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Abstract
Motivation: Identifying target promoters of active enhancers is a crucial step for realizing gene regulation and deciphering phenotypes and dis-
eases. Up to now, several computational methods were developed to predict enhancer gene interactions, but they require either many epige-
nomic and transcriptomic experimental assays to generate cell-type (CT)-specific predictions or a single experiment applied to a large cohort of
CTs to extract correlations between activities of regulatory elements. Thus, inferring CT-specific enhancer gene interactions in unstudied or
poorly annotated CTs becomes a laborious and costly task.

Results: Here, we aim to infer CT-specific enhancer target interactions, using minimal experimental input. We introduce Cell-specific ENhancer
Target pREdiction (CENTRE), a machine learning framework that predicts enhancer target interactions in a CT-specific manner, using only gene
expression and ChIP-seq data for three histone modifications for the CT of interest. CENTRE exploits the wealth of available datasets and
extracts cell-type agnostic statistics to complement the CT-specific information. CENTRE is thoroughly tested across many datasets and CTs
and achieves equivalent or superior performance than existing algorithms that require massive experimental data.

Availability and implementation: CENTRE’s open-source code is available at GitHub via https://github.com/slrvv/CENTRE.

1 Introduction

Promoters and enhancers are the two major cis-regulatory ele-
ments that control the context-dependent gene transcription.
Eukaryotic enhancers are bound by various transcription fac-
tors (TFs) and when activated they upregulate the expression
of target genes by forming chromatin loops with their target
promoters (Furlong and Levine 2018). It is estimated that
over a million potential enhancers exist in the human genome
(ENCODE Project Consortium 2012), vastly outnumbering
human genes. Such significant redundancy shows that the ac-
tivity of the enhancers is highly specific; only a subset of
enhancers is active in a given cell type (CT) and orchestrates
the lineage-specific gene expression (Visel et al. 2009).

As more mutations and genomic alterations of the noncod-
ing genome become associated with regulatory elements, iden-
tifying gene targets of active enhancers is crucial for
deciphering diseases and other phenotypes. Experimental
methods such as Hi-C (Lieberman-Aiden et al. 2009), ChIA-
PET (Fullwood et al. 2009), HiChIP (Mumbach et al. 2016),
and Capture Hi-C (Mifsud et al. 2015) have revealed that
chromatin architecture plays an important role in gene
transcriptional regulation. When the resolution of these
assays is high enough, these techniques can reveal individual

Enhancer–Target (ET) contacts. However, high-resolution ge-
nome-wide loop data are only available for a limited number
of human tissues/CTs and conditions. Further limitations
such as low sensitivity, high cost, and technical challenges in
loop-calling methods make capture-based techniques difficult
to be widely applicable in ET identification (McCord et al.
2020, Xu et al. 2020).

Several computational methods for identifying ET interac-
tions have emerged. Correlating genomic and epigenomic sig-
nals at enhancers and promoters across multiple biosamples is
the most common practice to detect ET pairs (Thurman et al.
2012, Sheffield et al. 2013). Although intuitive, these methods
lack CT-specific predictions while requiring a vast number of
biosamples. Supervised machine-learning methods train statis-
tical models on sets of known interacting and noninteracting
ET pairs annotated with various genomic, epigenomic, and
transcriptomic features. Once the model is trained in one or
several CTs, in principle, it could predict ET pairs in any other
CT. One constraint of these methods is that they require mul-
tiple experimental assays to generate CT-specific ET predic-
tions. TargetFinder (Whalen et al. 2016) integrates hundreds
of cell-specific genomics datasets to annotate ET pairs, mak-
ing the method applicable only to a few rich annotated cell
lines. Inflated performance due to dependencies in training
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and test datasets is another limitation in assessment of the su-
pervised learning models (Cao and Fullwood 2019). An unbi-
ased and robust computational approach that can be easily
applied to any CT while it claims for a feasible number of
experiments is still missing.

Given a hitherto less studied tissue or CT, the challenge lies
in predicting its ET interactions using a minimum of experi-
mentally derived information. We here present Cell-specific
ENhancer Target pREdiction (CENTRE) which requires for
the CT under study only RNA-seq results and ChIP-seq data
for H3K27ac, H3K4me1, and H3K4me3. This CT-specific in-
formation is combined with statistics derived from enhancer
and promoter signals across many CTs by means of a ma-
chine learning method, extreme gradient boosting. Through
this combination of generic, across-cell-type information with
CT-specific information we obtain a prediction accuracy
which is on par or better than established tools. At the same
time the requirement for genomic data about the new CT is
low enough to allow for easy and routine use of CENTRE for
predicting ET interactions in a new CT.

2 Materials and methods

2.1 Processing of BENGI datasets

We used the All-Pairs.Natural-Ratio BENGI collection of
datasets for the training and evaluation of CENTRE. BENGI
uses the hg19 annotation of cCREs-ELS and GENCODE v19
TSS. We updated all ET pairs of the BENGI datasets on the
hg38 annotation using the UCSC Genome Browser liftover fa-
cility (Kent 2002). Then we overlapped the uplifted regions
with the latest version 2 of ENCODE Registry of cCREs on
hg38 [findOverlaps function from GenomicRanges library
(Lawrence et al. 2013)]. Regarding the targets, we used the
basic gene annotation of GENCODE Release 40 (GRCh38).
The hg38 Registry of cCREs-ELS has a variable size between
150 and 350 bp (median length 286 bp), while the hg19 anno-
tation has a variable size between 50 and 16 633 bp (median
length 352 bp). In case of a hg19 cCREs-ELS overlapping
more than one hg38 cCREs-ELS, multiple ET pairs were cre-
ated with the mapped hg38 cCREs-ELS and the GENCODE
TSS assigning the original label. We kept only ET pairs that
are located within 500 KB. We downloaded RNA-seq tran-
scripts per million (TPM) values for the 13 biosamples from
ENCODE (Supplementary Table S1). The positive interac-
tions were further processed so that the interacting gene had a
TPM value > 0. We kept negative interactions with either a
matching TSS or a matching cCREs-ELS in the positive set.
All the processed BENGI datasets used in this study can be
found at: http://owww.molgen.mpg.de/~CENTRE_data/
BENGI_processed_datasets.zip.

2.2 CENTRE features

All features used for the training of CENTRE are listed in
Table 1.

2.2.1 CT-specific features
2.2.1.1 CRUP-EP probabilities on cCREs

ENCODE cCREs-ELS, and GENCODE TSSs were extended
on both sides to have a length of 500 bp. We downloaded
H3K4me1, H3K4me3, and H3K27ac ChIP-seq data from the
ENCODE portal (Supplementary Tables S2–S4) for all the
CTs examined in the study, and we applied the CRUP-EP al-
gorithm. CRUP-EP outputs the enhancer probability for every

100-bp genomic bin. We overlapped the obtained probabilities
with the 500 bp enhancer and target regions [findOverlaps
function from GenomicRanges library (Lawrence et al. 2013],
resulting in five enhancer probabilities scores for the enhancer
regions and five for the target regions.

2.2.1.2 CRUP-PP probabilities on cCREs

CRUP-EP uses a combination of two binary random forest
classifiers and assigns enhancer probabilities to each 100-bp
bin [Equation (1)]. The first classifier discriminates between
active genomic regions (active promoters, enhancers) and in-
active genomic regions (inactive promoters, remaining intra-
and intergenic regions). The second classifier distinguishes
enhancers from promoters, given that the bin is active.

Pðbinx ¼ active enhancerÞ ¼ Pðbinx ¼ activeÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Classifier 1

� Pðbinx ¼ active enhancerj binx ¼ activeÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Classifier 2

(1)

We used the complementary probability of the second clas-
sifier that distinguishes enhancers from promoters such that it
can return the probability of the bin to be an active promoter,
given that the bin is active [Equation (2)]. We call the output
CRUP Promoter Probability (CRUP-PP).

Pðbinx ¼ active promoterÞ ¼ Pðbinx ¼ activeÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Classifier 1

�
�

1� Pðbinx ¼ active enhancerj binx ¼ activeÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Classifier 2

(2)

We overlapped the obtained probabilities with the 500 bp
enhancer and target regions [findOverlaps function from
GenomicRanges library (Lawrence et al. 2013)], resulting in
five promoter probabilities scores for the enhancer regions
and five for the target regions.

2.2.1.3 Regulatory distance

We extracted the CRUP-EP and CRUP-PP activity scores for
the window between the ET pair. RD features consist of four
different values: (i) the number of bins where CRUP-EP> 0.5
(reg_dist_enh), (ii) the number of bins where CRUP-EP> 0.5
divided by the total number of bins in the ET window
(norm_reg_dist_enh), (iii) the number of bins where CRUP-
PP> 0.5 (reg_dist_prom), and (iv) the number of bins where
CRUP-PP> 0.5 divided by the total number of bins in the ET
window (norm_reg_dist_prom).

2.2.1.4 RNA-seq

RNA-seq TPM values for all biosamples considered in the
study were downloaded from the ENCODE portal
(Supplementary Table S1).

2.2.2 Generic features
2.2.2.1 CAGE-seq dataset

We downloaded the RLE normalized expression TPM tables
for enhancers and genes from the FANTOM5 portal (https://
fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/extra/).
We averaged TPM values for the enhancers and for the genes
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across replicates resulting in 848 different CTs. We intersected
cCRE-ELS with enhancer CAGE peaks [findOverlaps function
from GenomicRanges library (Lawrence et al. 2013)]. If a
cCRE-ELS region overlapped with more than one CAGE-
defined enhancer, we added the TPM values of the overlapped
CAGE enhancers. We used the Wilcoxon rank-sum test to
compare the gene expression in samples where the enhancer is
active (TPM> 0) and inactive (TPM¼0).

2.2.2.2 DNAse-hypersensitive region dataset

We downloaded normalized counts across 112 CTs for
DNase-hypersensitive sites or DHSs (dhs112_v3.bed) from
http://big.databio.org/papers/RED/supplement/. We used
UCSC liftOver (Kent 2002) to obtain the hg38 coordinates of
DHSs. We intersected cCRE-ELS and target regions with the
DHSs [findOverlaps function from GenomicRanges library
(Lawrence et al. 2013)]. If cCRE-ELS and target regions over-
lapped with more than one DHS, we added the corresponding
DHSs counts. We ranked CTs based on the enhancer DHSs
normalized counts and selected the top quantile (0.25) as the
ones with the higher enhancer activity. We then used the
Wilcoxon rank-sum test to compare the target DHSs signal in
samples where the enhancer has higher activity than the rest
of the CTs.

2.2.2.3 DNAse-seq—gene expression dataset

We downloaded the normalized microarray gene expression
for 112 CTs (exp112.bed) that match the DNAse-
hypersensitive dataset from http://big.databio.org/papers/
RED/supplement/. We used the processed DNA-seq dataset
for the enhancer regions and we applied the Wilcoxon
rank-sum test to compare the target gene expression in

samples where the enhancer has higher DNAse activity (top
quantile) than the rest of the CTs.

2.2.2.4 CRUP-EP—gene expression dataset

We downloaded H3K4me1, H3K4me3, H3K27ac, ChIP-seq
data, and RNA-seq TPM values for 66 matched CTs from the
ENCODE portal (Supplementary Tables S1–S4). We applied
the CRUP-EP function and extracted the enhancer probabili-
ties for cCRE-ELS regions, averaging them across the five
bins. If the average CRUP-EP probability was >0.5, we con-
sidered the enhancer region as an active enhancer. We used
the Wilcoxon rank-sum test to compare the gene expression
TPM values in CTs where the enhancer predicted active and
inactive. The CRUP-EP- gene expression dataset can be found
at: http://owww.molgen.mpg.de/~CENTRE_data/In_house_
constructed_datasets.zip.

2.2.2.5 Fisher’s combined probability

We combined the four Wilcoxon rank-sum test P-values into
a single P-value using Fisher’s method (Statistical methods for
research workers 1935). We used the negative logarithm of
the combined P-value as the final feature in our classification.

2.2.2.6 CRUP-EP and CRUP-PP correlation

We downloaded H3K4me1, H3K4me3, H3K27ac, ChIP-seq
data for 104 CTs from the ENCODE portal (Supplementary
Tables S2–S4). We applied CRUP-EP and CRUP-PP functions
in all CTs and extracted the CRUP-EP and CRUP-PP predic-
tions for cCRE-ELS and target regions, respectively. We
summed the probabilities over the 5-bin regions and com-
puted the Pearson correlation coefficient across the 104 CTs.
The CRUP-EP- CRUP-PP dataset can be found at: http://

Table 1. CENTRE’s features names as they appear in the open-source code and description.

Feature name Description

EP_prob_enh.1 CRUP-EP probability on 100 bps centered on the cCRE-ELS
EP_prob_enh.2 CRUP-EP probability on 100 bps centered on the cCRE-ELS
EP_prob_enh.3 CRUP-EP probability on 100 bps centered on the cCRE-ELS
EP_prob_enh.4 CRUP-EP probability on 100 bps centered on the cCRE-ELS
EP_prob_enh.5 CRUP-EP probability on 100 bps centered on the cCRE-ELS
EP_prob_gene.1 CRUP-EP probability on 100 bps centered on the GENCODE TSS
EP_prob_gene.2 CRUP-EP probability on 100 bps centered on the GENCODE TSS
EP_prob_gene.3 CRUP-EP probability on 100 bps centered on the GENCODE TSS
EP_prob_gene.4 CRUP-EP probability on 100 bps centered on the GENCODE TSS
EP_prob_gene.5 CRUP-EP probability on 100 bps centered on the GENCODE TSS
reg_dist_enh Number of 100 bp bins between the ET pair where CRUP-EP>0.5
norm_reg_dist_enh Number of 100 bp bins between the ET pair where CRUP-EP>0.5 divided by the total number of bins
PP_prob_enh.1 CRUP-PP probability on 100 bps centered on the cCRE-ELS
PP_prob_enh.2 CRUP-PP probability on 100 bps centered on the cCRE-ELS
PP_prob_enh.3 CRUP-PP probability on 100 bps centered on the cCRE-ELS
PP_prob_enh.4 CRUP-PP probability on 100 bps centered on the cCRE-ELS
PP_prob_enh.5 CRUP-PP probability on 100 bps centered on the cCRE-ELS
PP_prob_gene.1 CRUP-PP probability on 100 bps centered on the GENCODE TSS
PP_prob_gene.2 CRUP-PP probability on 100 bps centered on the GENCODE TSS
PP_prob_gene.3 CRUP-PP probability on 100 bps centered on the GENCODE TSS
PP_prob_gene.4 CRUP-PP probability on 100 bps centered on the GENCODE TSS
PP_prob_gene.5 CRUP-PP probability on 100 bps centered on the GENCODE TSS
reg_dist_prom Number of 100 bp bins between the ET pair where CRUP-PP>0.5
norm_reg_dist_prom Number of 100 bp bins between the ET pair where CRUP-PP>0.5 divided by the total number of bins
RNA_seq RNA-seq TPM values for the cell of interest
Distance Genomic distance between the middle-point of cCREs-ELS and target GENCODE TSSs
cor_CRUP Pearson correlation across 104 CTs between CRUP-EP and CRUP-PP predictions for cCRE-ELS and target

regions respectively
combined_tests Negative logarithm of Fisher’s combined P value (computed using the four Wilcoxon rank-sum test P-values)
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owww.molgen.mpg.de/~CENTRE_data/In_house_constructed_
datasets.zip.

2.2.2.7 Genomic distance

We computed the distance between the middle-point of
cCREs-ELS and target TSSs according to the ENCODE
Registry of cCREs on hg38 and the basic gene annotation of
GENCODE Release 40, respectively. We used the absolute
value of distance for the classification.

2.3 Centre algorithm

We applied the XGBoost (Chen and Guestrin 2016) algo-
rithm (python xgboost. XGBClassifier) with the logistic re-
gression learning objective for binary classification. To
control the unbalance of positive and negative samples we set
scale_pos_weight¼ 5. We used random_state¼ 0 for
reproducibility.

We initially optimized the algorithm on the GM12878
RNAPII-ChIAPET data (Tang et al. 2015) using
GridSearchCV with a nested CV scheme for the model selection
(inner folds¼ 3, outer folds ¼12). Based on the average preci-
sion reported in the inner CV we selected the following param-
eters: random_state¼0, colsample_bytree¼ 0.7, gamma¼ 1.0,
learning_rate¼ 0.1, max_depth¼ 5, n_estimators¼300,
reg_lambda¼ 0, subsample¼0.9. The outer CV is adopted
from (Moore et al. 2020) to ensure that testing is always per-
formed in different genomic regions than training—the results
in Fig. 2C display only the outer CV performance where no
hyperparameter tuning was carried out. We used the same
parameters without further optimization in the rest of the
BENGI datasets (Fig. 4A and B).

We finally optimized the XGBoost algorithm on the con-
sensus LCL datasets, using the RandomizedSearchCV func-
tion to find the optimal parameters. We used the customized
CV scheme suggested in Moore et al. (2020) to avoid overfit-
ting. Based on the f1 score performances we selected the fol-
lowing parameter set for the pre-trained CENTRE:
random_state¼ 0, colsample_bytree¼0.7, gamma¼ 0.25,
learning_rate¼ 0.1, max_depth¼ 10, n_estimators¼ 300,
reg_lambda¼ 1, subsample¼ 0.9. The consensus LCL dataset
and the script used for CENTRE final training can be found
at: http://owww.molgen.mpg.de/~CENTRE_data/CENTRE_
final_training.zip.

We further evaluated the XGBoost model against Random
Forests (RF) classifier. We used analogous parameters with
the XGBoost for the RF training. RF parameters:
n_estimators¼ 300, class_weight ¼ ‘balanced_subsample’,
random_state¼ 0, max_samples¼ 0.9, max_depth¼ 5. Area
under precision recall curves (AUPRCs) and F1-scores com-
paring the two models are illustrated in Supplementary Fig.
S7.

2.4 Comparison with TargetFinder

CENTRE features were calculated based on the ENCODE
Registry of cCREs on hg38 and the basic gene annotation of
GENCODE Release 40 (GRCh38). However, for the compar-
ison with TargetFinder on the BENGI datasets we used the
hg19 annotation of cCREs-ELS and GENCODE v19 TSS that
the authors originally used. CENTRE feature values were av-
eraged for hg38 ET pairs corresponding to the same hg19
pair.

2.4.1 TargetFinder
We reimplemented TargetFinder (Whalen et al. 2016)
(GradientBoostingClassifier, n_estimators¼ 4000,
learning_rate¼ 0.1, max_depth¼ 5, max_features ¼ ‘log2’,
random_state¼0) to run on the BENGI ET pairs with the
customized CV scheme suggested in Moore et al. (2020). We
calculated all the 303 features on LCLs, Hela, K562, IMR90,
and NHEK datasets using the generate_training.py script and
the corresponding datasets provided on the Github page
(https://github.com/shwhalen/targetfinder). Regarding the five
tissue datasets where not all genomic datasets required by the
TargetFinder method were available, we implemented a
TargetFinder reduced model using a subset of 13 features
coming from DNase, H3K4me3, H3K27ac, and CTCF exper-
imental assays and distance. We used experimental assays
downloaded from the ENCODE portal (Supplementary Table
S5). Genomic features for all the implementations were calcu-
lated for enhancer, promoter, and window regions (EPW
setting).

2.5 Code availability

CENTRE R software is accessible via https://github.com/
slrvv/CENTRE.

3 Results

3.1 Centre algorithm

We designed a machine learning pipeline called CENTRE,
that predicts ET interactions in a CT-specific manner (Fig. 1).
CENTRE builds on the ENCODE Registry of candidate cis-
regulatory elements with enhancer-like signatures (cCRE-
ELS) (ENCODE Project Consortium et al. 2020) and
GENCODE transcription start sites (TSSs) (Wright et al.
2016). During training, the input consists of pairs of
enhancers and promoters, labeled as “interacting” or “not
interacting” as given in the BENGI ground truth dataset
(Moore et al. 2020). The algorithm annotates potential ET
interactions with a minimum set of CT-specific information
coming from histone marks (HMs), gene expression, and ge-
neric information derived from ensembles of biosamples and
distance. Then a pre-trained extreme gradient boosting classi-
fier (Chen and Guestrin 2016) computes a probability for an
annotated ET pair to interact in the CT of interest. We how-
ever limit the search for ET pairs to a distance of 500 KB
which is a commonly accepted threshold for ET interactions
(van Arensbergen et al. 2014) that matches the median size of
topologically associated domains (TADs) (Dekker et al.
2013).

For predicting ET pairs in a new CT, our algorithm only
requires RNA-seq data as well as ChIP-seq data of the histone
modifications H3K27ac, H3K4me1, and H3K4me3 deter-
mined for this particular CT. These histone modifications re-
flect the activity status of an enhancer or promoter, while the
RNA-seq data inform the machine learning procedure about
the transcriptional outcome of a possible ET interaction. The
classifier is trained using this information for many available
CTs in conjunction with generic, across-cell-type statistics of
epigenetic and transcriptomic signals in enhancers and tar-
gets. We think of the statistics between regulatory elements
across CTs as providing the potential for an interaction, while
the CT-specific information serves to predict whether an inter-
action is realized and leads to gene activation or upregulation
in a particular CT.

4 Rapakoulia et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/11/btad687/7429396 by Adm
inistrative H

eadquarters - M
PS user on 05 January 2024

http://owww.molgen.mpg.de/~CENTRE_data/In_house_constructed_datasets.zip
http://owww.molgen.mpg.de/~CENTRE_data/In_house_constructed_datasets.zip
http://owww.molgen.mpg.de/~CENTRE_data/CENTRE_final_training.zip
http://owww.molgen.mpg.de/~CENTRE_data/CENTRE_final_training.zip
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad687#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad687#supplementary-data
https://github.com/shwhalen/targetfinder
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad687#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad687#supplementary-data
https://github.com/slrvv/CENTRE
https://github.com/slrvv/CENTRE


3.2 Features reflecting generic, across-cell-type

information

The generic, across-cell-type information is based on the ra-
tionale that when a gene’s expression is increased by an en-
hancer, then one expects to find this enhancer accessible, or
more generally active, in those CTs where the gene is upregu-
lated. Conversely, one expects the gene to be more lowly
expressed when the enhancer is inactive. This logic suggests
looking for correlations between enhancer accessibility and
gene expression across many CTs, realized by many existing
methods (Sheffield et al. 2013).

However, simply using correlation, e.g. of DNAse accessi-
bility patterns with gene expression, does not suffice to point
out significant ET interactions because of the CT-specific ac-
tivity of enhancers. As an example, the TTC39C gene inter-
acts with the distal enhancer-like element EH38E1904551 in
the GM12878 cell line according to the ChIA-PET experiment
targeting RNAPII (Tang et al. 2015). The expression of
TTC39C across 112 tissues (Sheffield et al. 2013) though does
not correlate with the accessibility of the EH38E1904551 ele-
ment in the same tissues as can be seen in Fig. 2A. In this figure,
for only a few tissues there is a clear enhancer accessibility sig-
nal as well as high expression, while generally the epigenetic
signal is low despite the gene being highly expressed. More
examples to this effect are depicted in Supplementary Fig. S1
supporting the idea that a correlation coefficient has a low pre-
dictive value in identifying ET pairs.

To mitigate this situation, we draw on another statistic. We
divide the CTs according to present or absent enhancer activ-
ity. This allows comparing gene activity when the enhancer is
active versus inactive (Section 2) by performing a Wilcoxon
rank-sum test between target transcriptional signals between
cells where the enhancer is active and those where it is not ac-
tive. We use its associated P-value as an indicator of the sig-
nificance of the ET interaction. For the case of accessibility as

a descriptor of enhancer activity, this is visualized in Fig. 2B
where one can see that in those CTs where the enhancer under
study is active the target gene tends to be more highly
expressed, resulting in a significant P-value of the Wilcoxon
rank-sum test.

We further extend this approach by including other
descriptors of enhancer activity for cCREs and GENCODE
TSS activity. Descriptors for enhancer activity comprise
DNAse accessibility and eRNA expression as measured by
CAGE tags. On the side of the target promoter/gene activity
we use DNAse accessibility and downstream transcript level
as measured by microarrays and CAGE-seq. We use three
publicly available datasets (Thurman et al. 2012, Sheffield
et al. 2013, Andersson et al. 2014) measuring the enhancer
and target aforementioned signals in an ensemble of CTs and
we calculate the Wilcoxon rank-sum test P-value for all
enhancers and target pairs within 500 KB. In addition we em-
ploy enhancer probabilities generated by CRUP-EP (Ramisch
et al. 2019) which uses H3K4me1, H3K4me3, and H3K27ac
ChIP-seq data and predicts the enhancer activity of a genomic
region. We used a dataset consisting of CRUP-EP probabili-
ties and RNA-seq TPM values across 66 ENCODE CTs
(Supplementary Table S1) and applied the Wilcoxon rank-
sum test analysis. For annotating ET pairs, we summarize
these four P-values into a single Fisher’s combined probability
(Section 2).

Based on the way CRUP works, we could also extract prob-
abilities that a region constitutes an active promoter, namely
CRUP-PP promoter probability (Section 2). We downloaded
H3K4me1, H3K4me3, and H3K27ac ChIP-seq data for 104
CTs from the ENCODE portal (Supplementary Tables S2–
S4), and we applied the CRUP-EP and CRUP-PP functions.
We complement the across-cell-type information with the
Pearson’s correlation coefficient between CRUP-EP and
CRUP-PP probabilities over the 104 CTs (Section 2). Thus,

Figure 1. Outline of CENTRE framework: the user provides target genes of interest with CT-specific RNA-seq and H3K27ac, H3K4me1, and H3K4me3

ChIP-seq data. CENTRE extracts all the cCRE-ELS within 500 KB of target genes and computes CT-specific and generic features for all potential ET pairs.

ET feature vectors are then fed to a pre-trained XGBOOST classifier, and a probability of an interaction is assigned to ET pairs. ET pairs with higher

probability than 0.5 are labeled as interacting pairs
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the generic information of CENTRE results in three feature
values that will be input to the machine learning classifier: (i)
Fisher’s combined probability, (ii) correlation coefficient of
CRUP probabilities, and (iii) the genomic distance between
the ET pairs.

3.3 Features reflecting CT-specific information

Aggregate statistics obtained from many biosamples are insuf-
ficient to delineate CT-specific links. Thus, computational ET
prediction methods also use CT-specific assays to capture CT
dependent interactions. We designed two kinds of features.
Firstly, we want to capture whether an enhancer and pro-
moter are each active. To this end, we again apply the CRUP-
EP and CRUP-PP functions (Section 2) to compute from HMs
the probabilities for cCRE-ELS and TSS to be active as
enhancers or promoters, respectively. Additionally, we use the
expression level of the respective target gene as given by the
CT-specific RNA-seq data.

A very important feature in predicting whether cCRE-ELS
might target a certain promoter is the genomic distance be-
tween the regulatory elements. However, this is a generic fea-
ture carrying no information about a particular CT. We again
exploit CRUP predictions for regulatory elements to upgrade
the genomic distance feature to a “regulatory distance” which
describes whether there are many active regulatory elements
in the genomic region between the ET pairs, or whether that
region is largely devoid of regulatory activity. We apply
CRUP-EP and CRUP-PP to the window between the two reg-
ulatory elements and extract the fraction of regions classified
as enhancers or promoters, respectively. Note that regulatory
distance (RD), in contrast to genomic distance alone, captures
CT-specific information.

3.4 Integrating features into a machine learning

framework

Taken together we form features from the following informa-
tion: (i) Statistics among regulatory element activities in many

Figure 2. (A) Scatter plot of normalized TTC39C expression and DNase signal at EH38E1904551 across 112 human CTs. Green dots represent CTs with

higher accessibility (upper quantile DNase signal). Although TTC39C is expressed across many CTs, EH38E1904551 presents high DNase signals

predominantly in lymphoblastoid cell lines, resulting in a Pearson Correlation Coefficient of only 0.11. (B) Boxplots of TTC39C expression in cells where

the EH38E1904551 is accessible (upper quantile DNase signal across 112 cells) versus cells where EH38E1904551 is not accessible. The significant P-

value of the Wilcoxon rank sum test finer illustrates the strength of the ET interaction (also Supplementary Fig. S1). (C) Precision Recall Curve plots show

the performance of individual feature sets on classifying the GM12878 RNAPII-ChIAPET dataset. The machine learning algorithm achieves its best

performance when trained on CT-specific features and generic evidence of the ET interactions (also Supplementary Fig. S2). The performance of the

gradient boosting algorithms is measured after 12-fold cross validation, training and testing in different chromosomes. CENTRE was optimized on the

GM12878 RNAPII-ChIAPET data using a nested cross validation scheme (Section 2). (D) Ranking of feature importance, based on the relative number of

times a particular feature occurs in XGBoost trees (feature weight over weights of all features). Top ten features illustrated were extracted from the

XGBoost model applied in the GM12878 RNAPII-ChIAPET dataset.
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CTs, as described by the Wilcoxon rank sum test and
Pearson’s correlation coefficient, (ii) genomic distance and
RD, and (iii) CT-specific regulatory element activity predic-
tions obtained using CRUP and gene expression (Table 1).
The CENTRE algorithm combines all these orthogonal sour-
ces of information into a single probability score describing
the likelihood that an enhancer targets a particular TSS in a
given CT. While we exploit ample information to create a pri-
ori features from association signals across many CTs, the
CT-specific information needed comprises only gene expres-
sion plus the three HMs, namely H3K4me1, H3K4me3, and
H3K27ac. This latter information is widely available for
many cells and can be relatively easily collected for a CT
which was not profiled yet. A single feature vector is gener-
ated from the combination of across-CT and within-CT-
specific information which feeds an XGboost classifier (Chen
and Guestrin 2016).

For a proof of concept we tested the ability of individual
features to correctly classify ET interactions as derived from
GM12878 RNAPII-ChIAPET data (Tang et al. 2015) and la-
beled by Moore et al. (2020). In Fig. 2C, we can clearly notice
the advantage of the Fisher’s combined probability extracted
from three publicly available datasets over the average
Pearson correlation derived from the same datasets. However,
both generic features perform poorly on distinguishing true
and false ET interactions on the GM12878 cell line, being in-
ferior to the baseline distance method. When we train the
XGboost classifier with CT-specific CRUP probabilities on
regulatory elements as well as on the window between them
(RD), together with the GM12878 RNA-seq data the perfor-
mance significantly increases. Combining all the orthogonal
variates (across cell-type information, genomic distance, CT-
specific gene expression, CRUP predictions) into a single fea-
ture vector, CENTRE achieves the highest AUPRC, while still
using few CT-specific features.

3.5 Feature importance

We ranked features according to their importance, using the
number of times they appear in XGBoost trees and tested on
GM12878 RNAPII-ChIAPET dataset. Among the leading fea-
tures in Fig. 2D one finds both generic and CT-specific fea-
tures. Genomic distance (position 1), Wilcoxon tests
combined (position 6), and CRUP correlation (position 9) are
generic features, while positions 2 (RNA-seq), 3 (Normalized
Regulatory distance enhancers), and 4 and 5 (CRUP-EPs on
promoter) are occupied by CT-specific features. This under-
lines that both generic and CT-specific features contribute to
the overall performance.

We also applied a Leave-One-Feature-Out (LOFO) impor-
tance ranking of the features. Here, for the reduced model the
F1-score gets computed. The result is shown in
Supplementary Fig. S2A. This analysis ranks the RNA-seq sig-
nal as the most important feature for the model’s perfor-
mance. The low contribution of some features (including
Genomic distance) in the LOFO evaluation can be attributed
to the correlated information they offer (Supplementary Fig.
S3). When we perform LOFO excluding groups of correlated
features, the model’s performance drops further, indicating
target signals and ET proximity features as the most impor-
tant ones (Supplementary Fig. S2B). LOFO also confirms the
contribution of both generic and CT-specific features to the
overall performance (Fig. 2C and Supplementary Fig. S2C)
showing a higher influence for CT-specific features.

With versions of RD scoring high in feature importance, we
further checked whether RD is in fact more informative than
mere genomic distance. To this end, we collected enhancer–
promoter pairs which interact in LCLs but not in HeLa cells,
based on the annotation provided by Moore et al. (2020).
Clearly, for all these ET pairs the genomic distance is the
same in the genomes of the two cell lines, while RD can take
on different values. Figure 3A shows a scatter plot comparing
normalized enhancer RD (fraction of CRUP-EP-predicted
windows in the ET interval) between LCLs and HeLa cells. In
the LCLs, where the ET pairs interact, this RD tends to be
smaller than in the HeLa cells, where they do not interact.
This is evidenced by the regression line which has a smaller
slope than the identity. The other version of RD estimates the
fraction of active promoters between two regions (CRUP-PP)
and is plotted in Fig. 3B, showing that this count is dramati-
cally lower in the LCLs as compared to HeLa cells. Thus, RD
reflects functional context for an ET pair, going beyond the
simple genomic distance.

An example of an ET pair where RD makes a difference
with respect to the final CENTRE prediction score is given in
Fig. 3C. The cCRE-ELS EH38E2964268 targets the metasta-
sis associated lung adenocarcinoma noncoding RNA gene
MALAT1 (ENSG00000251562) in the GM12878 cell line
but not in HeLa according to data from Moore et al. (2020).
Indeed, in HeLa we observe an increased number of predicted
enhancers (purple track) in the interval between enhancer and
target compared to GM12878, where the ET link is active
and where we observe fewer predicted enhancers in the inter-
val. This gets reflected in the enhancer’s RD of the ET pair,
which is smaller in GM12878 than in HeLa. The CENTRE al-
gorithm correctly predicts the CT-specific link, assigning a
probability of interaction of 0.51 in GM12878 but a lower
probability of 0.12 in the same pair in HeLa. This is shown in
the arcs connecting enhancer and target and which are held in
the color of the respective CT. The RNA-seq track shows that
the gene is transcribed in both CTs, although the enhancer
studied here targets it only in GM12878.

3.6 Validation using BENGI dataset

For the validation of CENTRE on multiple CTs, we used the
Benchmark of candidate Enhancer-Gene Interactions
(BENGI) established by Moore et al. (2020). In their paper
the authors evaluated several computational enhancer target
identification methods including, in particular, TargetFinder
(Whalen et al. 2016) which was shown to be the best-
performing method across all datasets (Moore et al. 2020).
For the purpose of evaluation, the study puts together a com-
prehensive testbed annotating pairs of cCREs-ELS and
GENCODE TSS with experimental evidence derived from ei-
ther 3D chromatin interactions (ChIa-PET), HiC, genetic
interactions, or CRISPR/dCAS9 perturbations for 13 CTs. To
avoid evaluation bias due to dependencies between training
and test datasets, the authors also provide 12 cross-validation
(CV) groups split by chromosome. This ensures that testing is
always performed in different genomic regions than training.
We use BENGI datasets and follow their suggested routine of
12-fold CV such that our results should be fully comparable
to results reported by Moore et al. (2020). For evaluation we
use F1-score. F1-score is a well-suited metric for highly imbal-
anced datasets as is the case with the few reported positive
interactions in comparison to a large number of noninteract-
ing pairs.
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Before testing the machine learning prediction, we investi-
gated how informative are individual features with respect to
distinguishing positive from negative ET pairs. Supplementary
Figure S4 presents, for each feature, box plots comparing the
respective feature value between the positive and negative pairs.
Clearly, the more different they are the more likely this feature
will aid in the prediction. This is being summarized in the
P-value of a t-test comparing the two distributions. Generic fea-
tures and CT-specific features for the target promoter/gene are
generally the most significant ones presenting a consistent sig-
nificant difference between interacting and noninteracting ET
pairs across BENGI datasets.

The full TargetFinder model uses roughly 101 epigenomic
and transcriptomic experiments from histone modification
ChIP-seq, TF ChIP-seq, DNase-seq, and CAGE-seq, yielding
303 features. Our CENTRE method computes 28 features
stemming from only four experiments, namely three ChIP-Seq
HMs and RNA-seq. For the initial comparison we used ET
datasets derived from five commonly used CTs where all

experiments required by TargetFinder are available, which
then also includes the four experiments used by CENTRE.
Figure 4A shows the performance of CENTRE compared to
TargetFinder (at 12-fold CV) in terms of F1-score. CENTRE
achieves a higher F1-score than TargetFinder in 11 out of 13
benchmark datasets, where positive pairs were extracted from
five experimental assays applied in five cell lines. Especially
when positive pairs come from Hi-C loops, both methods’
performance is limited. However, CENTRE is more efficient
in uncovering ET interactions across many CTs and experi-
mental techniques. TargetFinder in contrast, although requir-
ing substantially more CT-specific information, performs
better than CENTRE in only two ChIAPET RNAPII datasets.

We extended our evaluation in five tissue datasets where
the positive pairs were extracted from eQTL mapping. Since
not all TF ChIP-seq datasets needed for training of
TargetFinder were available, we reimplemented a reduced
TargetFinder model (Section 2) using a subset of 13 features
coming from DNase, H3K4me3, H3K27ac, and CTCF

Figure 3. (A) Scatterplot of enhancers’ RD, captured by the normalized CRUP-EP scores applied to the window between 334 ET pairs that interact in LCLs

but not in HeLa cell line. (B) Scatterplot of promoters’ RD, captured by the normalized CRUP-PP scores applied to the window between 334 ET pairs that

interact in LCLs but not in HeLa cell line. We can notice that both enhancers and promoters’ RD tend to be smaller in LCLs than HeLa cells. (C) Genome

Browser view of the MALAT1 gene (ENSG00000251562) which is targeted by the upstream CRE EH38E2964268 in GM12878 but not in HeLa. The

enhancer track shows the regions that have higher than 0.5 CRUP-EP probability in the window between the ET pair. The enhancers’ RD is smaller in

GM12878 compared to HeLa, as shown by CRUP predicted enhancers track and confirmed by the H3K27ac signals. CENTRE correctly uncovers the CT-

specific true interaction in GM12878, while it assigns a very small probability in HeLa, where the specific ET pair does not interact.
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experimental assays and genomic distance, as suggested by
Moore et al. (2020). Figure 4B shows that CENTRE’s advan-
tage becomes even more evident in these five tissues, signifi-
cantly outperforming the reduced TargetFinder model. Even
though the reduced TargetFinder model uses more CT-
specific information than CENTRE, still CENTRE predicts
CT-specific ET pairs correctly more often, relying only on a
minimal amount of CT-specific information.

Supplementary Figure S5 depicts the top ten features
ranked by the number of times they appear in XGBoost trees
for all models applied in BENGI datasets. Genomic distance
holds the leading position in most of the cases except
Geuvadis LCL dataset and Ovary eQTL datasets where the
target RNA-seq signal is ranked in the top position.

3.7 Pre-trained centre framework

Training a classifier is a complicated process and rather than
requiring the user to train a classifier a pre-trained classifier
should be provided. Therefore, we provide a pre-trained clas-
sifier software that we have trained on a dataset of known ET
interactions and that is then ready to make new ET predic-
tions in any CT and context. To this end, the selection of the
training dataset is a critical factor for the algorithm’s ability
in future predictions. Based on the information summarized
in Fig. 4, we focused on K562, GM12878, HeLa cell lines.
For these CTs, training ET links were derived from multiple
experimental assays in the BENGI benchmark collection.
Based on the expectation that these experimental methods
capture different aspects of ET interactions, we created joint

Figure 4. (A) Boxplots representing the F1 scores after 12-fold CV achieved by CENTRE and TargetFinder applied in 13 BENGI datasets (five cell lines)

where all experimental assays required by TargetFinder are available. (B) Comparison of CENTRE and TargetFinder in five tissue datasets where a subset

of experimental assays required by TargetFinder was used (TargetFinder Reduced model). The asterisk denotes the F1 score of the pre-trained CENTRE

on the consensus LCL dataset and applied on the five tissue datasets. (C) Mean F1 scores after 12-fold CV of CENTRE when trained and tested on

different datasets. For each test dataset, orange cells highlight the best performing training dataset.
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cell-line-specific consensus datasets and a comprehensive
composite dataset consisting of all labeled ET interactions
from the three cell lines in a fixed positive-to-negative ratio.
We also combined the two best performing datasets according
to Fig. 4A and B (GM12878 RNAPII-ChIAPET and CHi-C,
Fig. 4A) and kept intact the GM12878 RNAPII-ChIAPET
(Tang et al. 2015) dataset in the training collection since
CENTRE achieved its best performance when applied to it.

For the classifiers trained on this information, we per-
formed extensive performance evaluation on 11 ET datasets
coming from three cell lines and six different experimental
assays, using the 12 CV scheme to avoid overfitting.
According to the results shown in Fig. 4C, when CENTRE is
trained on the consensus LCL training dataset, it presents the
most solid performance, achieving the best F1-score in 5 out
of 11 testing datasets and the second-best in another three
datasets. Noteworthy, among its best-performing test sets, are
the K562 and HeLa datasets coming from Hi-C loops, dis-
playing good performance across cell-types.

Once we homed in on the training set, CENTRE was
trained and optimized on the whole consensus LCL dataset
(Section 2). The feature importance for the pre-trained classi-
fier is provided in Supplementary Fig. S6. As a proof of con-
cept, we applied the pre-trained classifier on the five eQTL
tissue datasets of Fig. 4B. As we can notice the pre-trained al-
gorithm on the consensus LCL dataset and applied to the
whole five tissue datasets performs similarly to the method
when trained and tested on the same datasets with 12-fold
CV. Noteworthy, it achieves an even better f1 score than the
median 12-fold CV scores for three out of five tissue datasets,
showing its predictive ability when applied to different CTs.
We provide the pre-trained CENTRE framework as ready-to-
use R software. For application to a particular CT, it takes as
input the CT-specific H3K4me1, H3K4me3, H3K27ac,
ChIP-seq data, and RNA-seq TPM values. Then, for a user
provided target gene of interest the software predicts the inter-
acting cCRE-ELSs. There is no need for retraining and the in-
clusion of all the other sources of information in the training
is invisible to the user.

4 Discussion

In this work, we have put forward the CENTRE method to
predict interacting enhancer–promoter pairs in a CT of inter-
est. In a real-life application, that CT of interest will typically
be a less studied CT and our method requires only a limited
set of experimental data to base the prediction on. When
training the method, however, we include a wealth of avail-
able data to establish a space of feasible interactions. These
interactions get reweighted according to the CT-specific infor-
mation. This process is transparent to the user who does not
need to retrain the program but instead only provides the CT-
specific data to the trained algorithm. Despite this simplicity
in applying CENTRE, the quality of its predictions is gener-
ally comparable to, and in some cases better, than the best
existing methods.

Designing a machine learning method not only yields the
benefit of the final product, the program, but also allows to
study which features contribute and improve the quality of the
predictions. We did not attempt to assemble large numbers of
features but put a lot of effort into the careful design of the fea-
tures. In this process we experienced a few surprises. Firstly, in
the context of distilling the information from available data

across CTs, we found that a rank-sum test between two regula-
tory features of many CTs adds valuable information on top of
that provided by correlations. Clearly, enhancer and promoter
activity across many CTs need not be linearly related. For an
active ET link both enhancer and promoter/gene intensities
(ATAC, CRUP score, RNA-seq) will be high. In an inactive
link the relationship between the intensities will be largely ran-
dom while generally lower than for an active link. A rank-
based measure like the rank-sum test appears to detect this
more robustly than a correlation coefficient.

The other insight from the feature design concerns the RD.
While genomic distance clearly plays an important role in en-
hancer–promoter interaction, RD describes how much regula-
tory activity there is in the interval between enhancer and
promoter in the CT under study. We have shown that inclusion
of this feature improves prediction, and that RD is connected to
the probability of an ET link. This suggests that for the cell it is
easier to establish a specific chromatin interaction when in the
loop that is excluded there is little other regulatory activity. The
concept of inspecting various signals in the window between ET
pairs is not new, TargetFinder also uses window signals in its
model. However, TargetFinder investigates numerous signals
while CENTRE relies only on CRUP probabilities.

Although CENTRE performs well and compares favorably
with TargetFinder, the F1 score on many datasets is still low.
To a certain degree this simply reflects the inherent difficulty
of the problem of enhancer target prediction. Inclusion of
more HMs could possibly improve the annotation of cCREs
and RD, but this comes to the cost of extra experiments and
makes practical application of our method harder. We also
tried to put our method to the toughest tests and present fair
comparisons and results, avoiding overfitting issues due to de-
pendent genomic regions in training and test sets. Still, even
the choice of validation data strongly influences any perfor-
mance measurement. We notice that the Hi-C datasets consis-
tently exhibited the lowest overall performance. One possible
reason is that Hi-C maps even at 5 kb resolution are too
coarse and cannot be used to link distal regulatory elements
to their target genes (Zhang et al. 2018). Another limitation
stems from technical challenges in calling Hi-C loops, where
different loop-calling methods can produce markedly different
results (Forcato et al. 2017).

Given the difficulty of the enhancer target prediction prob-
lem, there is clearly room for future improvement of our
method. In the current version we derive the space of feasible
interactions from an analysis of large amounts of epigenetic
data. Here the question is whether and how to capitalize on
Hi-C data when it is available. Also, we still have to limit the
predicted interactions to a distance of 500 kb to avoid large
numbers of false positives. Future methodological improve-
ments will hopefully allow extending this interval.

The pre-trained CENTRE framework is provided as ready-
to-use R software where the user gives target genes along with
CT-specific H3K4me1, H3K4me3, H3K27ac, ChIP-seq, and
RNA-seq TPM data and receives all the interacting and non-
interacting predicted enhancers for the genes of interest. Thus,
CENTRE provides an accurate, pragmatic framework to dis-
tinguish genomic interactions without the need for extensive
and costly experiments.

Supplementary data

Supplementary data are available at Bioinformatics online.
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