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Abstract: Nonlinear control-affine systems described by ordinary differential equa-
tions with bounded measurable input functions are considered. The problem of the exis-
tence of periodic trajectories to these systems is formulated in the sense of Carathéodory
solutions. It is shown that, under the dominant linearization assumption, the periodic
boundary value problem admits a unique solution for any admissible control. This
solution can be obtained as the limit of the proposed simple iterative scheme and
Newton-type method. Under additional technical assumptions, sufficient contraction
conditions of the corresponding generating operators are derived analytically. The
proposed iterative approach is applied for the computation of periodic solutions of a
realistic chemical reaction model with discontinuous control inputs.
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Novelty statement:

• Existence and uniqueness of periodic solutions for nonlinear control systems with
general measurable input functions

• Iterative schemes and numerical implementation of an algorithm for approximat-
ing the periodic solutions of discontinuous systems

• Analytical sufficient conditions for the convergence of the simple iteration and
Newton-type methods

• Approximate periodic trajectories of a controlled chemical reaction model under
arbitrary switching strategies

1. Introduction

Periodic optimal control problems have been attracting considerable interest in the mathematical
literature [1–4] and play a significant role in a variety of emerging engineering applications (see,
e.g., [5–9] and references therein). Our current paper is motivated by the previous analysis of
nonlinear optimization problems with isoperimetric constraints [10, 11], where the main goal is to
optimize the cost functional on the periodic trajectories under discontinuous control strategies. An
important ingredient for achieving this goal relies on the description of the set of periodic solutions
for a nonlinear control system with bang-bang inputs.
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In the paper [11], the Chen–Fliess series have been exploited for constructing the τ -periodic
solutions of nonlinear control-affine systems with switching. This approach allows representing the
initial data of the considered system as a solution of nonlinear algebraic equations whose order
depends on the remainder of the Chen–Fliess series for small τ > 0. The construction of [11] has
been also extended to a class of nonlinear chemical reaction models in non-affine form in [12]. Note
that the convergence of the Chen–Fliess expansion is not guaranteed on an arbitrary time interval
[0, τ ] even for systems with analytic vector fields, and other approximation techniques should be
developed to design periodic solutions for nonlinear control systems with large periods.
For different classes of nonlinear ordinary differential equations with regular right-hand sides, the

problems of existence and approximation of periodic solutions have been studied by the method of
generalized quasilinearization [13], comparison techniques [14], fixed point theory [15], reproducing
kernel method [16], and other techniques. The presented list of references does not pretend to be
complete.
To the best of our knowledge, a complete characterization of periodic trajectories of a given

nonlinear system of ordinary differential equations with discontinuous right-hand sides remains
open up to now. The purpose of this paper is to provide such a characterization together with
efficient computational methods for approximating the solutions of nonlinear systems of the form

ẋ(t) = Ax(t) + g(x(t)) + u(t), x(t) = (x1(t), ..., xn(t))
T ∈ D ⊂ Rn, t ∈ [0, τ ], (1.1)

under the periodic boundary condition

x(τ) = x(0), (1.2)

where D is a domain containing the origin x = 0 ∈ Rn, A is a constant n×n matrix, g ∈ C1 (D;Rn)
stands for nonlinearity, and u ∈ L∞ ([0, τ ];Rn) is an arbitrary input function (control).
For further analysis, we denote byX = C ([0, τ ];Rn) the Banach space of all continuous functions

x(t) from [0, τ ] to Rn equipped with the norm

∥x(·)∥X := sup
t∈[0,τ ]

∥x(t)∥,

and ∥ξ∥ is the Euclidean norm of a column vector ξ ∈ Rn. The latter induces the 2-norm ∥A∥ :=
sup∥ξ∥≤1 ∥Aξ∥ of a matrix A that will be exploited throughout the text. We will also use the
notations XD = C ([0, τ ];D) and XD′ = C ([0, τ ];D′) if D′ ⊂ D is a closed domain.

As the function u(t) is allowed to be discontinuous, we treat the solutions of (1.1) in the sense
of Carathéodory [17, Chap. 1] as solutions of the following integral equation

x(t) = x0 +

∫ t

0

[Ax(s) + g(x(s)) + u(s)] ds, x0 = x(0).

The existence and uniqueness results for solutions to differential equations, with the right-hand
sides being continuous in x and discontinuous in t under the Carathéodory conditions, are sum-
marized in [17, Chap. 1]. By using the variation of constants method and introducing the matrix
exponential etA, we can rewrite the above equation in the form

x(t) = etAx0 +

∫ t

0

e(t−s)A [g(x(s)) + u(s)] ds. (1.3)

Let x(t) be a solution of (1.3) with some u(t) on [0, τ ] such that x(τ) = x(0), then x(t) can be
extended to the τ -periodic function x̃(t), defined for all t ∈ R. If, moreover, the function ũ(t) is
τ -periodic and ũ(t) = u(t) for all t ∈ [0, τ), then x̃(t) satisfies (1.3) with the input ũ(t) for all
t ∈ R. Because of this simple fact, we will refer to the Carathéodory solutions of boundary value
problem (1.1)–(1.2) as periodic solutions. If x(t) is a solution of (1.1)–(1.2), then formula (1.3)
allows to represent its initial value x0 = x(0) = x(τ):

x0 = (e−τA − I)−1

∫ τ

0

e−sA [g(x(s)) + u(s)] ds, (1.4)
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provided that
det
(
e−τA − I

)
̸= 0. (A1)

An immediate consequence of equation (1.4) for the case of linear systems on D = Rn is that
the system (1.1) with g(x) ≡ 0 and any u ∈ L∞ ([0, τ ];Rn) has a unique periodic solution x(t) on
t ∈ [0, τ ], and its initial data x0 = x(0) is defined by (1.4) if assumption (A1) holds. The existence
of periodic solutions was studied for weakly nonlinear boundary value problems with piecewise-
constant right-hand sides in [18]. The latter paper develops the perturbation analysis techniques for
nonlinear differential equations with switchings under periodic boundary conditions. A modified
iterative scheme is proposed there for constructing approximate periodic solutions. Note that
the contribution of [18] is limited to the systems of ordinary differential equations with a small
parameter, and future study of systems of the form (1.1) with general nonlinearities g(x) and
merely measurable inputs u(t) is needed.

The rest of this paper is organized as follows. In Section 2, a simple iteration method is adapted
for constructing the periodic solutions of (1.1) under rather mild assumptions on f(t) and g(x).
The convergence of this scheme is analyzed in terms of the period τ , growth rate of the matrix
exponential etA, and the Lipschitz constant of g(x) (Theorem 2.1). The operator formulation of
the periodic boundary value problem for equation (1.1) is exploited in Section 3 to derive Newton’s
method. Sufficient contraction conditions of the Newton-type operator are formulated explicitly in
Theorem 3.4 (the proof of this result is given in Appendix A). The proposed iterative approach is
applied to a nonlinear chemical reaction model in Section 4. The final conclusions and perspectives
are outlined in Section 5.

2. Simple iteration method

Let us introduce the operator F : XD = C ([0, τ ];D)→ X such that

F : x(·) 7→ (Fx)(t) = etAc(x(·)) +
∫ t

0

e(t−s)A [g(x(s)) + u(s)] ds, (2.1)

where the vector functional c(x(·)) is defined by

c(x(·)) = (e−τA − I)−1

∫ τ

0

e−sA [g(x(s)) + u(s)] ds. (2.2)

If an initial function x(0) ∈ XD is given, we generate the sequence of functions x(k) = Fx(k−1) for
k = 1, 2, ... . This sequence is well-defined, in particular, if XD = X (i.e., D = Rn). If D ̸= Rn, we
consequently assume that each value (Fx(k))(t) is in D for all t ∈ [0, τ ], k = 1, 2, ... . Below, we
propose sufficient conditions for the convergence of x(k)(t) to a τ -periodic solution of system (1.1).

Theorem 2.1. Assume that (A1) holds and there exist constants L ≥ 0, M ≥ 1, ω > 0, and a
closed convex domain D′ ⊂ D such that:∥∥∥∥∂g(x)∂x

∥∥∥∥ ≤ L, ∥etA∥ ≤Meω|t| for all x ∈ D, t ∈ [−τ, τ ]; (A2)

(Fx)(·) ∈ XD′ = C([0, τ ];D′) for each x(·) ∈ XD′ ; (A3)

ML(1 +MRτ )(e
ωτ − 1)

ω
< 1, (A4)

where
Rτ =

∥∥(e−τA − I)−1
∥∥ . (2.3)

Then, for any x(0)(·) ∈ XD′ , the sequence

x(k)(·) = Fx(k−1)(·), k = 1, 2, ...

converges to the limit x∗(·) ∈ XD′ as k → ∞. This limit function x∗(t), t ∈ [0, τ ] is the unique
solution of system (1.1) such that x∗(0) = x∗(τ).
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Proof. Under assumptions (A1)–(A2), the operator F : XD → X defined by (2.1) is Fréchet
differentiable. Indeed, the Fréchet derivative F ′

x : X → X at x(·) ∈ XD is a bounded linear
operator such that its action on δx(·) ∈ X is:

(F ′
x(δx))(t) = etAdcx(δx) +

∫ t

0

e(t−s)A ∂g(x)

∂x

∣∣∣∣
x=x(s)

δx(s) ds, (2.4)

where

dcx(δx) = (e−τA − I)−1

∫ τ

0

e−sA ∂g(x)

∂x

∣∣∣∣
x=x(s)

δx(s) ds. (2.5)

By taking into account inequalities (A2), we conclude that

∥F ′
x(δx)∥X ≤

{
sup

t∈[0,τ ]

∥etA∥ · ∥(e−τA − I)−1∥
∫ τ

0

∥e−sA∥ ·
∥∥∥∥∂g∂x

∥∥∥∥ ds
+ sup

t∈[0,τ ]

∫ t

0

∥e(t−s)A∥ ·
∥∥∥∥∂g∂x

∥∥∥∥ ds
}
∥δx∥X

≤ML

∫ τ

0

eωsds
{
1 +M

∥∥(e−τA − I)−1
∥∥} ∥δx∥X .

We see that the operator F is contractive on XD′ if condition (A4) holds, F(XD′) ⊆ XD′ because
of assumption (A3), and the metric space (XD′ , d) equipped with the distance d(x, y) = ∥x− y∥X
is complete. Thus, the assertion of Theorem 2.1 follows from the Banach fixed point theorem [19,
Chap. XVI, §1, Thm. 1 and Chap. XVII, §1, Thm. 1].

Remark 2.1. The initial function x(0)(t) can be taken, in particular, as x(0)(t) ≡ 0. In this
case, it is easy to see that the first approximation x(1)(t) is the solution of the linear system
ẋ(1) = Ax(1) + u(t) + g(0), t ∈ [0, τ ], such that x(1)(0) = x(1)(τ).

3. Newton’s method

In this section, we propose a modification of Newton’s method for computing the fixed points of
Fx. For this purpose we introduce the nonlinear operator Ψ : XD → X such that

Ψx = x− α(F ′
x − I)−1(Fx− x), (3.1)

where F : XD → X is introduced in (2.1)–(2.2), F ′
x is the Fréchet derivative of the operator F at

x ∈ XD defined by (2.4)–(2.5), I is the identity operator on X, and α > 0 is a parameter. It is clear
that, if the operator (F ′

x − I)−1 is nonsingular, then the sets of solutions to the equations Fx = x
and Ψx = x are equivalent. The case α = 1 corresponds to “the classical” Newton’s method.
For a given x(0) ∈ XD and α = 1, the convergence of the sequence x(k) = Ψx(k−1), k = 1, 2, ...,
generated by (3.1), can be (in principle) analyzed by the Newton–Kantorovich theorem [20] under
a suitable assumption on x(0). In what follows, we will estimate the Fréchet derivative of Ψ at any
x ∈ XD analytically. Then the convergence conditions will be obtained in a straightforward way
by the Banach fixed point theorem with an arbitrary α ∈ (0, 1].
In order to represent the action of the operator (F ′

x − I)−1 on a vector function δy(·) ∈ X, we
solve the following functional equation with respect to δx(·) ∈ X:

(F ′
x − I)δx = δy,

or, equivalently,
F ′

x(δx)− δx = δy.

The above equation can be rewritten because of (2.4) in the form

dcx(δx) +

∫ t

0

e−sA ∂g(x)

∂x

∣∣∣∣
x=x(s)

δx(s)ds− e−tAδx(t) = e−tAδy(t), t ∈ [0, τ ]. (3.2)
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By differentiating this formula with respect to t and introducing the function δz(t) = δx(t)+δy(t),
we obtain

δ̇z(t) =

(
A+

∂g(x)

∂x

∣∣∣∣
x=x(t)

)
δz(t)− ∂g(x)

∂x

∣∣∣∣
x=x(t)

δy(t). (3.3)

Let Φx(t) ∈ Mat(n×n) be the fundamental matrix of the corresponding homogeneous system, i.e.

Φx(0) = I, Φ̇x(t) =

(
A+

∂g(x)

∂x

∣∣∣∣
x=x(t)

)
Φx(t) for t ∈ [0, τ ]. (3.4)

Note that the matrix Φ−1
x (s) is well-defined for all s ∈ [0, τ ] due to the uniqueness of solutions

to the Cauchy problem (3.4). Then the variation of constants method yields the general solution
of (3.3):

δz(t) = Φx(t)δz(0)− Φx(t)

∫ t

0

Φ−1
x (s)

∂g(x)

∂x

∣∣∣∣
x=x(s)

δy(s)ds.

We rewrite the above formula with respect to δx(t) = δz(t)− δy(t) as

δx(t) = Φx(t)C − Φx(t)

∫ t

0

Φ−1
x (s)

∂g(x)

∂x

∣∣∣∣
x=x(s)

δy(s)ds− δy(t). (3.5)

The integration constant C = δx(0) + δy(0) is defined from (3.2). Indeed, the relation (3.2) at
t = 0 implies that C = δx(0)+ δy(0) = δxc(δx), then the integration constant C can be eliminated
by substituting (3.5) into (2.5). Thus we have:

C = M−1
x

(
e−τA − I

)−1

×
∫ τ

0

e−tA ∂g(x)

∂x

∣∣∣∣
x(t)

{
δy(t) + Φx(t)

∫ t

0

Φ−1
x (s)

∂g(x)

∂x

∣∣∣∣
x(s)

δy(s)ds

}
dt, (3.6)

where

Mx =
(
e−τA − I

)−1
∫ τ

0

e−tA ∂g(x)

∂x

∣∣∣∣
x(t)

Φx(t)dt− I. (3.7)

The above procedure describes the evaluation of δx = (F ′
x− I)−1δy for any δy(·) ∈ X, provided

that the matrix Mx in (3.7) is nonsingular. Hence, for a fixed parameter α > 0 in (3.1), the action
of Ψ on a given x ∈ XD is defined by the following rule:

Ψ : x 7→ δy = Fx− x 7→ δx = (F ′
x − I)−1δy 7→ Ψx = x− αδx. (3.8)

In the sequel, we assume that g ∈ C2(D;Rn) and that the Hessian matrices of the components
of g(x) = (g1(x), ..., gn(x))

T are bounded, i.e.∥∥∥∥∂2gk(x)

∂xi∂xj

∥∥∥∥ ≤ H̄ for all x ∈ D, k = 1, 2, ..., n, (A5)

with some constant H̄ ≥ 0. For the analysis of Newton’s scheme, we present auxiliary lemmas
concerning the matrix-valued map Φx(t) and its differential.

Lemma 3.1. Let assumption (A2) hold, and let x(t) ∈ D be a continuous function on t ∈ [0, τ ].
Then the fundamental matrix Φx(t) in (3.4) satisfies the following norm estimates:

∥Φx(t)∥ ≤ ϕL(t), ∥Φ−1
x (t)∥ ≤ ϕL(t), ϕL(t) =

√
ne(∥A∥+L)t, t ∈ [0, τ ]. (3.9)

Proof. Estimates (3.9) easily follow from Grönwall’s inequality.
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Lemma 3.2. For a given t ∈ [0, τ ], consider the map Φx(t) : x(·) ∈ XD 7→ Φx(t) ∈ Mat(n × n)
defined by (3.4). Then the differential dΦx(t)(dx) of Φx(t) along dx(·) ∈ X is equal to

dΦx(t)(dx) = Φx(t)

∫ t

0

Φ−1
x (s)Γ(x(s), dx(s))Φx(s)ds, (3.10)

where the entries of the n× n matrix Γ(x(s), dx(s)) are

Γki(ξ, dξ) =

n∑
j=1

∂2gk(ξ)

∂ξi∂ξj
dξj . (3.11)

Moreover,

d
(
Φ−1

x (t)
)
(dx) = −Φ−1

x (t)
(
dΦx(t)(dx)

)
Φ−1

x (t). (3.12)

The proof of Lemma 3.2 is presented in A.
To establish convergence conditions of Newton’s method with the operator Ψ defined by (3.1), (3.8),

we evaluate the Fréchet derivative Ψ′
x : X → X of Ψ at a given x(·) ∈ XD. Namely, the action

of Ψ′
x on a dx(·) ∈ X can be computed by expanding the linear part of Ψ(x + dx) − Ψ(x) with

respect to dx and using (3.8):

Ψ′
x(dx) = dx− αd(F ′

x − I)−1(dδy), (3.13)

where dδy is the differential of δy = F(x)−x at x along dx, which can be computed from (2.4)–(2.5):

dδy(t) = −dx(t) + etAdcx(dx) +

∫ t

0

e(t−s)A ∂g(x)

∂x

∣∣∣∣
x(s)

dx(s)ds. (3.14)

Then the main technical task is to evaluate d(F ′
x − I)−1(dδy) by computing the differential of the

right-hand side of (3.5) along dx. We have:

d(F ′
x − I)−1(dδy)(t) = Φx(t)dC(dx)− Φx(t)

∫ t

0

Φ−1
x (s)

∂g

∂x

∣∣∣∣
x(s)

dδy(s)ds− dδy(t)

+ dΦx(t)C − dΦx(t)

∫ t

0

Φ−1
x (s)

∂g

∂x

∣∣∣∣
x(s)

δy(s)ds

+Φx(t)

∫ t

0

Φ−1
x (s)

{
Φ−1

x (s)dΦx(s)
∂g

∂x

∣∣∣∣
x(s)

− ∂2g

∂x2

∣∣∣∣
x(s)

dx(s)

}
δy(s)ds.

(3.15)

Here, the differential of C is computed from (3.6):

dC(dx) = M−1
x (e−τA − I)−1

∫ τ

0

e−sA ∂g

∂x

∣∣∣∣
x(s)

×

{
dδy(s) + Φx(s)

∫ s

0

Φ−1
x (v)

∂g

∂x

∣∣∣∣
x(v)

dδy(v)dv + dΦx(s)

∫ s

0

Φ−1
x (v)

∂g

∂x

∣∣∣∣
x(v)

δy(v)dv

−Φx(s)

∫ s

0

Φ−1
x (v)

(
Φ−1

x (v)dΦx(v)
∂g

∂x

∣∣∣∣
x(v)

− ∂2g

∂x2

∣∣∣∣
x(v)

dx(v)

)
δy(v)dv

}
ds

+M−1
x (e−τA − I)−1

∫ τ

0

e−sA

(
∂2g

∂x2

∣∣∣∣
x(s)

dx(s)

)

×

{
δy(s) + Φx(s)

∫ s

0

Φ−1
x (v)

∂g

∂x

∣∣∣∣
x(v)

δy(v)dv

}
ds

+d(M−1
x )(dx)(e−τA − I)−1

∫ τ

0

e−sA ∂g

∂x

∣∣∣∣
x(s)

×

{
δy(s) + Φx(s)

∫ s

0

Φ−1
x (v)

∂g

∂x

∣∣∣∣
x(v)

δy(v)dv

}
ds, (3.16)
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where
d(M−1

x )(dx) = −M−2
x (e−τA − I)−1

×
∫ τ

0

e−sA

{(
∂2g

∂x2

∣∣∣∣
x(s)

dx(s)

)
Φx(s) +

∂g

∂x

∣∣∣∣
x(s)

dΦx(s)

}
ds.

(3.17)

The matrix norm of M−1
x can be estimated by the following lemma.

Lemma 3.3. Let assumptions (A1)–(A2) be satisfied, and let

S =

√
nMLRτ (e

(∥A∥+L+ω)τ − 1)

∥A∥+ L+ ω
< 1. (A6)

Then ∥M−1
x ∥ ≤ 1

1−S .

This lemma is proved in A. The presented auxiliary results are needed to establish the following
contraction theorem for the operator Ψ.

Theorem 3.4. Let the operator Ψ : XD → X be defined by (3.1), (3.8) with some α ∈ (0, 1], and
let x(t) ∈ D be a continuous vector function on t ∈ [0, τ ] such that

∥g(x(t))∥ ≤ γx for all t ∈ [0, τ ]. (3.18)

If, in addition, assumptions (A1)–(A2), (A5)–(A6) are satisfied, then the Fréchet derivative of Ψ
at x(·) exists and admits the estimate

∥Ψ′
x(dx)∥X ≤ ρ∥dx∥X for all dx ∈ X (3.19)

with
ρ = 1− α(1− ρ∗), ρ∗ = ρ1 + ρ2 + ρ3 + ρ4 + ρ5 ≥ 0, (3.20)

ρ1 =
ML(1 +MRτ )(eωτ − 1)

ω
,

ρ2 = L(1 + ρ1)ρ̄, ρ̄ =
ϕL(τ)(ϕL(τ)−

√
n)

∥A∥+ L
,

ρ3 =

√
nH̄Lµxρ̄(ϕL(τ) +

√
n)

2

{
MRT (eωτ − 1)

(1− S)ω

+
ϕL(τ)−

√
n

∥A∥+ L

(
1 + ϕL(τ)

(
1 +

ϕL(τ) +
√
n

2

))}
,

ρ4 =
√
nH̄µxρ̄,

ρ5 =
MRτ (eωτ − 1)ϕL(τ)

(1− S)ω

{
L(1 + ρ1)(1 + ϕ2

L(τ))

+

√
nH̄Lµxρ̄ϕL(τ)(ϕL(τ) +

√
n)(1 + Lϕ2

L(τ))

2
+

√
nH̄µx(1 + L+ Lϕ2

L(τ))

+

√
nH̄(2ϕL(τ) + Lρ̄(ϕL(τ) +

√
n))

2(1− S)

}
.

(3.21)

In the above expressions,

µx = ∥x(·)∥X +
M(1 +MRτe

ωτ )(eωτ − 1)(∥u(·)∥X + γx)

ω
, (3.22)

and the expressions for H̄, L, M , Rτ , S, γx, ω, ϕL are given in (A2), (A5), (A6), (2.3), (3.9),
(3.18).

The proof of this theorem is given in A. By applying the Banach fixed point theorem [19] to the
operator Ψ in the case ρ < 1 (i.e. ρ∗ < 1), we deduce the following corollary.

Corollary of Theorem 3.4. Let assumptions (A1)–(A2), (A5)–(A6) be satisfied, and let there
exist a bounded closed convex domain D′ ⊂ D and a constant α ∈ (0, 1] such that the operator Ψ
defined by (3.1), (3.8) satisfies the following property:

(Ψx)(·) ∈ XD′ = C([0, τ ];D′) for each x(·) ∈ XD′ . (A7)

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-01-02



8

Assume, moreover, that ρ∗ = ρ1 + ρ2 + ρ3 + ρ4 + ρ5 < 1, where the constants ρ1, ..., ρ5 are defined
by (3.21) with

γx = sup
x∈D′

∥g(x)∥, µx = sup
x∈D′

∥x∥+ M(1 +MRτe
ωτ )(eωτ − 1)(∥u(·)∥X + γx)

ω
,

and the values of H̄, L, M , Rτ , S, ω, ϕL(τ) are given by (A2), (A5), (A6), (2.3), (3.9).
Then, for any x(0)(·) ∈ XD′ , the sequence

x(k)(·) = Ψx(k−1)(·), k = 1, 2, ...

converges to the limit x∗(·) ∈ XD′ as k → ∞. This limit function x∗(t), t ∈ [0, τ ] is the unique
solution of system (1.1) such that x∗(0) = x∗(τ).

4. Application to a controlled chemical reaction model

In this section, we apply the proposed iterative scheme for studying periodic trajectories of the
chemical reaction model considered in [10,11]:

ẋ(t) = Ax(t) + g(x(t)) + u(t), x(t) ∈ D ⊂ R2, u(t) ∈ U ⊂ R2, t ∈ [0, τ ], (4.1)

where
D = {(x1, x2)

T |x1 > −1, x2 > −1},
U = {(u1, u2)

T |u1 ∈ [umin
1 , umax

1 ], u2 ∈ [umin
2 , umax

2 ]},

A =

(
−ϕ1 − k1e

−κ −k1κe−κ

−k2e−κ −ϕ2 − k2κe−κ

)
,

g(x) =

(
k1e

−κ − ϕ1x1 − k1(x1 + 1)e−κ/(x2+1)

k2e
−κ − ϕ2x2 − k2(x1 + 1)e−κ/(x2+1)

)
−Ax.

System (4.1) describes deviations of the dimensionless concentration x1(t) and temperature x2(t)
from their reference values in a reactor under controlling the inlet concentration and temperature
by u(t). This system admits the trivial equilibrium x1 = x2 = 0 for u(t) ≡ 0, which corresponds to
the steady-state reactor operation. In the general case, the function u(t) can encode complicated
control scenarios and is assumed to be of class L∞([0, τ ];U). The constraints x1 < −1 and x2 < −1
in D postulate that the corresponding physical concentration and the absolute temperature in
Kelvin should be positive. The physical meaning of the parameters of system (4.1) is discussed
in [10], and we take the following values for numerical simulations [11]:

ϕ1 = ϕ2 = 1, κ = 17.77, k1 = 5.819 · 107, k2 = −8.99 · 105,
umax
1 = −umin

1 = 1.798, umax
2 = −umin

2 = 0.06663.

To test the simple iteration method described in Section 2, we fix a grid size nG ∈ N and consider
the uniform partition of [0, τ ] with the step size ∆t = τ/nG: tj = j∆t for j = 0, 1, ..., nG. Let

x
(k)
j denote the value of an approximate solution of the operator equation Fx(·) = x(·) at t = tj

corresponding to the iteration number k from Theorem 2.1. We start from the trivial initial ap-

proximation x
(0)
j = 0 for j = 0, nG. Then the iteration with index k is obtained from {x(k−1)

j }nG
j=0

by applying the rectangle quadrature rule to approximate the integrals in (2.1) and (2.2). The re-
sulting algorithm is summarized below for a given number of iterations nI and arbitrary dimension
n of the state vector of (1.1).

The above algorithm has been implemented in Maple 2020 with the use of the MatrixExponential
function to evaluate e±tjA. In the subsequent simulations, we define the function u(t) to be constant
on each subinterval of a partition

0 = τ0 < τ1 < ... < τN = τ,

i.e.

u(t) =

N∑
i=1

u(i)χ[τi−1,τi)(t), u(τ) = u(N), χ[τi−1,τi)(t) =

{
1, t ∈ [τi−1, τi),
0, t /∈ [τi−1, τi).

(4.2)
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Algorithm 1 Simple iteration method

Require: A, g(x), u(t), τ , nG, nI

Ensure: x
(nI)
j ≈ x(tj) is a discrete-time approximation of the τ -periodic solution x(t) of sys-

tem (1.1) after nI iterations
∆t← τ/nG ▷ Time step size
for j = 0 to nG do

tj ← j ∗∆t

x
(0)
j ← 0n ▷ 0n is the n-dimensional column vector of zeros

Ej ← etjA ▷ Matrix exponentials
E−j ← e−tjA

end for
M0 ← (E−nG

− I)−1 ▷ The inverse of e−τA − I
for k = 1 to nI do ▷ k is the iteration number

S0 ← 0n
for j = 1 to nG do ▷ Sj ≈

∫ tj
0

e−sA(u(s) + g(x(k−1)(s)))ds

Sj ← Sj−1 +∆t ∗ E1−j ∗ (u(tj−1) + g(x
(k−1)
j−1 ))

end for
c←M0 ∗ SnG

▷ The approximation of c in (2.2)

x
(k)
0 ← c

for j = 1 to nG do ▷ The approximation of x(k) = Fx(k−1) at t = tj

x
(k)
j ← Ej ∗ (c+ Sj)

end for
end for

Figure 1: Periodic trajectory of (4.1) with u(t) of the form (4.2)–(4.4): τ = 1, x(0) ≈
(−0.42603,−0.00314)T .
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Figure 2: Periodic trajectory of (4.1) with u(t) of the form (4.2)–(4.4): τ = 5, x(0) ≈
(−0.83567,−0.03637)T .

Figure 3: Periodic trajectory of (4.1) with u(t) of the form (4.2)–(4.4): τ = 10, x(0) ≈
(−0.78953,−0.06456)T .
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The function u(t) in (4.2) corresponds to a family of bang-bang controls with the values u(i) ∈ ∂U
taken at the boundary of U .

To illustrate the behavior of periodic solutions of system (4.1) with discontinuous u(t) of the
form (4.2), we fix N = 5 and consider the switching sequence

u(1) = u(3) = −u(4) =

(
umax
1

umin
2

)
, u(2) = −u(5) =

(
umax
1

umax
2

)
(4.3)

together with the following switching time parameterization:

τ0 = 0, τ1 = 0.1τ, τ2 = 0.3τ, τ3 = 0.5τ, τ4 = 0.8τ, τ5 = τ. (4.4)

Algorithm 1 has been executed for system (4.1) with the above choice of u(t) on the grid of size

nG = 105 and the number of iterations nI = 5. The resulting plots of x
(nI)
j = (x

(nI)
j1 , x

(nI)
j2 )T ,

j = 0, nG, are shown in Fig. 1–Fig. 3 for different values of time horizon τ .
We also check the accuracy of Algorithm 1 by computing the discrepancies

d(k)(nG) =
1

|JA|
∑
j∈JA

∥∥∥∥ 1

∆t
(x

(k)
j − x

(k)
j−1)−Ax

(k)
j − u(tj)− g(x

(k)
j )

∥∥∥∥ (4.5)

depending on the iteration number k for different grid sizes nG, where

JA = {j = 0, nG | tj /∈ {τ0, τ1, ..., τN}}.

The above d(k)(nG) measures the difference between the finite-difference approximation of ẋ(t)
and the right-hand side of system (4.1) evaluated at the grid points. The simulation results are
summarized in Table 1 up to the maximum iterations number nI = 5.

Iteration Discrepancy Discrepancy
number (k) (nG = 105) (nG = 106)

1 0.0604597 0.018644978405663
2 0.0026356 0.000311006947477
3 0.0000429 0.000014457699874
4 0.0000257 4.49025854660252 · 10−6

5 0.0000255 4.39804889269695 · 10−6

Table 1: Discrepancies d(k)(nG) for nG = 105 and nG = 106, τ = 1.

As we can see in Table 1, the resulting discrepancies (as approximation error measures) are mono-
tonically decreasing with the iteration number increase. A significant error reduction (d(3)(105) ≈
4.29 · 10−5) is already achieved at the third iteration with the time step size ∆t = 10−5, and a
more refined time step ∆t = 10−6 results in the discrepancy d(4)(106) ≈ 4.49 · 10−6 at the fourth
iteration. As the rectangle quadrature rule is used to approximate the integrals with arbitrary
measurable input functions u ∈ L∞[0, τ ] in Algorithm 1 and simple finite differences are taken into
account in (4.5), it is natural to expect no significant improvement of the decay of approximation
errors at subsequent iterations, when the order of d(k)(nG) becomes comparable with the time step
n−1
G .

5. Conclusion and future work

The key contribution of this paper provides general existence and uniqueness conditions for the τ -
periodic solutions of nonlinear control systems of the form (1.1) with discontinuous input functions
(of class L∞) and general nonlinearities (of class C1) in Theorem 2.1. Our crucial assumption is
the dominant linearization condition det

(
e−τA − I

)
̸= 0, which relates the period τ with spectral

properties of the matrix exponent of A from (1.1).
It should be emphasized that sufficient contraction conditions of the corresponding operator

formulations are presented explicitly for the simple iteration (Theorem 2.1) and Newton-type
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(Theorem 3.4) methods. Our case study justifies the applicability of the proposed iteration scheme
to nonlinear control systems describing non-isothermal chemical reaction models. Up to our knowl-
edge, the question of existence and uniqueness of periodic solutions for the model considered in
Section 4 with arbitrary discontinuous inputs has not been analyzed so far. The presented Algo-
rithm 1 allows the use of general discontinuous functions u(t) without any regularity assumptions
except the integrability on [0, τ ]. Because of this general purpose, no high-order quadrature for-
mulas have been incorporated in Algorithm 1. As a direction for further improvement, adaptive
quadrature rules can be applied for the approximation of integrals with u(t), taking into account
the regularity of input signals on the intervals (τi, τi+1) in the context of bang-bang parameteri-
zations considered in Section 4. We consider the development of such adaptive schemes as well as
numerical implementation of Newton’s method as topics for future research.
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A. Proof of Theorem 3.4 and auxiliary results

Proof. of Lemma 3.2. For a given x ∈ XD and arbitrary dx ∈ X, we consider the fundamental
matrix Φx+dx(t) defined by substituting x(t) + dx(t) for x(t) in (3.4):

Φx+dx(0) = I, Φ̇x+dx(t) =

(
A+

∂g(ξ)

∂ξ

∣∣∣∣
ξ=x(t)+dx(t)

)
Φx+dx(t) for t ∈ [0, τ ].

Then ∆Φx(t) = Φx+dx(t)− Φx(t) satisfies the differential equation

∆̇Φx(t) =

(
A+

∂g(ξ)

∂ξ

∣∣∣∣
ξ=x(t)

)
∆Φx(t)

+

(
∂g(ξ)

∂ξ

∣∣∣∣
ξ=x(t)+dx(t)

− ∂g(ξ)

∂ξ

∣∣∣∣
ξ=x(t)

)
Φx+dx(t).

(A.1)

We observe that the (k, i) entry of the n×nmatrix ∂g(ξ)
∂ξ

∣∣∣
ξ=x(t)+dx(t)

− ∂g(ξ)
∂ξ

∣∣∣
ξ=x(t)

is Γki(x(t), dx(t))+

o(∥dx(t)∥) for small dx(t), provided that g is of class C2 and Γki is defined by (3.11). Let dΦx(t)(dx)
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be the linear part of ∆Φx(t) with respect to dx. Then we derive the following linear differential
equation for dΦx(t)(dx) from (A.1):

d

dt
dΦx(t)(dx) =

(
A+

∂g(ξ)

∂ξ

∣∣∣∣
ξ=x(t)

)
dΦx(t)(dx)

+ Γ(x(t), dx(t))Φx(t), t ∈ [0, τ ].

(A.2)

The variation of constants method yields formula (3.10) for the solution of (A.2) with the initial
condition dΦx(0)(dx) = 0. To prove the last assertion of Lemma 3.2, we note that

Φ−1
x+dx(t) = (Φx(t) + dΦx(t)(dx) + o(∥dx∥X))

−1

=
(
Φx(t)

{
I +Φ−1

x (t)dΦx(t)(dx) + o(∥dx∥X)
})−1

=
{
I − Φ−1

x (t)dΦx(t)(dx) + o(∥dx∥X)
}
Φ−1

x (t)

= Φ−1
x (t)− Φ−1

x (t)
(
dΦx(t)(dx)

)
Φ−1

x (t) + o(∥dx∥X).

The last formula implies (3.12), which completes the proof of Lemma 3.2.

Proof. of Lemma 3.3. We denote the matrix

B =
(
e−τA − I

)−1
∫ τ

0

e−tA ∂g(x)

∂x

∣∣∣∣
x(t)

Φx(t)dt,

and use the Neumann series for the inverse of Mx defined in (3.7):

M−1
x = −(I −B)−1 = −

∞∑
k=0

Bk. (A.3)

The above series converges under assumption (A6):

∥B∥ ≤ RτML

∫ τ

0

eωtϕL(t)dt = S < 1,

where the constantsM , L, ω, Rτ are defined in (A2) and (2.3), and ∥Φx(t)∥ ≤ ϕL(t) =
√
ne(∥A∥+L)t

is estimated by Lemma 3.1. Moreover, (A.3) together with the triangle inequality implies the
assertion of Lemma 3.3:

∥M−1
x ∥ ≤

∞∑
k=0

∥Bk∥ ≤
∞∑
k=0

Sk =
1

1− S
.

Proof. of Theorem 3.4. Formulas (3.13), (3.14), (3.15) allow to represent the Fréchet derivative
Ψ′

x : X → X at x(·) ∈ XD in the following way:

Ψ′
x(dx) = (1− α)dx− α

(
∆1(dx) + ∆2(dx) + ∆3(dx) + ∆4(dx) + ∆5(dx)

)
, (A.4)

where the operators ∆
(i)
x : X → X are

∆(1)
x (dx)(t) = −etAdcx(dx)−

∫ t

0

e(t−s)A ∂g(x)

∂x

∣∣∣∣
x(s)

dx(s)ds, (A.5)

∆(2)
x (dx)(t) = −Φx(t)

∫ t

0

Φ−1
x (s)

∂g

∂x

∣∣∣∣
x(s)

dδy(s)ds, (A.6)

∆(3)
x (dx)(t) =dΦx(t)C − dΦx(t)

∫ t

0

Φ−1
x (s)

∂g

∂x

∣∣∣∣
x(s)

δy(s)ds

+Φx(t)

∫ t

0

Φ−2
x (s)dΦx(s)

∂g

∂x

∣∣∣∣
x(s)

δy(s)ds,

(A.7)
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∆(4)
x (dx)(t) = −Φx(t)

∫ t

0

Φ−1
x (s)

{
∂2g

∂x2

∣∣∣∣
x(s)

dx(s)

}
δy(s)ds, (A.8)

∆(5)
x (dx)(t) = Φx(t)dC(dx), (A.9)

where dδy(t) and dC(dx) are defined by (3.14) and (3.16), respectively. Then estimate (3.19)
follows from (A.4) and the triangle inequality, provided that

∥∆(i)
x (dx)∥X ≤ ρi∥dx∥X for all dx ∈ X, i = 1, 5. (A.10)

To prove the first inequality in (A.10), we compare formula (A.5) with (2.4) and note that

−∆(1)
x (dx) = F ′

x(dx). We also note that the ρ1 given in (3.21) coincides with the left-hand side

of (A4), so that the inequality ∥∆(1)
x (dx)∥X ≤ ρ1∥dx∥X follows from the proof of Theorem 2.1.

The latter inequality together with (3.14), (A.5) implies that

∥dδy∥X ≤ (1 + ρ1)∥dx∥X . (A.11)

Because of Lemma 3.1, assumption (A2), and inequality (A.11), the expression (A.6) is estimated
as

∥∆(2)
x (dx)∥X ≤ LϕL(τ)

(∫ τ

0

ϕL(s)ds

)
∥dδy∥X ≤ ρ2∥dx∥X ,

where ϕL(·) and ρ2 are defined in (3.9) and (3.21), respectively.
Under assumption (A5), the norm of the matrix Γ(x(s), dx(s)) in (3.11) is estimated by the

norm of dx(s) ∈ Rn as
∥Γ(x(s), dx(s))∥ ≤

√
nH̄∥dx(s)∥. (A.12)

We use the above inequality to estimate dΦx(t)(dx) in (3.10):

∥dΦx(·)(dx)∥X = sup
t∈[0,τ ]

∥dΦx(t)(dx)∥ ≤
√
nH̄ sup

t∈[0,τ ]

(
ϕL(t)

∫ t

0

ϕ2
L(s)∥dx(s)∥

)
ds

≤
√
nH̄ϕL(τ)(ϕ

2
L(τ)− n)

2(∥A∥+ L)
∥dx∥X .

(A.13)

Furthermore, we use the Cauchy–Schwarz and triangle inequalities to derive the following estimate
from (2.1) under assumption (3.18):

∥δy∥X = ∥Fx− x∥X ≤ µx, (A.14)

where µx is defined in (3.22). By putting together (3.6), (A.13), (A.14) and Lemma 3.3, we estimate
the norm of (A.7) with the use of the constant ρ3 from (3.21):

∥∆(3)
x (dx)∥X ≤ ρ3∥dx∥X .

We also estimate the norm of ∆
(4)
x (dx) in (A.8) with the use of Lemma 3.1, (A.12), and (A.14):

∥∆(4)
x (dx)∥X ≤

√
nH̄µxϕL(τ)

(∫ τ

0

ϕL(s)ds

)
∥dx∥X = ρ4∥dx∥X ,

where ρ4 is defined in (3.21).

It remains to estimate ∆
(5)
x (dx) in (A.9) by exploiting representation (3.16) together with

Lemma 3.1:
∥∆(5)

x (dx)∥X ≤ ϕL(τ)∥dC(dx)∥, dC = dC1(dx) + dC2(dx), (A.15)

where the two summands in dC(dx) are

dC1(dx) = M−1
x (e−τA − I)−1

∫ τ

0

e−sAζ(s)ds,
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dC2(dx) = d(M−1
x )(dx)(e−τA − I)−1

∫ τ

0

e−sA ∂g

∂x

∣∣∣∣
x(s)

×

{
δy(s) + Φx(s)

∫ s

0

Φ−1
x (v)

∂g

∂x

∣∣∣∣
x(v)

δy(v)dv

}
ds,

and

ζ(s) =
∂g

∂x

∣∣∣∣
x(s)

{
dδy(s) + Φx(s)

∫ s

0

Φ−1
x (v)

∂g

∂x

∣∣∣∣
x(v)

dδy(v)dv

+ dΦx(s)

∫ s

0

Φ−1
x (v)

∂g

∂x

∣∣∣∣
x(v)

δy(v)dv

−Φx(s)

∫ s

0

Φ−1
x (v)

(
Φ−1

x (v)dΦx(v)
∂g

∂x

∣∣∣∣
x(v)

− ∂2g

∂x2

∣∣∣∣
x(v)

dx(v)

)
δy(v)dv

}

+

(
∂2g

∂x2

∣∣∣∣
x(s)

dx(s)

){
δy(s) + Φx(s)

∫ s

0

Φ−1
x (v)

∂g

∂x

∣∣∣∣
x(v)

δy(v)dv

}
.

As the assumptions of Lemma 3.3 are satisfied, then

∥dC1(dx)∥ ≤
MRτ (e

ωτ − 1)

(1− S)ω
∥ζ∥X , (A.16)

and the norm of ζ is estimated with the use of Lemma 3.1 and (A.11), (A.12), (A.13), (A.14) as

∥ζ∥X ≤
(
L(1 + ρ1)(1 + ϕ2

L(τ)) +
√
nH̄µx(1 + L+ Lϕ2

L(τ))

+

√
nH̄Lµxρ̄ϕL(τ)(ϕL(τ) +

√
n)(1 + Lϕ2

L(τ))

2

)
∥dx∥X .

(A.17)

Furthermore, we derive the following estimate of dC2(dx) by applying Lemma 3.3 and (3.17), (A.12), (A.13):

∥dC2(dx)∥ ≤
√
nH̄MRτ (e

ωτ − 1)

(1− S)2ω

(
ϕL(τ) +

Lρ̄

2
(ϕL(τ) +

√
n)

)
∥dx∥X . (A.18)

It is easy to see that inequalities (A.15), (A.16), (A.17), (A.18) imply

∥∆(5)
x (dx)∥X ≤ ρ5∥dx∥X

with ρ5 defined in (3.21).
We have shown that estimates (A.10) hold with ρi defined by (3.21). Then assertion (3.19)

follows from (A.4) and (3.20) by applying the triangle inequality.
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