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We study theoretically the lifetimes of attractive and repulsive Fermi polarons, as well as the molecule at
finite momentum in three dimensions. To this end, we develop a technique that allows for the computation of
Green’s functions in the whole complex frequency plane using exact analytical continuation within the functional
renormalization group. The improved numerical stability and reduced computational cost of this method yield
access to previously inaccessible momentum-dependent quasiparticle properties of low-lying excited states.
While conventional approaches like the non-self-consistent T -matrix approximation method cannot determine
these lifetimes, we are able to find the momentum-dependent lifetime at different interaction strengths of both
the attractive and repulsive polaron as well as the molecule. At weak coupling our results confirm predictions
made from effective Fermi liquid theory regarding the decay of the attractive polaron, and we demonstrate
that Fermi liquidlike behavior extends far into the strong-coupling regime where the attractive polaron and
molecule exhibit a p4 momentum scaling in their decay widths. Our results offer an intriguing insight into
the momentum-dependent quasiparticle properties of the Fermi polaron problem, which can be measured using
techniques such as Raman transfer and Ramsey interferometry.
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I. INTRODUCTION

In recent years, the polaron problem, a single particle in-
teracting with a quantum medium, has attracted significant
theoretical and experimental attention, due to its fundamen-
tal nature, its significance in understanding strongly coupled
systems such as ultracold atoms and two-dimensional semi-
conductor heterostructures, and its widespread occurrence in
a range of different experimental and natural systems, such
as dilute mixtures of protons within neutron stars [1,2] or
electrons moving through a crystal lattice of atoms [3,4]. In
two-dimensional semiconductor heterostructures, the Fermi
and Bose polaron problems capture the physical properties
of the interaction of electrons and excitons, along with the
formation of trion states [5–10]. As such, these systems
have been used to implement these limiting cases of extreme
population imbalance. An understanding of these limits is
an important step towards understanding the strong-coupling
physics in such systems, which may prove useful in exploring
whether they might be used for practical applications such as
inducing superconductivity [11–16].

*Contact author: jonasvonmilczewski@fas.harvard.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by Max Planck Society.

In ultracold-atom systems, the understanding of po-
laron problems has helped characterize the phase diagram
of both Fermi-Fermi and Bose-Fermi mixtures at strong
coupling [17–25]. Experimental observations of the Fermi
[23,24,26,27] and the Bose polaron problem [28–30] have
been flanked by theoretical insights obtained from different
methods such as variational [31–40], diagrammatic [41–45],
Monte Carlo [46–51], and functional renormalization group
(FRG) approaches [20,52–57]. These methods have been used
to characterize properties such as the polaron-to-molecule
transition or crossover and the competition with the forma-
tion of higher-order bound states. Furthermore, quasiparticle
properties such as the energy, effective mass, and quasiparticle
width have been extracted from these methods with great
success.

The decay widths, or equivalently the quasiparticle life-
times of the different collective excitations within the Fermi
polaron problem, however, have largely eluded a theoretical
description. As the decay width may be determined from the
self-energy of a quasiparticle, its self-energy needs to contain
the correct low-energy states to decay into. As a result, at T =
0 common non-self-consistent T -matrix approaches which
contain bare propagators can yield qualitatively correct decay
widths for the repulsive polaron [45,58,59] but not for the
attractive polaron or the molecule state as these renormalized
particles lie lower in energy than the bare particles contained
in their self-energies. Of course, at T > 0 these particles
may decay via thermal excitations [60–62]. Thus, at strong
coupling, a description of the decay channels of polaron and
molecule states needs to feature a form of self-consistency,
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requiring the use of renormalized Green’s functions within
the computation of the quasiparticle self-energies and decay
widths.

Such self-consistency is challenging to achieve within
conventional methods using a wave-function ansatz or a non-
self-consistent T -matrix approach [37–42]. As a result, decay
widths have been analyzed using Fermi liquid theory and
Fermi’s golden rule [63], in which the renormalization process
is taken into account by using simplified Green’s functions
with modified quasiparticle weight, energy gap, and effec-
tive mass. This works well when the lower-lying particles
are well described using Fermi liquid theory [24] and may
yield scaling laws for the decay rates in different decay chan-
nels [44,45,64–67]; however, it is expected to break down
at strong coupling [68] and thus the applicability of Fermi
liquid theory can only really be tested by comparison to a fully
self-consistent calculation.

Within FRG treatments [54] this self-consistency is nat-
urally included and thus the decay width may be computed
without the need to rely on the validity of Fermi liquid the-
ory. However, as the decay width of the zero-momentum
ground state vanishes identically, at a fixed interaction param-
eter momentum-dependent decay widths of low-lying excited
states can vary across several orders of magnitude within a
small momentum range. Especially at smaller decay widths,
this puts high requirements of numerical stability and preci-
sion on the methods used. Previous treatments using FRG [54]
lacked precisely this stability due to the need of a costly Mat-
subara integration and an analytic continuation of the resulting
Green’s function to real frequencies using numerical methods.

In this paper we present an improved FRG treatment of the
method used in Ref. [54]. By incorporating all information
about the analytical structure of the Fermi polaron problem,
we are able to carry out the Matsubara integration over imag-
inary frequencies exactly. By a subsequent mapping of the
FRG onto a horizontal line above the real frequency axis,
we perform an exact analytical continuation of the problem
onto the whole complex frequency plane. While this treatment
is formally equivalent to the treatment used in Ref. [54], it
provides greatly enhanced numerical stability and precision at
a significantly lower computational cost. These improvements
not only are used to study previously inaccessible quasiparti-
cle properties such as momentum-dependent decay widths of
low-lying excited states, but also allow us to revisit previous
results in the literature that implied a 9/2 power-law scaling
of the decay of the excited polaron and molecule as a func-
tion of the energy gap towards the respective ground states
[44]. Low-lying excited states of the Fermi polaron problem
have recently been probed in experimental studies of strongly
coupled Fermi-Fermi and Bose-Fermi mixtures at large, but
not extreme population imbalance [22–25]. An understanding
of the quasiparticle properties such as the decay widths of
low-lying excited states is thus of particular importance for
the study of the many-body physics of these systems.

This paper is structured as follows. In Sec. II the model
and the FRG are introduced. In Sec. III the exact frequency
integration and the exact analytical continuation onto an
equivalent FRG operating on a horizontal line above the real
frequency axis are performed. In Sec. IV the numerical solu-
tion of the resulting coupled flow equations is described along

with the initial conditions of the flow and the parametrization
of the renormalized Green’s functions. In Sec. V the quasi-
particle properties of the two polaron states and the molecule
are analyzed using this method, complemented by an anal-
ysis in terms of Fermi liquid theory. The physical results
described in Sec. V do not require knowledge of the functional
renormalization group. Thus, readers interested mainly in the
physical results, after familiarizing themselves with the model
presented at the beginning of Sec. II, are invited to proceed
directly to Sec. V from there. In Sec. VI we discuss possible
experimental probes of quasiparticle properties such as the
momentum-dependent decay width and we consider theoreti-
cal extensions of our work to finite impurity concentrations.

II. MODEL

We study the three-dimensional Fermi polaron problem
consisting of a mixture in which a bosonic or fermionic im-
purity is immersed in a fermionic bath of density nF . The
impurity and bath particles interact with each other and the
interaction is so strong that, in the absence of a fermionic
bath, a single impurity may form a bound state with a single
bath particle (this limit is commonly referred to as the vacuum
two-body limit). Working in units h̄ = kB = 1, such a system
may be described by the grand canonical Hamiltonian

Ĥ =
∑

p

[(
p2

2mψ

− μψ

)
ĉ†

pĉp +
(

p2

2mφ

− μφ

)
d̂†

p d̂p

]

+ g

V

∑
p,p′,q

ĉ†
p+qĉpd̂†

p′−qd̂p′ , (1)

where ĉ†
p and d̂†

p create bath fermions and impurities of mo-
mentum p, respectively. Their masses and chemical potentials
are given by mψ, mφ and μψ,μφ . The last term in Eq. (1) de-
notes an attractive zero-range contact interaction between the
impurity and bath of strength g < 0. The interaction strength g
is regularized in the ultraviolet by a momentum cutoff � and
is related to the physical s-wave scattering length a via

1

g
= mψmφ

mψ + mφ

⎛
⎝ 1

2πa
− 1

V

∑
|p|<�

2

p2

⎞
⎠, (2)

which is reproduced in the vacuum two-body limit. In the
course of our analysis we will find that, due to the single-
impurity limit, the Fermi level of the bath particles is given
by εF = μψ ; as a result, the Fermi wave vector kF given
by εF = k2

F /2mψ is related to the fermion density via k3
F =

6π2nF . As these are the only physical scales of the problem,
in the following the interaction will be characterized by the
dimensionless variable 1/kF a, which is a measure of the ratio
between interfermion distance and scattering length. This is a
well-studied system whose microscopic action is given by

S =
∫

x
ψ∗

x

(
∂τ − ∇2

2mψ

− μψ

)
ψx

+
∫

x
φ∗

x

(
∂τ − ∇2

2mφ

− μφ

)
φx

+ g
∫

x
ψ∗

x φ∗
x φx ψx , (3)

033309-2



MOMENTUM-DEPENDENT QUASIPARTICLE PROPERTIES … PHYSICAL REVIEW A 110, 033309 (2024)

where ψ and φ are the field operators corresponding to
the bath and impurity, respectively, x = (r, τ ) denotes the
coordinate r and imaginary time τ ∈ [0, 1/T ], and

∫
x =∫ 1/T

0 dτ
∫

dd r with d = 3 the dimension. In the following, we
consider zero temperature T = 0. While the Fermi polaron
problem may equally be studied at various mass ratios mψ/mφ

[40,56,69] (e.g., the FRG discussed in the present work was
employed at mass ratio mψ/mφ �= 1 in Ref. [22]), in the fol-
lowing we assume that the impurity and bath particles have
a bare dispersion described by the same mass m = mψ = mφ .
As long as the impurity is not too light such that bound states
involving several fermions become relevant [69], this has no
qualitative impact, as it merely changes where transitions
occur, but not whether they occur [40,56]. Furthermore, we
work in units where 2m = 1. The field ψ is of fermionic
Grassmann nature, while the statistic of φ is irrelevant due
to the single-impurity limit taken in this work.

In the vacuum and single-impurity limit this system can
host a bound state between a bath and an impurity particle, in
both two and three dimensions. Thus, in order to facilitate the
description of this composite particle in a convenient way, we
consider an equivalent two-channel model [52,70] in which
the interspecies interaction is mediated by a molecule field t
describing the composite particle of mass 2m [71–74],

S =
∫

p,ω

( ∑
σ=ψ,φ

σ ∗(ω, p)(−iω + p2 − μσ )σ (ω, p)

+ t∗(ω, p)G−1
t,�(ω, p)t (ω, p)

)

+ h
∫

x
(ψ∗

x φ∗
x tx + t∗

x φx ψx ). (4)

Here the momentum p and the Matsubara frequency ω are the
Fourier variables of r and τ and

∫
p,ω

≡ (2π )−d−1
∫

dd p dω.
In this two-channel model a bath and an impurity particle can
be converted into a molecule with a Yukawa coupling h and
Gt,� denotes the bare molecule propagator. We operate in the
limit where h → ∞ such that t becomes a purely auxiliary
Hubbard-Stratonovich field with no dynamics, i.e., it can be
integrated out to yield the original action (3) for h2Gt,� =
−g [52,70] (see also Appendix A). In the limit h → ∞, the
models (3) and (4) are fully equivalent and describe the same
physics. Every physical quantity within the model (3) is equiv-
alent to a quantity in the model (4), which is independent of h
in the limit h → ∞. For example, the renormalized molecular
propagator Gt ∝ 1/h2 arising from a renormalization of the
molecular sector within (4) can be related to the many-body
T matrix, arising from a renormalization of g within (3) via
T = −h2Gt . Similarly, the renormalized impurity propagator
Gφ is independent of h. In fact, after taking the limit, h can be
eliminated completely and never needs to be specified in any
actual computation.

To obtain access to the physical properties of this system,
inscribed in the full Green’s and vertex functions, we deploy
a functional renormalization group approach similar to the
constructions used in Refs. [20,54,56]. For a detailed expla-
nation of the Fermi polaron problem, we refer the reader to
Refs. [20,31–34,36–39,41–44,46–54]; for a detailed dis-

cussion of the FRG in general we refer the reader to
Refs. [75–79]. In the following we provide a brief summary
of the steps involved; see Refs. [20,54,56] for more details.

FRG equations

The FRG accounts for the renormalization of Green’s
functions due to quantum fluctuations by providing coupled
differential equations linking the quantum effective action �

(the generating functional of all one-particle irreducible ver-
tices) to the bare action S using a flowing effective action �k .
This is achieved using the Wetterich equation [80]

∂k�k = 1
2 STr

[(
�

(2)
k + Rk

)−1
∂kRk

]
, (5)

where �
(2)
k represents the matrix of second functional deriva-

tives of �k in the fields

(
�

(2)
k

)
σ (ω,p),σ ′(ω′,p′ ) = δ

δσ (ω, p)

δ

δσ ′(ω′, p′)
�k,

σ, σ ′ ∈ {ψ∗, ψ, φ∗, φ, t∗, t}, (6)

and Rk is a matrix containing so-called regulator functions
Rσ,k , which control the integration of quantum fluctuations.
The nonzero entries of Rk are given by

(Rk )σ (ω,p)∗,σ ′(ω′,p′ ) = ±δ(ω − ω′)δ(p − p′)δσ,σ ′Rσ,k, (7)

with a positive sign if σ and σ ′ are complex-conjugate fields
and a negative sign otherwise. The supertrace STr denotes a
summation over all momenta and frequencies, as well as the
different fields, including a minus sign for fermions.

Provided the regulator functions within Rk fulfill certain
conditions [76,77], in the ultraviolet at k = � the flowing
effective action will be equivalent to the bare action �k=� =
S + const, while in the infrared at k = 0 the quantum effective
action is obtained as �k=0 = �. Having obtained this func-
tional, all physical information can be extracted from it.

While the treatment of the problem so far using Eq. (5) is
exact, it is also impossible to solve as the effective quantum
action contains infinitely many vertices yielding an infinite-
dimensional set of coupled differential equations. It is thus
customary to introduce an ansatz containing finitely many
terms representing the physically most relevant processes
in a so-called vertex expansion. Following the treatment in
Refs. [20,54,56], we thus choose the effective action trunca-
tion

�k =
∫

p,ω

( ∑
σ=ψ,φ

σ (ω, p)∗G−1
σ,k (ω, p)σ (ω, p)

+ t∗(ω, p)G−1
t,k (ω, p)t (ω, p)

)

+ h
∫

x
(ψ∗

x φ∗
x tx + t∗

x φx ψx ). (8)

From this truncation one can obtain flow equations for its
different constituents using appropriate functional derivatives
of Eq. (5). Their diagrammatic representation is shown in
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FIG. 1. Diagrammatic representation of the FRG flow equa-
tions (9) and (11). The flows of (a) the impurity Green’s function
∂kG−1

φ,k and (b) the molecular Green’s function ∂kG−1
t,k are shown,

where wiggly and dashed lines denote impurity and bath propaga-
tors, respectively, and solid lines denote molecular propagators. The
coupling vertex proportional to hkψ

∗φ∗t is denoted by squares.

Fig. 1 and in terms of the flowing Green’s functions they read
[54]

∂kG−1
φ,k (ω, p) = h2∂̃k

∫
q,ν

Gc
t,k (ω + ν, p + q)Gc

ψ,k (q, ν), (9)

∂kG−1
ψ,k (ω, p) = −h2∂̃k

∫
q,ν

Gc
t,k (ω + ν, p + q)Gc

φ,k (q, ν),

(10)

∂kG−1
t,k (ω, p) = −h2∂̃k

∫
q,ν

Gc
φ,k (ω − ν, p − q)Gc

ψ,k (q, ν).

(11)

Here the Gc denote the regulated Green’s functions given by(
Gc

σ,k

)−1 = (Gσ,k )−1 + Rσ,k, (12)

where Rσ,k are the regulator functions within Rk [Eq. (7)],
which will be specified in the following. In these expressions
∂̃k denotes a derivative with respect to the k dependence of
the regulator only, i.e., ∂̃k = (∂kRk )∂Rk . As we will see in the
following, ∂kG−1

ψ,k = 0 and thus the bath Fermi energy εF is
equivalent to its chemical potential μψ = εF .

In the single-impurity limit, we expect the low-energy ex-
citations of the impurity and the composite molecule particle
to lie at low momenta, while those of the bath lie around
its Fermi surface where p2 = εF . It is desirable for these
fluctuations to be integrated out towards the end of the flow
near k = 0. To this end, we use sharp momentum regulators
Rσ,k = (Gσ,k )−1( − 1 + 1/�(· · · )) [79,81] which are chosen
such that they yield regulated flowing propagators of the form

Gc
ψ,k (ω, p) = Gψ,k (ω, p)�(|p2 − εF | − k2), (13)

Gc
φ,k (ω, p) = Gφ,k (ω, p)�(|p| − k), (14)

Gc
t,k (ω, p) = Gt,k (ω, p)�(|p| − k). (15)

While this choice of regulator functions allows for simple
comparison to different approximations, it provides a further
advantage that is not immediately obvious. In the following,
we will see how its trivial dependence on frequency and its
simple structure allow for an exact evaluation of the Mat-
subara integration in Eqs. (9)–(11) and an exact analytical
continuation of the obtained Green’s function to a horizontal
line in the complex frequency plane (see Fig. 2).

FIG. 2. Schematic diagram of the complex plane and the inter-
polation space. (a) Complex frequency plane, with the Matsubara
frequencies along the vertical axis (blue shaded) and the real fre-
quencies along the horizontal. The theory originally operates on the
Matsubara frequencies and the inverse Green’s functions G−1

σ,k (ω, p)
are parametrized by laying out a grid (iωi, pj ) in frequency and
momentum space [blue crosses in (b)] and interpolating between
the grid points [blue shaded region in (b)], using also the symmetry
G−1

σ,k (−ω, p) = G−1
σ,k (ω, p)∗. After exact Matsubara integration and

exact continuation, the renormalization group is defined on a hori-
zontal line R + iε [red shaded region in (a)] and the retarded inverse
Green’s functions GR,−1

σ,k (� + iε, p) are parametrized by laying out a
grid (�i + iε, pj ) [red circles in (b)] and interpolating between the
grid points [red shaded region in (b)]. For � < �min or p > pmax the
retarded Green’s functions are approximated by asymptotic functions
GR,−1

>,σ,k in the flow equations [see Eqs. (25) and (26)], while � > �max

is never accessed due to the structure of the flow equations (23)
and (24). By comparison in Ref. [54], the renormalization group
equations are solved on a grid of Matsubara frequencies [blue in (b)]
and only afterward are the results continued to real frequencies using
numerical analytic continuation.

III. EXACT MATSUBARA INTEGRATION

So far, our treatment of the Fermi polaron problem in
three dimensions is exactly equivalent to the treatment de-
veloped in Ref. [54]. A treatment in two dimensions can be
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achieved as a natural extension of that work using Ref. [20].
In Ref. [54] the flowing inverse Green’s functions G−1

σ,k are
parametrized by laying out a grid in Matsubara frequencies
and momenta (ωi, p j ) (see Fig. 2). The full frequency and mo-
mentum dependence of G−1

σ,k is then obtained by interpolating

over the function values at these points Ci, j
σ,k ≡ G−1

σ,k (ωi, p j ).
In Ref. [54] the flow of these coefficients is computed as a
coupled differential equation and at the end of the flow the
full Green’s function in terms of Matsubara frequencies is
obtained as an interpolation over these coefficients. To ob-
tain the retarded Green’s function just above the real axis, in
Ref. [54] this function is then continued analytically using a
Padé approximation (see Fig. 2).

During the course of the evaluation of the flow equa-
tions, however, in Ref. [54] a costly integration over the
Matsubara frequencies is performed numerically. Due to the
slow convergence rate of this integration, its evaluation yields
only moderate precision for reasonable computation times.
For ground-state properties, this yields reasonable results.
However, for the study of excited-state properties the points
of interest in the complex frequency plane lie further away
from the points at which the FRG was performed. Thus, the
numerical error incurred from the Matsubara integration is
propagated during the numerical analytical continuation, ren-
dering the obtained results for excited states highly unstable.
This may lead to misleading results such as a p2 dispersion
with positive effective mass of the attractive polaron in a
region where it is known to have a negative effective mass
[40,82] (see also Fig. 8).

Leveraging the analytical structure of the flowing propaga-
tors in the single-impurity system, we will now demonstrate
how these two problems can be circumvented in a simple
maneuver by performing the Matsubara integration exactly,
which yields an exact analytical continuation of the propaga-
tor functions to the whole complex frequency plane.

Analytical structure of zero-density propagators
and the residue theorem

To begin, we recall general analytical properties of the
Green’s functions at hand [83,84]. In the complex fre-
quency plane, the Matsubara frequencies ω ∈ R lie along the
imaginary axis z = iω and the flowing Matsubara Green’s
functions Gσ,k are evaluated along this axis. Along this axis
in the upper half of the complex frequency plane (UCP),
they correspond to the retarded Green’s functions Gσ,k (ω >

0, p) = GR
σ,k (iω, p), and since the retarded Green’s function

GR
σ,k (z, p) is analytic for Im(z) > 0, the Matsubara Green’s

function can be continued to the retarded Green’s func-
tion here. The analogous statement holds for the advanced
Green’s function GA

σ,k (z, p) for Im(z) < 0. Along the real
axis, the retarded and the advanced Green’s functions ful-
fill the relations ReGR

σ,k (� + i0+, p) = ReGA
σ,k (� − i0+, p)

and ImGR
σ,k (� + i0+, p) = −ImGA

σ,k (� − i0+, p) for � ∈ R.
Furthermore, from the retarded Green’s function one can ob-
tain the flowing spectral function

Aσ,k (�, p) = GR
σ,k (� + i0+, p) − GA

σ,k (� − i0+, p)

= 2 Im
[
GR

σ,k (� + i0+, p)
]
, (16)

from which the occupation of states with momentum p can be
obtained as

nσ,k (p) =
∫

�

nB (F )(�)Aσ,k (�, p), (17)

where depending on the statistics of the σ field nB (F )(�) =
1/[exp(�/T ) ∓ 1] denotes a Bose (Fermi) distribution func-
tion and nB (F )Aσ,k � 0.

Since we work in the single-impurity limit, the occupation
of impurity and molecule states must vanish at all times:
nσ,k (p) = 0 for σ = φ, t and for all k and p. Thus, from
Eq. (17) it is easy to see that at T = 0 for � < 0, irrespective
of the statistic of the impurity, it holds that

Aφ (t ),k (� < 0, p) = 0. (18)

This has striking consequences: While the functional form
of the impurity and molecule Green’s function is generally
unknown (it is exactly these functions that we are solving for),
the bath Green’s function is known exactly as it does not flow.
Suppressing the momentum dependences for now and using
the analytic properties for ω > 0, Eq. (10) can be rewritten as∫

ν

Gc
t,k (ω + ν)Gc

φ,k (ν) =
∫ ∞

0

dν

2π
Gc,R

t,k (iω + iν)Gc,R
φ,k (iν)

+
∫ 0

−ω

dν

2π
Gc,R

t,k (iω + iν)Gc,A
φ,k (iν)

+
∫ −ω

−∞

dν

2π
Gc,A

t,k (iω + iν)Gc,A
φ,k (iν).

(19)

After (i) performing contour integration along the paths shown
in Fig. 3(a), (ii) using that the integrands are analytic in the
interior of these paths, and (iii) respecting that the integrand
vanishes along the arcs to infinity, this is equivalent to

−
∫ −∞

0

d�

2π

[
Gc,R

t,k (iω + �)Ac
φ,k (�)

+ Ac
t,k (�)Gc,A

φ,k (−iω + �)
] = 0. (20)

Here Gc,R
σ,k and Ac

σ,k are defined analogously to the regulated
flowing propagators in Eqs. (13)–(15). As a result, ∂kG−1

ψ,k =
0 and G−1

ψ,k (ω, p) = −iω + p2 − εF such that GR,−1
ψ,k (z, p) =

GA,−1
ψ,k (z, p) = −z + p2 − εF , which can be used to signifi-

cantly simplify the remaining flow equations.
In Eqs. (9) and (11), the appearing bath propagators have

poles at ν = −iz = −i(q2 − εF ) and ν = −iz = i(q2 − εF ),
respectively, which each lie in the left half of the complex
plane for q2 − εF < 0 and q2 − εF > 0, respectively. Replac-
ing the integrand in Eqs. (9) and (11) with the corresponding
advanced and retarded propagators and carrying out a contour
integration along the contours shown in Figs. 3(b) and 3(c)
while taking into account the pole of the bath propagator and
the vanishing of the spectral functions described above for
ω > 0, one thus obtains

∂kG−1
φ,k (ω, p) = −h2∂̃k

∫
q

�(|p + q| − k)�(εF − q2 − k2)

GR,−1
t,k (iω + q2 − εF , p + q)

,

(21)
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FIG. 3. Schematic drawing of the contours in the complex plane
used to obtain Eqs. (20), (23), and (24). (a) The Matsubara summa-
tion on the left-hand side of Eq. (19) is broken up into the three pieces
shown along the y axis, where the Matsubara Green’s functions can
be replaced with the corresponding retarded or advanced Green’s
functions. Using the analyticity of the integrands, the integral along
the whole contour vanishes and the integral along the arcs to infinity
vanishes due to the decay of the Green’s functions. As a result, the
vertical components of this contour integration [Eq. (19)] can be
inferred from the horizontal components shown in Eq. (20), which
vanish due to the single-impurity limit [see Eq. (18)]. The contours
used to obtain (b) Eq. (23) and (c) Eq. (24) are shown. For q − εF <

0 (red crosses) and q − εF > 0 (green crosses) the position of the
pole in the bath propagator is shown and it contributes to the integral
if it lies within the contour.

∂kG−1
t,k (ω, p) = −h2∂̃k

∫
q

�(|p + q| − k)�(q2 − εF − k2)

GR,−1
φ,k (iω − q2 + εF , p + q)

.

(22)

Finally, the flow of the imaginary-time Green’s function can
be continued to an arbitrary horizontal line in the upper com-
plex plane iω → � + iε to arrive at

∂kGR,−1
φ,k (� + iε, p)

= −h2∂̃k

∫
q

�(|p + q| − k)�(εF − q2 − k2)

GR,−1
t,k (� + iε + q2 − εF , p + q)

, (23)

∂kGR,−1
t,k (� + iε, p)

= −h2∂̃k

∫
q

�(|p + q| − k)�(q2 − εF − k2)

GR,−1
φ,k (� + iε − q2 + εF , p + q)

, (24)

where ε > 0 is a positive number that does not necessarily
have to be close to 0. The ∂̃k acts only on the Heaviside
functions, and under suitable parametrization, the right-hand
sides of Eqs. (23) and (24) contain only an integral over the
angle between p and q. The Matsubara integration has been
eliminated completely and the coupled differential equation in
Matsubara frequencies has been mapped to a coupled differen-
tial equation within a horizontal line in the complex frequency
plane.

IV. SOLUTION OF THE COUPLED FLOW EQUATIONS

After the elimination of the Matsubara integration along
with the analytical continuation, we can now solve the coupled
differential equation system in Eqs. (23) and (24). Impor-
tantly, upon choosing a horizontal line in the complex plane
(see Fig. 2), these differential equations only couple the re-
tarded impurity and molecule Green’s functions within the
given horizontal line, without coupling to other horizontal
lines.

A. Parametrization of inverse retarded Green’s functions

To parametrize the flowing inverse retarded Green’s func-
tions we lay out a grid consisting of momenta pi and
frequencies � j + iε on which we store the function values
of the Green’s functions in the form of the coefficients Di, j

σ,k ≡
GR,−1

σ,k (� j + iε, pi ) for � ∈ R and ε > 0. The momenta and
frequencies in this grid need to be chosen such that they (i)
resolve well the regions of interest in the retarded Green’s
function and (ii) enable a good resolution in the regions that
are integrated over in the evaluation of the flow equations (23)
and (24) such that the interpolating function approximates the
actual Green’s function well.

From Eqs. (23) and (24) it can easily be seen that for a point
of interest � + iε only retarded Green’s functions at points
�′ + iε with �′ < � are evaluated. Furthermore, all Green’s
functions have spherical symmetry in their momentum
component such that GR,−1

σ,k (� + iε, p) = GR,−1
σ,k (� + iε, |p|),

enabling a parametrization by the modulus of the momentum
component. Thus the grid is contained within (pi,� j + iε) ∈
[0, pmax] × [�min + iε,�max + iε], where �max is chosen ac-
cording to interest in physical properties and pmax and �min

are chosen to enable integration during the evaluation of
flow equations. The choice of the value of ε follows from a
compromise: It needs to be chosen such that R + iε is close
enough to the real axis to yield a good approximation for the
spectral function (29). However, if the chosen value of ε is
too small, the integration of the flow equations will be over
strongly peaked functions, which requires small step sizes as
the differential equation is solved along the flow parameter k.

Within the grid, the GR,−1
σ,k are obtained from the coeffi-

cients Di, j
σ,k using a bivariate cubic spline interpolation, while

for values outside the grid we use that asymptotically for
p → ∞ and � → −∞ the GR,−1

σ,k take on their bare form.
Thus, ensuring continuity at the boundaries of the grid, for
|p| > pmax or � < �min they are approximated by functions
of the functional form of their vacuum solutions [54]

GR,−1
>,φ,k (z, p) = −z + p2 − μφ + f 1

cont, (25)
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GR,−1
,>t,k (z, p) = h2

8π

(
−1

a
+

√
− z

2
+ p2

4
+ f 2

cont

)
, (26)

where f 1,2
cont ensure continuity at the boundary.

B. Initial conditions of the flow

The initial conditions for the flow of the impurity at the
cutoff scale k = � are given by the bare impurity propagator
GR,−1

φ,k=�
(� + iε, p) = −(� + iε) + p2 − μφ . The initial con-

dition of the molecule propagator is chosen such that for a
flow in the vacuum two-body limit (obtained by tuning the
chemical potentials accordingly [20,54]) it reproduces the
vacuum molecule propagators at k = 0. The initial condition
of the bath fermions is given by GR,−1

ψ,k=�
(� + iε, p) = −(� +

iε) + p2 − εF . The impurity chemical potential, which de-
notes the energy required to add one impurity to the system
μφ = E (Nφ ) − E (Nφ − 1), is chosen iteratively such that at
the end of the flow at k = 0 the lowest-lying excitation (the
ground state) in the impurity and molecule sector is found at
� = 0.

From the flow equations (23) and (24) one can see that the
impurity propagator does not flow for k2 > εF . Thus, for εF <

k2 < �2, the impurity propagator remains in its bare form and
Eqs. (24) and (23) can be integrated analytically from k = �

down to k = √
εF . Hence the actual numerical solution of the

flow equations begins at k = √
εF with the initial condition

GR,−1
φ,k=√

εF
(� + iε, p) = GR,−1

φ,k=�
(� + iε, p) (27)

for the impurity and

GR,−1
t,k=√

εF
(� + iε, p) = −

∫ �

√
εF

dk′(∂kGR,−1
t,k=k′

)
(� + iε, p)

+ GR,−1
t,k=�

(� + iε, p) (28)

for the molecule. A detailed expression for the molecule initial
condition is given in Appendix A. Due to the start of the
flow not at k = � but rather at k = √

εF , we can safely take
the limit � → ∞ during the computation of the molecular
initial condition such that the solution of the flow equations is
entirely independent of the upper cutoff scale.

V. RESULTS

From the numerical evaluation of the flow equations down
to k = 0, we obtain the renormalized retarded Green’s func-
tions of the molecule and the impurity along a horizontal
line in the complex frequency plane GR,−1

φ (t ) (� + iε, p) =
GR,−1

φ (t ),k=0(� + iε, p). Performing the same calculation several
times for different horizontal lines (characterized by the value
of ε ∈ R, ε > 0), one then obtains a discretized parametriza-
tion of these Green’s functions in the whole upper half of the
complex frequency plane.1

Several quantities can be deduced from these data via
analytical continuation of the retarded Green’s function. The

1Similarly, performing the calculation for ε < 0, one obtains the
advanced Green’s function in the lower half of the complex plane.

FIG. 4. Impurity and molecular single-particle spectral func-
tions. The (a) impurity spectral function Aφ (�, p) and (b) molecular
spectral function At (�, p) are shown as a function of momentum and
energy for an interaction strength of 1/kF a = 0.1. In (a) the attractive
polaron is visible as a feature at low energy, which at higher momenta
broadens and joins a particle-hole continuum. Similarly, the repulsive
polaron is visible as a faint excitation at low energy, which for the
shown interaction strength holds only little quasiparticle weight. In
(b) the molecule can be seen as an excitation at an energy above
the attractive polaron. The molecule feature broadens with increasing
momentum and joins a particle-particle continuum.

single-particle spectral function of the molecule and the im-
purity can be obtained by analytical continuation to the real
axis

Aφ (t )(�, p) = 2 lim
ε→0

ImGR
φ (t )(� + iε, p). (29)

Here, in practice, a small but finite value of ε is sufficient such
that the results of our flow solution can be used without further
analytical continuation.

The resulting spectral functions of the polaron and the
molecule, Aφ and At , respectively, are shown in Fig. 4 for
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FIG. 5. Energy, quasiparticle weight, and decay width of the molecule as well as the attractive and repulsive polaron as a function of 1/kF a.
(a) The zero-momentum energies are shown for the attractive polaron E att

φ (p = 0) (black), the repulsive polaron E rep
φ (p = 0) (yellow), and the

molecule Et (p = 0) (red) in units of the Fermi energy εF . A ground-state transition at 1/(kF a)c ≈ 0.9 between the molecule and the attractive
polaron can be seen, while the repulsive polaron is an excited state above the scattering threshold. (b) For increasing 1/kF a the modulus of
the quasiparticle weight |Z| of the attractive polaron decreases and the spectral weight is thus shifted to the repulsive polaron, for which |Z|
increases. (c) Approaching the transition, the decay width �t of the molecule, shown in units of the Fermi energy εF , decreases and eventually
turns to zero (within numerical accuracy) as the transition is reached. The decay width of the attractive polaron �att

φ in turn is zero before
the transition and begins to increase beyond it. The repulsive polaron has a decreasing decay width �

rep
φ as its quasiparticle weight increases.

While the decay widths of the attractive polaron �att
φ and the molecule �t are shown for the scale on the left side of (c), the repulsive polaron

decay width �
rep
φ is shown with respect to the right scale. In addition to the results obtained from the FRG (solid line), the decay width of the

repulsive polaron is shown as obtained from a conventional non-self-consistent T -matrix approach (dashed line) [42,43,45].

the exemplary value of 1/kF a = 0.1. In Fig. 4(a) the attractive
polaron is visible as a sharp excitation just above the scattering
threshold, which with increasing momentum broadens and
eventually joins a particle-hole continuum, losing its rele-
vance as a proper quasiparticle. At higher energies, a faint
excitation at low momenta can be seen which corresponds to
the repulsive polaron. For the shown interaction strength, the
repulsive polaron is not a well-defined quasiparticle, which
will also be evidenced by a small quasiparticle weight in
Fig. 5. In Fig. 4(b) the molecular spectral function is shown
and the molecule excitation can be seen at small momenta.
For the shown interaction strength, the molecule is an ex-
cited quasiparticle which at higher momenta merges with a
particle-particle hole continuum. Note that, due to the role of
the chemical potential as an energy offset, the absolute energy
of the appearing quasiparticles is given by � + μφ .

To obtain the exact energies and lifetimes of the quasiparti-
cles visible as sharp peaks in the spectral function, one needs
to find the poles of the retarded Green’s function in the lower
half of the complex plane (LCP) via analytic continuation of
the retarded Green’s function across the real axis. At such a
pole the inverse retarded Green’s functions vanish

GR,−1
φ (t ) (�′

φ (t )(p) − i�φ (t )(p), p) = 0, �φ (t ) > 0, (30)

and the momentum-dependent quasiparticle energy and decay
width of the respective quasiparticle are given by

Eφ (t )(p) = �′
φ (t )(p) + μφ (31)

and �φ (t ), respectively. Finally, the inverse quasiparticle
weight can be obtained as

Z−1
φ (t ) = − ∂

∂�
GR,−1

φ (t ) (�′
φ (t )(p) − i�φ (t )(p), p). (32)

The analytic continuation to the LCP can be achieved
using a Padé approximation in which data from the UCP

is used as input. Importantly, because we continue the
retarded Green’s function (and not the Matsubara Green’s
function) across the real axis, the presence of branch cuts
within the Matsubara Green’s function does not lead to a
complicated analytical structure within the retarded Green’s
function. This is because the branch cuts originate from the
symmetry requirement ImGR

σ,k (� + i0+, p) = −ImGA
σ,k (� −

i0+, p), which for ImGR
σ,k (� + i0+, p) > 0 leads to branch

cuts in the Matsubara Green’s function. Furthermore, rather
than continuing the retarded Green’s functions itself, we in-
stead continue the inverse retarded Green’s functions GR,−1

φ (t ) .
As a result, even poles of the retarded Green’s function in
the LCP merely appear as roots within the inverse retarded
Green’s function and the continued function is extremely
well behaved. This behavior allows us to alternatively use
a simpler method of continuation where rather than using a
Padé approximation, an expansion to linear order using the
Cauchy-Riemann equations is employed such that the inverse
retarded Green’s function may be approximated as

GR,−1
φ (t ) (� + iy, p) = i(y − ε)

∂

∂�
GR,−1

φ (t ) (� + iε, p)

+ GR,−1
φ (t ) (�, iε, p) (33)

producing indistinguishable results in the context of low-lying
excited states.

A. Energies and lifetimes at zero momentum
in three dimensions

To begin, we study the energies, quasiparticle weights,
and lifetimes of the attractive and the repulsive polaron as
well as the molecule. In Fig. 5 we show the zero-momentum
energies Eφ (t )(p = 0), which are consistent with those ob-
tained in Ref. [54]. Below a critical interaction strength of
1/(kF a)c ≈ 0.9 [54] the ground state is given by the attractive
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polaron, while at the critical interaction strength the polaron-
to-molecule transition [37,38,46–48,54] takes place, beyond
which the ground state is given by a molecular state. The re-
pulsive polaron exists as an excited state in the spectrum above
the scattering threshold and its energy vanishes asymptotically
for 1/kF a → ∞. The quasiparticle weight Z of the attractive
and the repulsive polaron is shown as well, and as expected
[45,54] with increasing 1/kF a, the quasiparticle weight of the
attractive polaron decreases while the quasiparticle weight of
the repulsive polaron increases.

Additionally, in Fig. 5 we show the decay widths of the
zero-momentum attractive and repulsive polarons, �att

φ (p =
0) and �

rep
φ (p = 0), respectively, as well as the molecule,

�t (p = 0). Furthermore, the decay widths of the repulsive
polaron as obtained from a non-self-consistent T -matrix ap-
proach are shown [42,43,45]. As expected, the respective
ground-state particles have a decay width consistent with zero.
In the regime where the attractive polaron or the molecule
are excited-state particles, their decay widths increase as one
moves away from the polaron-to-molecule transition. With in-
creasing quasiparticle weight, the decay width of the repulsive
polaron �

rep
φ (p = 0) decreases.

Compared to previous work using a similar model (but
a different method of solving the flow equations), for the
attractive polaron we obtain decay widths about an order of
magnitude larger than those obtained in Ref. [54], highlight-
ing the delicacy of obtaining these roots and the need for
a numerically stable method with many grid points and a
small step size (because the decay widths of these low-lying
excited states are relatively small, the pole location needs to
be determined with great accuracy). For higher-excited states
the decay widths are larger and the poles are further inside the
LCP. As a result, the numerical fluctuations of our method are
clearly visible, but remain on the order of a few percent, in
contrast to previous work.

We note that for most interaction strengths, the decay
widths of the attractive polaron and the molecule are not
accessible in simple non-self-consistent approaches, but rather
approaches with some degree of self-consistency (such as a
treatment in Fermi liquid theory or in self-consistent T -matrix
theory [62] or as in our work with FRG) are necessary to ob-
tain access to these quantities. Compared to the decay widths
of the repulsive polaron obtained from non-self-consistent
approaches, the FRG yields larger decay widths in the regime
where the attractive polaron is the ground state; however, the
decay width of the FRG yields a more stable polaron as 1/kF a
is increased.

In Ref. [44] the decay width of the attractive polaron in
the excited state was predicted to follow a �E9/2 scaling
where �E = Eφ (p = 0) − Et (p = 0) > 0 defines the energy
gap between the attractive polaron and the molecule. To be
precise, it was predicted that the imaginary part of the retarded
self-energy follows a scaling

Im�R
φ (�′′

φ (p = 0), p = 0) ∝ Z ′′
t kF a

(
�E

εF

)9/2

εF , (34)

where, in contrast to Eq. (30), �′′ is defined as

ReGR,−1
φ (t ) (�′′

φ (t )(p), p) = 0 (35)

FIG. 6. Decay width of the attractive polaron as a function of the
energy gap �E = E att

φ − Et , both in units of the Fermi energy εF . The
decay width �att

φ (p = 0) of the attractive polaron as obtained from
Eq. (30) is shown (red crosses) along with the imaginary part of the
inverse polaron propagator GR,−1

φ (�′′
φ (0), 0) at the pole position as

obtained from Eq. (35) (black circles). Note that, along the real axis,
the imaginary parts of the self-energy and the inverse propagator
coincide. A curve proportional to �E 9/2 is shown in yellow dots and
fits the imaginary part of the self-energy. Furthermore, a fit according
to Eq. (34) is shown (black solid line). Multiplying the power law
shown in Eq. (34) with the quasiparticle weight of the attractive
polaron Zφ , in analogy to Eq. (36), closely matches the decay width
as obtained from Eq. (30) (red solid line).

and Z ′′
φ (t ) is evaluated at �′′

φ (t )(p = 0). In this scheme one can
then approximate the decay width as

�′′
φ (t ) ≈ Re(Z ′′

φ (t ) )Im
[
�R

φ (t )(�
′′
φ (t )(p = 0), p = 0)

]
. (36)

Using Eq. (35), in Fig. 6 we show the imaginary part of
the inverse polaron propagator GR,−1

φ at �′′
φ (p = 0) and p = 0

as a function of the energy gap for 1/kF a > 1/kF ac. Note
that the self-energy and the inverse propagator are related
by GR,−1

φ (t ) = GR,−1
φ (t ),k=�

− �R
φ (t ). Furthermore, we show the po-

laron quasiparticle decay width as obtained from Eq. (30). As
it can be seen, the imaginary parts as obtained using Eq. (35)
fit well with a power-law scaling of �E9/2, obtained by fitting
a function of the form C1(�E/εF )9/2, where C1 ∈ R. Further-
more, they fit well with the scaling proposed in Ref. [44],
obtained by fitting the function C2Zt kF a(�E/εF )9/2, C2 ∈ R.
Multiplying that same curve with the polaron quasiparticle
weight Zφ results in a curve that fits well with the quasiparticle
decay widths computed according to Eq. (30). This relation
between the imaginary part of the self-energy and the decay
width remains accurate for all the results shown in this work.
At small energy gaps the value of ε = 10−4 we used becomes
larger than the decay widths and thus the decay widths become
inaccurate and begin to fluctuate.
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FIG. 7. Decay width of the molecule as a function of the energy
gap �E = Et − E att

φ , both in units of the Fermi energy εF . Like in
Fig. 6, the decay width �t (p = 0) of the molecule obtained from
Eq. (30) is shown (red crosses) along with the imaginary part of
GR,−1

t (�′′
t (0), 0)εF /h2 at the pole position as obtained from Eq. (35)

(black circles). A curve fit proportional to �E 4 is shown as a solid
line and fits the imaginary part of the self-energy. Furthermore, a
fit following a power law proportional to Z3

φZ2
t (m∗

φ )7/2(m∗
t )2�E 7/2

is shown (black dotted line) along with a simplified scaling pro-
portional to Zφ (m∗

φ )3/2�E 7/2 (purple dotted line) (for details see
Appendix B 1).

Conducting the same analysis for the molecule for
1/kF a < 1/kF ac, in Fig. 7 we show the imaginary part of the
molecule self-energy along with the molecule decay widths.
As before, at small energy gaps the decay widths and imagi-
nary parts fluctuate, but for �E > 0.06εF they are stable. As
can be seen, the imaginary parts fit well a C3(�E/εF )4 scaling
with C3 ∈ R, which is notably different from the �E9/2 scal-
ing proposed in [44]. While the diagrammatics in Ref. [44]
does not include decay processes to infinite order like our
FRG, there is also a fundamental difference in the diagram-
matics used. Due to the coupling of the impurity-majority
interaction into a molecule channel, crossed diagrams are
excluded in our approach at all orders. In Ref. [44], however, a
low-order diagrammatic expansion is employed that includes
crossed diagrams. Within that diagram, two T matrices ap-
pear which contain no crossed diagrams within them (see
Appendix B 1). As a result, as one approaches the transition,
in the diagrammatics in Ref. [44] the available phase space for
decay processes vanishes as �E7/2, while the corresponding
matrix element vanishes as �E . The vanishing of the matrix
element in that approach, however, is entirely due to the use
of a noncrossed T matrix within a crossed diagrammatics.
Performing a similar analysis as in Ref. [44] but excluding
crossed diagrams, we analytically obtain a scaling propor-
tional to ∼Z3

φZ2
t (m∗

φ )7/2(m∗
t )2�E7/2 (see Appendix B 1 for de-

tails). This scaling is shown in Fig. 7 as well, but it fits the data

points only for 0.05εF < �E < 0.2εF , as the effective mass
of the molecule eventually diverges and turns negative (see
Fig. 8), and thus the pure �E4 scaling fits more accurately.

B. Momentum-dependent energies and decay widths

Using the precision available within our numerical ap-
proach, it is possible to obtain not only zero-momentum
properties but also momentum-resolved energies (i.e., the
full dispersion relation, including effective mass) as well as
lifetimes and weight. In Fig. 8 we show the momentum-
dependent attractive polaron and molecule dispersion rela-
tions with respect to the energy of the ground state. As can be
seen, for 1/kF a < 1/kF ac, the polaron energies at p = 0 coin-
cide with the ground-state energies. The dispersion relations
follow a close to quadratic behavior with |p|. Approaching
and crossing the transition at 1/kF ac, this quadratic depen-
dence becomes weaker as the effective polaron mass increases
and eventually diverges, as can be seen from the polaron
dispersions at 1/kF a = 1.25 and 1.5 [40]. Accordingly, the
decay width of the attractive polaron has �att

φ (p = 0) ≈ 0
for 1/kF a < 1/kF ac and for 1/kF a > 1/kF ac it has �att

φ (p =
0) > 0. In both regimes the decay width of the attractive po-
laron increases monotonically as |p| increases [see Figs. 8(c)
and 8(d)].

Similarly, the dispersion of the molecule is gapped for
1/kF a < 1/kF ac and exhibits a negative effective mass at
sufficient detuning from 1/kF ac. Approaching the transition,
the effective mass diverges and turns towards a quadratic
dispersion with positive effective mass before the transition
is crossed. Beyond the transition, the dispersion is ungapped
and the effective mass is always positive. As expected, the
decay width of the zero-momentum molecule vanishes for
1/kF a > 1/kF ac, while it is finite for 1/kF a < 1/kF ac. As for
the polaron, the decay width of the molecule increases as the
momentum |p| increases.

The momentum-dependent decay widths observed in
Fig. 8 are qualitatively different from the decay described in
Figs. 5–7: There the decay is from a zero-momentum excited
state such as the attractive polaron to a lower-lying ground
state manifold such as the molecule. In Fig. 8, on the other
hand, the decay may take place within the ground-state man-
ifold from higher to lower momenta [65]. For example, as
can be seen from Fig. 8, at 1/kF a = 0 the attractive polaron
with |p| = 0.5kF lies lower in energy than the molecule state
and the respective particle-particle continuum. As a result, the
attractive polaron with |p| = 0.5kF decays to attractive po-
laron states with |p′| < 0.5kF , necessitating at least a minimal
degree of self-consistency to capture this process.

As can be seen in Fig. 8, for 1/kF a � 1/kF ac the po-
laron exhibits a nearly quadratic dispersion relation, while the
molecule exhibits a nearly quadratic dispersion relation for
1/kF a � 1/kF ac. This suggests that the decay width within
the ground-state manifold may follow a simple behavior with
respect to its dependence on momentum. In the following,
we investigate the momentum-dependent decay widths of the
attractive polaron and the molecule, in regions where they are
the ground state and where their dispersion relations suggest
that a treatment of the particle within Fermi liquid theory may
be appropriate.
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FIG. 8. Momentum-dependent dispersion relations and decay widths of the attractive polaron and the molecule at different interaction
parameters. The momentum-dependent energies of (a) the attractive polaron E att

φ (p) and (b) the molecule Et (p) are shown in units of εF as
a function of momentum p = |p| for interaction strengths 1/kF a = 1.5 (black), 1.25 (purple), 0.91 (red), 0.5 (orange), and 0 (yellow). The
zero-momentum ground-state energy, E att

φ (0) for 1/kF a < 0.91 and Et (0) for 1/kF a > 0.91, is subtracted for reference. The corresponding
decay widths (c) �att

φ (p) and (d) �t (p) are shown. As can be seen, away from the transition, the ground state develops a quadratic dispersion
relation, while the excited state acquires a negative effective mass. In both cases, increasing the momentum leads to increasing decay widths.
The end points of the curves denote momenta beyond which an accurate determination of the quasiparticle pole location is no longer possible, as
with increasing momentum the quasiparticle peaks merge into a continuum of particle-hole or particle-particle excitations and the quasiparticle
weight of the peaks becomes extremely small; they cease to be well-defined quasiparticles (see also Fig. 4).

In Fig. 9(a) we show the momentum-resolved impurity
spectral function Aφ [see Eq. (29)] at unitarity. The attractive
polaron is the dominant feature of the plot and its energy
as obtained from Eqs. (30) and (35) shows a quadratic de-
pendence proportional to p2 with respect to momentum with
effective mass m∗/m ≈ 1.15. Moreover, the attractive polaron
shows a continuously increasing broadening for increasing
momentum. This is directly reflected in the behavior of the
momentum-dependent decay width of the attractive polaron
shown in Fig. 9(b). In this figure we show both �att

φ (p) as eval-
uated from Eq. (30) and the imaginary part of the self-energy
Im�φ (�′′

φ (p), p). Both evaluations yield consistent results,
indicating a scaling proportional to p4 scaling for p � 0.1kF .

The p4 scaling can be obtained from an analysis within
Fermi liquid theory (see Appendix B 2) [64]. In this analysis
the attractive polaron at small momenta is treated as a free
particle with quasiparticle properties such as energy, effective
mass, quasiparticle weight, and decay width that are modified
compared to the original bare particle. In this picture one thus
makes full use of the quasiparticle picture of the attractive po-
laron that, despite strong renormalization by strong coupling
at unitarity, still behaves as essentially a free particle (building
the basis of Fermi liquid theory).

In Fig. 9 it can be seen that for p � 0.1kF the decay width
and the self-energy depart from the scaling proportional to p4.
At this point, the decay width has become so small that it is
comparable to the distance from the real axis (ε = 10−4εF )
and thus the numerical continuation of the obtained grid data
from z = � + iε to z = � − i� incurs errors that are com-
parable to iε. At the same time, lowering the value of iε
further slows down the integration over the renormalization
group scale k and the momentum q within Eqs. (24) and (23)
as effectively a narrowly shaped Lorentzian curve needs to
be integrated over numerically, which requires an increasing
amount of computational effort as the Lorentzian becomes
sharper. Thus, it can be seen that the decay width of the
zero-momentum attractive polaron �att

φ (p = 0) does not tend

to zero (the expected behavior for a ground state) but rather
approaches a small but finite value. Subtracting the contribu-
tion of the decay width and the self-energy at zero momentum,
we see that both are closer to the scaling proportional to p4,
but there is still residual error.

In Fig. 10(a) we show the spectral function of the molecule
At [see Eq. (29)] for 1/kF a = 3 as well as its dispersion rela-
tions. Note that, strictly speaking, At ∼ 1/h2; thus, to obtain
a nonzero spectral function for h → ∞ we show At h2. Again,
both methods to determine the energy coincide and the disper-
sion is well characterized by a scaling proportional to p2. In
Fig. 10(b) in turn the momentum-dependent decay widths and
self-energy evaluations of the molecule are shown. As for the
polaron, the dispersion proportional to p2 suggests a scaling
proportional to p4 in decay width and its self-energy contribu-
tion. In Fig. 10(b) such a scaling can be seen to develop for
p � 0.12. At smaller momenta the value of ε dominates the
results. In this calculation ε = 10−5εF was used. Interestingly,
the values obtained for �t (0) and also those obtained for
the corresponding imaginary self-energy contribution are so
small that subtracting them does not alter the shown results
significantly. Instead, for p � 0.12 a scaling proportional to
p2 is observed. A similar observation was noted in Ref. [64],
where for a strongly population-imbalanced mixture of two
Fermi gases, the decay width scaled quadratically with im-
purity momentum, when the impurity momentum was below
the impurity Fermi wave vector, representing the well-known
scaling of fermionic quasiparticles in Fermi liquid theory. Of
course, the impurity Fermi level vanishes in our work (and
therefore so does the impurity Fermi wave vector); however,
it is possible that the error incurred from a small but non-
vanishing ε and the ensuing analytical continuation from the
horizontal line R + iε effectively results in a small, effective
pseudoimpurity Fermi wave vector, leading to an analogous
quadratic scaling at very small momenta. The simple scalings
proportional to p2 and p4 for quasiparticle energy and decay
width of both attractive polaron and molecule indicate that,
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FIG. 9. Impurity spectral function and momentum-dependent
decay width of the attractive polaron at unitarity. (a) Impurity
spectral function Aφ (�, p), along with a quadratic fit to the dis-
persion relation, which coincides with both energies �′

φ (p) and
�′′

φ (p) obtained from different criteria (30) and (35). (b) Momentum-
dependent decay width �att

φ (red crosses) and self-energy contribution
Im�R

φ (�′′
φ (p), p) (black crosses), each also offset by their zero-

momentum contribution (dots). For p � 0.1kF they all follow an
approximately p4 scaling (black solid line). A value of ε = 10−4εF

was used.

when those scalings are appropriate they may be used to ap-
proximate the single-particle spectral function at low energy
and momentum in a simple pole expansion.

VI. CONCLUSION

In this paper we have presented a modified FRG treatment
of the Fermi polaron problem that avoids not only the ne-
cessity to carry out a numerical integration over imaginary
Matsubara frequencies but also the need of continuing ana-

FIG. 10. Molecule spectral function and momentum-dependent
decay width of the molecule state at 1/kF a = 3. (a) Molecule spectral
function multiplied by h2, At (�, p)h2, along with a quadratic fit to
the dispersion relation, which reproduces both energies �′

t (p) and
�′′

t (p) obtained from Eqs. (30) and (35). (b) Momentum-dependent
decay width �t (p) (red crosses) and the self-energy contribution
Im�R

t (�′′
φ (p), p) (black dots, rescaled by a factor of 103εF /h2) fol-

low an approximately p4 scaling (black and red solid lines) for
p � 0.1kF . Interestingly, for p � 0.12 an approximately p2 scaling
is observed (black and red dotted lines). A value of ε = 10−5εF was
used.

lytically to real frequencies. This is achieved by leveraging
the analytical structure of the Fermi polaron problem to carry
out the integration and continuation exactly. As a result, the
FRG in imaginary frequencies is mapped onto an equivalent
FRG on a horizontal line above the real axis, which can be
shifted arbitrarily close to the real axis. The resulting FRG
is significantly simpler to solve and allows us to consider
quasiparticle properties that either may not be accessible to
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previous treatments due to a lack in stability and precision or
that fundamentally cannot be accessed in these treatments.

Using this modified FRG, the Fermi polaron problem was
solved and the quasiparticle properties of the attractive po-
laron, the repulsive polaron, and the molecule were revisited.
We showed that energy and quasiparticle width are in ac-
cordance with previous findings and the decay width of the
attractive polaron does follow a scaling of �E9/2 with respect
to the energy gap to the molecule. For the decay width of the
molecule near the polaron-to-molecule transition, however,
the applicability of the �E9/2 scaling is less clear and further
research in this direction is necessary. One of the significant
improvements of the method presented in this paper is that it
allows us to investigate momentum-dependent decay widths
that are small for states near the ground state. We found
that both the attractive polaron and the molecule seem to be
captured rather accurately within Fermi liquid theory.

The measurement of these quasiparticle properties is
within experimental reach, using, for instance, Raman trans-
fers of impurities to finite momentum states [23]. The decay
of such states is then observable using Ramsey interferometry
[68,85]. Similarly, such properties may be accessed using
implementations relying on a constantly driven many-body
system [86]. This may be of particular relevance as momen-
tum relaxation seems to play an important role in the decay of
Rabi oscillations [87,88].

As polarons may now be controlled so reliably that even
induced interactions between polarons can be measured [25],
extensions of our FRG method may be of interest where

for small impurity concentrations the interaction between po-
larons may be derived from an additional polaron-polaron
scattering vertex. Remnants of this polaron-polaron interac-
tion may already be observable in the single-impurity regime,
by considering the exchange energy of two fermionic dressing
clouds, which can each be obtained from the impurity-bath
scattering vertex [89]. At larger impurity concentrations, fur-
ther modifications may be in order where some of the exact
frequency integrations are replaced by contour integrals along
horizontal lines above the real axis, which may prove to be a
promising method of self-consistently investigating strongly
coupled Bose-Fermi and Fermi-Fermi mixtures.
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APPENDIX A: INITIAL CONDITION OF THE MOLECULE

The initial condition of the flowing retarded molecular
Green’s function at the cutoff scale is given by [54]

GR,−1
t,k=�

(� + iε, p) = − h2

8πa
+ h2�

4π2
− h2

∫
q

(
�(|p + q| − �)�(|q| − �)

−� − iε + q2 + (p + q)2
− �(|q| − �)

2q2

)
(A1)

such that, using Eq. (28),

GR,−1
t,k=√

εF
(� + iε, p) = GR,−1

t,k=�
(� + iε, p) + h2

∫
q

(
�(|p + q| − �)�(q2 − εF − �2)

GR,−1
φ,� (� + iε − q2 + εF , p + q)

− �(|p + q|2 − εF )�(q2 − 2εF )

GR,−1
φ,� (� + iε − q2 + εF , p + q)

)

(A2)

= − h2

8πa
+ h2

∫
q

(
1

2q2
− 1

GR,−1
φ,� (� + iε − q2 + εF , p + q)

− �(|p + q| − εF )�(q2 − 2εF ) − 1

GR,−1
φ,� (� + iε − q2 + εF , p + q)

)
,

(A3)

where we have canceled the third term in Eq. (A1) against
the second term in Eq. (A2). The integrals in Eq. (A3) can be
solved analytically.

APPENDIX B: DECAY WIDTH SCALING FROM FERMI
LIQUID THEORY

1. Decay of the excited-state molecule

To highlight the dependence of the decay width on the
diagrammatic method used, in the following we discuss how
an approach similar to that used in Ref. [44] may yield a

different power-law behavior of the molecule decay width.
As mentioned in the main text, the self-energy diagrammatics
used in Ref. [44] employ a T matrix (containing no crossed
diagrams) within a crossed diagram [see Fig. 11(c)] to obtain
an approximately �E9/2 dependence of the molecule decay
width. We show that neglecting the crossed diagrams, as is
done within conventional T -matrix approaches, and using a
Fermi liquid theory approximation for these particles, one
obtains a different power-law dependence.

The noncrossed self-energy contribution �t [see
Fig. 11(b)] corresponding to the decay process shown in
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FIG. 11. Diagrammatic representation of the decay of the excited-state molecule. (a) Possible decay channel of an excited-state molecule
(solid line) into a ground-state polaron (wavy line) and several bath particles and holes (dashed lines), which correspond to (b) and (c) self-
energy contributions using the optical theorem. The decay channel in (a) allows for two distinct self-energy contributions: (c) crossed and
(b) noncrossed. The squares denote coupling vertices proportional to h.

Fig. 11(a) is then proportional to

�t (ω, 0) ∝
∫

k,k′,q,ν1,ν2,ν3

GR
φ (i[ω − ν1],−k)2GR

φ (i[ω − ν1 − ν2 + ν3], q − k − k′)T R(i[ω − ν1 + ν3], q − k)2

(−iν1 + k2 − εF )(−iν2 + k′2 − εF )(−iν3 + q2 − εF )
. (B1)

To proceed, we use a pole expansion for the retarded molecule propagator T R and the retarded impurity propagator GR
φ ,

GR
φ (z, p) ∝ Zφ

−z + p2

2m∗
φ

, (B2)

T R(z, p) ∝ Zt

−z + p2

2m∗
t

+ �E
, (B3)

where m∗
φ and m∗

t are the effective masses of the attractive polaron and the molecule and �E denotes the energy difference
between the attractive polaron and the molecule. Carrying out the frequency integrations and evaluating the self-energy near the
pole of the molecule, we then obtain

Im�R
t (�E + i0+, 0) ∝

∫
k,k′,q

Z3
φZ2

t δ
(
k2 + k′2 − q2 − εF + (q−k−k′ )2

2m∗
φ

− �E
)

(
k2 − q2 + (q−k)2

2m∗
t

)2(
k2 − εF + k2

2m∗
φ

− �E
)2 . (B4)

For �E � εF , the condition of the δ function in Eq. (B4) is fulfilled when k, k′, and q form an almost equilateral triangle at the
Fermi surface with |k|, |k′|, |q| ≈ kF . Thus the two terms in the denominator of Eq. (B4) approach (k2

F /2m∗
t )2 and (k2

F /2m∗
φ )2,

while in Ref. [44] it was shown that the phase-space integral scales as (m∗
φ )3/2�E7/2. Hence, within this approximation we obtain

that

Im�R
t (�E + i0+, 0) ∝ Z3

φZ2
t �E7/2(m∗

φ )7/2(m∗
t )2. (B5)

Alternatively, one may disregard the dynamics of the propagators in Eq. (B1), as these propagators are not evaluated near
their pole. Approximating these as constant instead, one obtains only the scaling due to the phase-space integral given by
approximately Zφ (m∗

φ )3/2�E7/2, which is also shown in the main text.

2. Decay of the ground-state attractive polaron at finite momentum

At 1/kF a � 1/kF ac the decay of the attractive polaron at small momentum is only into attractive polaron states of a smaller
momentum as the lowest-lying molecule state lies higher in energy. The simplest decay process representing this route is shown
in Fig. 12(a) and involves a particle-hole exchange with the bath particles. This process can easily be turned into a corresponding
self-energy contribution, shown in Fig. 12(b), using the optical theorem such that the self-energy is proportional to

�φ (ω, p) ∝
∫

k,q,ν1,ν2

GR
φ (i[ω + ν1 − ν2], p + q − k)T (ω + ν1, q + p)2

(−iν1 + q2 − εF )(−iν2 + k2 − εF )

∝
∫

k,q
GR

φ (i[ω + −i(q2 − k2)], p + q − k)T (ω − i(q2 − εF ), q + p)2�(εF − q2)�(k2 − εF ), (B6)

where T denotes the T matrix [42]. Furthermore, we have carried out the integration over ν1 and ν2 analytically by closing the
contours in the right and in the left half of the complex plane, respectively. Considering the attractive polaron as a free particle,
whose interactions with the bath have been taken into account via a modification of the quasiparticle gap (to zero, as the p = 0
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FIG. 12. Diagrammatic representation of the decay of ground-state polarons at finite momentum into lower-lying polarons. (a) Possible
decay channel of a polaron at finite momentum into a ground-state polaron at lower momentum and a particle and hole excitation, which
corresponds to (b) a self-energy contribution. Unlike in Fig. 11, the decay channel in (a) allows only for a single self-energy contribution
in (b).

attractive polaron is the ground state), quasiparticle weight Zφ , and effective mass m∗
φ , we approximate the polaron propagator

GR
φ (z, p) using Eq. (B2).
Furthermore, as the decay of the attractive polaron is not into a molecule state, we approximate the scattering matrix T ≈ g

via the bare coupling constant. Later we will investigate how the inclusion of T changes the behavior of the decay width. Thus,
evaluating the self-energy near the real axis at the location of the quasiparticle pole � = p2/2m∗

φ , we obtain that

Im�R
φ

(
p2

2m∗
φ

+ i0+, p

)
∝

∫
k>kF ,q<kF

δ

(
− p2

2m∗
φ

+ (p + q − k)2

2m∗
φ

− q2 + k2

)
, (B7)

where we have dropped the dependence on Zφ . The imaginary part of the self-energy (B7) is shown in Fig. 13 for different values
of the effective mass m∗

φ and it can be seen that the imaginary part of the self-energy at the quasiparticle pole follows a scaling
proportional to p4, as also seen for the full FRG model in the main text.

Suppose now that the scattering T matrix was not approximated by g. Then along the real axis it is clear that for iω →
� + i0+ = p2/2m∗

φ + i0+ and q2 < εF we have that

ImT R

(
p2

2m∗
φ

+ (q2 − εF ) + i0+, q + p

)
= 0 (B8)

FIG. 13. Imaginary part of the polaron self-energy contribution in Eq. (B7) for different effective polaron masses. The self-energy
contribution Im�R

φ ( p2

2m∗
φ

+ i0+, p) is shown in arbitrary units for different effective polaron masses m∗
φ = 0.8m (black), 0.9m (purple), 1.0m

(red), 1.1m (orange), and 1.2m (yellow) as a function of momentum p. The contributions follow a scaling proportional to p4 (blue line).
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because the lowest-lying molecule state lies higher in energy (see also the discussion in Sec. III). One thus arrives at

Im�R
φ

(
p2

2m∗
φ

+ i0+, p

)
∝

∫
k>kF ,q<kF

δ

(
− p2

2m∗
φ

+ (p + q − k)2

2m∗
φ

− q2 + k2

)
T R

(
p2

2m∗
φ

+ (q2 − εF ) + i0+, q + p

)2

. (B9)

Since the molecule is a higher-lying excited state by as-
sumption, at small momentum p the T matrix approaches
a finite constant value and thus the scaling of the imag-

inary part of the self-energy is solely determined by
the phase-space configuration scaling enforced by the δ

function.

[1] A. Gezerlis and J. Carlson, Strongly paired fermions: Cold
atoms and neutron matter, Phys. Rev. C 77, 032801(R) (2008).

[2] M. M. Forbes, A. Gezerlis, K. Hebeler, T. Lesinski, and A.
Schwenk, Neutron polaron as a constraint on nuclear density
functionals, Phys. Rev. C 89, 041301(R) (2014).

[3] L. D. Landau, Electron motion in crystal lattices, Phys. Z.
Sowjet. 3, 664 (1933).

[4] H. Fröhlich, Electrons in lattice fields, Adv. Phys. 3, 325 (1954).
[5] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner,

E. Demler, and A. Imamoglu, Fermi polaron-polaritons in
charge-tunable atomically thin semiconductors, Nat. Phys. 13,
255 (2017).

[6] T. Goldstein, Y.-C. Wu, S.-Y. Chen, T. Taniguchi, K. Watanabe,
K. Varga, and J. Yan, Ground and excited state exciton polarons
in monolayer MoSe2, J Chem. Phys. 153, 071101 (2020).

[7] K. Xiao, T. Yan, Q. Liu, S. Yang, C. Kan, R. Duan, Z. Liu, and
X. Cui, Many-body effect on optical properties of monolayer
molybdenum diselenide, J. Phys. Chem. Lett. 12, 2555 (2021).

[8] E. Liu, J. van Baren, Z. Lu, T. Taniguchi, K. Watanabe, D.
Smirnov, Y.-C. Chang, and C. H. Lui, Exciton-polaron rydberg
states in monolayer MoSe2 and WSe2, Nat. Commun. 12, 6131
(2021).

[9] L. B. Tan, O. K. Diessel, A. Popert, R. Schmidt, A. Imamoglu,
and M. Kroner, Bose polaron interactions in a cavity-
coupled monolayer semiconductor, Phys. Rev. X 13, 031036
(2023).

[10] J. Zipfel, K. Wagner, M. A. Semina, J. D. Ziegler, T. Taniguchi,
K. Watanabe, M. M. Glazov, and A. Chernikov, Electron recoil
effect in electrically tunable MoSe2 monolayers, Phys. Rev. B
105, 075311 (2022).

[11] F. P. Laussy, A. V. Kavokin, and I. A. Shelykh, Exciton-
polariton mediated superconductivity, Phys. Rev. Lett. 104,
106402 (2010).
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