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We study theoretically the lifetimes of attractive and repulsive Fermi polarons, as well as the
molecule at finite momentum in three dimensions. To this end, we develop a new technique that
allows for the computation of Green’s functions in the whole complex frequency plane using exact an-
alytical continuation within the functional renormalization group. The improved numerical stability
and reduced computational cost of this method yield access to previously inaccessible momentum-
dependent quasiparticle properties of low-lying excited states. While conventional approaches like
the non-selfconsistent T -matrix approximation method cannot determine these lifetimes, we are able
to find the momentum-dependent lifetime at different interaction strengths of both the attractive
and repulsive polaron as well as the molecule. At weak coupling our results confirm predictions made
from effective Fermi liquid theory regarding the decay of the attractive polaron, and we demonstrate
that Fermi liquid-like behavior extends far into the strong-coupling regime where attractive polaron
and molecule exhibit a p4 momentum scaling in their decay widths. Our results offer an intriguing
insight into the momentum-dependent quasiparticle properties of the Fermi polaron problem, which
can be measured using techniques such as Raman transfer and Ramsey interferometry.

I. INTRODUCTION

In recent years, the polaron problem, a single particle
interacting with a quantum medium, has attracted sig-
nificant theoretical and experimental attention, due to
its fundamental nature, its significance in understanding
strongly coupled systems such as ultracold atoms and
two-dimensional semiconductor heterostructures, and its
widespread occurrence in a range of different experi-
mental and natural systems, such as dilute mixtures of
protons within neutron stars [1, 2] or electrons moving
through a crystal lattice of atoms [3, 4].

In two-dimensional semiconductor heterostructures,
the Fermi- and Bose-polaron problems capture the phys-
ical properties of the interaction of electrons and exci-
tons, along with the formation of trion states [5–10]. As
such, these systems have been used to implement these
limiting cases of extreme population imbalance. An un-
derstanding of these limits is an important step towards
understanding the strong-coupling physics in such sys-
tems, which may render useful in exploring whether they
might be used for practical applications such as inducing
superconductivity [11–16].

In ultracold atom systems, the understanding of po-
laron problems has helped characterize the phase dia-
gram of both Fermi-Fermi and Bose-Fermi mixtures at
strong coupling [17–24]. Experimental observations of
the Fermi [23–26] and the Bose polaron problem [27–29]
have been flanked by theoretical insights obtained from
different methods such as variational [30–39], diagram-
matic [40–44], Monte Carlo [45–50] and functional renor-
malization group (fRG) approaches [20, 51–56]. These
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methods have been used to characterize properties such
as the polaron-to-molecule transition/crossover and the
competition with the formation of higher-order bound
states. Furthermore, quasiparticle properties such as the
energy, effective mass, and quasiparticle width have been
extracted from these methods with great success.

The decay widths, or equivalently the quasiparticle
lifetimes of the different collective excitations within the
Fermi polaron problem, however, have largely remained
elusive to a theoretical description. As the decay width
may be determined from the self-energy of a quasiparti-
cle, its self-energy needs to contain the correct low-energy
states to decay into. As a result, at T = 0 common non-
self-consistent T -matrix approaches which contain bare
propagators can yield qualitatively correct decay widths
for the repulsive polaron [44, 57, 58] but not for the at-
tractive polaron or the molecule state as these renormal-
ized particles lie lower in energy than the bare particles
contained in their self-energies. Of course, at T > 0
these particles may decay via thermal excitations [59–
61]. Thus, at strong coupling, a description of the decay
channels of polaron and molecule states needs to feature a
form of self-consistency, requiring the use of renormalized
Green’s functions within the computation of the quasi-
particle self-energies and decay widths.

Such self-consistency is challenging to achieve within
conventional methods using a wavefunction Ansatz or a
non-selfconsistent T -matrix approach [36–41]. As a re-
sult, decay widths have been analyzed using Fermi liquid
theory and Fermi’s golden rule [62], in which the renor-
malization process is taken into account by using simpli-
fied Green’s functions with modified quasiparticle weight,
energy gap, and effective mass. This works well when the
lower-lying particles are well described using Fermi liquid
theory [24] and may yield scaling laws for the decay rates
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in different decay channels [43, 44, 63–66], however it is
expected to break down at strong coupling [67] and thus
the applicability of Fermi liquid theory can only really
be tested by comparison to a fully self-consistent calcu-
lation.

Within fRG treatments [53] this self-consistency is
naturally included and thus the decay width may be
computed without the need to rely on the validity of
Fermi liquid theory. However, as the decay width of
the zero-momentum ground state vanishes identically, at
a fixed interaction parameter momentum-dependent de-
cay widths of low-lying excited states can vary across
several orders of magnitude within a small momentum
range. Especially at smaller decay widths, this puts high
requirements of numerical stability and precision on the
used methods. Previous treatments using fRG [53] lacked
precisely this stability due to the need of a costly Mat-
subara integration and an analytic continuation of the
resulting Green’s function to real frequencies using nu-
merical methods.

In this paper, we present a novel, improved fRG treat-
ment of the method used in Ref. [53]. By incorporat-
ing all information about the analytical structure of the
Fermi polaron problem, we are able to carry out the Mat-
subara integration over imaginary frequencies exactly.
By a subsequent mapping of the fRG onto a horizontal
line above the real frequency axis we perform an exact
analytical continuation of the problem onto the whole
complex frequency plane. While this treatment is for-
mally equivalent to the treatment used in Ref. [53], it
provides greatly enhanced numerical stability and preci-
sion at a significantly lower computational cost. These
improvements are not only used to study previously in-
accessible quasiparticle properties such as momentum-
dependent decay widths of low-lying excited states but
also allow to revisit previous results in the literature that
implied a 9/2-power law scaling of the decay of the ex-
cited polaron and molecule as function of the energy gap
towards the respective ground state [43].

This paper is structured as follows: In Section II the
model along with the fRG are introduced. In Section III
the exact frequency integration and the exact analytical
continuation onto an equivalent fRG operating on a hor-
izontal line above the real frequency axis are performed.
Next, in Section IV the numerical solution of the result-
ing coupled flow equations is described along with the
initial conditions of the flow and the parametrization of
the renormalized Green’s functions. In Section V the
quasiparticle properties of the two polaron states and
the molecule are analyzed using this method, comple-
mented by an analysis in terms of Fermi liquid theory.
Finally, in Section VI we discuss possible experimental
probes of quasiparticle properties such as the momentum-
dependent decay width and we consider theoretical ex-
tensions of our work to finite impurity concentrations.

II. MODEL

We study the three-dimensional Fermi polaron prob-
lem consisting of a mixture in which a bosonic or
fermionic impurity ϕ is immersed in a fermionic bath ψ.
This is a well-studied system whose microscopic action is
given by

S =
∫
x

ψ∗
x

(
∂τ − ∇2

2mψ
− µψ

)
ψx

+
∫
x

ϕ∗
x

(
∂τ − ∇2

2mϕ
− µϕ

)
ϕx

+ g

∫
x

ψ∗
xϕ

∗
xϕxψx (1)

where x = (r, τ) denotes the coordinate r and imaginary
time τ ∈ [0, 1/T ] and

∫
x

=
∫ 1/T

0 dτ
∫
ddr with d = 3

the dimension. In the following, we consider zero tem-
perature, T = 0, and assume that impurity and bath
particles have a bare dispersion described by the same
mass m = mψ = mϕ. We work in units ℏ = kB = 1, and
set 2m = 1 unless indicated otherwise. The field ψ is of
fermionic Grassmann nature, while the statistic of ϕ is
irrelevant due to the single-impurity limit taken in this
work. The fields ϕ and ψ interact by means of an attrac-
tive contact potential of strength g < 0, regularized in
the ultraviolet (UV) by a momentum cutoff Λ.

In the vacuum and single-impurity limit this system
can host a bound state between a bath and an impurity
particle, both in 2D and 3D. Thus, in order to facilitate
the description of this composite particle in a convenient
way we consider an equivalent two-channel model [51, 68]
in which the interspecies interaction is mediated by a
molecule field t describing the composite particle of mass
2m [69–72]

S =
∫

p,ω

{ ∑
σ=ψ,ϕ

σ∗(ω,p)
(
−iω + p2 − µσ

)
σ(ω,p)

+ t∗(ω,p)G−1
t,Λ(ω,p)t(ω,p)

}
+ h

∫
x

{ψ∗
xϕ

∗
xtx + t∗xϕxψx} . (2)

Here the momentum p and the Matsubara frequency
ω are the Fourier variables of r and τ and

∫
p,ω ≡

(2π)−d−1 ∫ ddpdω. In this two-channel model a bath and
an impurity particle can be converted into a molecule
with a Yukawa coupling h and Gt,Λ denotes the bare
molecule propagator. We operate in the limit where
h → ∞ such that t becomes a purely auxiliary Hubbard-
Stratonovich field with no dynamics, i.e. it can be inte-
grated out to yield back the original action Eq. (1) for
h2Gt,Λ = −g [51, 68].

To obtain access to the physical properties of this sys-
tem, inscribed in the full Green’s and vertex functions
we deploy a functional renormalization group approach
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similar to the constructions used in Refs. [20, 53, 55].
For a detailed explanation of the Fermi polaron problem
we refer to Refs. [20, 30–33, 35–38, 40–43, 45–53], for
a detailed discussion of the fRG in general we refer to
Refs. [73–77]. In the following we provide a brief sum-
mary of the involved steps, see Refs. [20, 53, 55] for more
detail.

A. fRG equations

The fRG accounts for the renormalization of Green’s
functions due to quantum fluctuations by providing cou-
pled differential equations linking the quantum effective
action Γ (the generating functional of all one-particle ir-
reducible vertices) to the bare action S using a flowing
effective action Γk. This is achieved using the Wetterich
equation [78]

∂kΓk = 1
2 STr

[(
Γ(2)
k +Rk

)−1
∂kRk

]
, (3)

where Γ(2)
k represents the matrix of second functional

derivatives of Γk in the fields and Rk is a matrix con-
taining so-called regulator functions which control the
integration of quantum fluctuations. The supertrace STr
denotes a summation over all momenta and frequencies,
as well as the different fields, including a minus sign for
fermions.

Provided that the regulator functions within Rk fulfill
certain conditions [74, 75], in the ultraviolet (UV) at k =
Λ the flowing effective action will be equivalent to the
bare action Γk=Λ = S+const. while in the infrared at k =
0 the quantum effective action is obtained as Γk=0 = Γ.
Having obtained this functional, all physical information
can be extracted from it.

While the treatment of the problem so-far using Eq. (3)
is exact; it is also impossible to solve as the effective quan-
tum action contains infinitely-many vertices yielding an
infinite-dimensional set of coupled differential equations.
It is thus customary to introduce an Ansatz containing
finitely-many terms representing the physically most rele-
vant processes in a so-called vertex expansion. Following
the treatment in Refs. [20, 53, 55] we thus choose the
following effective action truncation

Γk =
∫

p,ω

{ ∑
σ=ψ,ϕ

σ(ω,p)∗G−1
σ,k(ω,p)σ(ω,p)

+ t∗(ω,p)G−1
t,k(ω,p)t(ω,p)

}
+ h

∫
x

(ψ∗
xϕ

∗
xtx + t∗xϕxψx) . (4)

From this truncation one can obtain flow equations
for its different constituents using appropriate functional
derivatives of Eq. (3). Their diagrammatic representa-
tion is shown in Fig. 1 and in terms of the flowing Green’s

(a) (b)

FIG. 1. Diagrammatic representation of the fRG flow equa-
tions in Eqs. (5) and (7). The flows of the impurity Green’s
function ∂kG

−1
ϕ,k (a) as well as the molecular Green’s func-

tion ∂kG
−1
t,k (b) are shown, where wiggly and dashed lines

denote impurity and bath propagators, while solid lines de-
note molecular propgators. The coupling vertex ∼hkψ

∗ϕ∗t is
denoted by square dots.

functions they read [53]

∂kG
−1
ϕ,k(ω,p) = h2∂̃k

∫
q,ν

Gct,k(ω + ν,p + q)Gcψ,k(q, ν),

(5)

∂kG
−1
ψ,k(ω,p) = −h2∂̃k

∫
q,ν

Gct,k(ω + ν,p + q)Gcϕ,k(q, ν),

(6)

∂kG
−1
t,k(ω,p) = −h2∂̃k

∫
q,ν

Gcϕ,k(ω − ν,p − q)Gcψ,k(q, ν).

(7)

Here, theGc denote the regulated Green’s functions given
by

(Gcσ,k)−1 = (Gσ,k)−1 +Rσ,k, (8)

where Rσ,k is a regulator function contained within Rk,
which will be defined in the following. In these ex-
pressions ∂̃k denotes a derivative with respect to the k-
dependence of the regulator only, i.e. ∂̃k = (∂kRk)∂Rk

.
As we will see in the following, ∂kG−1

ψ,k = 0, and thus
the bath Fermi energy ϵF is equivalent to its chemical
potential µψ = ϵF .

In the single-impurity limit, we expect the low-energy
excitations of the impurity and the composite molecule
particle to lie at low momenta while those of the bath lie
around its Fermi surface where p2 = ϵF . It is desirable for
these fluctuations to be integrated out towards the end
of the flow near k = 0. To this end, we use sharp mo-
mentum regulators [77, 79] which yield regulated flowing
propagators of the form

Gcψ,k(ω,p) = Gψ,k(ω,p)Θ(|p2 − ϵF | − k2) , (9)
Gcϕ,k(ω,p) = Gϕ,k(ω,p)Θ(|p| − k) , (10)
Gct,k(ω,p) = Gt,k(ω,p)Θ(|p| − k) . (11)

While this choice of regulator functions allows for sim-
ple comparison to different approximations, it holds a
further advantage that is not immediately obvious. In
the following, we will see how its trivial dependence on
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frequency and its simple structure allow for an exact eval-
uation of the Matsubara integration in Eqs. (5) to (7) and
an exact analytical continuation of the obtained Green’s
function to a horizontal line in the complex frequency
plane (see Fig. 2).

III. EXACT MATSUBARA INTEGRATION

So far, our treatment of the Fermi polaron problem
in 3D is exactly equivalent to the treatment developed
in Ref. [53]. A treatment in 2D can be achieved as
a natural extension of that work using Ref. [20]. In
Ref. [53] the flowing inverse Green’s functions G−1

σ,k are
parametrized by laying out a grid in Matsubara fre-
quencies and momenta (ωi, pj) (see Fig. 2). The full
frequency- and momentum-dependence of G−1

σ,k is then
obtained interpolating over the function values at these
points Ci,jσ,k ≡ G−1

σ,k(ωi, pj). In Ref. [53] the flow of these
coefficients is computed as a coupled differential equa-
tion and at the end of the flow the full Green’s function
in terms of Matsubara frequencies is obtained as an inter-
polation over these coefficients. To obtain the retarded
Green’s function just above the real axis, in Ref. [53] this
function is then continued analytically using a Padé ap-
proximation (see Fig. 2).

During the course of the evaluation of the flow equa-
tions, however, in Ref. [53] a costly integration over the
Matsubara frequencies is performed numerically. Due to
the slow convergence rate of this integration, its evalua-
tion yields only moderate precision for reasonable compu-
tation times. For ground-state properties, this yields rea-
sonable results. However, for the study of excited state
properties the points of interest in the complex frequency
plane lie further away from the points at which the fRG
was performed. Thus, the numerical error incurred from
the Matsubara integration is propagated during the nu-
merical analytical continuation, rendering the obtained
results for excited states highly unstable. This may lead
to misleading results such as a p2 dispersion with positive
effective mass of the attractive polaron in a region where
it is known to have a negative effective mass [39, 80] (see
also Fig. 7).

Leveraging the analytical structure of the flowing prop-
agators in the single-impurity system we will now demon-
strate how these two problems can be circumvented in a
simply maneuver by performing the Matsubara integra-
tion exactly which yields an exact analytical continua-
tion of the propagator functions to the whole complex
frequency plane.

A. Analytical structure of zero-density propagators
and the residue theorem

To begin, we recall general analytical properties of
the Green’s functions at hand [81, 82]. In the complex
frequency plane, the Matsubara frequencies ω ∈ R lie

(a) iω

Ω
iϵ

exact int.+ cont.

iω
(b)

|p|

Ω
(Ωmax, pmax)

(Ωmin, pmax)

|p|

exact int.+ cont.

FIG. 2. Schematic diagram of the complex plane and the in-
terpolation space. The complex frequency plane is shown in
(a), with the Matsubara frequencies along the vertical axis
(blue shaded) and the real frequencies along the horizontal.
The theory originally operates on the Matsubara frequencies
and the inverse Green’s functions G−1

σ,k(ω,p) are parametrized
by laying out a grid (iωi, pj) in frequency and momentum
space (blue crosses in (b)) and interpolating between the grid
points (blue shaded region in (b)), using also the symmetry
G−1

σ,k(−ω,p) = G−1
σ,k(ω,p)∗. After exact Matsubara integra-

tion and exact continuation, the RG is defined on a horizon-
tal line R + iϵ (red shaded region in (a)) and the retarded
inverse Green’s functions GR,−1

σ,k (Ω + iϵ,p) are parametrized
by laying out a grid (Ωi + iϵ, pj) (red dots in (b)) and inter-
polating between the grid points (red shaded region in (b)).
For Ω < Ωmin or p > pmax the retarded Green’s functions
are approximated by asymptotic functions GR,−1

>,σ,k in the flow
equations (see Eqs. (21) and (22)), while Ω > Ωmax is never
accessed due to the structure of the flow equations (19) and
(20). By comparison in Ref. [53], the RG equations are solved
on a grid of Matsubara frequencies (blue in (b)) and only af-
terwards are the results continued to real frequencies using
numerical analytic continuation.
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along the imaginary axis z = iω and the flowing Mat-
subara Green’s functions Gσ,k are evaluated along this
axis. Along this axis in the upper half of the complex
frequency plane (UCP), they correspond to the retarded
Green’s functions Gσ,k(ω > 0,p) = GRσ,k(iω,p) and since
the retarded Green’s function GRσ,k(z,p) is analytic for
Im(z) > 0, the Matsubara Green’s function can be con-
tinued to the retarded Green’s function here. The analo-
gous statement holds for the advanced Green’s function
GAσ,k(z,p) for Im(z) < 0. Along the real axis, the re-
tarded and the advanced Green’s functions fulfill the re-
lations ReGRσ,k(Ω + i0+,p) = ReGAσ,k(Ω − i0+,p) and
ImGRσ,k(Ω + i0+,p) = − ImGAσ,k(Ω − i0+,p) for Ω ∈ R.
Furthermore, from the retarded Green’s function one can
obtain the flowing spectral function

Aσ,k(Ω,p) = GRσ,k(Ω + i0+,p) −GAσ,k(Ω − i0+,p)
= 2 Im

[
GRσ,k(Ω + i0+,p)

]
(12)

from which the occupation of states with momentum p
can be obtained as

nσ,k(p) =
∫

Ω
nB/F (Ω)Aσ,k(Ω,p), (13)

where depending on the statistics of the σ-field
nB/F (Ω) = 1/(exp(Ω/T ) ∓ 1) denotes a Bose- or Fermi-
distribution function and nB/FAσ,k ≥ 0.

Since we work in the single-impurity limit, the occupa-
tion of impurity and molecule states must vanish at all
times: nσ,k(p) = 0 for σ = ϕ, t and for all k,p. Thus,
from Eq. (13) it is easy to see that at T = 0 for Ω < 0,
irrespective of the statistic of the impurity, it holds that

Aϕ/t,k(Ω < 0,p) = 0. (14)

This has striking consequences: while the functional form
of the impurity and molecule Green’s function is gen-
erally unknown (it is exactly these functions that we
are solving for), the bath Green’s function is known ex-
actly as it does not flow. Suppressing the momentum-
dependencies for now and using the analytic properties
for ω > 0, Eq. (6) can be rewritten as∫
ν

Gct,k(ω + ν)Gcϕ,k(ν) =
∫ ∞

0

dν

2πG
c,R
t,k (iω + iν)Gc,Rϕ,k(iν)

+
∫ 0

−ω

dν

2πG
c,R
t,k (iω + iν)Gc,Aϕ,k(iν)

+
∫ −ω

−∞

dν

2πG
c,A
t,k (iω + iν)Gc,Aϕ,k(iν).

(15)

After (i) performing contour integration along the paths
shown in Fig. 3a), (ii) using that the integrands are an-
alytic in the interior of these paths, and (iii) respecting
that the integrand vanishes along the arcs to infinity, this

is equivalent to

= −
∫ −∞

0

dΩ
2π

[
Gc,Rt,k (iω + Ω)Ac

ϕ,k(Ω)

+ Ac
t,k(Ω)Gc,Aϕ,k(−iω + Ω)

]
= 0. (16)

Here Gc,Rσ,k and Ac
σ,k are defined analogous to the regu-

lated flowing propagators in Eqs. (9) to (11). As a result
∂kG

−1
ψ,k = 0 and G−1

ψ,k(ω,p) = −iω + p2 − ϵF such that
GR,−1
ψ,k (z,p) = GA,−1

ψ,k (z,p) = −z + p2 − ϵF , which can
be used to significantly simplify the remaining flow equa-
tions.

In Eqs. (5) and (7), the appearing bath propagators
have poles at ν = −iz = −i(q2 − ϵF ) and ν = −iz =
i(q2 − ϵF ), respectively, which each lie in the left half
of the complex plane for q2 − ϵF < 0 and q2 − ϵF > 0,
respectively. Replacing the integrand in Eqs. (5) and (7)
with the corresponding advanced and retarded propaga-
tors and carrying out a contour integration along the con-
tours shown in Fig. 3b) and Fig. 3c), while taking into
account the pole of the bath propagator and the vanish-
ing of the spectral functions described above for ω > 0,
one thus obtains

∂kG
−1
ϕ,k(ω,p)

= −h2∂̃k

∫
q

Θ(|p + q| − k)Θ(ϵF − q2 − k2)
G−1,R
t,k (iω + q2 − ϵF ,p + q)

,

(17)
∂kG

−1
t,k(ω,p)

= −h2∂̃k

∫
q

Θ(|p + q| − k)Θ(q2 − ϵF − k2)
GR,−1
ϕ,k (iω − q2 + ϵF ,p + q)

.

(18)

Finally, the flow of the imaginary-time Green’s function
can be continued to an arbitrary horizontal line in the
upper complex plane iω → Ω + iϵ to arrive at

∂kG
R,−1
ϕ,k (Ω + iϵ,p)

= −h2∂̃k

∫
q

Θ(|p + q| − k)Θ(ϵF − q2 − k2)
G−1,R
t,k (Ω + iϵ+ q2 − ϵF ,p + q)

,

(19)
∂kG

R,−1
t,k (Ω + iϵ,p)

= −h2∂̃k

∫
q

Θ(|p + q| − k)Θ(q2 − ϵF − k2)
GR,−1
ϕ,k (Ω + iϵ− q2 + ϵF ,p + q)

,

(20)

where ϵ > 0 is a positive number that does not necessarily
have to be close to 0. The ∂̃k acts only on the Heaviside
functions and under suitable parametrization, the rhs.
of Eqs. (19) and (20) contains only an integral over the
angle between p and q. The Matsubara integration has
been eliminated completely and the coupled differential
equation in Matsubara frequencies has been mapped to
a coupled differential equation within a horizontal line in
the complex frequency plane.
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a) iν

Ω

−iω

b) iν

Ω

−iω

c) iν

Ω
iω

FIG. 3. Schematic drawing of the contours in the complex
plane used to obtain Eqs. (16), (19) and (20). (a) The Mat-
subara summation on the lhs. of Eq. (15) is broken up into
the three pieces shown along the y-axis, where the Matsubara
Green’s functions can be replaced with the corresponding re-
tarded/advanced Green’s functions. Using the analyticity of
the integrands, the integral along the whole contour vanishes
and the integral along the arcs to infinity vanishes due to the
decay of the Green’s functions. As result, the vertical com-
ponents of this contour integration (Eq. (15)) can be inferred
from the horizontal components shown in Eq. (16), which van-
ish due to the single-impurity limit (see Eq. (14)). In (b) and
(c) the contours used to obtain Eqs. (19) and (20), respec-
tively, are shown. For q−ϵF < 0 (red crosses) and q−ϵF > 0
(green crosses) the position of the pole in the bath propagator
is shown and it contributes to the integral if it lies within the
contour.

IV. SOLUTION OF THE COUPLED FLOW
EQUATIONS

After the elimination of the Matsubara integration
along with the analytical continuation, we can now solve
the coupled differential equation system in Eqs. (19)
and (20). Importantly, upon choosing a horizontal line in
the complex plane (see Fig. 2) these differential equations
only couple the retarded impurity and molecule Green’s
functions within the given horizontal line, without cou-
pling to other horizontal lines.

A. Parametrization of inverse retarded Green’s
functions

To parametrize the flowing inverse retarded Green’s
functions we lay out a grid consisting of momenta pi
and frequencies Ωj + iϵ on which we store the function
values of the Green’s functions in form of the coefficients
Di,j
σ,k ≡ GR,−1

σ,k (Ωj + iϵ, pi) for Ω ∈ R and ϵ > 0. The
momenta and frequencies in this grid need to be chosen
such that they

1. resolve well the regions of interest in the retarded
Green’s function, and

2. enable a good resolution in the regions that are
integrated over in the evaluation of the flow equa-
tions (19) and (20), such the interpolating function
approximates the actual Green’s function well.

From Eqs. (19) and (20) it can easily be seen that for
a point of interest Ω + iϵ only retarded Green’s functions
at points Ω′ + iϵ with Ω′ < Ω are evaluated. Further-
more, all Green’s functions have spherical symmetry in
their momentum component such that GR,−1

σ,k (Ω+iϵ,p) =
GR,−1
σ,k (Ω + iϵ, |p|), enabling a parametrization by the

modulus of the momentum component. Thus the grid
is contained within (pi,Ωj + iϵ) ∈ [0, pmax] × [Ωmin +
iϵ,Ωmax + iϵ] where Ωmax is chosen according to interest
in physical properties and pmax,Ωmin are chosen to en-
able integration during the evaluation of flow equations.
The choice of the value of ϵ follows from a compromise:
It needs to be chosen such that R + iϵ is close enough to
the real axis to yield a good approximation for the spec-
tral function Eq. (25). However, if the chosen value of ϵ
is too small, the integration of the flow equations will be
over strongly peaked functions which requires small step
sizes as the differential equation is solved along the flow
parameter k.

Within the grid, the GR,−1
σ,k are obtained from the coef-

ficients Di,j
σ,k using a bivariate cubic spline interpolation,

while for values outside the grid we use that asympoti-
cally for p → ∞,Ω → −∞ the GR,−1

σ,k take on their bare
form. Thus, ensuring continuity at the boundaries of the
grid, for |p| > pmax or Ω < Ωmin they are approximated
by functions of the functional form of their vacuum solu-
tions [53]

GR,−1
>,ϕ,k(z,p) = −z + p2 − µϕ + f1

cont, (21)

GR,−1
,>t,k(z,p) = h2

8π

(
−1
a

+
√

−z

2 + p2

4 + f2
cont

)
, (22)

where f1,2
cont ensure continuity at the boundary.

B. Initial conditions of the flow

The initial conditions for the flow of the impurity at
the cutoff scale k = Λ are given by the bare impurity
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propagator GR,−1
ϕ,k=Λ(Ω + iϵ,p) = −(Ω + iϵ) + p2 − µϕ.

The initial condition of the molecule propagator is cho-
sen such that for a flow in the vacuum two-body limit
(obtained by tuning the chemical potentials accordingly
[20, 53]) it reproduces the vacuum molecule propagators
at k = 0. The initial condition of the bath fermions is
given by GR,−1

ψ,k=Λ(Ω + iϵ,p) = −(Ω + iϵ) + p2 − ϵF .
From the flow equations in Eqs. (19) and (20) one can

see that the impurity propagator does not flow for k2 >
ϵF . Thus for ϵF < k2 < Λ2, the impurity propagator
remains in its bare form and Eqs. (19) and (20) can be
integrated analytically from k = Λ down to k = √

ϵF .
Hence the actual numerical solution of the flow equations
begins at k = √

ϵF with the initial condition

GR,−1
ϕ,k=√

ϵF
(Ω + iϵ,p) = GR,−1

ϕ,k=Λ(Ω + iϵ,p) (23)

for the impurity and

GR,−1
t,k=√

ϵF
(Ω + iϵ,p) = GR,−1

t,k=Λ(Ω + iϵ,p)

−
∫ Λ

√
ϵF

dk′
[
∂kG

R,−1
t,k=k′

]
(Ω + iϵ,p)

(24)

for the molecule. A detailed expression for the molecule
initial condition is given in Appendix A. Due to the start
of the flow not at k = Λ, but rather at k = √

ϵF we can
safely take the limit Λ → ∞ during the computation of
the molecular initial condition such that the solution of
the flow equations is entirely independent of the upper
cutoff scale.

V. RESULTS

From the numerical evaluation of the flow equations
down to k = 0, we obtain the renormalized retarded
Green’s functions of the molecule and the impurity
along a horizontal line in the complex frequency plane
GR,−1
ϕ/t (Ω + iϵ,p) = GR,−1

ϕ/t,k=0(Ω + iϵ,p). Performing
the same calculation several times for different horizon-
tal lines (characterized by the value of ϵ ∈ R, ϵ > 0),
one then obtains a discretized parametrization of these
Green’s functions in the whole upper half of the complex
frequency plane [83].

Several quantities can be deduced from this data via
analytical continuation of the retarded Green’s function.
The single particle spectral function of the molecule and
the impurity can be obtained by analytical continuation
to the real axis

Aϕ/t(Ω,p) = lim
ϵ→0

ImGRϕ/t(Ω + iϵ,p) . (25)

Here, in practice, a small but finite value of ϵ is sufficient,
such that the results of our flow solution can be used
without further analytical continuation.

To obtain the exact energies and lifetimes of the quasi-
particles visible as sharp peaks in the spectral function,

one needs to find the poles of the retarded Green’s func-
tion in the lower half of the complex plane (LCP) via
analytic continuation of the retarded Green’s function
across the real axis. At such a pole the inverse retarded
Green’s functions vanish

GR,−1
ϕ/t (Ω′

ϕ/t(p) − iΓϕ/t(p),p) = 0,Γϕ/t > 0 (26)

and the momentum-dependent quasiparticle energy and
decay width of the respective quasiparticle are given by
Eϕ/t(p) = Ω′

ϕ/t(p) + µϕ and Γϕ/t, respectively. Finally,
the inverse quasiparticle weight can be obtained as

Z−1
ϕ/t = − ∂

∂ΩG
R,−1
ϕ/t

(
Ω′
ϕ/t(p) − iΓϕ/t(p),p

)
. (27)

The analytic continuation to the LCP can be achieved
using a Padé approximation in which data from the UCP
is used as input. Alternatively, one can also employ an
approximation to linear order making use of the Cauchy-
Riemann equations to find the location of the quasipar-
ticle poles, yielding very similar results.

A. Energies and lifetimes at zero momentum in 3D

To begin, we study the energies, quasiparticle weights
and lifetimes of the attractive and the repulsive polaron
as well as the molecule. In Fig. 4 we show the zero-
momentum energies Eϕ/t(p = 0) as obtained in Ref. [53].
Below a critical interaction strength of 1/(kFa)c ≈ 0.9
[53] the ground state is given by the attractive polaron
while at the critical interaction strength the polaron-to-
molecule transition [36, 37, 45–47, 53] takes place, beyond
which the ground state is given by a molecular state. The
repulsive polaron exists as an excited state in the spec-
trum above the scattering threshold and its energy van-
ishes asymptotically for 1/kFa → ∞. The quasiparticle
weight Z of the attractive and the repulsive polaron is
shown as well, and as expected [44, 53] with increasing
1/kFa, the quasiparticle weight of the attractive polaron
decreases while the quasiparticle weight of the repulsive
polaron increases.

Additionally, in Fig. 4 we show the decay widths of
the zero-momentum attractive and repulsive polaron,
Γatt.
ϕ (p = 0) and Γrep.

ϕ (p = 0), as well as the molecule,
Γt(p = 0). Furthermore, the decay widths of the re-
pulsive polaron as obtained from a non-selfconsistent T -
matrix approach are shown [41, 42, 44]. As expected,
the respective ground state particles have a decay width
consistent with zero. In the regime where the attrac-
tive polaron or the molecule are excited state particles,
their decay widths increase as one moves away from the
polaron-to-molecule transition. With increasing quasi-
particle weight, the decay width of the repulsive polaron
Γrep.
ϕ (p = 0) decreases.
Compared to previous work using a similar model (but

a different method of solving the flow equations), we ob-
tain decay widths about an order of magnitude larger
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FIG. 4. Energy, quasiparticle weight and decay width of the molecule as well as the attractive and repulsive polaron as a
function of 1/kF a. (a) The zero-momentum energies are shown for the attractive polaron Eatt.

ϕ (p = 0) (black), the repulsive
polaron Erep.

ϕ (p = 0) (yellow) and the molecule Et(p = 0) (red) in units of the Fermi energy ϵF . A ground state transition
at 1/(kF a)c ≈ 0.9 between the molecule and the attractive polaron can be seen, while the repulsive polaron is an excited
state above the scattering threshold. For increasing 1/kF a the modulus of the quasiparticle weight |Z| (b) of the attractive
polaron decreases and the spectral weight is thus shifted to the repulsive polaron, for which |Z| increases. (c) Approaching
the transition, the decay width Γt of the molecule, shown in units of the Fermi energy ϵF , decreases and eventually turns to
zero (within numerical accuracy) as the transition is reached. The decay width (c) of the attractive polaron Γatt.

ϕ , in turn is
zero before the transition and begins to increase beyond it. The repulsive polaron has a decreasing decay width Γrep.

ϕ as its
quasiparticle weight increases. While the decay widths of the attractive polaron Γatt.

ϕ and the molecule Γt are shown for the
scale on the left side of (c), the repulsive polaron decay width Γrep.

ϕ is shown with respect to the right scale. In addition to
the results obtained from the fRG (solid), the decay width of the repulsive polaron is shown as obtained from a conventional
non-selfconsistent T -matrix approach (dashed) [41, 42, 44].

than those obtained in [53], highlighting the delicacy of
obtaining these roots and the need for a numerically sta-
ble method with many grid points and a small step size.
For higher-excited states the decay widths are larger and
the poles are further inside the LCP. As a result the nu-
merical fluctuations of our method are clearly visible, but
remain on the order of a few percent in contrast to pre-
vious work.

We note that for most interaction strengths, the decay
widths of the attractive polaron and the molecule are not
accessible in simple non-selfconsistent approaches, but
rather approaches with some degree of self-consistency
(such as a treatment in Fermi liquid theory, in self-
consistent T -matrix theory [61] or as in our work with
fRG) are necessary to obtain access to these quantities.
Compared to the decay widths of the repulsive polaron
obtained from non-selfconsistent approaches, the fRG
yields larger decay widths in the regime where the at-
tractive polaron is the ground state, however the decay
width of the fRG yields a more stable polaron as 1/kFa
is increased.

In Ref. [43] the decay width of the attractive polaron in
the excited state was predicted to follow a ∆E9/2 scal-
ing where ∆E = Eϕ(p = 0) − Et(p = 0) > 0 denotes
the energy gap between the attractive polaron and the
molecule. To be precise, it was predicted that the imag-

inary part of the retarded self-energy follows a scaling

Im ΣRϕ
(
Ω′′
ϕ(p = 0),p = 0

)
∝ Z ′′

t kFa

(
∆E
ϵF

) 9
2

ϵF , (28)

where in contrast to Eq. (26), Ω′′ is defined as

ReGR,−1
ϕ/t (Ω′′

ϕ/t(p),p) = 0 (29)

and Z ′′
ϕ/t is evaluated at Ω′′

ϕ/t(p = 0). In this scheme one
can then approximate the decay width as

Γ′′
ϕ/t ≈ Re(Z ′′

ϕ/t) Im
[
ΣRϕ/t

(
Ω′′
ϕ/t(p = 0),p = 0

)]
. (30)

Using Eq. (29), in Fig. 5 we show the imaginary part
of the inverse polaron propagator GR,−1

ϕ at Ω′′
ϕ(p = 0)

and p = 0 as a function of the energy gap for 1/kFa >
1/kFac. Note that the self-energy and the inverse prop-
agator are related by GR,−1

ϕ/t = GR,−1
ϕ/t,k=Λ − ΣRϕ/t. Fur-

thermore we show the polaron quasiparticle decay width
as obtained from Eq. (26). As it can be seen the imag-
inary parts as obtained using Eq. (29) fit well with a
power law scaling of ∆E9/2, obtained by fitting a func-
tion of the form C1(∆E/ϵF )9/2, where C1 ∈ R. Further-
more, they fit well with the scaling proposed in Ref. [43],
obtained by fitting the function C2ZtkFa (∆E/ϵF )9/2,
C2 ∈ R. Multiplying that same curve with the polaron
quasiparticle weight Zϕ results in a curve that fits well
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C2kFaZt(∆E/εF )9/2

C1(∆/εF )E9/2

FIG. 5. Decay width of the attractive polaron as a func-
tion of the energy gap ∆E = Eatt.

ϕ − Et, both in units of
the Fermi energy ϵF . The decay width Γatt.

ϕ (p = 0) of the
attractive polaron as obtained from Eq. (26) is shown (red
crosses) along with the imaginary part of the inverse polaron
propagator GR,−1

ϕ (Ω′′
ϕ(0),0) at the pole position as obtained

from Eq. (29) (black dots). Note, that along the real axis, the
imaginary parts of the self-energy and the inverse propagator
coincide. A curve proportional to ∆E9/2 is shown in yellow
dots and fits the imaginary part of the self-energy. Further-
more, a fit according to Eq. (28) is shown (solid black line).
Multiplying the power law shown in Eq. (28) with the quasi-
particle weight of the attractive polaron Zϕ, in analogy to
Eq. (30), closely matches the decay width as obtained form
Eq. (26) (solid red line).

with the quasiparticle decay widths computed according
to Eq. (26). This relation between the imaginary part of
the self-energy and the decay width remains accurate for
all the results shown in this work. At small energy gaps
the value of ϵ = 10−4 we used becomes larger than the
decay widths and thus the decay widths become inaccu-
rate and begin to fluctuate.

Conducting the same analysis for the molecule for
1/kFa < 1/kFac, in Fig. 6 we show the imaginary part
of the molecule self-energy along with the molecule decay
widths. As before, at small energy gaps the decay widths
and imaginary parts fluctuate, but for ∆E > 0.06ϵF they
are stable. As can be seen, the imaginary parts fit well
a C3(∆E/ϵF )4 scaling with C3 ∈ R which is notably dif-
ferent from the ∆E9/2 scaling proposed in [43]. While
the diagrammatics in Ref. [43] does not include decay
processes to infinite order like our fRG, there is also a
fundamental difference in the diagrammatics used. Due
to the coupling of the impurity-majority interaction into

10−2 10−1

Energy gap ∆E = Et − Eatt.
φ [εF ]

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

D
ec

ay
W

id
th

Γ
[ε
F

]

− Im
[
GR,−1
t (Ω′′t (0),0)

]
εF /h

2

Γt(0)

C3Z
3
φ (Ztm

∗
t )

2
(∆Em∗φ/εF )7/2

C4(∆E/εF )7/2Zφ(m∗φ)3/2

C5(∆E/εF )4

FIG. 6. Decay width of the molecule as a function of the
energy gap ∆E = Et − Eatt.

ϕ , both in units of the Fermi en-
ergy ϵF . Like in Fig. 5, the decay width Γt(p = 0) of the
molecule obtained from Eq. (26) is shown (red crosses) along
with the imaginary part of GR,−1

t (Ω′′
t (0),0)ϵF /h

2 at the pole
position as obtained from Eq. (29) (black dots). A curve fit
proportional to ∆E4 is shown as a solid line and fits the imag-
inary part of the self-energy. Furthermore, a fit following a
∼Z3

ϕZ
2
t (m∗

ϕ)7/2(m∗
t )2∆E7/2 power law is shown (dotted black

line) along with a simplified scaling ∼Zϕ(m∗
ϕ)3/2∆E7/2 (dot-

ted purple line), for detail see Appendix B 1.

a molecule channel, crossed diagrams are excluded in our
approach at all orders. In Ref. [43], however, a low-
order diagrammatic expansion is employed that includes
crossed diagrams. Within that diagram, two T -matrices
appear which contain no crossed diagrams within them
(see Appendix B 1). As a result, as one approaches the
transition, in the diagrammatics in Ref. [43] the avail-
able phase space for decay processes vanishes as ∆E7/2,
while the corresponding matrix element vanishes as ∆E.
The vanishing of the matrix element in that approach,
however, is entirely due to the use of a non-crossed T -
matrix within a crossed diagrammatics. Performing a
similar analysis as in Ref. [43], but excluding crossed
diagrams we analytically obtain a scaling proportional
to ∼Z3

ϕZ
2
t (m∗

ϕ)7/2(m∗
t )2∆E7/2 (see Appendix B 1 for de-

tail). This scaling is shown in Fig. 6 as well, but it fits the
data points only for 0.05ϵF < ∆E < 0.2ϵF , as the effec-
tive mass of the molecule eventually diverges and turns
negative (see Fig. 7), and thus the pure ∆E4 scaling fits
more accurately.
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FIG. 7. Momentum-dependent dispersion relations and decay widths of the attractive polaron and the molecule at different
interaction parameters. The momentum-dependent energies of the attractive polaron Eatt.

ϕ (p) (a) and the molecule Et(p) (b)
are shown in units of ϵF as a function of momentum p = |p| for interaction strengths, 1/kF a = 1.5 (black), 1.25 (purple),
0.91 (red), 0.5 (orange) and 0 (yellow). The zero-momentum ground-state energy, Eatt.

ϕ (0) for 1/kF a < 0.91 and Et(0) for
1/kF a > 0.91 is subtracted for reference. The corresponding decay widths, Γatt.

ϕ (p) and Γt(p) are shown in (c) and (d),
respectively. As can be seen, away from the transition, the ground state develops a quadratic dispersion relation, while the
excited state acquires a negative effective mass. In both cases, increasing the momentum leads to increasing decay widths.

B. Momentum-dependent energies and decay
widths

Using the precision available within our numerical ap-
proach it is possible to obtain not only zero-momentum
properties but also momentum-resolved energies (i.e.
the full dispersion relation, including effective mass) as
well as lifetimes and weight. In Fig. 7, we show the
momentum-dependent attractive polaron and molecule
dispersion relations with respect to the energy of the
ground state. As can be seen, for 1/kFa < 1/kFac,
the polaron energies at p = 0 coincide with the ground
state energies. The dispersion relations follow a close
to quadratic behavior with |p|. Approaching and cross-
ing the transition at 1/kFac this quadratic dependence
becomes weaker as the effective polaron mass increases
and eventually diverges, as can be seen from the po-
laron dispersions at 1/kFa = 1.25 and 1/kFa = 1.5
[39]. Accordingly, the decay width of the attractive po-
laron has Γatt.

ϕ (p = 0) ≈ 0 for 1/kFa < 1/kFac and
for 1/kFa > 1/kFac it has Γatt.

ϕ (p = 0) > 0. In both
regimes the decay width of the attractive polaron in-
creases monotonously as |p| increases, see Fig. 7(c,d).

Similarly, the dispersion of the molecule is gapped for
1/kFa < 1/kFac and exhibits a negative effective mass
at sufficient detuning from 1/kFac. Approaching the
transition the effective mass diverges and turns towards
a quadratic dispersion with positive effective mass be-
fore the transition is crossed. Beyond the transition,
the dispersion is ungapped and the effective mass is al-
ways positive. As expected, the decay width of the zero-
momentum molecule vanishes for 1/kFa > 1/kFac, while
it is finite for 1/kFa < 1/kFac. As for the polaron, the
decay width of the molecule increases as the momentum

|p| increases.
The momentum-dependent decay widths observed in

Fig. 7 are qualitatively different from the decay de-
scribed in Figs. 4 to 6: There, the decay is from a zero-
momentum excited state such as the attractive polaron to
a lower-lying ground state manifold such as the molecule.
In Fig. 7 on the other hand, the decay may take place
within the ground-state manifold from higher to lower
momenta [64]. For example, as can be seen from Fig. 7,
at 1/kFa = 0 the attractive polaron with |p| = 0.5kF lies
lower in energy than the molecule state and the respective
particle-particle continuum. As a result, the attractive
polaron with |p| = 0.5kF decays to attractive polaron
states with |p′| < 0.5kF , necessitating at least a minimal
degree of self-consistency to capture this process.

As can be seen in Fig. 7, for 1/kFa ≪ 1/kFac the po-
laron exhibits a near quadratic dispersion relation, while
the molecule exhibits a near quadratic dispersion relation
for 1/kFa ≫ 1/kFac. This suggests that the decay width
within the ground state manifold may follow a simple be-
havior with respect to its dependence on momentum. In
the following, we investigate the momentum-dependent
decay widths of the attractive polaron and the molecule,
in regions where they are the ground state and where
their dispersion relations suggest that a treatment of the
particle within Fermi liquid theory may be appropriate.

In Fig. 8(a) we show the momentum-resolved impu-
rity spectral function Aϕ (see Eq. (25)) at unitarity.
The attractive polaron is the dominant feature of the
plot and its energy as obtained from Eqs. (26) and (29)
shows a quadratic dependence ∼ p2 with respect to mo-
mentum with effective mass m∗/m ≈ 1.15. Moreover,
the attractive polaron shows a continuously increasing
broadening for increasing momentum. This is directly
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FIG. 8. Impurity spectral function and momentum-
dependent decay width of the attractive polaron at unitar-
ity. The impurity spectral function Aϕ(Ω,p) is shown in
(a), along with a quadratic fit to the dispersion relation,
which coincides with both energies Ω′

ϕ(p) and Ω′′
ϕ(p) obtained

from different criteria, (26) and (29). In (b) the momentum-
dependent decay width Γatt.

ϕ (red crosses) as well as the self-
energy contribution Im ΣR

ϕ (Ω′′
ϕ(p),p) (black crosses), each

also offset by their zero-momentum contribution (dots) are
shown. For p ≳ 0.1kF they all follow a ∼p4 scaling (solid
black line). A value of ϵ = 10−4ϵF was used.

reflected in the behavior of the momentum-dependent de-
cay width of the attractive polaron shown in Fig. 8(b).
In this figure we show both Γatt.

ϕ (p) as evaluated from
Eq. (26) as well as the imaginary part of the self-energy
Im Σϕ(Ω′′

ϕ(p),p). Both evaluations yield consistent re-

sults indicating a ∝ p4 scaling for p ≳ 0.1kF .
The p4 scaling can be obtained from an analysis within

Fermi liquid theory (see Appendix B 2) [63]. In this anal-
ysis the attractive polaron at small momenta is treated
as a free particle with quasiparticle properties such as en-
ergy, effective mass, quasiparticle weight and decay width
that are modified compared to the original bare particle.
In this picture one thus makes full use of the quasiparti-
cle picture of the attractive polaron that despite strong
renormalization by strong-coupling at unitarity still be-
haves as essentially a free particle (building the basis of
Fermi liquid theory).

In Fig. 8, it can be seen that for p ≲ 0.1kF the decay
width and the self-energy depart from the ∝ p4 scal-
ing. At this point, the decay width has become so small
that it is comparable to the distance from the real axis
(ϵ = 10−4ϵF ) and thus the numerical continuation of the
obtained grid data from z = Ω + iϵ to z = Ω − iΓ incurs
errors that are comparable to iϵ. At the same time, low-
ering the value of iϵ further slows down the integration
over the renormalization group scale k and the momen-
tum q within Eqs. (19) and (20) as effectively a nar-
rowly shaped Lorentzian curve needs to be integrated
over numerically, which requires an increasing amount of
computational effort as the Lorentzian becomes sharper.
Thus, it can be seen that the decay width of the zero-
momentum attractive polaron Γatt.

ϕ (p = 0) does not tend
to zero (the expected behaviour for a ground state) but
rather approaches a small, but finite value. Subtracting
the contribution of the decay width and the self-energy
at zero momentum, we see that both are closer to the
∝ p4 scaling, but there is still residual error left.

In Fig. 9(a) we show the spectral function of the
molecule At (see Eq. (25)) for 1/kFa = 3 as well as its dis-
persion relations. Again, both methods to determine the
energy coincide and the dispersion is well characterized
by a ∝ p2 scaling. In Fig. 9(b) in turn the momentum-
dependent decay widths and self-energy evaluations of
the molecule are shown. As for the polaron, the ∝ p2

dispersion suggests a ∝ p4 scaling in decay width and
its self-energy contribution. In Fig. 9(b) such a scal-
ing can be seen to develop for p ≳ 0.12. At smaller
momenta the value of ϵ dominates the results. In this
calculation ϵ = 10−5ϵF was used. Interestingly, the val-
ues obtained for Γt(0) and also those obtained for the
corresponding imaginary self-energy contribution are so
small that subtracting them does not alter the shown re-
sults significantly. Instead, for p ≲ 0.12 a ∝ p2 scaling is
observed. A similar observation was noted in Ref. [63],
where for a strongly population-imbalanced mixture of
two Fermi gases, the decay width scaled quadratically
with impurity momentum, when the impurity momen-
tum was below the impurity Fermi wavevector, represent-
ing the well-known scaling of fermionic quasiparticles in
Fermi liquid theory. Of course, the impurity Fermi level
vanishes in our work (and therefore so does the impu-
rity Fermi wavevector), however it is possible that the
error incurred from a small, but non-vanishing ϵ and the
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FIG. 9. Molecule spectral function and momentum-
dependent decay width of the molecule state at 1/kF a =
3. The molecule spectral function At(Ω,p) is shown in
(a), along with a quadratic fit to the dispersion relation,
which reproduces both energies Ω′

t(p) and Ω′′
t (p) obtained

from Eqs. (26) and (29). The momentum-dependent decay
width Γt(p) (red crosses) as well as the self-energy contri-
bution Im ΣR

t (Ω′′
ϕ(p),p) (black dots, rescaled by a factor of

103ϵF /h
2) are shown in (b) and follow a ∼p4 scaling (black

and red solid lines) for p ≳ 0.1kF . Interestingly, for p ≲ 0.12 a
∼p2 scaling is observed (black and red dotted lines). A value
of ϵ = 10−5ϵF was used.

ensuing analytical continuation from the horizontal line
R+iϵ effectively results in a small, effective pseudo impu-
rity Fermi wavevector, leading to an analogous quadratic
scaling at very small momenta.

VI. CONCLUSION

In this paper we have presented a modified fRG treat-
ment of the Fermi polaron problem which not only
avoids the necessity to carry out a numerical integra-
tion over imaginary Matsubara frequencies but also the
need of continuing analytically to real frequencies. This
is achieved by leveraging the analytical structure of the
Fermi polaron problem to carry out the integration and
continuation exactly. As a result, the fRG in imaginary
frequencies is mapped onto an equivalent fRG on a hor-
izontal line above the real axis, which can be shifted ar-
bitrarily close to the real axis. The resulting fRG is sig-
nificantly simpler to solve and allows to consider quasi-
particle properties that either may not be accessible to
previous treatments due to a lack in stability and preci-
sion or that fundamentally cannot be accessed in these
treatments.

Using this modified fRG, the Fermi polaron problem
was solved and the quasiparticle properties of the attrac-
tive polaron, the repulsive polaron and the molecule were
revisited. We showed that energy and quasiparticle width
are in accordance with previous findings and the decay
width of the attractive polaron does follow a scaling of
∆E9/2 with respect to the energy gap to the molecule.
For the decay width of the molecule near the polaron-
to-molecule transition, however, the applicability of the
∆E9/2 scaling is less clear and further research in this di-
rection is necessary. One of the significant improvements
of the method presented in this paper is that it allows
to investigate momentum-dependent decay widths which
are small for states near the ground state. We find that
both the attractive polaron and the molecule seem to be
captured rather accurately within Fermi liquid theory.

The measurement of these quasiparticle properties is
within experimental reach, using for instance Raman
transfers of impurities to finite momentum states [23].
The decay of such states is then observable using Ramsey
interferometry [67, 84]. Similarly, such properties may be
accessed using implementations relying on a constantly
driven many-body system [85]. This may be of particu-
lar relevance as momentum relaxation seems to play an
important role in the decay of Rabi oscillations [86, 87].

As polarons may now be controlled so reliably that
even induced interactions between polarons can be mea-
sured [88], extensions of our fRG method may be of in-
terest where for small impurity concentrations the inter-
action between polarons may be derived from an addi-
tional polaron-polaron scattering vertex. At larger impu-
rity concentrations further modifications may be in order
where some of the exact frequency integrations are re-
placed by contour integrals along horizontal lines above
the real axis, which may prove as a promising method
of self-consistently investigating strongly-coupled Bose-
Fermi and Fermi-Fermi mixtures.

Note added. During completion of this manuscript,
several other works appeared addressing similar analyti-
cal approaches within standard resummation techniques
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Appendix A: Molecule initial condition

The initial condition of the flowing retarded molecular Green’s function at the cutoff scale is given by [53]

GR,−1
t,k=Λ(Ω + iϵ,p) = − h2

8πa + h2Λ
4π2 − h2

∫
q

[
Θ(|p + q| − Λ)Θ(|q| − Λ)
−Ω − iϵ+ q2 + (p + q)2 − Θ(|q| − Λ)

2q2

]
, (A1)

such that using Eq. (24)

GR,−1
t,k=√

ϵF
(Ω + iϵ,p) = GR,−1

t,k=Λ(Ω + iϵ,p) + h2
∫

q

[
Θ(|p + q| − Λ)Θ(q2 − ϵF − Λ2)
GR,−1
ϕ,Λ (Ω + iϵ− q2 + ϵF ,p + q)

− Θ(|p + q|2 − ϵF )Θ(q2 − 2ϵF )
GR,−1
ϕ,Λ (Ω + iϵ− q2 + ϵF ,p + q)

]
(A2)

= − h2

8πa + h2
∫

q

[
1

2q2 − 1
GR,−1
ϕ,Λ (Ω + iϵ− q2 + ϵF ,p + q)

− Θ(|p + q| − ϵF )Θ(q2 − 2ϵF ) − 1
GR,−1
ϕ,Λ (Ω + iϵ− q2 + ϵF ,p + q)

]
,

(A3)

where we have cancelled the third term in Eq. (A1) against the second term in Eq. (A2). The integrals in Eq. (A3)
can be solved analytically.
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(a) (b) (c)

FIG. 10. Diagrammatic representation of the decay of the excited state molecule. (a) Possible decay channel of an excited
state molecule (solid line) into a ground state polaron (wavy line) and several bath particles and holes (dashed lines), which
correspond to self-energy contributions (b,c) using the optical theorem. The decay channel in (a) allows for two distinct
self-energy contributions, a crossed in (c) and a non-crossed in (b). The square dots denote coupling vertices ∼h.

Appendix B: Decay width scaling from Fermi liquid theory

1. Decay of the excited state molecule

To highlight the dependence of the decay width on the diagrammatic method used, in the following we discuss how
a similar approach as used in Ref. [43] may yield a different power law behaviour of the molecule decay width. As
mentioned in the main text, the self-energy diagrammatics used in Ref. [43] employ a T -matrix (containing no crossed
diagrams) within a crossed diagram (see Fig. 10(c)) to obtain a ∼∆E9/2 dependence of the molecule decay width. We
show that neglecting the crossed diagrams, as is done within conventional T -matrix approaches, and using a Fermi
liquid theory approximation for these particles, one obtains a different power law dependence.

The non-crossed self-energy contribution Σt (see Fig. 10(b)) corresponding to the decay process shown in Fig. 10(a)
is then proportional to

Σt(ω,0) ∝
∫

k,k′,q,ν1,ν2,ν3

GRϕ (i[ω − ν1],−k)2GRϕ (i[ω − ν1 − ν2 + ν3],q − k − k′)TR(i[ω − ν1 + ν3],q − k)2

(−iν1 + k2 − ϵF )
(
−iν2 + k′2 − ϵF

)
(−iν3 + q2 − ϵF )

. (B1)

To proceed, we use a pole expansion for the retarded molecule propagator TR and the retarded impurity propagator
GRϕ

GRϕ (z,p) ∝ Zϕ

−z + p2

2m∗
ϕ

(B2)

TR(z,p) ∝ Zt

−z + p2

2m∗
t

+ ∆E
, (B3)

where m∗
ϕ and m∗

t are the effective masses of the attractive polaron and the molecule and ∆E denotes the energy
difference between the attractive polaron and the molecule. Carrying out the frequency integrations and evaluating
the self-energy near the pole of the molecule, we then obtain

Im ΣRt (∆E + i0+,0) ∝
∫

k,k′,q

Z3
ϕZ

2
t δ
(

k2 + k′2 − q2 − ϵF + (q−k−k′)2

2m∗
ϕ

− ∆E
)

(
k2 − q2 + (q−k)2

2m∗
t

)2 (
k2 − ϵF + k2

2m∗
ϕ

− ∆E
)2 . (B4)

For ∆E ≪ ϵF , the condition of the δ-function in Eq. (B4) is fulfilled when k, k′ and q form an almost equilateral
triangle at the Fermi surface with |k|, |k′|, |q| ≈ kF . Thus the two terms in the denominator of Eq. (B4) approach
[k2
F /(2m∗

t )]2 and [k2
F /2m∗

ϕ]2, while in Ref. [43] it was shown that the phase space integral scales as (m∗
ϕ)3/2∆E7/2.

Hence, within this approximation we obtain that

Im ΣRt (∆E + i0+,0) ∝ Z3
ϕZ

2
t ∆E7/2(m∗

ϕ)7/2(m∗
t )2. (B5)

Alternatively, one may disregard the dynamics of the propagators in Eq. (B1), as these propagators are not evaluated
near their pole. Approximating these as constant instead, one obtains only the scaling due to the phase space integral
given by ∼Zϕ(m∗

ϕ)3/2∆E7/2 which is also shown in the main text.



17

(a) (b)

FIG. 11. Diagrammatic representation of the decay of ground-state polarons at finite momentum into lower-lying polarons.
(a) Possible decay channel of a polaron at finite momentum into a ground-state polaron at lower momentum and a particle
and hole excitation, which corresponds to a self-energy contribution (b). Unlike in Fig. 10, the decay channel in (a) allows
only for a single self-energy contribution (b).

2. Decay of the ground state attractive polaron at finite momentum

At 1/kFa ≪ 1/kFac the decay of the attractive polaron at small momentum is only into attractive polaron states of
a smaller momentum as the lowest-lying molecule state lies higher in energy. The simplest decay process representing
this route is shown in Fig. 11(a) and involves a particle-hole exchange with the bath particles. This process can easily
be turned into a corresponding self-energy contribution, shown in Fig. 11(b), using the optical theorem such that the
self-energy is proportional to

Σϕ(ω,p) ∝
∫

k,q,ν1,ν2

GRϕ (i[ω + ν1 − ν2],p + q − k)T (ω + ν1,q + p)2

(−iν1 + q2 − ϵF )(−iν2 + k2 − ϵF )

∝
∫

k,q
GRϕ (i[ω + −i(q2 − k2)],p + q − k)T (ω − i(q2 − ϵF ),q + p)2Θ(ϵF − q2)Θ(k2 − ϵF ), (B6)

where T denotes the T -matrix [41]. Furthermore, we have carried out the integration over ν1 and ν2 analytically by
closing the contours in the right and in the left half of the complex plane, respectively. Considering the attractive
polaron as a free particle, whose interactions with the bath have been taken into account via a modification of the
quasiparticle gap (to zero, as the p = 0 attractive polaron is the ground state), quasiparticle weight Zϕ and the
effective mass m∗

ϕ, we approximate the polaron propagator GRϕ (z,p) using Eq. (B2).
Furthermore, as the decay of the attractive polaron is not into a molecule state, we approximate the scattering

matrix T ≈ g via the bare coupling constant. Later we will investigate how the inclusion of T changes the behavior
of the decay width. Thus, evaluating the self-energy near the real axis at the location of the quasiparticle pole
Ω = p2/2m∗

ϕ, we obtain that

Im ΣRϕ

(
p2

2m∗
ϕ

+ i0+,p
)

∝
∫

k>kF ,q<kF

δ

(
− p2

2m∗
ϕ

+ (p + q − k)2

2m∗
ϕ

− q2 + k2

)
, (B7)

where we have dropped the dependence on Zϕ.
The imaginary part of the self-energy Eq. (B7), is shown in Fig. 12 for different values of the effective mass m∗

ϕ and
it can be seen that the imaginary part of the self-energy at the quasiparticle pole follows a ∝ p4 scaling, as also seen
for the full fRG model in the main text.

Suppose now that the scattering T -matrix was not approximated by g, then along the real axis it is clear that for
iω → Ω + i0+ = p2/2m∗

ϕ + i0+ and q2 < ϵF we have that

ImTR

(
p2

2m∗
ϕ

+ (q2 − ϵF ) + i0+,q + p
)

= 0 (B8)

because the lowest-lying molecule state lies higher in energy (see also the discussion Section III A). One thus arrives
at

Im ΣRϕ

(
p2

2m∗
ϕ

+ i0+,p
)

∝
∫

k>kF ,q<kF

δ

(
− p2

2m∗
ϕ

+ (p + q − k)2

2m∗
ϕ

− q2 + k2

)
TR

(
p2

2m∗
ϕ

+ (q2 − ϵF ) + i0+,q + p
)2

.

(B9)
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FIG. 12. Imaginary part of the polaron self-energy contribution in Eq. (B7) for different effective polaron masses. The self-
energy contribution Im ΣR

ϕ

(
p2

2m∗
ϕ

+ i0+,p
)

is shown in arbitrary units for different effective polaron masses (m∗
ϕ = 0.8m(black),

0.9m(purple), m(red), 1.1m(orange), 1.2m(yellow)) as a function of momentum p. The contributions follow a ∼p4 scaling (blue
line).

Since the molecule is a higher-lying excited state by assumption, at small momentum p the T -matrix approaches a
finite, constant value and thus the scaling of the imaginary part of the self-energy is solely determined by the phase
space configuration scaling enforced by the δ-function.
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