state
dt
+
≿ds

interp_state H dt B
+
≿interp_state H ds B

involutive
⊤

(dop )op ≈ d

bind-dualize
⊤

(d >>= k)op = (dop >>= kop )

iter-dualize
⊤

(iter k)op = (iter kop )

interp-dualize
⊤

(interp H d)op ≈ (interp Hop dop )

Derived Theories

Fig. 14. Selected theories of DTrees

in ITrees automatically adds Taus (as seen in the definition of −op) and we want to ignore them
in our reasoning. Note that this rule cannot be applied when there is any coinductive hypothesis:
doing so is unsound (it gives free progress by attaching Taus). euttge is a similar rule but meant to
be used in the middle of the coinductive proof. However, attaching Taus is rightfully forbidden: it
only allows removing Taus (0 ≳ 1 means 1 has less Taus).

These two rules allow migrating all the theories in the form of a simple equation (e.g., 0 ≈ 1), but
some theories where simulation appears in both positive and negative position need to be newly

proven for
+
≿. At the core of these rules are only three: bind, trans, and dual (replacing symmetry).

bind is stronger than the one in ITrees in that it allows passing partial progress between split
computations (§3.2). trans is the most challenging one to prove: the proof requires case-analysis on
both premises which basically results in cases with quadratic the number of constructors. FreeSim
has a much simpler definition compared to equivalent ones (§3.4 and §5) with fewer number of
constructors and this was crucial for our proof. The symmetry rule, which simply flips the source
and the target, does not hold anymore since we are using directed simulation. Such a rule is adjusted
to dual rule that additionally takes dual on both sides. It is easy to see that dual rule holds.

Finally, we have rules that are derived from core theories of ITrees and DTrees. Rules iter, interp,
and interp-state are direct translations of corresponding rules in ITrees where ≈ is changed into
+
≿. These rules are easily derived from bind above. Finally, equational theories for −op, which is
defined using interp, are directly derived from equational theories for interp in ITrees.

7 DISCUSSION AND RELATED WORK

In §7.1, we discuss how one may push the boundaries of existing approaches (explicit/implicit
stuttering) and how that compares with our interface, FreeSim. In §7.2, we discuss related work.

7.1 Pushing Boundaries of Existing Approaches

There are clever tricks to extend the boundary of ISim/ESim, and we compare them with FreeSim.

Adding “skip”s everywhere in implicit stu�ering. The most important difference between
implicit stuttering and FreeSim is that the latter produces more (partial) coinductive progress. Thus,
it would be possible to mitigate the limitations of implicit stuttering by adding skips in between
every instruction. For example, in REORDER, if we had skip in between x and y, one could prove
the example with implicit stuttering. Since inserting skips manually is prohibitively cumbersome,
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we could instead add them automatically to an arbitrary STS as follows:

AddSkips(S ∈ ()() ∈ ()( ≜ {-S × B, {(G,⊤)
g
↩→ (G,⊥) | G ∈ -S} ⊎ {(G,⊥)

4
↩→ (~,⊤) | G

4
↩→S ~},

(initS,⊥), _(G ∈ -,1 ∈ B) . if 1 == ⊥ then sortS else Tau }

The AddSkips operator takes an STS, S, and returns an STS with skips inserted. That is, each state
GS gets divided into (GS,⊤), (GS,⊥), where the former corresponds to the skip—it has a single
outgoing edge with g into the later—and the latter corresponds to the original state GS.
With this, one can prove a meta-theoretic result that AddSkips preserves the behavior (i.e.,

AddSkips(S) ≡behS). Then, given a goal T⊑behS, we can turn it into AddSkips(T) ⊑behAddSkips(S)
and now it suffices to prove an easier goal, AddSkips(T)≾AddSkips(S).
We can push this even further by inserting more than one skip: given a well-founded order O

with ⊥ and ⊤, we now split each state GS into (GS, > ∈ O):

AddManySkips(S) ≜ {-S × O, {(G, >1)
g
↩→ (G, >0) | G ∈ -S ∧ >0 <O >1} ⊎ {(G,⊥)

4
↩→ (~,⊤) | G

4
↩→S ~},

(initS,⊥), _(G ∈ -,1 ∈ B) . if 1 == ⊥ then sortS else Tau }

And this results in the same interface as FreeSim. Specifically, C
+

?C≾?B B corresponds to (C, ?C)≾ (B, ?B):
i.e., progress indices correspond to the number of free skips remaining in the current state. Check
that (i) executing an actual stuttering step to the next state (G,⊥)

4
↩→ (~,⊤) refreshes the skip-count

to ⊤, behaving the same as the stuttering rules in FreeSim, and (ii) executing free skips on both the
target and the source (G, >1)

g
↩→ (G, >0) decrements skip-counts and makes coinductive progress,

behaving the same as coind-prog. Thus, ISim after pre-processing with AddManySkips could be
seen as another implementation of the FreeSim interface.

This observation could potentially be useful in a project where one already has adequacy proof for
an implicit stuttering and wants to reuse it. On the other hand, adding such skips could potentially
cause cluttering through the whole development and would be infeasible in some projects. For
instance, the whole theory of ITrees is proven to be agnostic to the number of skips (i.e., respecting
≈), but doing so required significant technical effort.

Hiding stu�ering index in explicit stu�ering. The most important limitation of explicit
stuttering is that the user needs to set up the right index upfront. It would be possible to mitigate

this limitation by hiding the index behind existential quantifiers: C
−
≾ ′B ≜ ∃8 . C

−
≾8 B . This definition

will indeed enjoy most of the important meta-theoretic properties (e.g., bind in §6).
However, this trick has one serious problem: existing coinductive techniques do not support an

existential quantifier in the goal. Thus, for a proof that requires manual coinductive reasoning, this
abstraction does not work and one needs to fall back to the original definition of explicit stuttering.

7.2 Related Work

Termination-insensitive refinement. When one aims for a lower goal, often called termination-

insensitive refinement [Frumin et al. 2018; Turon et al. 2013], more elementary simulations suffice.
Termination-insensitive refinement basically interprets silent divergence in the target as an empty
behavior, meaning that it allows a non-terminating program in the target to refine an arbitrary
program in the source. For such a weaker result, BSim without stuttering index (equivalently, ISim
where asynchronous target step makes coinductive progress) suffices. However, such an elementary
definition would only work for termination-insensitive refinement, and sophisticated stuttering is
a necessary evil when one wants a stronger result like termination-sensitive refinement.

Simuliris. Simuliris [Gäher et al. 2022] uses an implicit stuttering simulation, as well as a clever
trick that works for their programming language to side step all the complexities coming from
coinductive reasoning. In the language they consider, the only sources of infinite execution are
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while loops and recursion, and they have focused on specialized support for these. Specifically, (i)
rules for executing while loops are restricted to synchronous execution in both sides only, and (ii)
they utilize the fact that every iteration of while loop starts with an additional “unfolding” step.
These two together give a simple rule for while that does not require users to show coinductive
progress explicitly, since progress is already made at the beginning of the loop.

While this trick greatly simplifies the verification and works in many scenarios, it does not work
for: (i) examples that need coinductive hypotheses out of these synchronous while loops (e.g.,
REORDER), and (ii) languages that do not have such an unfolding step in the loop semantics (e.g.,
CCS or the RTL language in CompCert).

Simulations for dual non-determinism. CCR [Song et al. 2023] originally defined a simulation
(for termination-sensitive refinement) with explicit stuttering index and inherits its limitations. CCR
also defines a simulation on dtree, but does not provide the metatheory (esp., transitivity) that we
offer. DimSum [Sammler et al. 2023] also defines a simulation for STS with dual non-determinism,
but it aims for termination-insensitive refinement and has the aforementioned elementary definition
of simulation. DimSum’s simulation does not satisfy dual, and this seems to be a fundamental
limitation for such elementary simulations.

Choice Trees. Choice Trees [Chappe et al. 2023] (abbreviated as CTrees) are a variant of ITrees
supporting non-determinism. CTrees provide bisimulation, and DTrees provide directed simulation,
which is fundamentally different with respect to stuttering. Bisimulation, even the termination-

sensitive one, could be defined as a conjunction of two directed elementary simulations, whereas
(as mentioned) sophisticated stuttering is essential in the latter. Also, CTrees at the moment have
limited support for weak bisimulation (lacking proper up-to techniques for the bind operator) unlike
us (bind). Other (minor) differences are that we support both angelic and demonic non-determinism
while CTrees only consider demonic. On the other hand, CTrees distinguishes between steps that
can cause divergence and steps that cannot. The datatype we use in DTrees is defined on top of
ITrees, whereas CTrees define a separate datatype inspired by ITrees.

Bisimulation. The idea of tracking the guardedness asynchronously could be applicable in
domains outside directed simulation. Specifically, the weak bisimulation in ITrees (eutt) is defined
in the style of implicit stuttering, and we believe progress indices could be employed in that setting.
Diacritical progress approaches [Biernacki et al. 2019a,b,c] have decomposed a bisimulation

as a conjunction of a part about computational steps and a part about administrative steps, and
accordingly distinguished between strong and weak up-to techniques. Since a stuttering simulation
is a disjunction of stuttering cases and progressive cases, a diacritical progress approach is not directly
applicable. Nevertheless, it would be an interesting future work to explore ways of combining
diacritical progress with our approach.
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