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We present rapid and robust protocols
for STIRAP and quantum logic gates. Our
gates are based on geometric phases ac-
quired by instantaneous eigenstates of a
slowly accelerating “inertial” Hamiltonian.
To begin, we establish the criteria for in-
ertial evolution and subsequently engineer
pulse shapes that fulfill these conditions.
These tailored pulses are then used to op-
timize geometric logic gates. We analyze
a realization of our protocols with 87Rb
atoms, resulting in gate fidelity that ap-
proaches the current state-of-the-art, with
marked improvements in robustness.

1 Introduction

High-fidelity quantum logic gates play a critical
role in advancing large-scale atom-based quan-
tum computing systems [1–4]. Presently, the
record fidelity stands at 99.99% for single-qubit
gates [5, 6], 99.5% for two-qubit gates using hy-
perfine qubits [7, 8], and 99% for qubits combin-
ing hyperfine and Rydberg levels [9]. Advanc-
ing these capabilities remains a primary objec-
tive in quantum computation research. Gate fi-
delity is limited by both fundamental and tech-
nical noise sources [10]. Accordingly, protocols
are optimized to reduce errors by compromis-
ing the different noise sources, e.g., minimizing
population in radiative states, reducing the in-
put power, and the gate time. Recent work
on Rydberg-based gates suggests that robust
pulses, designed to withstand Doppler and inten-
sity noise, could surpass existing state-of-the-art
gate fidelities. Such pulse optimization is antici-
pated to yield substantial enhancements in error-
correcting codes [11, 12]. These developments
motivated our search for general principles that
produce rapid and robust gate protocols.

Our approach is a modification of traditional
adiabatic following of eigenstates, where a slowly
varying system adheres to an instantaneous
eigenstate during its evolution [13]. While adia-
batic protocols exhibit robustness against noise,
their limitation lies in speed. Here, we use in-
ertial protocols [14] – where the system adheres
to eigenstates of an inertial Hamiltonian (defined
below) – which match the robustness of adiabatic
protocols but offer faster execution. We present
optimal pulse shapes for stimulated rapid adia-
batic passage [15] (STIRAP) and geometric logic
gates [16–19] (Fig. 2). We optimize the simu-
lated gate fidelity with quantum optimal control
(QOCT) and include inertial constraints in the
cost functional. The performance of our proto-
cols is analyzed in Fig. 3, demonstrating gate fi-
delity close to the state-of-the-art with improved
robustness. Inertial protocols could potentially
improve additional adiabatic protocols, including
quantum search [20], teleportation [21], quantum
annealing [22], and additional entangling gate
protocols [23, 24].

Contribution

Quantum computation errors can be mitigated
by employing adiabatic protocols, involving
slow manipulation of qubits. However, the
inherent slowness of these protocols restricts
their performance. In this study, we present
an alternative approach that attains a compa-
rable level of robustness by harnessing inertial
protocols [14, 25]. Unlike adiabatic protocols,
these strategies do not rely on slow manipu-
lation but instead utilize slow acceleration to
achieve robustness. To demonstrate the full
power of this approach, we develop an algo-
rithm that finds optimal protocols for univer-
sal quantum logic gates.

The paper is structured as follows. We be-
gin by surveying the literature on adiabatic pro-
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tocols and quantum optimal control (Sec. 2),
and continue by introducing the inertial theorem
(Sec. 3). Then, we apply the theorem to find
advantageous pulse shapes for STIRAP (Sec. 4).
To quantify the advantage of our approach, we
benchmark several STIRAP implementations in
terms of their fidelity, robustness and pulse area
(Sec. 5). In Sec. 6, we outline our QOCT algo-
rithm, which includes inertial constraints. Sec. 7
presents an application of our STIRAP pulses for
geometric quantum logic gates. Sec. 8 and Sec. 9
present an analysis of the dominant noise chan-
nels and a proposal for experimental realization
with 87Rd atoms. We conclude with a discus-
sion of the advantages and shortcomings of the
present approach (Sec. 10).

2 Background

Many efforts have focused on improving adia-
batic protocols, aiming to enhance fidelity within
a specified pulse area while preserving their ro-
bustness [15]. Below, we survey some of these
significant findings. A straightforward strategy
involves seeking pulses that minimize diabatic er-
rors, arising from population leakage from the
instantaneous eigenstate. Diabatic errors can be
expressed in terms of complex poles of the en-
ergy gap [26]. It follows that protocols that min-
imize diabatic errors involve parallel transport of
instantaneous eigenvalues [27]. Another effective
strategy involves fulfilling the adiabatic condition
at each moment during the propagation by ap-
propriately adjusting the instantaneous rate of
change of control fields in proportion to the in-
stantaneous energy gap [28, 29]. These methods
have found success in applications including adi-
abatic state transfer [30–32].

Other methods extend beyond merely tracking
the instantaneous eigenstates adiabatically. For
example, some protocols rely on tracking “super-
diabatic basis states,” which are successive trun-
cations of the series solution of the Schrödinger
equation in powers of the adiabatic parame-
ter [33]. Following superdiabatic states is fa-
vorable in computation since these states adhere
more closely to the physical solution than adia-
batic eigenstates. Another approach for improv-
ing adiabatic protocols consists of introducing
“counter-diabatic” control fields that cancel di-
abatic errors [34]. Both superdiabatic and coun-

terdiabatic protocols are part of a larger class
of methods called shortcut-to-adiabaticity (STA)
methods [35]. In theory, STA can achieve a per-
fect fidelity in a short time. However, practi-
cal bounds on power and speed limit the fidelity
in practice. Counter-diabatic driving was suc-
cessfully applied to STIRAP in [36]. Combining
counter-diabatic driving with superdiabatic ba-
sis states can produce even faster robust proto-
cols [37, 38]. Our approach is a part of STA meth-
ods, which involve tracing eigenstates of modified
Hamiltonians. We mention an early related pro-
posal for following eigenstates of non-trivial in-
variant operators [39], which is similar in spirit
to invariants that arise in the inertial frame.

Adiabatic protocols can be improved with
QOCT [40–42]. First, adiabatic protocols can
be used as an initial guess for the optimization,
which is aimed at increasing gate or state-transfer
fidelity [23, 43, 44]. To find pulses that not
only maximize the fidelity but are also robust,
one can optimize an ensemble of protocols that
samples realistic fluctuations [45]. In Ref. [12],
analytic considerations were used to find robust
optimized pulses. In [46], QOCT was used to
search for solutions which are closest to the STA
within a set of implementable pulses. Alterna-
tively, the optimization functional can be mod-
ified to include constraints for adiabatic follow-
ing. For example, one can add a constraint to
maximize projection onto dark states [47]. A re-
lated idea is to minimize projection onto radiative
states [48]. Another approach is to satisfy adia-
batic condition locally [28, 49]. Yet another ap-
proach applies learning algorithms [50]. Specif-
ically, we mention proposals that are closely re-
lated to our work, which use QOCT to improve
STIRAP [28, 43, 46, 49], adiabatic Rydberg-
based gates [23, 45], and non-adiabatic Rydberg
gates [12, 44]. We developed a QOCT approach
that finds protocols that adhere to inertial eigen-
states. We find that inertial constraints produce
efficient protocols, which achieve the same out-
come as the unoptimized protocols with reduced
pulse area. Before introducing our optimization
approach, we survey key aspects of the inertial
theorem.
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3 The Inertial theorem
The inertial theorem exploits a temporal sepa-
ration of variables to derive approximate solu-
tions for a system’s dynamics under rapid exter-
nal driving [14]. The theorem is derived in Li-
ouville space – the vector space of operators that
transform states in the Hilbert space. The deriva-
tion begins by applying the Heisenberg equa-
tions of motion to the system operators, reveal-
ing a distinctive time-dependent operator basis
in which the equations of motion exhibit vari-
ations on two distinct timescales. By defin-
ing a generalized time coordinate, the rapid dy-
namics can be effectively removed, subsequently
unveiling new dynamical symmetries—operators
whose Heisenberg representation remains time-
independent. These symmetries, in turn, facili-
tate the construction of approximate analytical
solutions. For closed systems, we introduce a
simplified formulation of the theorem in Hilbert
space. The derivation for open systems can be
found in [14]. While our calculations account
for noise, we present the Hamiltonian formula-
tion here due to its simplicity.

Suppose |ψ⟩ is a solution of the Schrödinger
equation, iℏ ∂t|ψ⟩ = H(t)|ψ⟩. Let us introduce
the eigenvalue decomposition of the Hamiltonian:

H(t) = PΛP−1, (1)

where P and Λ are instantaneous matrices of
eigenvectors and eigenvalues of H respectively.
Let us use the eigenvector matrix to define the
state |ψ̃⟩ = P |ψ⟩, which satisfies

iℏ
∂ |ψ̃⟩
∂t

=
(
P †HP − iℏP †∂P

∂t

)
|ψ̃⟩ ≡ H̃|ψ̃⟩.

(2)
[Eq. (2) is valid for any matrix P , not necessarily
the eigenvector matrix.] Inertial frames are those
in which H̃ can be written in the form

H̃ = Ω(t)M(χ), (3)

where Ω(t) may vary rapidly while χ is nearly
stationary. Introducing a rescaled time coordi-
nate, τ =

∫ t
0 Ω(t′)dt′, we obtain

iℏ
∂|ψ̃⟩
∂τ

= M(χ)|ψ̃⟩. (4)

If M changes slowly compared to its energy gap, a
system initialized in an eigenstate clings to it dur-
ing the dynamics. The escape probability from

eigenstate |ψ̃n(t)⟩ with eigenenergy ε̃n is given by
the inertiality parameter

η
(n)
I ≡ max

m ̸=n


〈
ψ̃m |∂M

∂τ | ψ̃n

〉
(ε̃m − ε̃n)2

 , (5)

where the ratio is maximized over all states m ̸=
n. In comparison, an eigenstate |ψn(t)⟩ of the
lab-frame Hamiltonian, H, with eigenenergy εn

evolves adiabatically provided that the adiabatic-
ity parameter is small

η
(n)
A ≡ max

m̸=n

{
⟨ψm |∂H

∂t |ψn⟩
(εm − εn)2

}
. (6)

We will see that in STIRAP, keeping the iner-
tiality parameter small amounts to constraining
the second-order temporal derivative of the con-
trol parameters (i.e., acceleration), while the adi-
abatic condition implies a small velocity.

4 Inertial conditions for STIRAP
Before introducing the inertial protocol, we re-
view the essentials of STIRAP. In this protocol,
population is transferred between two electronic
states, |1⟩ and |3⟩, by driving transitions form
these states into a third level |2⟩. Introducing
the vector c = [c1(t), c2(t), c3(t)] for probability
amplitudes of the electronic states, the system
dynamics is governed by

iℏ
d

dt
c(t) = ℏ

2

 0 Ω1(t) 0
Ω1(t) 2∆ Ω2(t)

0 Ω2(t) 0

 c(t).

(7)

Here, Ω1 is the Rabi frequency of the field that
couples |1⟩ and |2⟩ while Ω2 couples |2⟩ and
|3⟩. Each field is detuned from the driven atomic
transition by ℏ∆, and we assume that the two-
photon transition from |1⟩ to |3⟩ is resonant.
This Hamiltonian has a zero-energy eigenstate
|D⟩ ≡ (Ω2|1⟩ − Ω1|3⟩)/Ω, denoted “dark” be-
cause it is decoupled from the radiation field. To
transition adiabatically from |1⟩ to |3⟩ by follow-
ing the dark state, one needs to start the protocol
with Ω1 = 0 and Ω2 ̸= 0 (with |D⟩ = |1⟩) and
end with Ω2 = 0 and Ω1 ̸= 0 (so that |D⟩ = |3⟩).

Let us now construct an inertial STIRAP pro-
tocol. For simplicity, we present a derivation
of our protocol in the limit of ∆ = 0, which
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is optimal in some cases [15], but we deal later
with ∆ ̸= 0 which is the relevant regime for the
STIRAP-based CZ gate (CZ) [51]. When ∆ = 0,
the dynamics can be described by an effective
two-level system, satisfying [32, 52]:

iℏ
d

dt
b(t) = ℏ

2

(
Ω1(t) Ω2(t)
Ω2(t) −Ω1(t)

)
b(t). (8)

Here, b is the vector of probability amplitudes
of two specially chosen basis states, expressed in
terms of c (the explicit relation is given in [52]).
While state transfer in the original basis [Eq. (7)]
requires the initial and final conditions c(0) =
[1, 0, 0] and c(tf ) = [0, 0, 1] respectively (where
tf denotes protocol duration), the new basis co-
efficients satisfy b1(0) = 1 and b1(tf ) = b2(tf ).
We introduce the parameterization

Ω1 = Ω(t) sin[2θ(t)] Ω2 = Ω(t) cos[2θ(t)], (9)

with θ(0) = 0 and θ(tf ) = π/2. With this pa-
rameterization, Eq. (8) becomes

H = Ω(t) (cos 2θσz + sin 2θσx) . (10)

Seeking an inertial solution, we transform the
Hamiltonian to the eigenvector basis and find

H̃ = Ω(t)
(
σz − χ

2σy
)

= Ω(t)M(χ). (11)

We define χ ≡ θ̇
Ω , where dot denotes a time

derivative. Derivation details are shown in ap-
pendix A. When χ is small, the protocol is adi-
abatic. Yet, when χ varies slowly, it is inertial.
An inertial protocol succeeds provided that (i)
the initial state is |1⟩ and the final state is |2⟩;
(ii) the eigenstates of M(χ) and H coincide at
the beginning and end of the protocol; and (iii)
the matrix M(χ) varies slowly compared to its
energy gap. Formally, the conditions are:

(i) θ(0) = 0 , θ(tf ) = π/2 (12a)
(ii) θ̇(0) = θ̇(tf ) = 0, (12b)

(iii) ηI = 1
4Ω

χ̇
4+χ2 ≪ 1 where χ ≡ θ̇

Ω (12c)

The protocol is also adiabatic when

(iv) ηA = χ
4 ≪ 1 (13)

The adiabaticity and inertiality parameters,
ηA and ηI respectively, were computed using
Eqs. (5,6). In the next section, we compare the
performance of several protocols. We find that
protocols with a small ineriality parameter have
a favorable asymptotic scaling of the infidelity
and are robust to realistic noise channels.
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Fig. 1: (a) STIRAP infidelity versus effective pulse area
(Ωmax · tf ) for three pulse shapes [Eq. (14)]: Gaus-
sian (green), sinSQ (blue), and cubic (red). Parameters:
∆ = 0MHz, Ωmax = 50MHz and γ31/2π = γ32/2π =
3 MHz, accounting for decay from |3⟩ into |1⟩ and |2⟩.
QOCT parameters: λ1 = 0.1, λ2 = 0, λ3 = 1 · 10−7

(see Sec. 6). (b) Infidelity, 1 − F , versus ∆, for
tf = 0.25µs. (c) Effective pulse area, Ωmaxtf , (relative
to cubic pulse) for protocols generated with constrained
QOCT vs. weight of inertial constraint, λ3. (d) Pulse
shapes generated with QOCT with a cubic guess pulse
for different values of λ3, which achieve fidelity of 0.99.

5 Fidelity of inertial STIRAP pulses
Figure 1 compares STIRAP performance with
analytic pulse shapes and with an optimized in-
ertial pulse. The analytic functions, Ωj (j=1,2),
are Gaussian, squared sinusoidal (sinSQ) with a
linear θ(t) and a sin function with a cubic θ(t):

Gaussian : Ωj(t) = Ωmaxe
−4(t−tj)2/t2

f (14a)
SinSQ : Ωj(t) = Ωmax sin2[π(t− tj)/2tf ] (14b)

Cubic : Ωj(t) = Ωmax sin[θn(t− tj)]. (14c)

Here, t1 = tf and t2 = 0 while θn is a cubic poly-
nomial(i). Conditions (i) and (ii) are satisfied
by the sinSQ and cubic pulses, but are violated
by the Gaussian pulse. The optimized pulse is

(i)θn(t) =
3∑

n=2

Cntn with C3 = − π
t3

f

, C2 = ( π
2 −C3t3

f )/t2
f .
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found with our constrained QOCT code, which
minimizes the time-averaged inertiality parame-
ter ηI , and uses the cubic pulse as an initial guess.

To compute the infidelity, we evolve the den-
sity matrix (representing the state of the system)
by solving the Lindblad master equation, with
the Hamiltonian of Eq. (7) and including sponta-
neous emission from state |2⟩. We use the open-
source Python package QuTip [53]. Fidelity is
defined in terms of the overlap between the target
and final states, ρt = |3⟩ ⟨3 | and ρf respectively.
Formally, F ≡ 1 − Tr(√ρfρt

√
ρf )1/2.

Figure 1 compares the infidelity and robustness
of the protocols as a function of protocol duration
tf . In contrast to the Gaussian pulse, both the
cubic and sinSQ pulses satisfy conditions (i-ii),
and are, therefore, superior to it. The cubic pulse
is better than the sinSQ pulse. This can be at-
tributed to the fact that the energy gap between
instantaneous eigenvalues is constant throughout
the protocol and, hence, minimizes diabatic tran-
sitions [27]. The optimized pulse has the small-
est fidelity and highest robustness. Small oscilla-
tions in the infidelity of the analytic pulses are at-
tributed to non-adiabatic transitions that can be
controlled by using mask functions that smooth
the derivatives of the pulses [52].

To further substantiate the connection be-
tween inertiality and optimal adiabatic perfor-
mance, we use our QOCT algorithm [Sec. 6]. We
control the degree of inertiality by increasing the
weight of the inertiality constraint [λ3 in Eq. (15)
below] and find that by increasing λ3, the pulse
area is reduced for a given fidelity. This is the
main advantage of our optimized protocols, as it
implies that they are more efficient than the an-
alytic pulse shapes. Figure 1(c) compares pulses
obtained with varying inertiality constraints in
the range λ3 ∈ (0, 7) × 10−5. It presents the ef-
fective pulse area, Ωmaxtf , relative to that of the
cubic protocol [Eq. (14c)], as a function of λ3.
The pulse area is reduced in the shown param-
eter range, as result of increasing λ3. (We note
that this trend does not hold in general. Since we
are dealing with an optimization problem with
multiple objective functions, it has multiple local
minima. We find optimal weights for optimiza-
tion by means of trial and error.) Figure 1(d)
shows three representative optimized pulses, ob-
tained with inertial weights of λ3 = 1.6 · 10−7

(green dashed) and λ3 = 1.1 · 10−6 (black solid).

We show also the cubic pulse shape (blue). While
all shown pulses achieve STIRAP fidelity of 0.99,
the smallest effective pulse area is achieved with
largest λ3. Our QOCT algorithm is explained in
the following section.

6 QOCT with inertial constraints

The goal of QOCT is to find optimal pulses, Ωc
1

and Ωc
2, and a corresponding optimal trajectory,

ρc(t), that achieve maximal fidelity given mini-
mal input power. Here, we introduce additional
constraints to find optimal solutions that are also
adiabatic and inertial.(ii) Consider the functional

J (ρ,Ω1,Ω2) = Tr{ρtρf } −
∫ tf

0 dtTr{ξ( d
dt − L̂)ρ}+

2∑
i=1

{
λ1
∫ tf

0 dt|Ωi|2 + λ2
∫ tf

0 dt|Ω̇i|2 + λ3
∫ tf

0 dt|Ω̈i|2
}

(15)

The first term is maximized when the final state
ρf reaches the target state ρt. The second en-
forces solutions to satisfy the Lindblad equation,
ρ̇ = L̂ρ, where L̂ is the Lindbladian operator and
ξ is the associated Lagrange multiplier. The third
is a penalty proportional to the total input power
in the pulses, with the associated Lagrange multi-
plier λ1. We include the last two terms to restrict
the time-averaged velocity and acceleration, with
Lagrange multipliers λ2 and λ3 respectively.

From the different methods to formulate and
solve the optimization problem [54–57], we use
Krotov’s algorithm to find minimal solutions for
J [58–64], which starts with guess pulses for
the controls and updates them iteratively. This
method has the advantage that is guarantees
that the performance merits improve in each it-
eration [65]. Starting from initial guess pulses,
Ω0

1 and Ω0
2, in each iteration (denoted by k),

the variables ρk and χk are evolved and the
pulses are updated according to an update rule,
Ωk+1

i = Ωk
i + ωi, which guarantees that J de-

creases in each iteration. Since the pulses are
generally complex, we obtain separate update
rules for their real and imaginary components
[ωR

i (t) and ωI
i (t)] in each iteration. We show

in appendix B that the updates satisfy the fol-

(ii)We seek inertial protocols found using inertial con-
straint, but add adiabatic constraints for generality.
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lowing differential equations:

λ1ω
R
i − λ2

d2

dt2ω
R
i + λ3

d4

dt4ω
R
i = 1

2Tr{ξk ∂∆L̂
∂ωR

i

ρk+1}

λ1ω
I
i − λ2

d2

dt2ω
I
i + λ3

d4

dt4ω
I
i = 1

2Tr{ξk ∂∆L̂
∂ωI

i

ρk+1}.
(16)

By discretizing the time coordinate, we vectorize
the functions ωR

i (t) and ωI
i (t) and solve Eq. (16)

using linear algebra tools.

7 Geometric quantum logic gates

Robustness to noise can be achieved by cyclic adi-
abatic evolution (which starts and ends with the
same Hamiltonian) under which a qubit’s state
acquires a geometric phase that depends only on
the state’s trajectory [66]. While non-degenerate
Hamiltonians are associated with scalar (abelian)
phases, degeneracy gives rise to matrix (non-
abelian) phases [67]. When including both
abelian and non-abelian “holonomic” operations,
it is possible to realize a universal set of gates that
are robust against certain types of errors [68–
72]. A protocol for holonomic quantum logic
gates was proposed in [18], where the qubit state
acquires geometric phases by driving transitions
out and back into the qubit subspace. We simu-
lated this protocol using the pulses from Sec. 5.

Figure 2 presents numerical simulations of the
gates. Single-qubit gates (panels a–b) require a
tripod-level atom (insets in the bottom plots).
A qubit is encoded in |0⟩ and |1⟩. A geomet-
ric phase gate (Pauli-Z rotation by π) is per-
formed using two STIRAP steps to transfer pop-
ulation from |1⟩ to the auxiliary level |2⟩ and
back into |1⟩; The phase of one of the pulses (here
Ω2) is shifted by π in the second STIRAP step
[Fig. 2(a), top] and, consequently, creates a rel-
ative phase shift of π between |0⟩ and |1⟩. To
find favorable performance, we replace the cubic
pulse with a quatric polynomial. Since our pro-
tocol contains two STIRAP steps, we search for
a polynomial with zero derivative (θ′(t) = 0) at
the beginning, middle, and end of the protocol.
Considering symmetric and antisymmetric pulses
(around tf/2), we find that these conditions are
satisfied with a fourth order polynomial.(iii)

(iii)θ(t) is a quartic polynomial P4(t) = C0 +C2(t− tf

2 )2 +
C4(t − tf

2 )4, with C0 = π
2 , C2 = −4 π

t2
f

, C4 = 8π
t4

f

.

To implement a Hadamard gate [Fig. 2(b)], one
needs a third field, Ω0. The three fields, Ω0,1,2,
are applied following the protocol in (b1). In this
case, the initial dark state is a combination of |0⟩
and |1⟩, whose weights are determined by the ra-
tio of Ω0 and Ω1. During the protocol, a phase
is acquired by the dark state, which translates
into a rotation in the qubit basis [18, 19]. Fi-
nally, a CZ gate is achieved using four-level atoms
with Rydberg interaction between excited states
[Fig. 2(c)]. This gate operates in a regime of a
weak Rydberg interaction compared to the Rabi
frequencies, VR ≪ Ω1,Ω2. In this limit, when
two atoms occupy the excited state, their inter-
action produces an energy shift and the wave-
function acquires a phase proportional to VR [10].
A CZ gate is implemented by applying two STI-
RAP steps and tuning the time delay between the
pulses so that the |11⟩ component of the wave-
function acquires a π phase shift relative to other
qubit states.

We simulated these protocols with the pulses
from Eq. (14). For each protocol, we recon-
structed the simulated gate, ρ → Ĝ(ρ), with pro-
cess tomography (reviewed in appendix C), which
provides Kraus operators, Gk that expand Ĝ: [73]

Ĝ(ρ) =
∑

k

GkρG
†
k. (17)

Using this expansion, we computed the average
gate fidelity, F , defined as the overlap between
the simulated and target gates (Ĝ and U0 respec-
tively) averaged over all possible initial states.
For an initial pure state, |ψ⟩, the average gate
fidelity F is given by [45, 74–76]:

F ≡
∫

S2n−1
dV ⟨ψ |U †

0Ĝ(|ψ⟩⟨ψ |)U0|ψ⟩ =

1
n(n+ 1)

∑
k

(
Tr(MkM

†
k) + |Tr(Mk)|2

)
, (18)

where n is the dimension of the Hilbert space
(n = 2 or 4 for single- or two-qubit gates) and
Mk ≡ U †

0Gk. The results are shown in Fig. 2. We
plot the infidelity as a function of maximum Rabi
frequency. In the CZ gate, tf is set by requiring
that the conditional phase shift is π. The quartic
protocol approaches F = 1 at the fastest rate, as
expected based on Fig. 1. Unfortunately, the gate
fidelity is much smaller than the STIRAP fidelity.
The reason is that gate fidelities are limited by
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Fig. 2: Inertial geometric gates (a1,a2) Single-qubit phase gate, using a tripod-level atom (inset) with control
pulses Ω1(t) and Ω2(t) that transfer population from |1⟩ to |2⟩ and back to |1⟩, while flipping the phase of Ω2
in the middle of the protocol [17, 18]. (a1) Gaussian (Green), sinSQ (blue) and quartic (red) pulses are shown.
(a2) Gate infidelity versus Ωmax for the Gaussian, sinSQ, and quartic pulses. (b1-b2) Hadamard gate, using Ω0,
Ω1 and Ω2 and gate infidelity. (c1-c2) CZ gate, using 4-level atoms with Rydberg-induced phase shifts (inset).
Pulse shapes and gate infidelity versus Ωmax are shown. Parameters of single-qubit gates: γ/2π = 6MHz, ∆ = 0.
Phase gate: Ωmax

1 = Ωmax
2 = 2π × 50MHz. Hadamard gate: Ωmax

1 = 2π × 50MHz, Ωmax
2 = (1 −

√
2)Ωmax

1 ,
(Ωmax

0 )2 = (Ωmax
1 )2 + (Ωmax

2 )2. Two-qubit CZ gate: Ωmax/2π = ∆ = 50MHz, VR = 14MHz, γp/2π = 6MHz,
γr/2π = 1kHz, γdep/2π = 10kHz.

phase errors, which are larger than population
errors that limit STIRAP(iv).

8 Noise analysis

Next, we analyze the effect of noise on the CZ
gate, with the pulses from Fig. 2(c). We consider
qubits encoded in hyperfine states of 87Rb atoms,
trapped in optical tweezers. Following the noise
analysis from Ref. [24, 77], we include the follow-
ing imperfections: Doppler shifts, errors due to
nonuniformity of Gaussian control beams, fluc-
tuations in the amplitude and phase of the con-
trol fields, deviations in atom separation, dephas-
ing and finite lifetimes of the electronic states.
Details about our noise model (which follows
Ref. [24]) are given in appendix D.

The results are shown in Fig. 3 and in Table 1.
Evidently, the quartic protocol is highly robust
to deviations in the detuning (Doppler shifts).
When varying the detuning by 20%, the fidelity
of the quartic protocol varies by 0.08% while that
of the Gaussian pulse varies by ∼ 0.7%. In addi-
tion, the quartic pulse is highly robust to varia-
tions in intensity and decay rate of the interme-

(iv)It is a consequence of first-order perturbation theory
that population errors scale quadratically with the small
parameter while phase errors scale linearly.

diate STIRAP level, |p⟩. We assume, for simplic-
ity, that the control fields are co-propagating to
avoid fluctuations in the two-photon detuning.(v)

However, being based on the non-blockaded
Rydberg regime (VR < Ω1,Ω2), this protocol
is sensitive to dephasing of the Rydberg state
and to fluctuations in atom separation. The
latter modify the strength of atomic interaction
and, consequently, the phase acquired by the |11⟩
component of the wavefucntion. This drawback
is a property of a non-blockaded gate, and not
of the quartic or Gaussian pulse shapes that im-
plement it. An application of inertial conditions
to optimize adiabatic protocols which operate in
the blockaded regime (as in [78]) are expected to

(v)Counter-propagating beams were treated in [15, 24]).
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be highly robust and efficient.
Pulse Quartic Gaussian
noise Fmin Fmax Fmin Fmax
detuning
∆±20% −0.09% +0.084% −0.839% 0.64%
intensity
Ω ± 20% −0.19% +0.11% −1.68% 0.8%
lifetime
γp±20% −0.017% +0.013% −0.13% +0.13%
lifetime
γr ±20% −0.025% +0.028% −0.025% +0.025%
dephasing
γd±20% −0.95% +0.64% −0.59% +0.60%
position
∆x±2% −5.2% 0.79% −6.71% +0.86%

Table 1: Robustness of quartic and Gaussian pulses for
the CZ gate. When using parameters: Ωmax = ∆ =
100 × 2πMHz, tf = 0.5µs, VR = C6/r

6, with C6 =
14THz/µm, r = 10 µm, γp = 6MHz, γr = 1kHz, γd =
10kHz, the quartic pulse fidelity is F = 0.963 while the
Gaussian pulse achieves F = 0.948. The table shows by
what percentage the fidelity changes upon changing the
model parameters under realistic noise sources.

40 45 50 55 60 65 70 75 80
max[MHz]

10 1

100

in
fid
el
it
y

gauss
sinSQ
quartic

Fig. 3: Infidelity of the CZ gate protocol [Fig. 2(c)] per-
formed with Gaussian, sinSQ, and quartic pulses, for 100
realizations of noisy model parameters. The detuning,
maximum Rabi frequency, and deviation in atomic po-
sitions along and perpendicular to the tweezers’ direc-
tion are Gaussian random variables, with average values
listed in Table 1 and standard deviations: σ∆ = 14kHz,
σΩ = 2.5MHz, σdz = 0.2µm and σdx = σdy = 0.07µm
respectively [6, 24]. Realization are shown by a thin lines
and their average is shown by the thick dashed lines.

9 Experimental realization
Inertial protocols for population transfer in two-
level systems were validated in recent work [25].
Here, We analyze a realization of our inertial
protocol for quantum logic gates. We use 87Rb
atoms, with two possible choices of energy lev-
els and transitions from the D2 line, as shown

in Fig. 4(a-b). In particular, we are interested
in analyzing realistic imperfections, including po-
larization and leakage errors (following the anal-
ysis from [79–82]). For example, consider a
single-qubit phase gate implemented using the
levels shown in Fig. 4(a). Ideally, to drive
STIRAP transitions from the state |0L⟩ to |A⟩
and back, we want to apply only two beams:
The pulse Ω1 with σ+ polarization, which drives
|F = 1,mF = −1⟩ ↔ |F ′ = 0,mF = 0⟩, and the
pulse Ω2 with σ− polarization, which drives
|F = 1,mF = 1⟩ ↔ |F ′ = 0,mF = 0⟩. However,
polarization errors in the second pulse, Ω2, pro-
duce a σ+ component that drives the first tran-
sition, and errors in the first pulse drive the sec-
ond transition. This process reduces the success
probability of the protocol. To combat this issue,
one can apply a DC magnetic field to shift the en-
ergy levels and tune the frequencies of the control
fields to be in resonance with the shifted levels.
By off-setting the frequencies of the Ω1 and Ω2
pulses, the error fields become off resonant and
their effect is suppressed. Our calculation as-
sumes that the magnetic field is in the weak Zee-
man regime. A more accurate treatment should
include nonlinear (Paschen-Back) corrections for
fields exceeding 10G (vi). Our simulations demon-
strate that the fidelity approaches unity when in-
creasing the magnetic field [Fig. 4(c)]. Further
improvement can be gained by introducing a res-
onant optical cavity to enhance desired transi-
tions, e.g., using the setup of [82]. Finally, we
mention that at high Rabi frequencies, coupling
between the desired Rydberg level and additional
levels can cause leakage and dephasing. This ef-
fect can be treated following [83, 84] but is be-
yond the scope of the present analysis.

10 Conclusion

In this work, we presented optimal adiabatic
and inertial protocols for STIRAP and geomet-
ric single- and two-qubit gates. In inertial pro-
tocols, the system adheres to an instantaneous
eigenstate of the inertial Hamiltonian, obtained
from the original one by a basis change. Since
inertial protocols are not required to be adia-
batic in the original basis, they provide a way to

(vi)Field stength of 10G corresponds to the green curve
at Rabi frequency Ω = 50MHz.
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Fig. 4: Realization with Rb atoms. (a,b) Two pos-
sible realizations of a tripod level system using the D2
line of 87Rb. Desired transitions (solid lines) are shown
with the corresponding polarizations: circular (σ±) and
π. Additional transitions are shown by grey arrows. (c)
Infidelity of the phase gate [Fig. 3(a)] versus polarization
error, ε, defined as the fraction of undesired polarization
in each STIRAP pulse. Nonlinear (Paschen-Back) cor-
rections are not included in our model (see text).

construct fast high-fidelity operations. To assess
their performance, we computed the fidelity and
robustness of our protocols under various per-
turbations, including fluctuations in atomic posi-
tions and velocities, inhomogeniety and classical
noise in the control fields, polarization impurity,
spontaneous emission, dephasing, and populat-
ing leakage. We found optimal inertial pulses
with QOCT, extended to include adiabatic and
inertial constraints, and presented several opti-
mal pulses. Our algorithm can be further im-
proved by searching for solutions that maximize
the overlap between the dynamical and instanta-
neous inertial eigenstates, generalizing Ref. [47].
Although we find clear advantages to inertial ge-
ometric gates, some limitations of our approach
should be mentioned. The condition that ini-
tial and final eigenstates of the inertial and origi-
nal Hamiltonians must coincide [Eq. (12b)] limits
our method. Without it, inertial protocols could
potentially achieve high fidelities very rapidly.
However, for STIRAP, this condition implies that
the adiabaticity parameter must vanish at the
start and end of the protocol; Consequently, our
inertial STIRAP protocols are also adiabatic.
To design inertial protocols that are not adia-
batic, one should find quantum algorithms that
do not start and end in eigenstates of the lab-
frame Hamiltonian. We also mention some limi-
tations of the geometric protocols that were im-

plemented [17, 18, 51]. First, our CZ gate is
sensitive to errors in the time spent in the dou-
bly excited Rydberg state. Secondly, two-qubit
gates that use Rydberg interactions in the disper-
sive regime are sensitive to fluctuations in atomic
positions. Application of constrained QOCT to
protocols that use Rydberg blockade is expected
to find pulses which are robust to such fluctu-
ations [24]. Generally, inertial pulses are likely
to improve many adiabatic protocols, including
topological adiabatic algorithms [85, 86].

In light of the long list of existing “improved
adiabatic protocols,” our work adds simple ana-
lytic pulse shapes that yield nearly optimal solu-
tions by satisfying the condition of small accel-
eration [14]. Our optimization algorithm, which
uses the Lindblad formulation for the dynamics,
finds efficient solutions (with reduced power re-
quirement) that correctly balance the different
noise channels with their respective branching
ratios. Given the immense progress in pulse-
shaping techniques for optimal control [3, 87, 88],
our protocols are feasible and useful for improv-
ing the performance merits of quantum logic
gates with atomic qubits.
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Supplementary Information

A Inertial STIRAP Hamiltonian
In this section, we derive Eq. (11) from the main text. We choose the parameterization

Ω1 = Ω sin θ , Ω2 = Ω cos θ. (A1)

The 2-level Hamiltonian [Eq. (10) from the main text] becomes

H = Ω2

2∆ (cos 2θσz + sin 2θσx) (A2)

where σx and σz are Pauli matrices. We obtain an explicit expression for the inertial-frame Hamiltonian
defined as

H̃ ≡ P †HP − iℏP †∂P

∂t
(A3)

The eigenvalues are ±Ω. The eigenvector matrix is

P =

 cot 2θ+csc 2θ√
cot θ2+1

cot 2θ−csc 2θ√
tan θ2+1

1√
cot θ2+1

1√
tan θ2+1

 . (A4)

For 0 < θ < π, we find

P †dP

dθ
= θ̇

2

(
0 −1
1 0

)
.

This completes the proof of Eq. (11) in the main text.
One finds a striking similarity between the inertial-frame Hamiltonian [Eq. (11)] and the Hamiltonian
one obtains when adding counter-diabatic terms to the lab-frame Hamiltonian realizing the shortcut-
to-adiabaticity protocol (see Eqs. (4-5) in the Methods section of [36]). The similarity is expected, since
the inner product of the instantaneous eigenvectors and their derivatives appear in both formulations.
However, there is a conceptual difference which is important to point out. In shortcut-to-adiabaticity,
one constructs a Hamiltonian, which may be challenging to realize, but whose eigenstates are exact
solutions to the dynamics. In contrast, in our approach, the lab-frame Hamiltonian is straightforward,
and the instantaneous eigenstates of the inertial-frame solutions are only approximations to the true
dynamics.

B Adiabatic and inertial constraints in QOCT
In this section, we generalize Krotov’s QOCT algorithm to include inertial and adiabatic constrains.
Let us consider the following functional to be minimized:

J = Tr{ρtρf } −
∫ tf

0
dtTr{ξ(t)

[
d
dt − L̂

]
ρ(t)}

+λ1

∫ tf

0
dt|Ω(t)|2 + λ2

∫ tf

0
dt|Ω̇(t)|2 + λ3

∫ tf

0
dt|Ω̈(t)|2 (B1)

where the two last terms correspond to the integrated velocity and acceleration. Using integration by
parts, one can rewrite the first line of Eq. (B1) as:

Tr
{
ρtρf − (ξ ρ)|tf

0 +
∫ tf

0
dt
[
ρdξ

dt + ξL̂ρ
]}
. (B2)

Krotov’s algorithm starts with an initial guess from the control fields, evolves ρ and ξ and finds an
updated control pulse that decreases J . By iteratively updating the control pulse, convergence is
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reached. Let us compute the change in J between iteration k and k + 1 in terms of the change in ρ.
Using the definitions

∆J = J (k+1) − J (k) , ∆ρ = ρ(k+1) − ρ(k), (B3)

we obtain:

∆J = Tr
{
ρt∆ρ− ξk ∆ρ]|tf

0

}
+

Tr
{∫ tf

0
dt
[
∆ρdξ

dt + ξkL̂∆ρ+ ξk∆L̂ρ(k+1)
]}

+

−
∫ tf

0

{
2λ1Re[εk∆ε∗] + λ1[∆ε2

R + ∆ε2
I ]
}

+

−
∫ tf

0

{
2λ2Re[ε̇k∆ε̇∗] + λ2[∆ε̇2

R + ∆ε̇2
I ]
}

+

−
∫ tf

0

{
2λ3Re[ε̈k∆ε̈∗] + λ3[∆ε̈2

R + ∆ε̈2
I ]
}
. (B4)

The first 4 terms do not depend on the field increment and produce the dynamical equations for ρ
and ξ. The additional terms produce the differential: ∆J1 + ∆J2 + ∆J3 + ∆J4 where

∆J1 = Tr
{∫ tf

0
dtξk∆L̂ρ(k+1)

}
∆J2 = −2Re

[∫ tf

0
λ1ε

k∆ε∗ + λ2ε̇
k∆ε̇∗ + λ3ε̈

k∆ε̈∗
]

∆J3 = −
∫ tf

0
λ1∆ε2

R +λ2∆ε̇2
R +λ3∆ε̈2

R

∆J4 = −
∫ tf

0
λ1∆ε2

I +λ2∆ε̇2
I +λ3∆ε̈2

I . (B5)

The term ∆J2 vanishes on average since the integrand is rapidly oscillating. The complete differential
of the third term is

d(∆J3) =
∫ tf

0
df(∆εR,∆ε̇R,∆ε̈R)dt =∫ tf

0

[
df

d∆εR
∆εR + df

d∆ε̇R
∆ε̇R + df

d∆ε̈R
∆ε̈R

]
dt∫ tf

0

[
∂f

∂∆εR
− d

dt
∂f

∂∆ε̇R
+ d2

dt2
∂f

∂∆ε̈R

]
∆εR dt+ surface terms

2
∫ tf

0
(−λ1∆εR + λ2∆ε̈R − λ3∆....

εR) + surface terms (B6)

The surface terms vanish since the field update at the start and end point is zero, ∆εR(0) = ∆εR(tf ) =
0. Using this result (and repeating the same procedure for ∆J4), we find update equations:

−λ1∆εR + λ2∆ε̈R − λ3∆....
εR = 1

2Tr[ξk ∂∆L̂
∂∆εR

ρk+1] ≡ F (t)

−λ1∆εI + λ2∆ε̈I − λ3∆....
εI = 1

2Tr[ξk ∂∆L̂
∂∆εI

ρk+1] ≡ G(t) (B7)

These equations are easily solved by discretizing time and rewriting the equation in matrix form
(the second-order time derivatives becomes the tridiagonal Hessian matrix and the fourth-order time
derivatives is a 5-diagonal matrix). We obtain equations of the form

M1∆εR = F
M2∆εI = G (B8)

The update rules for the control fields are found by inverting M1 and M2.
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Fig. 5: Quantum gate tomography: Visualization of target (top) and simulated (bottom) single- and two-qubit
gates. The plots show the matrix χ, which expresses the expansion coefficients of the gate transformations in terms
of Pauli basis operators, Ẽi [Eq. (C2)] for single-qubit gates and Kronecker products of Ẽi for two-qubit gates
respectively. (a–d) The matrix χ, calculated using Eq. (C4), for Hadamard and Pauli-Z single-qubit gates. (e,f) The
matrix χ, calculated via Eq. (C6) for a two-qubit CZ gate.

C Quantum gate tomography
Quantum process tomography (QPT) is a method by which a quantum gate is reconstructed from
simulated data (experimental or numerical). In this work, we use QPT to quantify the overlap between
our simulated and target gates. In this appendix, we review the method presented in [73].
Suppose that a density matrix ρ evolves under our simulation into G(ρ). The goal of QPT is to
determine G. Given a complete basis of matrices, Ẽm, that spans the operator space (i.e., the Liouville
space), any unitary G can be written in the form

G(ρ) =
∑
m,n

χmnẼmρẼ
†
n, (C1)

where χmn are coefficients that we wish to find. For single-qubit gates, the set Ẽm contains four 2 × 2
matrices (m = 1, ..., 4) and χmn is a 4 × 4 matrix. Let us choose the Pauli and identity matrices as
basis operators:

Ẽ1 = I , Ẽ2 = σx , Ẽ3 = −iσy , Ẽ4 = σz. (C2)

To determine χ, we run our simulations on 4 initial states

ρ1 = |0⟩⟨0 | , ρ2 = ρ1σx , ρ3 = σxρ1 , ρ4 = σxρ1σx. (C3)

We compute the final state for every input: ρ′
i ≡ E(ρi). Then, following [73], χ is given by

χ = 1
4

(
I σx

σx I

)(
ρ′

1 ρ′
2

ρ′
3 ρ′

4

)(
I σx

σx I

)
. (C4)

where I, σx, ρ
′
1, ..., ρ

′
4 ∈ R2×2 and χ ∈ R4×4.

For two-qubit gates, we write
G(ρ) =

∑
m,n

χmnẼ
(2)
m ρ(Ẽ(2)

n )† (C5)
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in terms of two-qubit operators, Ẽ(2)
m ∈ R4×4, defined as Kronecker products of the single-qubit basis

operators, Ẽm, from Eq. (C2). The matrix χ ∈ R16×16 is given by

χ = Λ ρ̄Λ, (C6)

where Λ ∈ R16×16 is a rotation matrix

Λ ≡ 1
4

[(
I σx

σx I

)
⊗
(
I σx

σx I

)]
(C7)

and ρ̄ ∈ R16×16 is defined as

ρ̄ = P Tρ′P. (C8)

Here, ρ′ ∈ R16×16 the matrix of final states

ρ′ = G(ρ), (C9)

found by propagating 16 input states

ρmn = Tn|00⟩ ⟨00 |Tm ∀n,m = 1, ..., 4 (C10)

with

T1 = I ⊗ I , T2 = I ⊗ σx

T3 = σx ⊗ I , T4 = σx ⊗ σx. (C11)

The permutation matrix P is given by

P = I ⊗




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⊗ I

 . (C12)

Note that I ∈ R2×2 and, hence, P ∈ R16×16.

D Noise Analysis
We follow the analysis of [24]. The equations that we used to simulate the various noise processes are
detailed below.

I. Doppler shifts and fluctuations in atomic separation
Finite temperature effects give rise to fluctuations in atomic velocity and position. The former produce
shifts in the effective single-photon detuning while the latter introduce a variation in the Rydberg
interaction strength. To see how this comes about, let us write the Hamiltonian. We denote atomic
positions by Rℓ(t) = Rℓ + δRℓ + vℓt, where the index relates to the ℓth atom, δRℓ are position
deviations and vℓ are the atomic velocities. The Hamiltonian is:

H =
∑

ℓ

{
Ω1(t)

2 eik1·Rℓ(t)|1ℓ⟩ ⟨pℓ | + Ω2(t)
2 eik2·Rℓ(t)|pℓ⟩ ⟨rℓ | + h.c. − ∆|pℓ⟩ ⟨pℓ |

}
+ VR(|R1 − R2|)|r1r2⟩ ⟨r1r2 |

(D1)
where kj is the wavevector of the control pulses Ωj . We assume in our analysis that the control pulses
and the tweezer beams are co-propagating along the z direction (i.e., the wavevectors are parallel). The
atoms are placed along an axis perpendicular to z (say along the x direction). Using the parameters
from [6], we consider a temperature of 10 µK which produces a normal distribution of detunings
with standard deviation 2π × 43 kHz. Assuming tightly focused tweezer beams, we a distribution of
positions with standard deviation of 200 nm.
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II. Spatial dependence of the pulse amplitude
The control pulses are Gaussian beams. For simplicity, we consider the effect of amplitude fluctuations
due to atom deviation from the trap center in the transverse direction (x,y) only. Hence, the amplitude
of control pulse j = 1, 2 depends on the transverse (x,y) coordinates of atom ℓ via the relation:

Ωj(t,Rℓ) = Ωj(t, 0)e(x2
ℓ +y2

ℓ )/w2 (D2)

where w is the beam waist, chosen here to be w = 1µm. We generate a random distribution of
locations corresponding to a temperature of 10 µK, using trap parameters from [24].

III. Noise in the amplitude and phase of the control fields
Classical noise in the amplitude of the control fields is accounted for by generating an ensemble of
amplitude deviations Ωj → Ωj + δj and averaging over the resulting fidelity. Previous work has shown
that this noise channel has little effect on STIRAP-based protocols and we confirm this result. Laser
phase noise has an average effect of introducing a dephasing channel, which is conveniently modeled
by an appropriate jump term in the Lindbladian. Specifically, following [24], we include a term of the
form

√
γ1/2(|p⟩ ⟨p |− |1⟩ ⟨1 |) and

√
γ2/2(|r⟩ ⟨r |− |p⟩ ⟨p |) to account for the noise in each control field.
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