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Probing off-diagonal eigenstate thermalization with tensor networks
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Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum
many-body systems at finite energy densities [S. Lu et al., PRX Quantum 2, 020321 (2021)]. Classically
simulating this algorithm with tensor networks can be used to investigate the microcanonical properties of large
spin chains, as recently shown by Y. Yang et al. [Phys. Rev. B 106, 024307 (2022)]. Here we extend this strategy
to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis, fundamentally
connected to the thermalization behavior and the eigenstate thermalization hypothesis. We test the method on
integrable and nonintegrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization.
Our results allow us to explore the scaling of the off-diagonal functions with the size and energy difference, and
to establish quantitative differences between integrable and nonintegrable cases.
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I. INTRODUCTION

Since the early days of quantum mechanics, the emergence
of thermalization behavior in isolated quantum systems has
been a fundamental and intriguing question [1,2]. But it has
been only in recent years that, thanks to the high levels
of control and isolation of ultracold atomic experiments, it
has become possible to explore the quantum thermalization
phenomenon experimentally [3–5], which has rekindled the
attention to the topic.

A theoretical keystone to explain quantum thermalization
is provided by the eigenstate thermalization hypothesis (ETH)
[6–10]. Connecting quantum many-body systems with ran-
dom matrix theory, the ETH conjectures a generic form for
the matrix elements of physical observables in the energy
eigenbasis of the system. The ansatz is expected to apply for
large generic (chaotic) systems [9–14], whereas it can be vio-
lated, for instance, in integrable models [15–19] and strongly
disordered models [20–22]. The validity of ETH has been
numerically probed for a number of models [23–37]. How-
ever, most numerical studies rely on exact diagonalization
(ED), which becomes infeasible for large systems due to the
exponential scaling of the Hilbert space dimension with the
system size. Investigating the structure of matrix elements as
a function of the latter, and finding their asymptotic behavior,
remains numerically challenging.

Tensor network (TN) methods offer possibilities to numer-
ically explore quantum systems of sizes much larger than
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the ones allowed by ED. The most successful TN methods
target equilibrium states (ground or low-energy eigenstates,
or thermal equilibrium [38–40]). But probing ETH requires
investigating states at finite energy, which typically are not
efficiently described by a TN ansatz [41]. Nevertheless, a new
algorithm has been recently proposed that precisely allows
studying an ensemble of eigenstates at finite energy density
[42,43]. The method simulates the effect of a narrow energy
filter operator through its expansion as a sum of evolution
operators. By (quantum or classically) simulating each of
these evolutions and postprocessing the data, it is possible to
approximate the properties of a microcanonical ensemble over
an extensive region of the spectrum. Classically simulating the
evolution with tensor networks imposes a limit on the width of
the accessible filters, but, as demonstrated in [43], it suffices
to efficiently access the microcanonical values for spin chains
up to 80 sites, thus providing a way to probe the diagonal part
of the ETH ansatz.

In this paper, we generalize the applications of the energy
filter method to probe the more challenging off-diagonal part
of ETH. More concretely, our method computes a (broadened)
filter spectral function for a given (local) operator. This func-
tion can be interpreted as an average of matrix elements over
eigenstate pairs selected by two spectral filters, one selecting
the average energy and the other the energy difference. We
demonstrate how, by simulating finite time evolutions with
standard tensor network routines, in the spirit of [43], we can
obtain the effect of two combined filters. Using our method we
compute and compare the spectral functions for several Ising
spin chains, including integrable and nonintegrable clean sys-
tems, as well as a disordered one, for much larger system
sizes than allowed by exact diagonalization. For the region
we can reliably probe, we obtain convergence of the spec-
tral functions with system size, and are able to discriminate
qualitatively distinct features, such as a different scaling with
energy difference.
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The rest of the paper is structured as follows. Section II
provides a brief review of ETH and the filter ensemble. In
Sec. III we present the method used to compute the spectral
function numerically with tensor network state (TNS) algo-
rithms. Section IV describes the three different spin models
studied and collects our numerical results. In particular our
results capture the asymptotic behavior of off-diagonal matrix
elements, and exhibit qualitative differences in the energy
and energy difference dependence between the integrable and
generic cases. We also study how in the latter case, the fluctu-
ation dissipation relation is fulfilled by the filter ensemble for
large enough systems.

II. BACKGROUND

A. Eigenstate thermalization hypothesis

Consider a many-body Hamiltonian with spectral decom-
position Ĥ = ∑

α Eα |α〉 〈α|. Given a physical observable Ô,
ETH predicts that its matrix elements Oαβ ≡ 〈α| Ô |β〉 in the
energy eigenbasis obey the following form [7,9],

Oαβ = O(Ē )δαβ + e− S(Ē )
2 fO(Ē , ω)Rαβ, (1)

where we define the energy variables Ē ≡ (Eα + Eβ )/2 and
ω ≡ Eβ − Eα . Rαβ is a random variable with zero mean and
unit variance. The thermodynamic entropy S(E ) can be de-
fined as the logarithm of the number of available states in
the microcanonical window, DoS(E )�E . In the literature it is
nevertheless common to drop the dependence on the window
width, which contributes only a small constant [44], and use as
definition S(E ) = ln DoS(E ). O(Ē ) and fO(Ē , ω) are smooth
functions of their arguments. While Eq. (1) is probably the
most common one for the ETH ansatz, other expressions exist
that use a different entropy factor [10], which results in a
slightly different definition of fO(Ē , ω). In our case, we write
the off-diagonal term as e−[S(Eα )+S(Eβ )]/4 fO(Ē , ω)Rαβ .

ETH is a sufficient condition for quantum thermalization
[9]: starting from a (sufficiently narrow in energy) out-of-
equilibrium state, if Eq. (1) is satisfied, the time-averaged
expectation value of physical observables will relax to its mi-
crocanonical average O(E ) in the limit of infinitely long time,
with the fluctuations around the thermalization value con-
trolled by the off-diagonal matrix elements. Furthermore, it
is believed that ETH holds for generic nonintegrable systems
and few-body operators, and multiple numerical studies have
been conducted to verify its validity in such scenarios [23–29].
Violations of ETH can be observed in integrable systems
[30–36], as well as strongly disordered models [20–22,37],
due to their extensive number of (quasilocal) integrals of
motions.

The off-diagonal structure function | f (Ē , ω)|2 appearing
in the ETH ansatz is related to dynamic properties, and
also determines the fluctuation-dissipation theorem (FDT) of
nonequilibrium states. Recent works have focused on studying
some of its properties in generic and nongeneric systems. The
statistics of off-diagonal matrix elements in integrable spin
chains were analyzed in [19,25,34–36] and its dependence on
energy difference ω and system size N in [9,24–27,33–37].
On the other hand, the off-diagonal matrix elements in disor-
dered models can display spectral properties deviating from

the ETH prediction, as for instance shown in [20,45,46].
Finally, the standard ETH does not make explicit predictions
for the correlation between matrix elements, which is nev-
ertheless related to quantum chaos, and has been a focus of
recent works [47–52].

B. The filter ensemble

The most direct way to verify ETH numerically is to di-
agonalize the many-body Hamiltonian and analyze the exact
energy eigenstates in a targeted energy window. This is, how-
ever, limited to small systems of the order of 20 spins, as the
dimension of the Hilbert space increases exponentially with
the size.

A potential work-around is to study, instead of the prop-
erties of individual eigenstates, those of an ensemble that is
narrow in energy. This strategy has been recently followed
in [42,43,53] to investigate finite energy properties using the
filter ensemble

ρ̂σ (E ) := gσ (E − Ĥ )

Tr[gσ (E − Ĥ )]
, (2)

where gσ (x) is the Gaussian function,

gσ (x) ≡ 1√
2πσ

exp

[
− x2

2σ 2

]
. (3)

The filter ensemble ρ̂σ (E ) is diagonal in the energy eigenba-
sis, and it is centered at E , with σ being the energy width.
The expectation values for ρ̂σ (E ) will converge to the micro-
canonical ones in the limit of small σ ,

Tr[ρ̂σ (E )Ô] −−→
σ→0

O(E ), (4)

such that the filter ensemble can be used to probe the diagonal
part of the ETH. In [43] it was argued that, in a system
fulfilling ETH, a width σ = o(

√
N ) should be sufficient for

the left-hand side of Eq. (4) to converge to the microcanonical
values for intensive quantities (see also [54]).

III. THE SPECTRAL FUNCTION OF FILTER ENSEMBLES

In this work, we are interested in the application of filter
methods to probe the off-diagonal structure of the ETH. In
particular, we aim at extracting information about the off-
diagonal structure function | fO(E , ω)|2. The main quantity in
our study will be the spectral function of the filter ensemble,
defined as follows. The autocorrelation for some local observ-
able Ô in a given state ρ̂ can be computed as

Cρ
O(t ) = Tr[ρ̂Ô(t )Ô†]. (5)

Its Fourier transform yields the spectral function Sρ
O(ω) =

1
2π

∫ ∞
−∞ dteiωtCρ

O(t ). If the state is diagonal in the energy basis,
we denote its matrix elements 〈α| ρ̂ |α〉. This is the case for a
single eigenstate or for the Gibbs ensemble, but also for the
filter ensemble defined in Eq. (2). In such case, the spectral
function can be written as

Sρ
O(ω) =

∑
αβ

〈α| ρ̂ |α〉 |Oαβ |2δ(ω − Eβ + Eα ); (6)

i.e., Sρ
O(ω) is an average over squared matrix elements Oαβ =

〈α| Ô |β〉 between energy eigenstates with fixed energy
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FIG. 1. A graphical illustration of Eq. (7). The heat map shows
the matrix elements |Oαβ |2 in the eigenstate basis. The x axis and
y axis are the eigenenergies Eα and Eβ . The shadowed stripes in-
dicate the filters on energy Eα and energy difference Eβ − Eα . The
summation occurs over the matrix elements within the intersection
of two shadowed stripes.

difference ω, weighted by the probability of the eigenstates
|α〉 in the distribution defined by ρ. In the following we focus
on the filter ensemble ρ̂σ (E ), for which the corresponding
probabilities are 〈α| ρ̂ |α〉 ∝ gσ (E − Eα ), for the function gσ

defined in Eq. (3), with the normalization factor specified in
Eq. (2).

In order to compute this quantity, we introduce a gener-
alized version of the spectral function, where we replace the
δ function in Eq. (6) by a Gaussian of width σω, which we
will approximate by a second filter acting on the energy dif-
ference Eβ − Eα . This results in a broadened spectral function
S′ρσ (E )

O (t ) that performs an average of squared matrix elements
|Oαβ |2 for states α in the support of ρσ (E ) and states β with
energies around Eα + ω, as graphically illustrated in Fig. 1.
The function can be written as

S′ρσ (E )
O (ω) ≡

∑
αβ |Oαβ |2gσ (E − Eα )gσω

(ω − Eβ + Eα )∑
η gσ (E − Eη )

.

(7)

For a local and bounded Hamiltonian, the density of states
converges weakly to a Gaussian distribution in the thermo-
dynamic limit, with a width of

√
Nσ0, where σ0 is a constant

independent of the system size [55,56]. If the filters are narrow
enough compared to

√
Nσ0, we can consider the density of

states almost constant within the peak (while still much wider
than the level spacing), and we can express S′ρσ (E )

O in terms of
an average of matrix elements as

S′ρσ (E )
O (ω) ≈ eS(E+ω)|OE ,E+ω|2, (8)

where the average is taken over pairs of eigenstates with
energies around E and E + ω, respectively.

A. Relation with ETH

Since the filter does not select precise energy differences,
the sum will in general also pick up a contribution from the
(much larger) diagonal matrix elements. In order to study
the off-diagonal part of ETH, we thus choose observables
for which the microcanonical value, and thus the diagonal

contribution, vanishes; i.e., O(E ) = 0. For these observables,
the ETH ansatz predicts

|OE ,E+ω|2 =e− S(E+ω)+S(E )
2 | fO(E + ω/2, ω)|2, (9)

and thus

S′ρσ (E )
O (ω) ≈ e

S(E+ω)−S(E )
2 | fO(E + ω/2, ω)|2. (10)

Therefore, S′ρσ (E )
O (ω) is directly related to the function fO and

should also be a smooth function if ETH holds. The finite filter
widths imply multiplicative corrections to Eq. (10) of order
O(σ 2/N2 + σ 2

ω ), as explicitly shown in Appendix B.
Since the filter strategy can be used to determine the den-

sity of states (see also [53,57]), we can extract the value of
| fO| from the computed spectral function. But for Hermitian
Ô, a better strategy is making use of the fact that fO(E , ω) =
fO(E ,−ω), which allows us to eliminate the exponential fac-
tor by combining the spectral functions at different arguments
in a single function

VO(E , ω) ≡
√

S′ρσ (E−ω/2)
O (ω)S′ρσ (E+ω/2)

O (−ω) ≈ | fO(E , ω)|2,
(11)

where the last part holds for ETH, as it follows from Eq. (10).
The function VO(E , ω) can be understood as the variance of
the matrix elements within the filter, and can obviously be
computed for any system, fulfilling ETH or not, but in the
latter case, it is not ensured to be a smooth function.

Notice that our method is also applicable to operators with
nonzero microcanonical values. In such case, the microcanon-
ical value can be approximated using the method in [43,53],
and subsequently subtracted from our calculations, to extract
the off-diagonal component.

Finally, it is worth noticing that the regularized correlators
introduced in [58], which can be related to filtered functions
(see Appendix A 3), provide a similar strategy to extract the
function | fO|.

B. The filter method

Our numerical strategy is based on the TN simulation of
the filter operators presented in [43]. While the details are
discussed in [42,59,60], we sketch here the main steps for the
sake of clarity. It is convenient to approximate the Gaussian
by a cosine function as

e−ξ 2/2σ 2 ≈ cosM (ξ/α), (12)

where M = �(α/σ )2�2 (�. . .�2 indicating the nearest even in-
teger) and α is a rescaling factor introduced to ensure that the
range of the argument ξ/α is smaller than the period of the
cosine function π .

Using the binomial expansion, the cosine power can be
written as a sum of M + 1 complex exponentials. The number
of terms in this sum can be reduced to O(x

√
M ), by introduc-

ing a small error controlled by x = O(1), yielding

gσ (ξ ) ≈ 1

απc(M )
0

x
√

M∑
m=−x

√
M

c(M )
m e−iξ tm , (13)

where tm = 2m/α and c(M )
m = ( M

M/2−m

)
/2M .
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Using the expansion (13) for both Gaussian functions in Eq. (7) we obtain the following expression for the generalized
spectral function S′ρσ (E )

O (ω),

S′ρσ (E )
O (ω) =

∑
m,n c(M )

m c(Mω )
n

∑
αβ |Oαβ |2e−i(E−Eα )tm+i(ω−Eβ+Eα )tn

απc(Mω )
0

∑
m c(M )

m
∑

η e−i(E−Eη )tm

=
∑

m,n c(M )
m c(Mω )

n e−iEtm+iωtn Tr[eiHtm Ô(tn)Ô†]

απc(Mω )
0

∑
m c(M )

m e−iEtm Tr[eiHtm ]
, (14)

where in the second line we have simply used the trace and
product of operators to rewrite the sums over the spectrum.
Notice that both Gaussian filters have independent widths,
corresponding to two different expansion parameters M and
Mω. Also the normalization factor α could in principle be
different for each filter. Nevertheless, it is convenient for the
numerics to use a common value of α, so we choose the largest
of both.

Notice that a different pair of filters could be used resulting
in an average of matrix elements that probes the structure of
the off-diagonal matrix elements using these filters. We briefly
introduce other possibilities in Appendix A.

C. Cosine filter parameters

The cosine filter for the ensemble is determined by the
three parameters (σ, α, x). Similarly, the triplet (σω, αω, xω )
determines the cosine filter approximating the second
Gaussian function in Eq. (7). The flexibility in parameter
selection provides greater control over the performance of the
approximation.

As mentioned above, for simplicity, we choose the same
rescaling factor for both of the filters. In practice we find α =
αω > Emax − Emin, with Emax (Emin) being the highest (lowest)
energy in the spectrum of H , to be enough to ensure the proper
bound of both cosine filter arguments in the regime we study.
In order to determine the suitable value, we estimate Emax

(Emin) using a variational matrix product state optimization,
and choose α > 1.1(Emax − Emin)/π . This fixes the time step
in the filter expansion �t = 2/α to be the same for both filters,
such that we can use common values for tm and tn in Eq. (14).

The longest time in the filter expansion scales as

tmax = 2x
√

M

α
= 2x

σ
. (15)

The smallest accessible widths are fixed by the longest times
that we can reliably simulate using the TNS algorithms given
the available computational resources and the finite precision
of the numerical estimates. In Appendix A we discuss in detail
how we choose tmax and x for the specific models under study,
to achieve the smallest filter widths while keeping the numer-
ical error under control. Based on our error analysis results,
we employ filter widths of σ = O(

√
N ) and σω = O(1).

D. Tensor network simulations

Each of the terms in Eq. (14) can be evaluated numerically
with TNS techniques similar to the ones employed in [43].
In particular, here we need to compute the trace expressions
Tr[eiHtm ] and Tr[eiHtm Ô(tn)Ô†]. To calculate the latter, we

approximate eiH (tm+tn )/2Ôe−iHtn/2 using matrix product op-
erators (MPOs) [38–40] at times t� = 2�/α (� = m, n),
for −x

√
M � m � x

√
M and −x

√
Mω � n � x

√
Mω. In our

simulation this is achieved by the time-evolving block dec-
imation (TEBD) algorithm [38–40]. Evaluating the trace
Tr[eiHtm Ô(tn)Ô†] corresponds to computing the inner product
of the two MPOs, which can be done efficiently. This strategy
of evolving the MPO on both physical indices, splitting the
evolution between both operators, and evaluating an inner
product has been shown to extend the time one can reach with
a limited bond dimension [61,62].

Similarly, in order to obtain Tr[eiHtm ], we compute an MPO
approximation to the evolution operator at times tm. Evalu-
ating the trace is then equivalent to a contraction with the
vectorized identity operator.

We have studied several spin models for different system
sizes, up to N = 60. In all cases, we approximated the evolu-
tion operators by a second-order Trotter expansion with small
Trotter step 0.01. The results shown in the following were
obtained with maximal bond dimension D = 600, which we
found to be enough to guarantee convergence for the studied
timescales (see Appendix A for more detailed description of
the numerical errors).

IV. PROBING ETH WITH SPECTRAL FUNCTIONS:
NUMERICAL RESULTS

A. Setup

We benchmark the method on a quantum Ising chain with
open boundary conditions, selectively including a disordered
field and an integrability-breaking next-to-nearest-neighbor
term,

Ĥ = −J
N−1∑
i=1

σ z
i σ z

i+1 − J2

N−2∑
i=1

σ z
i σ z

i+2 −
N∑

i=1

(g + ri )σ
x
i . (16)

J sets the energy scale and in the following, we fix it to
J = 1. The model is integrable when J2 = 0, when it can
be mapped to free fermions. The transverse field includes a
homogeneous component h, and potentially a disordered one
ri. For simulations of the disordered model, the values of ri are
sampled from the uniform distribution in the interval [−r, r].

We focus on three different sets of parameters. The first
one, (J2, g, r) = (0.0, 1.05, 0), is the transverse field Ising
model with uniform potential and thus integrable. The second
one is (J2, g, r) = (0.2, 1.05, 0), which corresponds to a non-
integrable case, for which ETH is expected to hold. We finally
consider also a disordered case, (J2, g, r) = (0.2, 0, 3.0),
where the on-site field takes random values.
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FIG. 2. Absolute value of the autocorrelator |Cρσ (E )
O (t )| for Ô = σ z

N/2, as a function of time for different ensemble widths, σ = 0.5
√

N ,

0.2
√

N , 0.1
√

N , in a system of size N = 40, at energy density E/N = 0.5 for the integrable (a), nonintegrable (b), and disordered system (c).

The observable we focus on is the longitudinal magnetiza-
tion of the central site Ô = σ z

N/2. Notice that Ĥ is invariant

under the transformation F = ∏N
j=1 σ x

j , which flips all the
spins in the chain. As σ z

N/2 anticommutes with F , the ex-
pectation value of σ z

N/2 in eigenstates of both H and F
is 0; that is, the diagonal elements are automatically zero
and only off-diagonal elements contribute. In the integrable
system, where the eigenstates are characterized by free ex-
citations, σ z

N/2 is a many-particle operator in terms of these
excitations, and thus the majority of off-diagonal elements are
nonzero [19].

B. Effect of the filter widths

The spectral function obtained with our method depends
on the filter parameters described above. Thus, first of all,
we need to analyze the effect of the filter widths σ and σω

on the results. To isolate the influence of the filter ensemble
width σ , we study the dependence of the autocorrelator Cρσ

O (t )
(independent of σω) on this parameter. Figure 2 shows, for
each set of Hamiltonian parameters, the autocorrelator as a
function of time for a chain of N = 40 sites and an ensemble
with mean energy density E/N = 0.5, using filters of varying
width σ = q

√
N , with proportionality factor q = 0.5, 0.2, and

0.1. We observe that the results are converged for σ � 0.2
√

N .

We observe a similar convergence for all the size and energy
ranges studied in this work; thus in the following we choose
values of σ within that range.

Additionally, from Fig. 2 it becomes evident that the vari-
ous studied models exhibit widely different time dependence
of the autocorrelator. In the clean systems [Figs. 2(a) and
2(b)], the autocorrelator decays exponentially with t (notice
the logarithmic scale of the vertical axis), whereas for the
disordered system [Fig. 2(c)] it remains significant at long
times.

Next, to study the effect of the width of the energy-
difference filter, we fix σ = 0.2

√
N and vary σω. Figure 3

shows, again for system size N = 40, the generalized spectral
function S′ρσ (E )

O at E/N = 0.5 for values σω = 0.6, 0.3, 0.1. In
the clean systems, the spectral function is a smooth function.
In contrast, for the disordered case, the function exhibits mul-
tiple peaks, at large values of the energy difference. This is a
feature observed in localized systems [20,45,46]. The results
shown in Fig. 3(c) correspond to a particular realization of
the disorder, but the figure is qualitatively similar for other
realizations, with the positions of the peaks varying.

It is also worth noticing that in the disordered case the error
originated by the sum truncation in (13) is more significant, so
we need to choose a larger xω factor. We select xω � 3 which,
together with the upper bound on the simulated time tmax � 20

FIG. 3. Generalized spectral functions S′ρσ (E )
O (ω) for Ô = σ z

N/2, as a function of the energy difference ω, for a filter ensemble of width

σ = 0.2
√

N , at energy E/N = 0.5, with N = 40 and varying σω = 0.6, 0.3, 0.1. The panels show the results for (a) integrable, (b) noninte-
grable, (c) disordered model. Notice that in the disordered system we impose σω � 0.3 to ensure the smallness of the numerical error (see
Appendix A).
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FIG. 4. VO(E , ω) for Ô = σ z
N/2, with N = 40 and σ = 0.2

√
N .

(a) Integrable system, σω = 0.1. (b) Nonintegrable system, σω = 0.1.
(c) Disordered system, σω = 0.3. The plots on the right are profiles
of the heat maps at fixed mean energy density E/N = 0, ±5/8.

imposed by the truncation error, means we can reach σω � 0.3
(see Appendix A).

The previous arguments allow us to fix the filter widths σ

and σω to suitable values in the following studies. Specifically,
we set the ensemble width to σ = 0.2

√
N for all systems.

Thus, for the clean systems, we choose σω = 0.1, and for the
disordered model, σω = 0.3.

C. The off-diagonal matrix elements

To study the off-diagonal matrix elements, we analyze
the function VO(E , ω) in Eq. (11). As discussed in Sec. III,
VO(E , ω) is the variance of the off-diagonal matrix elements
within the filter, and it equals | fO(E , ω)|2 if the system sat-
isfies ETH. In Fig. 4 we show the full (E , ω) dependence of
VO(E , ω) for the different studied Hamiltonian parameters, for
system size N = 40.

Just as the spectral functions, VO(E , ω) appears smooth in
the clean systems [Figs. 4(a) and 4(b)], whereas it exhibits
multiple sharp peaks for the disordered system [Fig. 4(c)].
This feature is also visible for the noninteracting (J2 = 0)
version of the same disordered chain and in the interacting
case becomes more pronounced for stronger disorder, which
seems to relate it to localization, even though the case shown
in Fig. 4(c) corresponds to moderate disorder strength.

Even though the function VO(E , ω) is smooth for both
clean cases, significant differences are visible. In the inte-
grable system, VO(E , ω) exhibits a symmetry VO(E , ω) =
VO(−E ,−ω). This property follows from the particle-hole
symmetry in the integrable model, patent in its fermionic
formulation, as explicitly shown in Appendix C. In the non-
integrable system there is no such symmetry, and VO(E , ω)
displays very different functional dependence on ω at high
and low energies E , as seen in Fig. 4(b).

A remarkable advantage of our method is that it can be
applied to much larger systems than exact diagonalization,

thus making it possible to address the system size scaling
of these features. To study the system size dependence of
VO(E , ω), we plot the function in Fig. 5 at a fixed mean
energy density E/N = 0.6 for system sizes up to N = 60,
for the three models introduced above. In all cases, we obtain
convergence of the function with the system size, showing that
the method allows us to observe the asymptotic behavior. The
figures show that for ω > 5, VO(E , ω) decreases very fast with
ω. However, the form of the decay is qualitatively different. As
can be appreciated in the logarithmic plots shown in the insets,
for the nonintegrable case [Fig. 5(b)], the decay is exponential,
as expected from ETH [9]. In contrast, for the integrable case,
the decay of VO(E , ω) is faster, compatible with exp(−k1ω

2)
[see inset of Fig. 5(a)]. The exp(−k1ω

2) decay of VO(E , ω)
at the high-frequency regime was also found in [34–36] for
other integrable models, such as the XXZ chain and hard-core
bosons.

D. Numerical test of the fluctuation-dissipation theorem

The fluctuation-dissipation theorem is a general property of
systems in thermodynamic equilibrium. For quantum systems
in the Gibbs state ρ̂β = e−βĤ/Tr[e−βĤ ], the spectral function
automatically satisfies the Kubo-Martin-Schwinger (KMS)
condition [63,64], which can be expressed

Sρβ

O (ω) = eβωSρβ

O (−ω). (17)

This is a sufficient and necessary condition for the fluctuation-
dissipation theorem (FDT) to hold.

But the KMS condition can hold in more general situations.
Beyond thermal equilibrium, it has been shown to hold in
particular for some nonequilibrium initial states [65,66]. More
relevant for our case, it holds also for individual eigenstates
[26], and for ensembles narrow in energy [9,67] in the ther-
modynamic limit when ETH is valid. We thus expect the filter
ensemble to also fulfill FDT in the general case, at least in the
limit of large systems. Using the filter strategy we can actually
probe the validity of the relation in finite systems as a function
of size.

We can define the following indicator function that will
test the KMS condition (hence the FDT) for a generic
ensemble [67],

β
ρ
FDT(ω) := 1

ω
ln

[
Sρ

O(ω)

Sρ
O(−ω)

]
. (18)

If the FDT holds we expect the function to be independent
of ω, and equal to the inverse microcanonical temperature
corresponding to the mean energy of the ensemble ρ.

For a generic system (fulfilling ETH), we can compute the
value of (18) in the filter ensemble by expanding the spectral
function around E as

Sρσ (E )
O (±ω) = e± βω

2 + 3ω2

8
∂β

∂E

(
| fO(E , ω)|2 ± ω

2
∂E | fO(E , ω)|2

)
,

(19)

where β ≡ ∂E S(E ) is the inverse temperature at energy E
in the microcanonical ensemble. We obtain for the indicator
function

β
ρσ (E )
FDT (ω) = β + ∂E ln | fO(E , ω)|2. (20)
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FIG. 5. Size dependence of VO(E , ω) for Ô = σ z
N/2, at fixed E/N = 0.5, for σ = 0.2

√
N , for system sizes N = 20, 40, 60. The insets show

|VO(E , ω)| (in log scale) as a function of ω, with straight dashed lines depicting fits to the functions ∝ e−k1ω2
(a) and ∝ e−k2ω (b). The different

panels correspond to the various models: (a) integrable with σω = 0.1, (b) nonintegrable with σω = 0.1, and (c) disordered system, for which
σω = 0.3.

We thus expect the function to be approximately equal to the
inverse temperature, as KMS requires, with some correction.
The major correction term ∂E ln | fO(E , ω)|2 scales as O(1/N )
(see Appendix B for more details). Thus we expect that, in the
generic case, FDT indeed holds for the filter ensemble in the
thermodynamic limit.

We have computed this indicator function using our gen-
eralized spectral function for the nonintegrable Ising chain,
up to N = 60 sites. To be able to compare different system
sizes, we fix a value of the (reference) inverse temperature β0.
This corresponds to a value of the mean energy E0 fulfilling
β0 = ∂E S(E0), which we can determine from the results of the
last section. To be specific, we obtain DoS(E ) with filters and
then extract ∂E S(E ) = ∂E ln DoS(E ) using finite derivatives.
Then, we compute the indicator function Eq. (18) from the
ratio between the values of the spectral function at ω and −ω

at the corresponding energy E0. To check the validity of our
approach, we plot in Fig. 6 the value obtained for this indi-
cator function as a function of ∂E ln | fD(E0, ω)|2, which we

FIG. 6. The FDT indicator functions β
ρσ (E0 )
FDT (ω) vs

∂E ln | fO(E0, ω)|2 in the nonintegrable system at sizes N =
20, 40, 60, with ω ranging from [−5, 5]. E0 corresponds to the
reference inverse temperatures β0 = 0.0 (a) and 0.2 (b), marked in
red. The observable is Ô = σ z

N/2. Insets show the standard variance

of β
ρσ (E )
FDT (ω) over the interval ω ∈ [−5, 5], scaling as 1/N .

obtained in an analogous way to ∂E S(E0). The figure shows
this dependence for two values of the reference inverse
temperature, β0 = 0 and 0.2, in the range ω ∈ [−5, 5]. The
plots show a near-perfect linear dependence, passing near the
point (0, β0), as predicted by Eq. (20).

Our findings are consistent with those of the ED studies in
[26,67], but extend the results to significantly larger system
sizes.

V. CONCLUSIONS

Using energy filter operators offers an alternative strategy
to study the properties of the off-diagonal matrix elements of
observables in the energy eigenbasis, and thus probe the ETH,
a fundamental ingredient in the theoretical understanding of
quantum thermalization. In this work we have explored this
possibility, with the focus on the spectral function of the
filter ensemble Sρσ (E )

O (ω). We have shown that this quantity
corresponds to an average of such matrix elements, and gives
access to the off-diagonal function in the ETH ansatz, with
corrections that depend on the filter width and the system size.

We have shown that this quantity can be simulated clas-
sically using TNS techniques, in a generalization of methods
presented in [43] for the microcanonical averages. In particu-
lar, this strategy allows addressing much larger systems than
exact diagonalization, and allows us to observe convergence in
the system size and thus to identify the asymptotic features of
the off-diagonal matrix elements. It thus provides a powerful
tool to explore the ETH ansatz.

In order to test the strategy, we have applied it to several
operators in Ising chains including different terms, such that
they span from integrable, nonintegrable generic (ETH), to
ergodicity-breaking behaviors. In particular, we have shown
that the spectral functions Sρσ (E )

O (ω) for a nonintegrable,
generic instance and for a disordered chain exhibit clear qual-
itative and quantitative differences.

We have also shown that the filter spectral function pro-
vides a way to probe the validity of the FDT for the filter
ensemble. In the limit of vanishing filter width this would con-
verge to a probe of the relation for energy eigenstates, so far
realized with ED for small systems [67]. Our numerical results
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show good agreement with FDT in the generic nonintegrable
chain up to 60 sites.
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APPENDIX A: DETAILS OF THE FILTER METHOD

This Appendix explains the filter method in a more com-
pact operator language than in the previous works [42,43]. We
could define the following filter operators,

P̂σ (E ) ≡ gσ [E − Ĥ ],

P̂c
σ (ω) ≡ gσ [ω − Ĥ ⊗ 1l + 1l ⊗ Ĥ ],

P̂a
σ (E ) ≡ gσ

[
E − Ĥ ⊗ 1l + 1l ⊗ Ĥ

2

]
. (A1)

These are operators filtering, respectively, the energy value,
the difference between two energy eigenvalues, and the av-
erage energy of the pair. Notice that, while the first filter is
an operator acting on the Hilbert space of the system, the
last two are superoperators acting on operators. To describe
them in a unified manner, we have used the operator-vector
correspondence, in which each operator O is mapped to a
vector |O) by mapping the basis elements |i〉 〈 j| → |i〉 ⊗ | j〉,
with the Hilbert-Schmidt inner product (O1|O2) = Tr[Ô†

1Ô2].
In this language, X̂ ⊗ Ŷ |O) = |XOY T ).

Using this operator notation, the generalized spectral func-
tion defined in Eq. (7) can be expressed as

S′ρσ (E )
O (ω) = (O|[P̂σ (E ) ⊗ 1l]P̂c

σω
(ω)|O)

Tr[P̂σ (E )]
≡ A(E , ω)

B(E )
, (A2)

where in the last equality we have defined A(E , ω) and B(E )
as the numerator and the denominator of S′ρσ (E )

O (ω).
As in Eq. (13), each of these Gaussian filters can be

approximated by a cosine filter, and truncated to a sum
of exponentials of the argument, which correspond to time
evolution operators. In the case of P̂σ (E ), these are regular
evolution operators, generated by the Hamiltonian of the sys-
tem, whereas for P̂c

σω
(ω), they are superoperators generated by

the commutator H ⊗ 1l − 1l ⊗ Ĥ . Writing the sums explicitly,
we obtain the following expressions for A(E , ω) and B(E ),

A(E , ω) = 1

α2π2c(M )
0 c(Mω )

0

∑
m,n

c(M )
m c(Mω )

n e−iEtm+iωtn

× Tr[eiĤ (tm+tn )Ôe−iĤtn Ô†]

= 1

α2π2c(M )
0 c(Mω )

0

∑
m,n

c(M )
m c(Mω )

n e−iEtm+iωtn

× Tr[eiĤtm Ô(tn)Ô†], (A3)

B(E ) = 1

απc(M )
0

∑
m

c(M )
m e−iEtm Tr[eiHtm ]. (A4)

A(E , ω)/B(E ) then results in the expression Eq. (14), which
can be computed in practice.

The cosine filter approximation of P̂σ (E ) is determined
by the three parameters σ, α, x, while σω, αω, xω determine
P̂c

σω
(ω). The next paragraphs detail how we choose the values

of the parameters to keep the errors under control.

1. The rescaling factor α

The cosine filter has a period απ . For the validity of the co-
sine filter scheme, its period should be larger than the regime
we study. For the filter operator on energy P̂σ (E ), απ >

Emax − Emin is required, while for the filter on energy differ-
ence P̂c

σω
(ω), from Fig. 5 we find that at large ω, |VO(E , ω)| is

smaller than the numerical errors. αωπ > 2×20 is enough to
cover the small ω regime that we are interested in. As men-
tioned in the main text, we choose the same rescaling factor
for both of the filters for simplicity. α = αω > Emax − Emin

would suffice in our studies.

2. The factors σ, x and numerical errors

To analyze the error, it is convenient to look at A(E , ω) and
B(E ) separately. When we replace the Gaussian filter opera-
tors with truncated sums, the dropped terms will introduce to
the denominator B(E ) an error of

εB � 2

απc(M )
0

M∑
m=x

√
M

c(M )
m |Tr[eiHtm ]|

� max(tm)√
2πx

M∑
m=x

√
M

c(M )
m |Tr[eiHtm ]|, (A5)

where we have used 1
απcM

0
≈ 1√

2πσ
= max(tm )

2
√

2πx
. Similarly, the

error in the numerator is

εA � 2

α2π2c(M )
0 c(Mω )

0

⎡
⎣ M∑

m=x
√

M

Mω∑
n=−Mω

+
M∑

m=−M

Mω∑
n=xω

√
Mω

⎤
⎦

× c(M )
m c(Mω )

n |Tr[eiHtm Ô(tn)Ô†]|. (A6)

To simplify this expression, we estimate the scale of
|Tr[eiHtm Ô(tn)Ô†]|. Notice that it can be written as

∣∣Tr[eiHtm Ô(tn)Ô†]
∣∣ =

∣∣∣∣∣∣
∑
αβ

eiEαtm+i(Eα−Eβ )tn | 〈α| O |β〉 |2
∣∣∣∣∣∣.
(A7)

When |tn| or |tm| increases, the phases of the terms become
less aligned, which in general results in a reduction of the
summation. Therefore we expect

|Tr[eiHtm Ô(tn)Ô†]| � |Tr[Ô(tn)Ô†]|, (A8)

|Tr[eiHtm Ô(tn)Ô†]| � |Tr[eiHtm ÔÔ†]|, (A9)
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FIG. 7. 2−N |Tr[eiHtm ]| as a function of tm. The simulation is terminated when 2−N Tr[eiHtm ] falls below 10−5. (a) The integrable system.
(b) The nonintegrable system. (c) The disordered system.

which we find always hold in our simulation. Using Eq. (A8)
and (A9), we have

εA � max(tm) max(tn)

4πxxω

[
M∑

m=x
√

M

c(M )
m |Tr[eiHtm ÔÔ†]|

+
Mω∑

n=xω

√
Mω

c(Mω )
n |Tr[Ô(tn)Ô†]|

]
, (A10)

where
∑M

m=−M c(M )
m = 1 is used. Equations (A5) and (A10)

show that the truncation error is negatively related to x. In the
following, we choose x as an O(1) parameter in system size
and adjust it for the models considered in the main text.

a. x and σ

The error εB and the factor x. To analyze the error εB, we
plot |Tr[eiHtm ]| for the models and the operator in Sec. IV. It
shows |Tr[eiHtm ]| decays exponentially fast with tm, so that,
after a finite time, the values become too small to distinguish
them from zero, for any fixed numerical precision. We thus
fix the largest simulated tm as the value when Tr[eiHtm ]/Tr[1l]
falls below a fixed threshold 10−5.

Until this short time simulation, the MPO truncation error
is small, and thus we can assume that the error comes from
the truncation of the sum in m. From Fig. 7 we assume that
the truncated terms of Tr[eiHtm ] are smaller than 10−5 × 2N .
According to Eq. (A5), the error in the denominator B(E ) can
be upper bounded as

εB � 1√
2πx

e−x2/2 × 10−5 × 2N , (A11)

where we used
∑M

m=x
√

M c(M )
m � e−x2/2. Compared to B(E ) ≈

DoS(E ) itself, we find that the relative error is small for any
fixed x ∼ 1.

The filter width σ . For fixed x, the filter width σ inversely
depends on the max(tm). As observed from Fig. 7, the cut-
off time max(tm) becomes shorter for larger systems. Here
we provide a theoretical explanation of the dependence of
max(tm) on system sizes. For a traceless, local, and bounded
Hamiltonian, the density of states DoS(E ) converges weakly
to Gaussian distribution [55,56] in the thermodynamic limit

with width proportional to
√

N :

∫ E0

−∞
DoS(E )dE

N→∞−−−→
∫ E0

−∞

dN e−E2/2Nσ 2
0√

2πNσ0

dE , (A12)

where d is the local Hilbert space and σ0 is a constant inde-
pendent of the system size. Tr[eiHt ] = ∫

dEeiEt DoS(E ) is the
Fourier transform of DoS(E ) into the time domain. Therefore
Tr[eiHt ] is also Gaussian, with width proportional to 1/

√
N .

As a result, the time for Tr[eiHt ] to fall below 10−5 of the
initial value also scales as O(1/

√
N ). According to Eq. (15),

this corresponds to a filter width σ = O(
√

N ).

b. xω and σω

To analyze the error εA, we need to study the time depen-
dence of |Tr[eiHtm ÔÔ†]| and |Tr[Ô(tn)Ô†]|. For the observable
Ô = σ z

N/2 we studied in the main text, |Tr[eiHtm ÔÔ†]| is sim-
ply |Tr[eiHtm ]|, and therefore the argument above also applies
here. As for the time dependence of |Tr[Ô(tn)Ô†]|, we find
it varies for different models. We thus simulate values of tn
as large as possible, until the quantity becomes too small,
or the truncation error in our MPO approximation becomes
significant.

In Fig. 8, we compare the |Tr[Ô(tn)Ô†]| evaluated with
bond dimension D = 400 and D = 600. For the clean sys-
tems, the results of different bond dimensions start to deviate
when tn ≈ 10 for all system sizes, which indicates the bond
dimension is saturated. Therefore we only reserve the simu-
lation result before tn = 10, while for the disordered system,
the difference between different bond dimensions is not sig-
nificant, indicating slow entanglement growth. For efficiency
consideration, we cut off the simulation at tn = 20.

Now let us estimate the time truncation error. For the clean
systems, we assume that |Tr[Ô(tn)Ô†]| after the truncation
time tn = 10 is smaller than 10−6 × 2N , as inferred from
Fig. 8. Then according to Eqs. (A10) and (15), we have

εA � 5

2πxxω

(e−x2/2 × 10−5 + e−x2
ω/2 × 10−6) × 2N . (A13)

This means the relative error is small compared to A(E , ω) ≈
DoS(E )S′ρσ (E )

O (ω), for any x, xω ∼ 1.
For the disordered system, Tr[Ô(tn)Ô†] decays much more

slowly. From Fig. 8 we assume the late-time data are smaller
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FIG. 8. MPO simulation results of |Tr[O(tn)O]| as a function of tn, for both systems, system sizes N = 20, 40, 60 and bond dimension
D = 400, 600. The black lines indicate 10−6 or 10−1. (a) The integrable system. (b) The nonintegrable system. (c) The disordered system.

than 10−1, which gives an error of

εA � 5

πxxω

(e−x2/2 × 10−5 + e−x2
ω/2 × 10−1) × 2N . (A14)

To ensure the smallness of the error, we choose xω � 3 to
suppress the error, which, if we bound the simulation time to
tmax � 20, means that we can reach widths σω � 0.3.

3. Other filter methods

There are various ways to probe the off-diagonal matrix
elements using the filter operators. For example, one could
use two filters, with one selecting the mean energy and the
other acting on the energy difference,(
O|P̂a

σE
(E )P̂c

σω
(ω)|O) ≈ eS(E+ ω

2 )+S(E− ω
2 )|OE− ω

2 ,E+ ω
2
|2, (A15)

or apply two filters at different energies,

Tr[P̂σ1 (E1)ÔP̂σ2 (E2)Ô†] ≈eS(E1 )+S(E2 )|OE1,E2 |2. (A16)

If E1 = E2, this quantity equals the two-point regularized cor-
relator defined in [58].

APPENDIX B: MATHEMATICAL DETAILS

1. A rigorous expression of Sρσ (E )
O (ω)

In this Appendix, we are going to derive a rigorous ex-
pression for Sρσ (E )

O (ω) under the condition that ETH is valid.
The influence of the finite filter width will be examined
in detail. We start with the spectral function for the single
eigenstate |α〉,

S|α〉
O (ω) =

∑
β

|Oαβ |2δ(ω − Eβ + Eα ). (B1)

If the observable Ô fulfills ETH, one can replace Oαβ with its
ETH prediction,

S|α〉
O (ω) =

∑
β

e− S(Eα )+S(Eβ )

2

∣∣∣∣ f

(
Eα + Eβ

2
, Eβ − Eα

)∣∣∣∣
2

× |Rαβ |2δ(ω − Eβ + Eα ). (B2)

For large systems, the eigenenergy spacing is expo-
nentially small; therefore we could substitute

∑
β with

∫
dEβeS(Eβ ) = ∫

dω′eS(Eα+ω′ ), and |Rαβ |2 with its variance 1,

Sα
O(ω) =

∫
dω′e

S(Eα+ω′ )−S(Eα )
2

∣∣ fO(Eα + ω′/2, ω′)
∣∣2

δ(ω − ω′)

= e
S(Eα+ω)−S(Eα )

2 | fO(Eα + ω/2, ω)|2
≡ G(Eα, ω), (B3)

where G(Eα, ω) is introduced for simplification. We then pro-
ceed to the filter ensemble. The mean energy and the energy
variance of the filter ensemble are [43]

Ē = E

1 + σ 2

Nσ 2
0

, �E = σ√
1 + σ 2

Nσ 2
0

, (B4)

where σ0 is the constant determining the width of DoS(E ) in
Eq. (A12). With that one could obtain

Sρσ (E )
O (E , ω) =

∑
α

〈α| pσ (E ) |α〉 S|α〉
O (ω)

= G(Ē , ω) + O(σ 2)∂2
E G(Ē , ω). (B5)

Let us estimate the scale of the correction. Notice that

∂2G = G[(∂ ln G)2 + ∂2 ln G], (B6)

ln G(Ē , ω) = S(Ē + ω) − S(Ē )

2
+ ln | fO(Ē + ω/2, ω)|2

= ω

2
β(Ē ) + ω2

4
∂Eβ(Ē ) + ln | fO(Ē + ω/2, ω)|2

+ O
(

1

N2

)
, (B7)

where β(E ) = ∂E S(E ) is the inverse temperature at the energy
E in the microcanonical ensemble. Each derivative of β(E )
and | fO(E + ω/2, ω)|2 with respect to the extensive quantity
E contributes a factor of O(1/N ). Therefore,

∂E ln G = O(1/N ), ∂2
E ln G = O(1/N2). (B8)

Combining all the derivatives, one obtains

Sρσ (E )
O (ω) = G(Ē , ω)

[
1 + O

(
σ 2

N2

)]
. (B9)
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One can in addition replace Ē with its expression in Eq. (B4),

G(Ē , ω) = G(E , ω) + O
(

σ 2

N

)
∂E G(E , ω)

= G(E , ω)

[
1 + O

(
σ 2

N2

)]
. (B10)

Altogether we achieve

Sρσ (E )
O (ω) = e

S(E+ω)−S(E )
2 | fO(E + ω/2, ω)|2

[
1 + O

(
σ 2

N2

)]
.

(B11)

2. FDT

The indicator function of FDT defined in the main text is

β
ρσ (E )
FDT := 1

ω
ln

[
Sρσ (E )

O (ω)

Sρσ (E )
O (−ω)

]
. (B12)

To obtain the indicator function, we expand ln Sρσ (E )
O (ω) in

Eq. (B9) around ω = 0,

ln Sρσ (E )
O (±ω) = ±β(Ē )ω

2
+ ∂β(Ē )

∂E

ω2

4
+ O

(
1

N2

)

+ ln | fO(Ē , ω)|2 ± ω

2
∂E ln | fO(Ē , ω)|2

+ O
(

σ 2

N2

)
. (B13)

Notice that the terms with an even power of ω cancel out in
the indicator function,

β
ρσ (E )
FDT = β(Ē ) + ∂E ln

∣∣ fO(Ē , ω)
∣∣2 + O

(
σ 2

N2

)
+ O

(
1

N2

)
.

(B14)

The first correction term ∂E ln | fO(Ē , ω)|2 scales as O(1/N ).
As the ensemble width scales as σ = O(

√
N ) in our simu-

lation, the second correction term is also O(1/N ). All the
corrections vanish in the thermodynamic limit, meaning that
β

ρσ (E )
FDT converges to the thermal β in the thermodynamic limit.

Notice that a similar derivation was in [67], which is in line
with our result.

3. The generalized spectral function

In this section, we are going to analyze the numerical error
of replacing the δ function in the spectral function with a
Gaussian filter with width σω. The generalized spectral func-
tion for an ensemble ρ can be written as

S′ρ
O (ω) =

∑
αβ

〈α| ρ̂ |α〉 |Oαβ |gσω
(ω − Eβ + Eα )

=
∑
αβ

〈α| ρ̂ |α〉 |Oαβ |
∫

dω′gσω
(ω − ω′)δ(ω′ − Eβ + Eα)

=
∫

dω′gσω
(ω − ω′)Sρ

O(ω′). (B15)

Equation (B15) gives another interpretation of S′ρ
O (ω): it is a

convolution of Sρ
O(ω) with a filter. Depending on the specific

Sρ
O(ω), this convolution will give different errors.

(i) If Sρ
O(ω) is a continues function of ω, which means it

fulfills the following condition,

∣∣Sρ
O(ω + �ω) − Sρ

O(ω)
∣∣ � K|�ω|, (B16)

where K is a positive constant. Then we have

S′ρ
O (ω) �

∫
dω′gσω

(ω − ω′)
[
Sρ

O(ω) + K|ω′ − ω|]
= Sρ

O(ω) + KO(σω ). (B17)

The error is of the order O(σω ).
(ii) For the observable O fulfilling ETH, Sρ

O(ω) should be
a smooth function of ω. Using the property of the Gaussian
function, we have

S′ρ
O (ω) = Sρ

O(ω) + 1
2σ 2

ω∂2
ωSρ

O(ω) + O
(
σ 4

ω

)
. (B18)

The relative error is of the order O(σ 2
ω ). In general, we expect

the smoother Sρ
O(ω) is, the smaller this error would be.

APPENDIX C: SOLVE THE INTEGRABLE ISING MODEL

When J2, r = 0, the model in Eq. (16) becomes

Ĥ = −J
N−1∑
i=1

σ z
i σ z

i+1 − g
N∑

i=1

σ̂ x
i . (C1)

It is well known that we could rewrite the spin Hamiltonian
with fermion creation operators by Jordan-Wigner transfor-
mation, where the correspondence of spin operators and the
fermion operators are defined as

σ z
j = (−1)

∑
k< j n̂k (ĉ†

j + ĉ j ), (C2)

σ
y
j = −i(−1)

∑
k< j n̂k (ĉ†

j − ĉ j ), (C3)

σ x
j = ĉ j ĉ

†
j − ĉ†

j ĉ j . (C4)

Applying this transformation to the original spin Hamiltonian,
we can get an equivalent fermionic Hamiltonian

Ĥ = −J
N−1∑
i=1

(ĉ†
i ĉi+1 + ĉ†

i ĉ†
i+1) + g

N∑
i=1

(ĉ†
i ĉi − ĉiĉ

†
i ). (C5)

This Hamiltonian is quadratic in fermionic operators and thus
can be diagonalized using a Bogoliubov transformation

ĉi =
∑

μ

uiμγ̂μ + viμγ̂ †
μ, (C6)

where γ̂μ, γ̂ †
μ are Bogoliubov fermions. The ground state is

the state annihilated by all γ̂μ, which we denote by |∅γ 〉. The
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eigenstates are Fock states of γ̂μ,

|{nμ}〉 =
L∏

μ=1

(γ †
μ )nμ |∅γ 〉 , with nμ = 0, 1, (C7)

E{nμ} =
∑

μ

(2nμ − 1)εμ. (C8)

This Hamiltonian features an inherent particle-hole symme-
try: for any given eigenstate |{nμ}〉, if we define S as the
operation that interchanges particles and holes, then S |{nμ}〉
remains an eigenstate with an energy of the opposite sign.
This results in the symmetry in the matrix elements of the
observable Ô = σ z

N/2. To be concrete, one could check that

the matrix elements of σ z
N/2 satisfy

|〈{mν}|σ z
N/2 |{nμ}〉 | = |〈{mν}|(ĉN/2 + ĉ†

N/2)|{nμ}〉|
= |〈S{mν}|(ĉN/2 + ĉ†

N/2)|S{nμ}〉|.
(C9)

This means for every matrix element, there is another matrix
element with equal weight at opposite energies. As VO(E , ω)
is an average over matrix elements,

VO(E , ω) = e
S(E−ω/2)+S(E+ω/2)

2 |OE−ω/2,E+ω/2|2, (C10)

the symmetry in matrix elements immediately implies
VO(E , ω) = VO(−E ,−ω).
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