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Two matrix product states (MPS) are in the same phase in the presence of symmetries if they can
be transformed into one another via symmetric short-depth circuits. We consider how symmetry-
preserving measurements with feedforward alter the phase classification of MPS in the presence of
global on-site symmetries. We demonstrate that, for all finite abelian symmetries, any two sym-
metric MPS belong to the same phase. We give an explicit protocol that achieves a transformation
between any two phases and that uses only a depth-two symmetric circuit, two rounds of symmetric
measurements, and a constant number of auxiliary systems per site. In the case of non-abelian sym-
metries, symmetry protection prevents one from deterministically transforming symmetry-protected
topological (SPT) states to product states directly via measurements, thereby complicating the anal-
ysis. Nonetheless, we provide protocols that allow for asymptotically deterministic transformations
between the trivial phase and certain SPT phases.

I. INTRODUCTION

One of the central goals of condensed matter
physics is the classification of zero-temperature quan-
tum phases [1]. Quantum states in that regime become
pure, and thus all their correlations are due to entangle-
ment, whose distinct patterns give rise to the different
topological phases [2]. One example is the classification
of topological phases for spin Hamiltonians with short-
ranged interactions. Their ground states are described
by tensor network states [3–8], a physically motivated
family of states that provide a controllable entangle-
ment structure. The tensor network formalism not only
allows for an efficient description of many-body ground
states [9] but has also made possible the explicit clas-
sification of topological phases in one spatial dimen-
sion, using matrix-product states (MPS) [10, 11]. The
landscape of phases is vastly enriched with the inclu-
sion of symmetries, giving rise to symmetry-protected
topological (SPT) phases [10–14]. Symmetries refine the
phase diagram and explain important physical features
of the underlying symmetric MPS ground states, such
as the degeneracy of their spectrum and the long-range
entanglement of their edge modes [9].

From the point of view of quantum information,
topological phases is the classification of states ac-
cording to their complexity, when locality restrictions
are imposed [15, 16]. This operational definition can
be made precise using quantum circuits (QC), i.e.,
decompositions of unitary operators into elementary
gates [17]. Two many-body states belong to the same
phase if and only if they can be converted into each
other by a circuit consisting of nearest-neighbor gates
whose depth (i.e., number of layers) is roughly constant

for all system sizes [10, 15, 16]. Such unitary operations
are, from a complexity perspective, simple as unitary
operators generically require a depth which scales ex-
ponentially in the system size [17]. Thus, two states
corresponding to different topological phases cannot be
converted into each other by this restricted class of op-
erations. Moreover, the quantum circuit picture natu-
rally allows for the inclusion of SPT order by further
restricting the allowed gates to be symmetric [16]. In
quantum computing, SPT phases have been associated
with the resourcefulness of a state in measurement-
based quantum computation [7, 18–20], providing a
link between symmetries, measurements and compu-
tation.

Both perspectives on topological phases come to-
gether in quantum simulators, where phases of matter
can be actively engineered [21–23]. From the complex-
ity point of view, states belonging to the trivial phase
capture roughly what is feasible to prepare. This is be-
cause actual devices are heavily constrained by noise
and often constrained by the locality of interactions [24];
thus, low-depth circuits on product states, i.e., the triv-
ial phase, capture these constraints. Despite these lim-
itations, measurements can also be performed and be
used to assist state transformations. In particular, mid-
circuit measurements and subsequent conditioning of
gates on the outcomes (i.e., feedforward) can, in certain
situations, facilitate the conversion of states belonging
to distinct topological phases [25–34]. It is therefore rel-
evant to consider how the classification of topological
phases is altered if measurements and feedforward are
included.

It is known that adding a single round of measure-
ments to a finite-depth circuit can deterministically con-
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vert a product state to a long-range correlated state. Ex-
amples include the GHZ state [28] (symmetry break-
ing) and the toric code in 2D [25] (topological order).
Both of these states belong to a nontrivial topologi-
cal phase and collapse to the trivial one if measure-
ments are included. More recently, it was shown that all
translation-invariant MPS collapse to the trivial phase,
including long-range correlated states [29, 35]. Several
other topologically ordered phases have been shown to
also collapse to the trivial one, such as quantum double
models [36] of finite groups [32, 33], string-net mod-
els [33], and a hierarchy of phases based on the number
of rounds of measurements has been suggested [31].

Inspired by the results of Ref. [29], we study how
the classification of phases of MPS under symmetries
is altered when symmetric measurements are allowed.
We completely resolve the case of finite abelian groups,
and we find that all phases collapse to the trivial one,
including those with symmetry breaking and nontriv-
ial cohomology. For non-abelian groups, we construct
asymptotically deterministic transformations from cer-
tain SPT phases to product states, and vice versa. We
also partially extend this result to non-normal phases.
However, it remains an open problem whether this is
a general feature of phases with respect to non-abelian
groups. A summary of our results in given in Table I.

The rest of the paper is organized as follows. In Sec-
tion II, we recall some important facts about MPS, the
classification of their phases with and without symme-
tries, as well as the role of circuits and measurements
with feedforward. In Section III, we will define the op-
erations that we consider and make some preliminary
observations about the phase diagram that directly fol-
low from these operations. In Section IV, we solve
the classification of phases of MPS with quantum cir-
cuits and measurements with feedforward under finite
abelian symmetries. In Section V, we consider non-
abelian symmetries and investigate normal and non-
normal phases.

II. PRELIMINARIES

In this section, we recall some important facts about
MPS and their symmetries. We also discuss the clas-
sification of 1D gapped phases of matter [10, 11] in
the Hamiltonian and the circuit picture (with and
without symmetries). Finally, we discuss the phases
of MPS when measurements and feedforward are in-
cluded [29, 35]. Throughout, we use the notation [n] =
{0, 1, . . . , n − 1}.

normal non-normal

abelian trivializes trivializes
(Sec. IV)

non-abelian Some SPT trivialize
(Asymptotically)

(Sec. V B)

GHZ → trivial phase
(Asymptotically)

(Sec. V C)

TABLE I. The results of this work. We consider the phase
classification of MPS under symmetric circuits and symmet-
ric measurements. We consider four cases: abelian symme-
tries vs non-abelian symmetries; normal MPS (SPTs) vs non-
normal MPS (i.e., GHZ-like). Abelian-normal phases were al-
ready known to trivialize. In Sec. IV, we show non-normal
phases also trivialize for all finite abelian groups. Then,
we consider non-abelian symmetries. In Sec. V B, we con-
struct asymptotically deterministic transformations from cer-
tain SPT phases to product states and vice versa. Finally, in
Sec. V C, we investigate non-normal MPS with non-abelian
symmetries.

A. Matrix Product States and Local Symmetries

Any translationally invariant MPS with periodic
boundary conditions is defined by a single tensor, A,
leading to the state

|ψn[A]⟩ = ∑
i1,...,in

tr[Ai1 . . . Ain ] |i1 . . . in⟩ . (1)

Here, Ai is a D × D matrix for each i ∈ [d], where
D ∈ N is the bond dimension and d ∈ N is the physical
dimension. The definition of an MPS is robust under
“blocking” physical sites into a single super-site. Block-
ing l sites together corresponds to mapping the tensor
Ai to the product Ãi1,...,il = ∏l

j=1 Aij . Any MPS tensor,
after blocking sufficiently many sites, can be brought
into a canonical form (CF) [37] 1. In this canonical form,

Ai =
⊕

α∈[m]

Ai
α, (2)

with the property that the Ai span all matrices with the
same block structure [37] (with blocks not necessarily
being of the same size), and where m is the number of
blocks. If a tensor in canonical form has only one block,
then it is called injective. An MPS is called normal if,
after blocking, its tensor in canonical form is injective.
We represent the MPS tensor in Eq. (2) graphically as
shown below.

1 Using the terminology of Ref. [37], this canonical form would be
referred to as ’Block Injective Canonical Form II’. This canonical
form ensures the unitarity of the gauge transformation in Eq. (4).



3

Here, the filled circle indicates a delta function (see
Ref. [37] for an introduction to this graphical notation).
The leg i corresponds to the physical space, whereas
the horizontal legs corresponds to the so-called virtual
space. We will suppress the labeling of each leg from
now on. Given a tensor A, one defines its so-called
fiducial state as |A⟩ = ∑i,l,m(Ai)lm |l⟩ ⊗ |i⟩ ⊗ |m⟩. Graph-
ically, the fiducial state can be obtained as shown below.

(3)

Two tensors in canonical form that yield the same MPS
(up to a phase) for all n are related by the so called
fundamental theorem of MPS [37]. For injective MPS it
states that

|ψn[A]⟩ ∝ |ψn[B]⟩ ∀n ⇒ Ai = eiϕω†Biω, ∀i ∈ [d], (4)

where ω is a unitary. For non-injective MPS the funda-
mental theorem states that

|ψn[A]⟩ ∝ |ψn[B]⟩ ∀n

⇒
⊕

α

Ai
α = PT

(
⊕

α

eiϕα
(ωα)†Bi

αωα

)
P, ∀i ∈ [d], (5)

where P is a permutation operator that permutes the
α-blocks, ωα are unitaries, and eiϕα

are phases.
The fundamental theorem can be used to character-

ize how local symmetries of an MPS transform its as-
sociated canonical form tensor. Let Ug∈G be a lin-
ear unitary representation of some group, G. If Ug
is a global on-site symmetry of an injective MPS, i.e., if
U⊗n

g |ψn[A]⟩ ∝ |ψn[A]⟩ for all g ∈ G and all n, then,
by the fundamental theorem, for injective MPS, it must
hold that [11, 38]

∑
j
(Ug)ij Aj = eiϕg ω†

g Aiωg. (6)

Here, the phases eiϕg form a 1D unitary irreducible rep-
resentation (irrep) of G. The ωg form a projective repre-
sentation of G, meaning that ωgωh = γ(g, h)ωgh, for all
g, h ∈ G, where γ : G × G → U(1) is referred to as the
cocycle. Crucially, as any transformation ωg 7→ ν(g)ωg
leaves Eq. (6) invariant for νg ∈ U(1), the ωg are only
defined up to a phase. Hence γ(g, h) is defined up to
the equivalence relation γ(g, h) ∼ ν(gh)

ν(g)ν(h)γ(g, h). The
induced equivalence classes of the γ(g, h) can be shown
to be isomorphic to the second cohomology group of G
over U(1), H2(G, U(1)), and thus they are typically re-
ferred to as cohomology classes of G (see Appendix A 1).
We will later see that they play an important role in the
classification of phases under symmetries [10, 11].

For non-injective MPS, the algebraic structure of the
action of the local symmetries on the virtual level be-
comes more involved. A global on-site symmetry, Ug,

acts on the tensor as [11]

∑
j
(Ug)ij

⊕

α

Aj
α = PT

g

[
⊕

α

eiϕα
g (ωh(g,α))

† Ai
αωh(g,α)

]
Pg.

(7)
Here, the Pg form a permutation representation of G that
permutes the blocks of A. By considering for which
g ∈ G a given block does not move, this permutation
representation action fixes a subgroup H of G. Then,
ωh(g,α) is a projective representation of H, that depends
on both g and α, and is associated with a cohomol-
ogy class of H. Finally, the phases eiϕα

g form a 1D irrep
of G for all α (see Ref. [11] for further explanation, or
Appendix A 2). Graphically, we may represent this as
shown below.

(8)

B. Classification of Phases of MPS

Any MPS in its canonical form can be associated with
a parent Hamiltonian that has this MPS as its ground
state [3, 11, 39]. The parent Hamiltonian is a gapped,
translation invariant, local Hamiltonian of the form
H = ∑N

i=1 hi,i+1, where hi,i+1 ≥ 0. The degeneracy of
the ground state space can be shown to coincide with
the number of blocks in the canonical form in Eq. (2).
Importantly, the mapping between MPS and their par-
ent Hamiltonians can be made one-to-one [39]. Two
systems are deemed to be in the same phase if their par-
ent Hamiltonians can be transformed into one another
along a path of local Hamiltonians without ever closing
the spectral gap above the ground state subspace (in the
thermodynamic limit).

For systems with a unique ground state, it is known
that without imposing symmetries the phase diagram
contains only a single phase, i.e., all normal MPS are in
the same phase. Throughout, we will refer to the phase
containing product states as the trivial phase. Thus,
without imposing symmetries, all normal MPS are in
the trivial phase. In case one imposes symmetries, the
phase diagram becomes richer, leading to SPT phases.
In this case, phases of normal MPS are determined by
the action of the local symmetries on the virtual level, cf.
Eq. (6), and are correspondingly labeled by the elements
of the second cohomology group, H2(G, U(1)) [10, 11].

For non-normal MPS without symmetries, MPS be-
long to the same phase if and only if they have the same
number of blocks in canonical form [11], i.e., the same
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ground state degeneracy in their parent Hamiltonian2.
In case symmetries are imposed, phases are determined
by how the symmetry permutes the blocks in the canon-
ical form, i.e., by the action of Pg, and the cohomology
class of ωh in Eq. (7). One can show that this corre-
sponds to labeling phases under G by a tuple, (H, µ),
where H ≤ G is a subgroup of G, and µ ∈ H2(H, U(1))
is a cohomology class of H [11]. Such phases are re-
ferred to as symmetry breaking (see Appendix A 4 for
a further discussion). An example of this phase classifi-
cation is given in Appendix B.

C. Topological Phases under Quantum Circuits

Another possibility to address the classification of
phases is by considering quantum circuits. Here, one
defines two (sequences of) MPS |ψn[A]⟩, |ψn[B]⟩ to be-
long to the same phase if and only if there exist uni-
taries Un such that (i) ∥ |ψn[A]⟩ − Un |ψn[B]⟩ ∥ ≤ ϵ with
ϵ → 0 as n → ∞, and (ii) each Un admits a decomposi-
tion as a quantum circuit with local gates and depth
(i.e., number of layers) l = O(polylog n). This def-
inition turns out to be equivalent to the Hamiltonian
one [11, 16, 35, 40–43]. Ref. [16] argues that if the gates
comprising the quantum circuit are also restricted to be
symmetric, then, in the absence of symmetry breaking,
one obtains phases under symmetries as in the Hamil-
tonian picture outlined in the previous section (see also
Ref. [42]). We comment on the connection between the
Hamiltonian and circuit picture in more detail in Ap-
pendix A 5.

The landscape of the different topological phases
thus exactly consists of the classes of states among
which transformations (in the thermodynamic limit)
are impossible under (symmetric) local quantum cir-
cuits of constrained depth. These operations, however,
do not allow for measurements.

D. Topological Phases with Circuits, Measurements and
Feedforward (CMF)

To incorporate measurements, additional auxiliary
systems are usually allowed, which interact locally with
the rest of the system, can be measured, and also traced
out (i.e., not considered as output)3. Importantly, gates

2 Note, in the absence of symmetry protection, the ground state de-
generacy of Hamiltonians is not stable, and thus, such Hamiltoni-
ans are often not considered to correspond to a distinct phase. See
Appendix A for a further discussion.

3 Note, the classification of phases of MPS according to Ref. [11]
(with symmetries) is unchanged if one also has access to (symmet-
ric) auxiliary systems.

Gapped Hamiltonians/
Circuits

Circuits, Measurements
& Feedforward

No Sym. # blocks in
canonical form [11]

all MPS trivial
[29, 35]

Sym.
(G, Ug)

permutation action and
cohom. classes [10, 11]

This work.
See also [42, 44]

TABLE II. Characterization of the phases of MPS under dif-
ferent operations. Two MPS are in the same phase (with sym-
metries) if they can be connected by a path of (symmetric)
gapped parent Hamiltonians. This classification is equiva-
lent to the classification under (symmetric) short-depth cir-
cuits [40–43] (cf. Section II C). In the Hamiltonian/circuit clas-
sification without symmetries, all MPS with the same number
of blocks in the canonical form [see Eq. (2)] belong to the
same phase [11]. By imposing symmetries, the phase classifi-
cation is enriched as now phases depend on the permutation
action and the group cohomology induced by the action of
the symmetry on the MPS tensor [see Eq. (7)] [10, 11]. In the
case where measurements with feedforward are added to the
circuit classification, the phase diagram trivializes if no sym-
metries are imposed [29, 35]. Here, we investigate how this
classification is altered if one imposes symmetries.

that come after measurements can be classically condi-
tioned on the previous measurement outcomes. Such
operations are referred to as circuits with measure-
ments and feedforward (CMF). Note that the classi-
cal conditioning (i.e., classical communication) does not
need to obey any locality restrictions.

In the context of MPS without any symmetry con-
straints, it was shown in Refs [29, 35] that the inclusion
of measurements and feedforward collapses the phase
diagram to a single phase. In particular, all translation-
invariant MPS over n sites with a constant bond dimen-
sion (including the non-normal ones with long-range
entanglement) are deterministically reachable from the
product state, either (i) by circuit depth O(log n) and
a single round of measurements, or (ii) by O(log log n)
circuit depth and the same number of rounds of mea-
surements. In both cases, the transformation is approxi-
mate but the error vanishes in the thermodynamic limit.
In this paper, we study the phases of matter that fol-
low from considering transformations via circuits with
measurement and feedforward that both respect a given
symmetry. A summary comparing the phase classifica-
tion with and without measurements and/or symme-
tries is provided in the Table II.

III. SYMMETRIC QUANTUM CIRCUITS AND
SYMMETRIC MEASUREMENTS WITH FEEDFORWARD

In this section we introduce a symmetry-preserving
extension of CMF, which we denote by G-CMF. We
also will discuss the role of auxiliary systems in assist-
ing transformations, and we will make some prelimi-
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nary observations on possible transformation between
phases that follow directly from the definition of G-
CMF operations.

A. Definition of G-CMF Operations

First, one fixes a linear unitary representation Ug∈G
of a group G. A unitary, V, on m qudits is called sym-
metric if it commutes with m copies of the represen-
tation Ug, i.e., if [V, U⊗m

g ] = 0 for all g ∈ G. Sim-
ilarly, a projective measurement on m qudits, {Pk}k,
with P2

k = Pk ≥ 0, and ∑k Pk = 1, is symmetric if
[Pk, U⊗m

g ] = 0, for all g ∈ G and for all k. G-CMF oper-
ations are then defined by sequences of (i) applying cir-
cuits where each gate acts on O(1) geometrically-local
physical sites, (ii) appending or removing O(1) auxil-
iary systems on-site in an unentangled, pure, symmet-
ric state, and (iii) performing on-site symmetric projec-
tive measurements. The operations are summarized in
Fig. 1. We can establish the following notion of equiva-
lence of MPS under G-CMF operations.

Definition 1 (G-CMF equivalence). Let G be a group and
Ug a linear unitary representation thereof. We say that two
MPS, |ψn[A]⟩ and |ψn[B]⟩, with global on-site symmetry
Ug, are in the same phase under G if they can be transformed
(in the sense of convergence of sequences of MPS explained
in Section II C) into one another via G-CMF operations with
a cumulative O(polylog(n)) depth circuit.

Before moving on, let us discuss some limiting cases
of our definition:

1. In the absence of symmetries, our definition col-
lapses to the operation QCccO(polylog n) as intro-
duced in Ref. [29] (with the additional constraint
of only O(1) auxiliary systems per physical site,
whereas in QCccl the number of auxiliary systems
is in principle unbounded).

2. In the absences of measurements, our definition
collapses to phases of MPS as classified by sym-
metric quantum circuits (or equivalently, as dis-
cussed above, symmetric gapped Hamiltonians).

3. In the absence of circuits, our definition corre-
sponds to a symmetric version of Local Opera-
tions and Classical Communication (LOCC) [45],
with additional constraints on the auxiliary sys-
tems (see Refs [44, 46, 47] for similar operations).

Next, let us explain the motivation for defining the
operations as explained above.

FIG. 1. G-CMF operations consist of sequences of applying a
local quantum circuit, where each gate acts on O(1) physical
sites, appending (or discarding) O(1) auxiliary systems in an
unentangled, pure, symmetric state, and on-site symmetric
measurements with feedforward. Two states are in the same
phase if they can be transformed into one another with these
operations, such that the total circuit depth is O(polylog(n))

B. Motivation for the Constraints on Auxiliary Systems

The constraints one imposes when adding and
discarding auxiliary systems has considerable conse-
quences for the classification. Here, we only allow aux-
iliary systems to be added and discarded on-site and
only if they are in a pure, common eigenstate of Ug.
Firstly, this ensures that adding and discarding auxil-
iary systems cannot lead to a non-symmetric state. Sec-
ondly, if one were allowed to discard entangled states,
one could transform any phase to the trivial phase, in-
dependent of the symmetry group, by simply discard-
ing the initial state. Moreover, Eq. (10) would hold, due
to a similar argument, but independent of the symme-
try.

Finally, if we were allowed to discard mixed, separa-
ble states, then one could transform any state to the
trivial phases by applying an entanglement breaking
channel locally and then discarding it. By only allow-
ing auxiliary systems to be discarded if they are in a
pure, common eigenstate of Ug, we avoid this possi-
bility. As a final comment, our definition allows one
to consider auxiliary systems as similar to catalysts: a
common eigenstate can be appended locally to assist
the transformation, but a common eigenstate must be
returned at the end of the transformation.

Another important aspect of using auxiliary systems
is that it allows us to implement quasi-commuting
unitaries, while still satisfying the stronger condition
of commuting with the symmetry. To see this, con-
sider a unitary, V, that quasi-commutes with Ug; that
is, UgV = eiϕg VUg, ∀g ∈ G. It is easy to ver-
ify that eiϕg must be a 1D irrep of G. Moreover,
using Schur’s Lemma and the Burnside-Brauer theo-
rem [48], one can show that the fact that V quasi-
commutes means there is an m ∈ N such that U⊗m

g con-
tains |ϕ0⟩⟨ϕ0| + e−iϕg |ϕ1⟩⟨ϕ1| as a sub-representation,
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where |ϕ0⟩ , |ϕ1⟩ are two orthonormal vectors. More-
over, it is easy to verify that the unitary given by
Ṽ = (|ϕ1⟩⟨ϕ0| ⊗V + h.c.)⊕1 commutes with U⊗m

g ⊗Ug

and Ṽ(|ϕ0⟩⟨ϕ0| ⊗ ρ)Ṽ† = |ϕ1⟩⟨ϕ1| ⊗ VρV† for all ρ ≥ 0.
Thus, after appending m auxiliary systems, initialized
in the symmetric state |ϕ0⟩ and applying the strictly
commuting Ṽ, the auxiliary systems are left in the state
|ϕ1⟩ and thus may be discarded, and thus one will have
implemented V.

Next, we will make some observations that follow
directly from our discussion above.

C. Initial Observations

Under abelian symmetries, a transformation from
any nontrivial phase to the trivial phase is always pos-
sible, i.e.,

|ψ⟩ 7→ |Triv⟩ . (9)

This transformation can be achieved by measuring
each physical system on-site in the common symmet-
ric eigenbasis of the representation Ug. Such a basis
exists as any representation of an abelian group can be
decomposed into 1D irreps. This transforms the state
to a symmetric pure product state, which can be dis-
carded and replaced by a symmetric state in the trivial
phase.

Additionally, it has been observed (see, e.g., Ref. [42])
that, for abelian symmetries, one can always transform
from the trivial phase to any SPT phase, i.e.,

|Triv⟩ 7→ |SPT⟩ . (10)

To do so, one notices that for any SPT state, |SPT(µ)⟩,
belonging to cohomology class µ ∈ H2(G, U(1)), there
is another SPT state,

∣∣SPT(µ−1)
〉
, such that the state

|SPT(µ)⟩⊗
∣∣SPT(µ−1)

〉
is in the trivial phase [11]. Thus,

one can transform |Triv⟩ to |SPT(µ)⟩ by first transform-
ing to |SPT(µ)⟩ ⊗

∣∣SPT(µ−1)
〉

and then transforming
the state

∣∣SPT(µ−1)
〉

to the trivial state by the proce-
dure outlined above. Thus, normal MPS all belong to
the same phase under abelian symmetries.

This construction does not work for non-normal
MPS. Moreover, in the case of non-abelian symmetries,
one cannot projectively measure onto a common sym-
metric eigenbasis of Ug as no such basis exists. Thus,
in the subsequent sections, we investigate the phases of
MPS in these two directions. A summary of our results
is provided in Table I.

D. The Role of the Global On-Site Symmetry

In defining our operations, we have chosen to con-
sider a fixed physical system with a fixed global on-

site symmetry Ug. We do this because it fits more nat-
urally when defining a symmetry-preserving form of
circuits, auxiliary systems, and measurements. How-
ever, the classification of phases under symmetries in
Refs [10, 11] relies only on group properties of G and its
subgroups (cohomology classes are a group property).
Consequently, one might reasonably wonder how the
on-site, physical symmetry plays a role in this classi-
fication. The resolution to this tension lies in the fact
that, what determines the phase of an MPS is the action
of the symmetry in the virtual space of the tensor (after
blocking). A more detailed discussion of this technical-
ity is discussed in Appendix A 3.

IV. FINITE ABELIAN SYMMETRIES

In this section, we show that the entire phase dia-
gram under finite abelian groups trivializes under G-
CMF. As discussed above, it is clear that SPT phases
will trivialize under G-CMF for abelian groups. Here
we show that the symmetry breaking phases, i.e., non-
normal MPS, also trivialize. That is, we prove our first
main result.

Result 2. Let G be a finite abelian group. Then all MPS are
in the same phase under G-CMF.

To show this, we consider two states in different
phases, |ψ(H0, µ0)⟩ and |ψ(H1, µ1)⟩. We will show
that these states can be transformed into each other
with G-CMF operations. In particular, for every phase,
(H, µ), we construct a representative state, |ψ̃(H, µ)⟩,
that is reachable from a product state, |Triv⟩. The claim
then follows as one can implement the sequence of
symmetry-preserving transformations

|ψ(H0, µ0)⟩ 7→ |Triv⟩ 7→ |ψ̃(H1, µ1)⟩ 7→ |ψ(H1, µ1)⟩ .
(11)

The first transformation is possible as one can always
transform to the product state when G is abelian (see
Section III C), and the last transformation is possible as
|ψ̃(H1, µ1)⟩ and |ψ(H1, µ1)⟩ belong to the same phase.
Thus, all that remains is to show that the representative
state |ψ̃(H, µ)⟩ can be reached from a product state.

To show this, we use a protocol consisting of four
steps, all depicted in Fig. 2. Step (i): Given a tensor,
A, of our target MPS, one locally prepares its fiducial
state, defined in Eq. (3). Step (ii): We use a depth-2
circuit to move the right qudit of the fiducial state to
the next neighbor. Step (iii): We locally perform a sym-
metric ”generalized Bell measurement” [defined below
in Eq. (16)]. Depending on the measurement outcome,
one obtains different post-measurement states. As we
will see later, all these states are, up to on-site quasi-
symmetric unitaries, equivalent to the target MPS. Im-
portantly, we will also see that potential residual errors
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FIG. 2. We consider protocols of the following form: (i) Start-
ing from a target MPS, one locally prepares its fiducial state.
(ii) Then one uses a shift circuit to move one qudit of the
fiducial state to the next-nearest neighbor. (iii) Then, one per-
form a projective measurement on two of the qudits locally
on each site. (iv) If the measurements are chosen properly,
depending on the measurement results, one arrives at states
that are each local unitary equivalent to the target MPS, up
to some residual error. The rest of the paper is then con-
cerned with ensuring all these steps can be performed in a
symmetry-preserving way and to ensure that any residual er-
ror that cannot be corrected on the physical site occurs with
zero probability.

that cannot be corrected on the physical systems do not
occur in our protocol. Step (iv): In a final step, we cor-
rect the post-measurement states to reach the desired
final state.

In what follows, we will show that all the steps de-
scribed above can be performed while respecting the
symmetry. An example to illustrate our protocol is
given in Appendix B for the group Z4 × Z2. The de-
tailed proof that the protocol outlined above is indeed
symmetry-preserving is provided in Appendix C. We
outline here the main ideas of why this construction
works.

We begin by choosing4 the action of the global on-site

4 Note, in Def. 1, we fix a physical symmetry, whilst here we choose
a physical symmetry. Indeed, we have abused notation a lit-
tle bit. Strictly speaking, the RHS of Eq. (12) appears as a sub-
representation of some finite tensor power of the original global
on-site symmetry, i.e., U⊗m

g for some m ∈ N. The fact that the tar-
get phase, (H, µ), is non-empty ensures such an m ∈ N exists (see
Appendix A 3 for further details). As our operations are all O(1)
local, we are allowed to consider our state after blocking m sites to-
gether. Thus we can ”choose” the symmetry in Eq. (12). Likewise,
the state defined by the tensor in Eq. (14) should also be considered
at length scale m. That is, we consider |ψñ[A]⟩ ∈ H⊗n=mñ. Gener-
ally, we work at this length scale throughout the following deriva-
tion. As m is finite, all symmetric operations at this length scale can
be implemented in finite-depth by the symmetric operations at the
original length scale (with O(1) auxiliary systems locally).

symmetry, Ug, on the physical space as

Ug =

[
⊕

α∈K
(ωµ)∗h(g,α) ⊗ (ωµ)h(g,α)

] (
Pk(g) ⊗ 1⊗ 1

)
.

(12)
Here, we choose the permutation representation to be
of the form Pk(g) ≡ Xk(g)

|K| , where X are cyclic permuta-
tions labeled by a function, k(g), which maps elements
of G to the quotient group K = G/H. By ω

µ
h we de-

note an irreducible projective representation of H cor-
responding to the cohomology class µ ∈ H2(H, U(1)).
Graphically, we may write this as shown below.

(13)

Having defined the symmetry in this way, it is easy to
choose a representative state, |ψ̃(H, µ)⟩, for the phase
(H, µ). To this end, we consider the following tensor. Ug Ug Ug

∝

Ṽ 0

Ṽ i Ṽ j Ṽ k

=

=

=

<latexit sha1_base64="OikM7EENiJGvCVvuNzXfqvG33nA=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIVdC7URozaWCZgLJEuYnZxNxsxemJkVwpInsLFQxFYfxt5GfBsniYUm/jDw8f/nMOccPxFcacf5snILi0vLK/lVe219Y3OrsL1TV3EqGdZYLGLZ9KlCwSOsaa4FNhOJNPQFNvzB1Thv3KFUPI5u9DBBL6S9iAecUW2s6kWnUHRKzkRkHtwfKJ6/22fJ26dd6RQ+2t2YpSFGmgmqVMt1Eu1lVGrOBI7sdqowoWxAe9gyGNEQlZdNBh2RA+N0SRBL8yJNJu7vjoyGSg1D31SGVPfVbDY2/8taqQ5OvYxHSaoxYtOPglQQHZPx1qTLJTIthgYok9zMSlifSsq0uY1tjuDOrjwP9aOSe1xyq06xfAlT5WEP9uEQXDiBMlxDBWrAAOEeHuHJurUerGfrZVqas356duGPrNdv9FyQCA==</latexit>

A

<latexit sha1_base64="+HW6OEMIFfOXD0enMfVjVhPEtms=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdC7URgzaWCZgLJEuYnZxNxszOLjOzQljyBDYWitjqw9jbiG/j5FJo4g8DH/9/DnPOCRLOlHbdbyu3tLyyupZftzc2t7Z3Crt7dRWnkmKNxjyWzYAo5ExgTTPNsZlIJFHAsREMrsd54x6lYrG41cME/Yj0BAsZJdpYVdYpFN2SO5GzCN4Mipcf9kXy/mVXOoXPdjemaYRCU06Uanluov2MSM0ox5HdThUmhA5ID1sGBYlQ+dlk0JFzZJyuE8bSPKGdifu7IyORUsMoMJUR0X01n43N/7JWqsNzP2MiSTUKOv0oTLmjY2e8tdNlEqnmQwOESmZmdWifSEK1uY1tjuDNr7wI9ZOSd1ryqm6xfAVT5eEADuEYPDiDMtxABWpAAeEBnuDZurMerRfrdVqas2Y9+/BH1tsPMQuQMA==</latexit>

i

<latexit sha1_base64="yjskZyJs7HeNIa9aNX2Gsuyl6h8=">AAAB7XicbZDLSgMxFIbP1Fsdb1WXboJFcFVmXKgbsejGZQV7gXYomTTTxmaSkGSEUvoOblwo4saFj+Lejfg2pq0Lbf0h8PH/55BzTqw4MzYIvrzcwuLS8kp+1V9b39jcKmzv1IzMNKFVIrnUjRgbypmgVcsspw2lKU5jTutx/3Kc1++oNkyKGztQNEpxV7CEEWydVWthrnq4XSgGpWAiNA/hDxTP3/0z9frpV9qFj1ZHkiylwhKOjWmGgbLREGvLCKcjv5UZqjDp4y5tOhQ4pSYaTqYdoQPndFAitXvCoon7u2OIU2MGaewqU2x7ZjYbm/9lzcwmp9GQCZVZKsj0oyTjyEo0Xh11mKbE8oEDTDRzsyLSwxoT6w7kuyOEsyvPQ+2oFB6XwuugWL6AqfKwB/twCCGcQBmuoAJVIHAL9/AIT570Hrxn72VamvN+enbhj7y3b+0Akls=</latexit>↵

<latexit sha1_base64="nNVogv2ud8KabTtbADGxYRIEk0c=">AAAB8XicbVC7SgNBFL0bXzG+NlraDAYhNmHXQi2DglhGyAuTNcxOZpMhs7PLzKwQlnyCnY2FIrb+gPgD9nb+jZNHoYkHLhzOuZd77/FjzpR2nG8rs7S8srqWXc9tbG5t79j53bqKEklojUQ8kk0fK8qZoDXNNKfNWFIc+pw2/MHF2G/cUalYJKp6GFMvxD3BAkawNtJNpZMOir2j0W21YxeckjMBWiTujBTKzuX9+8dnvtKxv9rdiCQhFZpwrFTLdWLtpVhqRjgd5dqJojEmA9yjLUMFDqny0snFI3RolC4KImlKaDRRf0+kOFRqGPqmM8S6r+a9sfif10p0cOalTMSJpoJMFwUJRzpC4/dRl0lKNB8agolk5lZE+lhiok1IOROCO//yIqkfl9yTkntt0jiHKbKwDwdQBBdOoQxXUIEaEBDwAE/wbCnr0XqxXqetGWs2swd/YL39AJt2k+k=</latexit>

PT
k(g)

<latexit sha1_base64="QgyAS63ltaHhbiCTboN63tPjtow=">AAAB6nicbZC7TsMwFIZPyq20XAqMLBYFialKGApjBQtjEaSt1EaV4zqpVceJbKdSFfURWBhAiJVn4AV4AzYeBGbcywAtv2Tp0/+fI59z/IQzpW3708qtrK6tb+Q3C8Wt7Z3d0t5+Q8WpJNQlMY9ly8eKciaoq5nmtJVIiiOf06Y/uJrkzSGVisXiTo8S6kU4FCxgBGtj3brdsFsq2xV7KrQMzhzKteOvt/dh8bveLX10ejFJIyo04ViptmMn2suw1IxwOi50UkUTTAY4pG2DAkdUedl01DE6MU4PBbE0T2g0dX93ZDhSahT5pjLCuq8Ws4n5X9ZOdXDhZUwkqaaCzD4KUo50jCZ7ox6TlGg+MoCJZGZWRPpYYqLNdQrmCM7iysvQOKs41Ypz45RrlzBTHg7hCE7BgXOowTXUwQUCIdzDIzxZ3Hqwnq2XWWnOmvccwB9Zrz/sP5H/</latexit>

Ug

<latexit sha1_base64="OikM7EENiJGvCVvuNzXfqvG33nA=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIVdC7URozaWCZgLJEuYnZxNxsxemJkVwpInsLFQxFYfxt5GfBsniYUm/jDw8f/nMOccPxFcacf5snILi0vLK/lVe219Y3OrsL1TV3EqGdZYLGLZ9KlCwSOsaa4FNhOJNPQFNvzB1Thv3KFUPI5u9DBBL6S9iAecUW2s6kWnUHRKzkRkHtwfKJ6/22fJ26dd6RQ+2t2YpSFGmgmqVMt1Eu1lVGrOBI7sdqowoWxAe9gyGNEQlZdNBh2RA+N0SRBL8yJNJu7vjoyGSg1D31SGVPfVbDY2/8taqQ5OvYxHSaoxYtOPglQQHZPx1qTLJTIthgYok9zMSlifSsq0uY1tjuDOrjwP9aOSe1xyq06xfAlT5WEP9uEQXDiBMlxDBWrAAOEeHuHJurUerGfrZVqas356duGPrNdv9FyQCA==</latexit>

A

<latexit sha1_base64="OikM7EENiJGvCVvuNzXfqvG33nA=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIVdC7URozaWCZgLJEuYnZxNxsxemJkVwpInsLFQxFYfxt5GfBsniYUm/jDw8f/nMOccPxFcacf5snILi0vLK/lVe219Y3OrsL1TV3EqGdZYLGLZ9KlCwSOsaa4FNhOJNPQFNvzB1Thv3KFUPI5u9DBBL6S9iAecUW2s6kWnUHRKzkRkHtwfKJ6/22fJ26dd6RQ+2t2YpSFGmgmqVMt1Eu1lVGrOBI7sdqowoWxAe9gyGNEQlZdNBh2RA+N0SRBL8yJNJu7vjoyGSg1D31SGVPfVbDY2/8taqQ5OvYxHSaoxYtOPglQQHZPx1qTLJTIthgYok9zMSlifSsq0uY1tjuDOrjwP9aOSe1xyq06xfAlT5WEP9uEQXDiBMlxDBWrAAOEeHuHJurUerGfrZVqas356duGPrNdv9FyQCA==</latexit>

A
<latexit sha1_base64="GsI92dtvCzpql9muvm7VIxZDEao=">AAACBnicbVDJSgNBEO2JW4xb1KMIo0GIIGEmB83BQ9CLxwhmgUwMNZ3KpEnPQnePEIacvPgrXjwo4knwG7zp19hZDpr4oODxXhVV9dyIM6ks68tILSwuLa+kVzNr6xubW9ntnZoMY0GxSkMeioYLEjkLsKqY4tiIBILvcqy7/cuRX79DIVkY3KhBhC0fvIB1GQWlpXZ23wl99KCd9PLeiQM86sHx8NbpgOehyLSzOatgjWHOE3tKcuXiu1v6Pj+otLOfTieksY+BohykbNpWpFoJCMUox2HGiSVGQPvgYVPTAHyUrWT8xtA80krH7IZCV6DMsfp7IgFfyoHv6k4fVE/OeiPxP68Zq26plbAgihUGdLKoG3NTheYoE7PDBFLFB5oAFUzfatIeCKBKJzcKwZ59eZ7UigX7tGBf6zQuyARpskcOSZ7Y5IyUyRWpkCqh5J48kmfyYjwYT8ar8TZpTRnTmV3yB8bHD2hVm2c=</latexit>

!†
h(g,↵)

<latexit sha1_base64="qsjgNDldPxioBAx6/0hCCiBSKJ8=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRahBS2JC3VZ1IXLCvYBTQg300k6dPJgZiLUUPwVNy4q4tavcONO8DfcO30stPXAhcM593LvPV7CqJCm+anlFhaXllfyq4W19Y3NLX17pyHilGNSxzGLecsDQRiNSF1SyUgr4QRCj5Gm17sc+c07wgWNo1vZT4gTQhBRn2KQSnL1PTsOSQBu1i0FRzawpAvlgasXzYo5hjFPrCkpVsvf78dXX8Oaq3/YnRinIYkkZiBE2zIT6WTAJcWMDAp2KkgCuAcBaSsaQUiEk42vHxiHSukYfsxVRdIYq78nMgiF6Iee6gxBdsWsNxL/89qp9M+djEZJKkmEJ4v8lBkyNkZRGB3KCZasrwhgTtWtBu4CByxVYAUVgjX78jxpnFSs04p1o9K4QBPk0T46QCVkoTNURdeohuoIo3v0iIboWXvQnrQX7XXSmtOmM7voD7S3H3n3mQA=</latexit>!h(g,↵)

<latexit sha1_base64="TeBKD6UmCK9tfSMZX8REPGpv2So=">AAAB6nicbVC7TgMxENzjGRIeAUoai4BEFd1RAGUEDWUQ5CElp8jn+C5WfPbJ9kWKTvkEGgoQouUb+AH+gI4PgRrnUUDCSCuNZna1uxMknGnjup/O0vLK6tp6biNf2Nza3inu7tW1TBWhNSK5VM0Aa8qZoDXDDKfNRFEcB5w2gv7V2G8MqNJMijszTKgf40iwkBFsrHRb7USdYsktuxOgReLNSKly9PX2Pih8VzvFj3ZXkjSmwhCOtW55bmL8DCvDCKejfDvVNMGkjyPaslTgmGo/m5w6QsdW6aJQKlvCoIn6eyLDsdbDOLCdMTY9Pe+Nxf+8VmrCCz9jIkkNFWS6KEw5MhKN/0ZdpigxfGgJJorZWxHpYYWJsenkbQje/MuLpH5a9s7K3o1N4xKmyMEBHMIJeHAOFbiGKtSAQAT38AhPDncenGfnZdq65Mxm9uEPnNcf5FGR+Q==</latexit>

Pg

<latexit sha1_base64="RDG0F+QAcM4OiXHydD3063brMHs=">AAAB8nicbVC7SgNBFJ2NrxhfUUubwSAIQti1UMugjWUE84DNGmZnbzZDZmeWmVkhLPkCaxsLRbT0a+z8EHsnj0ITD1w4nHMv994Tppxp47pfTmFpeWV1rbhe2tjc2t4p7+41tcwUhQaVXKp2SDRwJqBhmOHQThWQJOTQCgdXY791D0ozKW7NMIUgIbFgPUaJsZJf78Z3nYjEMahuueJW3QnwIvFmpFI7+X5/gEpa75Y/O5GkWQLCUE609j03NUFOlGGUw6jUyTSkhA5IDL6lgiSgg3xy8ggfWSXCPalsCYMn6u+JnCRaD5PQdibE9PW8Nxb/8/zM9C6CnIk0MyDodFEv49hIPP4fR0wBNXxoCaGK2Vsx7RNFqLEplWwI3vzLi6R5WvXOqt6NTeMSTVFEB+gQHSMPnaMaukZ11EAUSfSIntGLY5wn59V5m7YWnNnMPvoD5+MH3rSUqw==</latexit>

P †
g

<latexit sha1_base64="+LFP7EqJxYG3lWSE1Y1avlJu4rY=">AAAB73icbVC7SgNBFL0bXzHxsWppMxgFCwm7FmojBG0sI5gHJEuYncwmQ2ZnNzOzgbDkJ2wsFLH1B/wB/8DOD9HayaPQxAMXDufcy733+DFnSjvOp5VZWl5ZXcuu5/Ibm1vb9s5uVUWJJLRCIh7Juo8V5UzQimaa03osKQ59Tmt+73rs1wZUKhaJOz2MqRfijmABI1gbqV5upfKkP7ps2QWn6EyAFok7I4XS4dfb+yD/XW7ZH812RJKQCk04VqrhOrH2Uiw1I5yOcs1E0RiTHu7QhqECh1R56eTeEToyShsFkTQlNJqovydSHCo1DH3TGWLdVfPeWPzPayQ6uPBSJuJEU0Gmi4KEIx2h8fOozSQlmg8NwUQycysiXSwx0SainAnBnX95kVRPi+5Z0b01aVzBFFnYhwM4BhfOoQQ3UIYKEOBwD4/wZPWtB+vZepm2ZqzZzB78gfX6A3malAg=</latexit>

Pr,q =
<latexit sha1_base64="pZydFQCHeb4EXA6TQGPydJxfleM=">AAAB7nicbVC7SgNBFL0bXzHxEbW0GYyChYRdC7UM2lhGMA9IljA7mU2GzMyuM7OBsOQjbCwUsfUL/AH/wM4P0drJo9DEAxcO59zLvfcEMWfauO6nk1laXlldy67n8hubW9uFnd2ajhJFaJVEPFKNAGvKmaRVwwynjVhRLAJO60H/auzXB1RpFslbM4ypL3BXspARbKxUr7VTdXI3aheKbsmdAC0Sb0aK5cOvt/dB/rvSLny0OhFJBJWGcKx103Nj46dYGUY4HeVaiaYxJn3cpU1LJRZU++nk3BE6skoHhZGyJQ2aqL8nUiy0HorAdgpsenreG4v/ec3EhBd+ymScGCrJdFGYcGQiNP4ddZiixPChJZgoZm9FpIcVJsYmlLMhePMvL5Laack7K3k3No1LmCIL+3AAx+DBOZThGipQBQJ9uIdHeHJi58F5dl6mrRlnNrMHf+C8/gD+rZPH</latexit>

Vr,q

<latexit sha1_base64="QivELKl2Pgb+38V4/w43MKsDRFw=">AAAB/3icbVDLSsNAFJ34rPWVKrhxEyxCBSmJC3VZFMRlhb6gjeFmOkmGTh7MTIQSu/AD/Ak3LhRxqf6Ae3f+jdPHQlsPXDiccy/33uMmjAppmt/a3PzC4tJybiW/ura+sakXthoiTjkmdRyzmLdcEITRiNQllYy0Ek4gdBlpur3zod+8IVzQOKrJfkLsEPyIehSDVJKj73TikPhwXXOyoOQfdoAlARwMHL1ols0RjFliTUixYl7cv318FqqO/tXpxjgNSSQxAyHalplIOwMuKWZkkO+kgiSAe+CTtqIRhETY2ej+gbGvlK7hxVxVJI2R+nsig1CIfuiqzhBkIKa9ofif106ld2pnNEpSSSI8XuSlzJCxMQzD6FJOsGR9RQBzqm41cAAcsFSR5VUI1vTLs6RxVLaOy9aVSuMMjZFDu2gPlZCFTlAFXaIqqiOMbtEDekLP2p32qL1or+PWOW0ys43+QHv/ARoZmTI=</latexit>

!T
h(g,↵)

<latexit sha1_base64="2quMqTi8E++g1XVeGPiDy9tAHEk=">AAACBXicbVC7SgNBFJ2NrxhfUUstVoMQQcJuCk1hEbSxjGAekI3h7uRmM2T2wcysEJY0Nv6KjYUiduI/2OnXOHkUmnjgwuGce7n3HjfiTCrL+jJSC4tLyyvp1cza+sbmVnZ7pybDWFCs0pCHouGCRM4CrCqmODYigeC7HOtu/3Lk1+9QSBYGN2oQYcsHL2BdRkFpqZ3dd0IfPbh1OuB5KNpJL++dOMCjHhwP29mcVbDGMOeJPSW5cvHdLX2fH1Ta2U+nE9LYx0BRDlI2bStSrQSEYpTjMOPEEiOgffCwqWkAPspWMv5iaB5ppWN2Q6ErUOZY/T2RgC/lwHd1pw+qJ2e9kfif14xVt9RKWBDFCgM6WdSNualCcxSJ2WECqeIDTYAKpm81aQ8EUKWDy+gQ7NmX50mtWLBPC/a1TuOCTJAme+SQ5IlNzkiZXJEKqRJK7skjeSYvxoPxZLwab5PWlDGd2SV/YHz8AC02m1M=</latexit>

!†
h(g,↵)

<latexit sha1_base64="M51+bLqlfB42Z+UIimf6RsoIzbE=">AAAB+3icbVDLSsNAFJ3UV42vWJdugkVwVRIX6kYsunFZwT6gScNkOmmGTibDzEQsIb/ipgtF3PoN7t2If+P0sdDWAxcO59zLvfeEnBKpHOfbKK2srq1vlDfNre2d3T1rv9KSaSYQbqKUpqITQokpYbipiKK4wwWGSUhxOxzeTPz2AxaSpOxejTj2EzhgJCIIKi0FVgX3cuLxmASDngcpj2ERWFWn5kxhLxN3TqpXH+YlH3+ZjcD69PopyhLMFKJQyq7rcOXnUCiCKC5ML5OYQzSEA9zVlMEESz+f3l7Yx1rp21EqdDFlT9XfEzlMpBwloe5MoIrlojcR//O6mYou/JwwninM0GxRlFFbpfYkCLtPBEaKjjSBSBB9q41iKCBSOi5Th+AuvrxMWqc196zm3rnV+jWYoQwOwRE4AS44B3VwCxqgCRB4BE/gGbwYhTE2Xo23WWvJmM8cgD8w3n8AxEGX6g==</latexit>

ei�↵
g

<latexit sha1_base64="hmrZbGN/aBloFfyozJsmL4Vmj6E=">AAAB6nicbZA7TgMxEIZneYaER4CSxiIgUUVrCqCMoKEMgjykZBV5He/Gite7sr2RolWOQEMBQrScgQtwAzoOAjXOo4CEX7L06f9n5JnxE8G1cd1PZ2l5ZXVtPbeRL2xube8Ud/fqOk4VZTUai1g1faKZ4JLVDDeCNRPFSOQL1vD7V+O8MWBK81jemWHCvIiEkgecEmOt20Yn7BRLbtmdCC0CnkGpcvT19j4ofFc7xY92N6ZpxKShgmjdwm5ivIwow6lgo3w71SwhtE9C1rIoScS0l01GHaFj63RRECv7pEET93dHRiKth5FvKyNieno+G5v/Za3UBBdexmWSGibp9KMgFcjEaLw36nLFqBFDC4QqbmdFtEcUocZeJ2+PgOdXXoT6aRmflfENLlUuYaocHMAhnACGc6jANVShBhRCuIdHeHKE8+A8Oy/T0iVn1rMPf+S8/gDvS5IB</latexit>

Wg

(14)

Note that in Eq. (14), the blue lines are decoupled from
the black lines. Thus, this tensor generates the MPS
consisting of a tensor product of a GHZ state (generated
by the blue lines) and a chain of bell pairs (generates by
the black lines). By construction, this state belongs to
the phase (H, µ). Having chosen our representative, let
us now verify each step of the protocol is symmetric.

One can easily verify that the following (fiducial)
state is symmetric with respect to U⊗3

g . We note that it
is almost the fiducial state of the representative tensor,
but contains an additional Bell state to make it symmet-
ric.

(15)

The depth-2 circuit that moves the right qudit to the
nearest neighbor is symmetry-preserving as it simply
swaps qudits between nearest neighbors. Such gates
clearly commute with U⊗2

g .
Next, let us consider the on-site measurement on the

two qudits in step (iii) of the protocol, see Figure 2. It
corresponds to a generalized Bell measurement, with
the measurement operators given by

Pr,q = (1⊗ Vr,q) |Φ̃+⟩⟨Φ̃+| (1⊗ V†
r,q), (16)

where

|Φ̃+⟩ ∝ ∑
i∈[|K|]

∑
j,k∈[Dµ ]

|i, j, k, i, k, j⟩ (17)
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is a maximally entangled state, |K| = |G|/|H|, and Dµ

is the dimension of the projective representation of H,
ω

µ
h . Graphically, this may be represented as follows.

(18)

The unitaries, Vr,q, are given by

Vr,q = UrṼq ≡ Ur [Z̃q ⊗ 1⊗ (ω
µ

h(q))], (19)

where Ur is the physical symmetry, ω
µ
h is the projective

representation of H, and Z̃q is a diagonal unitary ma-
trix, with r, g ∈ Sµ, for a specific subset Sµ ⊆ G (see
Appendix C for further details).

Let us explain our construction, Pr,q, in more detail.
We need to ensure that the measurement has the fol-
lowing properties: (i) The projectors, Pr,q, must com-
mute with all the Ug, which is equivalent to Vr,q quasi-
commuting with all the Ug, i.e., Vr,qUg ∝ UgVr,q. (ii)
The measurement must be complete. (iii) All post-
measurement states must be correctable to the target
state.

Clearly, the symmetries, Ug, themselves fulfill all
these properties. However, there are not sufficiently
many symmetries to complete the measurement, i.e.,
for Ṽid = 1 in Eq. (19), the corresponding projectors
{Pr,1}r∈G do not form a complete measurement. Thus,
we have to choose additional unitaries. We choose these
to be product operators so that they propagate nicely
through the tensor. The first tensor factor, Z̃q, of Ṽq is a
product of a generalized Z gate and an additional phase
matrix. The generalized Z gate quasi-commutes with
the permutation action, a generalized X gate, of Ug and,
together with X, generates orthogonal operators. The
third tensor factor carries a projective representation. It
quasi-commutes with all the projective representations
in all the blocks of Ug individually, but generates poten-
tially different phases in each of the blocks. The reason
for the additional phase matrix on the first tensor factor
is then precisely to cancel these phases and make the
operator overall quasi-commute with the symmetry. To
summarize, we have the following Lemma, which we
prove and state in more detail in Appendix C 3.

Lemma 3 (informal). Let G be a finite abelian group and
(H, µ) label a phase. Let Ug be given as in Eq. (12), and let
{Pr,q}r,q∈S be given as in Eq. (16). Then, {Pr,q}r,q∈S is a
complete, symmetric projective measurement.

Finally, we must verify that we can indeed correct
any post-measurement state to the target state that we

wish to reach. To that end, one notices that the uni-
taries, Ur and Ṽq, can be propagated though the post-
measurement state according to the following rules (see
Appendix C 4 for a proof).

(20)
Thus, if all parties locally measure {Pr,q}r,q∈S, yielding
the outcome (r1, q1, r2, q2, . . . , rn, qn), we can propagate
the corresponding operators Vr,q through the tensor ac-
cording to the rules above and obtain the following
post-measurement states.

Here, Ũ(i) = (∏i
j=1 U†

rj
)U†

|K|h(qi)
∈ {Ug}g∈G, and Ũ(0) =

∏n
j=1 Urj . If Ũ(0) = 1, then this output state is, up to

local, quasi-commuting unitaries, equivalent to our de-
sired state. Otherwise, we have the following Lemma,
which we prove in Appendix C 5, ensuring that all other
cases have vanishing probability.

Lemma 4. Let Ũ(0) ̸= 1. Then the following equation holds.

(21)

Thus, all post-measurement states are equivalent to
the target state, up to on-site quasi-commuting uni-
taries, and can therefore be corrected (perhaps by us-
ing an additional auxiliary system as discussed above).
In summary, we have successfully, deterministically
transformed a product state to a state in the phase
(H, µ), and thus, by the arguments above, shown that
all phases trivialize for finite abelian groups.

V. NON-ABELIAN SYMMETRIES

We now want to study the phase diagram under non-
abelian symmetries. In the case of abelian symmetries,
the transformation from any state to the trivial phase
was straightforward. One could simply locally mea-
sure all physical sites in a common eigenbasis of the
symmetry and thereby always deterministically reach a
symmetric, pure product state. A direct consequence of
this was that SPT phases trivialized. However, for non-
abelian symmetries, such an eigenbasis does not need
to exist, which is why we have to find a more sophis-
ticated protocol to achieve the desired transformation.
First, one notices the following.
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Result 5. Let G be a non-abelian group such that ω
µ
g ⊗

ω
∗µ
g is non-commutative for all nontrivial projective µ-irreps

ω
µ
g

5. Then, for any translationally invariant SPT state |ψn⟩
associated with µ, there is some n0 such that ∀n > n0 |ψn⟩
cannot be deterministically converted via symmetric LOCC
to a product state.

The proof is provided in Appendix D 1. The idea is
to consider the SPT state as a bipartite system, in which
case one can see that the non-abelian symmetry ensures
that, for any LOCC protocol, at least one outcome will
remain entangled in the bipartition. The reason for that
is the fact that the state, considered as a bipartite state,
is locally supported on the non-abelian subspace, which
refers to the local subspace on which the non-abelian
sub-representations in Ug have support.

For instance, the dihedral group with eight elements,
D8, is non-abelian and has only one nontrivial projec-
tive irrep, ωg. This irrep has the property that ωg ⊗ ω∗

g
is non-abelian. Therefore, no nontrivial SPT state under
D8 can be deterministically transformed to a product
state with symmetric LOCC.

Thus, local measurements with classical communica-
tion are generally not powerful enough to deterministi-
cally transform any non-abelian SPT state to the prod-
uct state. Nevertheless, one might hope to find mea-
surements such that all post-measurement states be-
long to the trivial phase and can thus be transformed to
the product state with a short-depth circuit. However,
this too seems unreasonable as one would expect that
at least some measurement outcomes yield (potentially
long-range) entangled states (see the Result 6 below).
Thus, instead of strictly deterministic transformations,
we will consider asymptotically deterministic transfor-
mations in the following.

A. Join-And-Measure Protocols

We will consider protocols that can be appropriately
described as join-and-measure protocols. The general
idea is as follows; first, each site performs a symmetric
projective measurement yielding two qualitatively dif-
ferent types of outcome: either the local site is projected
onto a one dimensional subspace, carrying a 1D irrep
of G. The local site is then in a symmetric pure state
that is disentangled from the rest of the state, which
we will call a successful outcome; or, the local site is pro-
jected onto the non-abelian subspace. We will call this

5 As with linear representations, a projective representation is said to
be irreducible if it has no nontrivial invariant subspaces. We refer
to an irreducible representation corresponding to the cohomology
class µ as a µ-irrep.

type of outcome an unsuccessful outcome. All local sites
that obtain unsuccessful outcomes are in a (potentially
long-range) entangled post-measurement state, which
we refer to as the error state.

To further disentangle the error states, one uses cir-
cuits to join neighboring sites of the error state together
and then performs a projective symmetric measurement
again, this time with respect to Ug ⊗Ug (see Fig. 3). The
idea is that two copies of a non-abelian representation
may contain abelian sub-representations. Therefore,
while the error states are strictly-locally supported only
on the non-abelian subspaces, they may have abelian
support when we consider two sites together. In this
case, a subsequent symmetric measurement on pairs
of sites will, with some probability, yield again pure
product states and a smaller error state. Repeating this
procedure may eventually result in a state in the trivial
phase.

However, there are several subtleties to this construc-
tion. As we are limited to O(polylog(n))-depth circuits,
one needs to ensure that the distance between neigh-
boring sites of error states does not become too large
when considering the thermodynamic limit. Moreover,
we need to ensure the measurements act on O(1) sites.
Finally, it is a priori not clear how tensor products of
non-abelian irreps decompose and how large the local
abelian support of the error states is after pairing sites.
Nonetheless, for certain cases, one can show that these
protocols terminate and that the probability of obtain-
ing non-correctable error states vanishes in the thermo-
dynamic limit. In these cases, join-and-measure proto-
cols allow for asymptotically deterministic transforma-
tions to the trivial phase. In the following, we will delve
into this by considering a specific example.

B. Trivialization of SPT Phases under the Non-Abelian
Group D8

Consider the non-abelian group D8; the dihedral
group of order eight describing the symmetries of a
square. It is the smallest non-abelian group with non-
trivial SPT phases. It has five linear irreps; four abelian
irreps denoted by χ

(i)∈{0,...,3}
g , and one non-abelian irrep

denoted by U(4)
g . Later, it will become important, that

U(4)
g ⊗U(4)

g ∼= ⊕3
i=0 χ

(i)
g ; that is, the tensor square of the

non-abelian irrep completely decomposes into abelian
irreps. Finally, we choose the following linear represen-
tation of D8

Ug = ωg ⊗ ω∗
g = [χ

(0)
g ]Φ+ ⊕ [χ

(1)
g ]Φ− ⊕ [U(4)

g ]Ψ± . (22)

The subscript denotes the corresponding invariant sub-
spaces of the Hilbert space. We can then prove the fol-
lowing result.
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FIG. 3. Join-and-measure protocols consist of the following
steps: starting from an initial state, a local measurement is
performed; a successful outcome results in a pure product
state, and an unsuccessful measurement outcome leads to a
long-range entangled state, the error-state. In the next step, a
SWAP-circuit of a certain depth l is used to bring nearest sites
of the error state together. For instance, for l = 2, the segment
of the error-state in the second line is correctable, but the one
in the third line is not.

Result 6. Any SPT state under D8 can be transformed
asymptotically-deterministically to the trivial phase, and vice
versa.

To show Result 6, consider the state

|SPTn⟩ =
n⊗

i=1
|Φ+⟩Ri ,Li+1

, (23)

where Rn = L1. This state is symmetric with respect
to Ug and belongs to the SPT phase associated with ωg.
We now wish to transform this state to the trivial state
|Triv⟩ = |Φ+⟩⊗n via a join-and-measure protocol.

Let us define the following symmetric projective mea-
surement {Pk}k∈{0,1, f }, where

P0 = |Φ+⟩⟨Φ+| , P1 = |Φ−⟩⟨Φ−| , (24)

Pf = |Ψ+⟩⟨Ψ+|+ |Ψ−⟩⟨Ψ−| , (25)

where, clearly,
[
Ug, Pk

]
= 0 for all k. Moreover, the

following relations hold;

|Φ−⟩ = 1⊗ Z |Φ+⟩ , (26)

1⊗ Z |Φ+⟩ = Z ⊗ 1 |Φ+⟩ , (27)
Pf (1⊗ Z) = −Pf (Z ⊗ 1) , (28)

Pf (1⊗ Z) = (1⊗ Z) Pf , (29)

Ug (1⊗ Z) ∝ (1⊗ Z)Ug, ∀g ∈ G. (30)

To begin our analysis, we need to know the probabil-
ity distribution of the output strings. If each physical
site performs the above projective measurement, one
obtains an outcome k ∈ {0, 1, f }×n. The outcomes
k = 0, 1 are successful outcomes as locally the post-
measurement state is a disentangled symmetric pure
state. From Eqs. (24)-(30), it is clear that it does not
matter which of the successful outcomes any given
site measures. All outcome strings with the same un-
successful sites are (quasi-commuting) on-site unitary

equivalent and therefore occur with the same proba-
bility and are equivalently correctable. Thus, it is suf-
ficient to gather successful outcomes and consider the
probability of output string x ∈ {s, f }, where xi = s
corresponds to ki ∈ {0, 1}.

Let us now consider the completely successful out-
comes, i.e., x = s×n (equivalently, k ∈ {0, 1}×n). We
have

p(s×n) = ∑
k∈{0,1}N

| ⟨Φ(±)ki |⊗n ⊗

i
1Li ⊗ (Z†

Ri
)ki |SPT⟩|

2

(31)

=
1

4n−1 ∑
k
| ⟨Φ+|∏

i
1L1 ⊗ (Z†

R1
)ki |Φ+⟩| 2

(32)

=
1

2n−1 . (33)

For the first equality, we consider the cumulative prob-
ability of the 2n completely successful outputs. For the
second equality, one repeatedly uses Eq. (27). For the
last equality, one uses that the overlap in the sum is one
if ∏i 1L1 ⊗ (Z†

R1
)ki = 1 and zero otherwise.

In the event of at least one unsuccessful outcome,
Eq.(24)-(30) ensure the probability p(x) can at most de-
pend on the number of unsuccessful outcomes but not
on their location. A similar calculation shows that the
probability of obtaining | f | unsuccessful outcomes is
given by

p(x) = 2n−| f | 1
4n−| f | ⟨SPT| f || P⊗| f |

f |SPT| f |⟩ . (34)

By evaluating the expectation value above, one can
show that it evaluates to zero whenever | f | is odd and
1/2| f |−1 otherwise. The proof can be found in Ap-
pendix D 2. It uses the fact that relations similar to the
following hold;

v

<latexit sha1_base64="rfLsaMWi+KuZ+zBis2nt49CXNOI=">AAAB/3icbVDLTgIxFL2DL8QX6tJNAzHBmJAZF+pyohuXGAVJYEI6pUBDZzppOybjhIUf4M7oJ7gzbv0UvsDfsAMsBDxJk5Nz7qvHjzhT2rbHVm5ldW19I79Z2Nre2d0r7h80lIgloXUiuJBNHyvKWUjrmmlOm5GkOPA5ffCH15n/8EilYiK810lEvQD3Q9ZjBGsj3VXYSadYtqv2BGiZODNSdkvt09exm9Q6xZ92V5A4oKEmHCvVcuxIeymWmhFOR4V2rGiEyRD3acvQEAdUeenk1BE6NkoX9YQ0L9Roov7tSHGgVBL4pjLAeqAWvUz8z2vFunfppSyMYk1DMl3UiznSAmX/Rl0mKdE8MQQTycytiAywxESbdOa2ZLMj/CRGJhlnMYdl0jirOudV59Ypu1cwRR6OoAQVcOACXLiBGtSBQB9e4A3erWfrw/q0vqalOWvWcwhzsL5/AQS3mbM=</latexit>

(i)

<latexit sha1_base64="pktvC6U6oxNBSf19r27eNqSfXgE=">AAACAHicbVDLSgMxFL1TX7W+qi7dhBahIpQZF+py0I3LCvYB7VAyadqGZpIhyQjj0I0f4ErQT3Anbv2TfoG/4UzbhW09EDicc185fsiZNrY9sXJr6xubW/ntws7u3v5B8fCooWWkCK0TyaVq+VhTzgStG2Y4bYWK4sDntOmPbjO/+UiVZlI8mDikXoAHgvUZwSaTKoyddYtlu2pPgVaJMydlt9Q5f524ca1b/On0JIkCKgzhWOu2Y4fGS7AyjHA6LnQiTUNMRnhA2ykVOKDaS6a3jtFpqvRQX6r0CYOm6t+OBAdax4GfVgbYDPWyl4n/ee3I9K+9hIkwMlSQ2aJ+xJGRKPs46jFFieFxSjBRLL0VkSFWmJg0noUt2ewQP8lxmoyznMMqaVxUncuqc++U3RuYIQ8nUIIKOHAFLtxBDepAYAgv8Abv1rP1YX1aX7PSnDXvOYYFWN+/0m+aJg==</latexit>

(ii)

<latexit sha1_base64="aog/b02eWIgPc238k3K5U0nciJU=">AAACAXicbVDNTgIxGOziH+If6tFLAzHBmJBdD+pxoxePmLhAAhvSLV1o6Labtmuybjj5AF486CN4M159Ep7A17ALHAScpMlk5vvrBDGjStv2xCqsrW9sbhW3Szu7e/sH5cOjphKJxMTDggnZDpAijHLiaaoZaceSoChgpBWMbnO/9UikooI/6DQmfoQGnIYUI20kr0YpPeuVq3bdngKuEmdOqm6le/46cdNGr/zT7QucRIRrzJBSHceOtZ8hqSlmZFzqJorECI/QgHQM5Sgiys+mx47hqVH6MBTSPK7hVP3bkaFIqTQKTGWE9FAte7n4n9dJdHjtZ5THiSYczxaFCYNawPznsE8lwZqlhiAsqbkV4iGSCGuTz8KWfHaMnsTYJOMs57BKmhd157Lu3DtV9wbMUAQnoAJqwAFXwAV3oAE8gAEFL+ANvFvP1of1aX3NSgvWvOcYLMD6/gWgoZqZ</latexit>

(iii)

<latexit sha1_base64="I+JzbtxPAxE6phdHTQXxmzghegM=">AAACAHicbVDLTgIxFL2DL8QX6tJNAzHBmJAZF+pyohuXmAiYwIR0SgcaOtNJ2yEZCRs/wJWJfoI749Y/4Qv8DTvAQsCTNDk55756/JgzpW17YuXW1jc2t/LbhZ3dvf2D4uFRQ4lEElonggv56GNFOYtoXTPN6WMsKQ59Tpv+4Dbzm0MqFRPRg05j6oW4F7GAEawzqcKGZ51i2a7aU6BV4sxJ2S21z18nblrrFH/aXUGSkEaacKxUy7Fj7Y2w1IxwOi60E0VjTAa4R1uGRjikyhtNbx2jU6N0USCkeZFGU/VvxwiHSqWhbypDrPtq2cvE/7xWooNrb8SiONE0IrNFQcKRFij7OOoySYnmqSGYSGZuRaSPJSbaxLOwJZsd4ycxNsk4yzmsksZF1bmsOvdO2b2BGfJwAiWogANX4MId1KAOBPrwAm/wbj1bH9an9TUrzVnznmNYgPX9C+dBmjM=</latexit>

(iv)

<latexit sha1_base64="R6y/oVfcSr+uV7KzngoujhU85Tg=">AAAB+nicbVA9T8MwEHX4LOUrhZHFogIxVUkHYKzEwlgk+iG1UeW4TmvVdiL7AqpCfwoLAwix8kvY+Dc4bQZoedJJT+/d6e5emAhuwPO+nbX1jc2t7dJOeXdv/+DQrRy1TZxqylo0FrHuhsQwwRVrAQfBuolmRIaCdcLJTe53Hpg2PFb3ME1YIMlI8YhTAlYauBUzlZKB5hRTrmnKYeBWvZo3B14lfkGqqEBz4H71hzFNJVNABTGm53sJBBnRwKlgs3I/NSwhdEJGrGepIpKZIJufPsNnVhniKNa2FOC5+nsiI9LYE0PbKQmMzbKXi/95vRSi6yDjKkmBKbpYFKUCQ4zzHPCQa0ZBTC0hVHPIAxgTTSjYtMo2BH/55VXSrtf8y5p/V682zos4SugEnaIL5KMr1EC3qIlaiKJH9Ixe0Zvz5Lw4787HonXNKWaO0R84nz+tKZQt</latexit>

symmetric circuit

<latexit sha1_base64="plbCcy39TyTGO3vrejH/+5LFomo=">AAAB9HicbZA9TwJBEIbn8AvxC7W02UhMrMgdhVoSbSwxkY8ELmRvGWDD3t65u0dyufA7bCw0xtYfY+e/cYErFHyTTZ68M5OZfYNYcG1c99spbGxube8Ud0t7+weHR+Xjk5aOEsWwySIRqU5ANQousWm4EdiJFdIwENgOJnfzenuKSvNIPpo0Rj+kI8mHnFFjLT8ep9qyIJob7JcrbtVdiKyDl0MFcjX65a/eIGJJiNIwQbXuem5s/Iwqw5nAWamXaIwpm9ARdi1KGqL2s8XRM3JhnQEZRso+acjC/T2R0VDrNAxsZ0jNWK/W5uZ/tW5ihjd+xmWcGJRsuWiYCGIiMk+ADLhCZkRqgTLF7a2EjamizNicSjYEb/XL69CqVb2rqvdQq9Rv8ziKcAbncAkeXEMd7qEBTWDwBM/wCm/O1Hlx3p2PZWvByWdO4Y+czx/tL5Iy</latexit>

physical site

<latexit sha1_base64="FocHnFPSOqW9cluZZDdbeAxNWsE=">AAAB7nicbZDLSsNAFIZP6q3WW9WlIINFcFUSF+qytCAuK9gLNKFMppN06GQSZiZCCX0INxYUcevzuHPrkzhpu9DWHwY+/v8c5pzjJ5wpbdtfVmFtfWNzq7hd2tnd2z8oHx61VZxKQlsk5rHs+lhRzgRtaaY57SaS4sjntOOPGnneeaRSsVg86HFCvQiHggWMYG2sjltnYehm/XLFrtozoVVwFlCp3U5PvxvtabNf/nQHMUkjKjThWKmeYyfay7DUjHA6KbmpogkmIxzSnkGBI6q8bDbuBJ0bZ4CCWJonNJq5vzsyHCk1jnxTGWE9VMtZbv6X9VId3HgZE0mqqSDzj4KUIx2jfHc0YJISzccGMJHMzIrIEEtMtLlQyRzBWV55FdqXVeeq6tw7lVod5irCCZzBBThwDTW4gya0gMAInuAFXq3EerberPd5acFa9BzDH1kfP5Nlkrw=</latexit>(
<latexit sha1_base64="adHuQEHjlUVeXFOsKyTYoP9qcw8=">AAAB+nicbVA9T8MwEHXKVylfKYwsFhUSU5V0AMYKFsYi0Q+prSrHvbRWbSeyHSAK/SksDCDEyi9h49/gthmg5UknPb13p7t7QcyZNp737RTW1jc2t4rbpZ3dvf0Dt3zY0lGiKDRpxCPVCYgGziQ0DTMcOrECIgIO7WByPfPb96A0i+SdSWPoCzKSLGSUGCsN3DJJHhlnRKVYp9qA0AO34lW9OfAq8XNSQTkaA/erN4xoIkAayonWXd+LTT8jyjDKYVrqJRpiQidkBF1LJRGg+9n89Ck+tcoQh5GyJQ2eq78nMiK0TkVgOwUxY73szcT/vG5iwst+xmScGJB0sShMODYRnuWAh0wBNTy1hFDF7K2Yjoki1Ni0SjYEf/nlVdKqVf3zqn9bq9Sv8jiK6BidoDPkowtURzeogZqIogf0jF7Rm/PkvDjvzseiteDkM0foD5zPH+YclGk=</latexit>

auxiliary systems

<latexit sha1_base64="2zkxM/zZN/CCQ1bMeePJr9ac2IU=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMh82JmVgghH+HFgyJe/R5v/o2TZA+aWNBQVHXT3ZVozqwLw++gsLa+sblV3C7t7O7tH5QPj5pWZYbQBlFcmXaCLeVM0oZjjtO2NhSLhNNWMrqb+a0naixT8tGNNY0FHkiWMoKdl1pdgbV1qleuhNVwDrRKopxUIEe9V/7q9hXJBJWOcGxtJwq1iyfYOEY4nZa6maUakxEe0I6nEgtq48n83Ck680ofpcr4kg7N1d8TEyysHYvEdwrshnbZm4n/eZ3MpTfxhEmdOSrJYlGaceQUmv2O+sxQ4vjYE0wM87ciMsQGE+cTKvkQouWXV0nzohpdVaOHy0rtNo+jCCdwCucQwTXU4B7q0AACI3iGV3gLdPASvAcfi9ZCkM8cwx8Enz+MSY+2</latexit>7!
<latexit sha1_base64="13b4Pe7yDBpwb7v2tmUB9dxuGKU=">AAACKnicbVBNSwMxEM3Wr1q/qh69BIvgQcpuD+qx6sWjgq1Cdymz2akNTbJLklVK6e/x4l/x0oMiXv0hZtse/BoIPN57M5l5cSa4sb7/7pUWFpeWV8qrlbX1jc2t6vZO26S5ZthiqUj1XQwGBVfYstwKvMs0gowF3saDi0K/fUBteKpu7DDDSMK94j3OwDqqWz0LVcpVgspSM5QSreaMSgSTa5SONUehwsdiegVU8s2TK25BczTdas2v+9Oif0EwBzUyr6tudRImKcuL6UyAMZ3Az2w0Am05EziuhLnBDNgA7rHjoAKJJhpNTx3TA8cktJdq99zOU/Z7xwikcUvGzinB9s1vrSD/0zq57Z1GI66y3KJis496uaA2pUVuNOEamRVDB4Bp7nalrA8amHXpVlwIwe+T/4J2ox4c14PrRq15Po+jTPbIPjkkATkhTXJJrkiLMPJEXsgrefOevYn37n3MrCVv3rNLfpT3+QX8TqjS</latexit>

symmetric measurements,
and symmetric unitaries

P3 P3 P3P2 P2 P1

P3 P3 P3

<latexit sha1_base64="TeE+1h99abQJRYb9KbzhGP0iyj8=">AAAB+HicbVDLSsNAFJ3UV62PRl26CRZBUEriQl0W3bisYB/QxjCZ3KRDJ5M4MxFq6Bf4CW5cVMStn+LOD3Hv9LHQ1gMXDufcy733+CmjUtn2l1FYWl5ZXSuulzY2t7bL5s5uUyaZINAgCUtE28cSGOXQUFQxaKcCcOwzaPn9q7HfegAhacJv1SAFN8YRpyElWGnJM8tNLxcn98O7boCjCIRnVuyqPYG1SJwZqdSOv0dPUEnrnvnZDRKSxcAVYVjKjmOnys2xUJQwGJa6mYQUkz6OoKMpxzFIN58cPrQOtRJYYSJ0cWVN1N8TOY6lHMS+7oyx6sl5byz+53UyFV64OeVppoCT6aIwY5ZKrHEKVkAFEMUGmmAiqL7VIj0sMFE6q5IOwZl/eZE0T6vOWdW50WlcoimKaB8doCPkoHNUQ9eojhqIoAw9oxF6NR6NF+PNeJ+2FozZzB76A+PjB35Elqo=</latexit>

V †
r,q

<latexit sha1_base64="+LFP7EqJxYG3lWSE1Y1avlJu4rY=">AAAB73icbVC7SgNBFL0bXzHxsWppMxgFCwm7FmojBG0sI5gHJEuYncwmQ2ZnNzOzgbDkJ2wsFLH1B/wB/8DOD9HayaPQxAMXDufcy733+DFnSjvOp5VZWl5ZXcuu5/Ibm1vb9s5uVUWJJLRCIh7Juo8V5UzQimaa03osKQ59Tmt+73rs1wZUKhaJOz2MqRfijmABI1gbqV5upfKkP7ps2QWn6EyAFok7I4XS4dfb+yD/XW7ZH812RJKQCk04VqrhOrH2Uiw1I5yOcs1E0RiTHu7QhqECh1R56eTeEToyShsFkTQlNJqovydSHCo1DH3TGWLdVfPeWPzPayQ6uPBSJuJEU0Gmi4KEIx2h8fOozSQlmg8NwUQycysiXSwx0SainAnBnX95kVRPi+5Z0b01aVzBFFnYhwM4BhfOoQQ3UIYKEOBwD4/wZPWtB+vZepm2ZqzZzB78gfX6A3malAg=</latexit>

Pr,q =
<latexit sha1_base64="pZydFQCHeb4EXA6TQGPydJxfleM=">AAAB7nicbVC7SgNBFL0bXzHxEbW0GYyChYRdC7UM2lhGMA9IljA7mU2GzMyuM7OBsOQjbCwUsfUL/AH/wM4P0drJo9DEAxcO59zLvfcEMWfauO6nk1laXlldy67n8hubW9uFnd2ajhJFaJVEPFKNAGvKmaRVwwynjVhRLAJO60H/auzXB1RpFslbM4ypL3BXspARbKxUr7VTdXI3aheKbsmdAC0Sb0aK5cOvt/dB/rvSLny0OhFJBJWGcKx103Nj46dYGUY4HeVaiaYxJn3cpU1LJRZU++nk3BE6skoHhZGyJQ2aqL8nUiy0HorAdgpsenreG4v/ec3EhBd+ymScGCrJdFGYcGQiNP4ddZiixPChJZgoZm9FpIcVJsYmlLMhePMvL5Laack7K3k3No1LmCIL+3AAx+DBOZThGipQBQJ9uIdHeHJi58F5dl6mrRlnNrMHf+C8/gD+rZPH</latexit>

Vr,q

<latexit sha1_base64="RdEq/eugkMGMWgYK0LJGg+40NJg=">AAAB6XicbZDLSgMxFIbP1Fsdb1WXboJFcFVmXKibYtWNyyr2Au1QMmmmDc0kQ5IRytA3cONCEbd9GPduxLcxvSy0+kPg4//PIeecMOFMG8/7cnJLyyura/l1d2Nza3unsLtX1zJVhNaI5FI1Q6wpZ4LWDDOcNhNFcRxy2ggH15O88UCVZlLcm2FCgxj3BIsYwcZad5flTqHolbyp0F/w51C8eHfLyfjTrXYKH+2uJGlMhSEca93yvcQEGVaGEU5HbjvVNMFkgHu0ZVHgmOogm046QkfW6aJIKvuEQVP3Z0eGY62HcWgrY2z6ejGbmP9lrdRE50HGRJIaKsjsoyjlyEg0WRt1maLE8KEFTBSzsyLSxwoTY4/j2iP4iyv/hfpJyT8t+bd+sXIFM+XhAA7hGHw4gwrcQBVqQCCCR3iGF2fgPDmvztusNOfMe/bhl5zxN3ZUkFA=</latexit>

A =
<latexit sha1_base64="jhPtAG2b2xv1g5qMlRh1G38bDJM=">AAAB8XicbZDLSsNAFIZPvNZ6q7p0M7QIglASF+pGiLpxWcFesAllMp20QyeTMDMRQuxbdONCEbe+jbu+jdPLQlt/GPj4/3OYc06QcKa0bY+tldW19Y3NwlZxe2d3b790cNhQcSoJrZOYx7IVYEU5E7Sumea0lUiKo4DTZjC4m+TNZyoVi8WjzhLqR7gnWMgI1sZ6ernxJBY9Tq87pYpdtadCy+DMoeKWvbPR2M1qndK3141JGlGhCcdKtR070X6OpWaE02HRSxVNMBngHm0bFDiiys+nEw/RiXG6KIyleUKjqfu7I8eRUlkUmMoI675azCbmf1k71eGVnzORpJoKMvsoTDnSMZqsj7pMUqJ5ZgATycysiPSxxESbIxXNEZzFlZehcV51LqrOg1Nxb2GmAhxDGU7BgUtw4R5qUAcCAkbwBu+Wsl6tD+tzVrpizXuO4I+srx9xXpO/</latexit>|Ai =

<latexit sha1_base64="pgrvE9WyYROk4++X/hzUVo7sA40=">AAAB7HicbZDLSsNAFIZP6q3WW9Wlm6FFqCglcaEugy50WcG0hTaUyXTSDp1MwsxECKHP4KYLRdz6QO76Nk4vC63+MPDx/+cw55wg4Uxp255ahbX1jc2t4nZpZ3dv/6B8eNRUcSoJ9UjMY9kOsKKcCepppjltJ5LiKOC0FYzuZnnrmUrFYvGks4T6ER4IFjKCtbG82v2FfdYrV+26PRf6C84Sqm6lez6ZulmjV/7q9mOSRlRowrFSHcdOtJ9jqRnhdFzqpoommIzwgHYMChxR5efzYcfo1Dh9FMbSPKHR3P3ZkeNIqSwKTGWE9VCtZjPzv6yT6vDGz5lIUk0FWXwUphzpGM02R30mKdE8M4CJZGZWRIZYYqLNfUrmCM7qyn+heVl3rurOo1N1b2GhIpxABWrgwDW48AAN8IAAgxd4hTdLWBPr3fpYlBasZc8x/JL1+Q1U0ZCy</latexit>

(G, 0)

<latexit sha1_base64="UgGEri965slU46QvVJDfhgHw2rk=">AAAB7HicbZDLSsNAFIZP6q3WW9Wlm9AiVJSScaEugy50WcG0hTaUyXTSDp1MwsxECKHP4KYLRdz6QO76Nk4vC63+MPDx/+cw55wg4Uxpx5lahbX1jc2t4nZpZ3dv/6B8eNRUcSoJ9UjMY9kOsKKcCepppjltJ5LiKOC0FYzuZnnrmUrFYvGks4T6ER4IFjKCtbG82v0FOuuVq07dmcv+C2gJVbfSPZ9M3azRK391+zFJIyo04VipDnIS7edYakY4HZe6qaIJJiM8oB2DAkdU+fl82LF9apy+HcbSPKHtufuzI8eRUlkUmMoI66FazWbmf1kn1eGNnzORpJoKsvgoTLmtY3u2ud1nkhLNMwOYSGZmtckQS0y0uU/JHAGtrvwXmpd1dFVHj6jq3sJCRTiBCtQAwTW48AAN8IAAgxd4hTdLWBPr3fpYlBasZc8x/JL1+Q1WVpCz</latexit>

(G, 1)
<latexit sha1_base64="g/3ruVaf/Burn/M5ahFbbg8GvA0=">AAACG3icbVC7TsMwFHXKq5RXgZHFaoVURFUlHYAxgoWxSPQhmqhyHLe16jiR7SCFqB/Azso3sMLMhlgZOvInOC1DaTmSpaNzz9G9Pl7EqFSmOTFyK6tr6xv5zcLW9s7uXnH/oCXDWGDSxCELRcdDkjDKSVNRxUgnEgQFHiNtb3SVzdv3REga8luVRMQN0IDTPsVIaalXLFfqToDU0Jfp3bhXdxQNiJxXquaJdpk1cwq4TKxfUrZLzunTxE4aveK344c4DghXmCEpu5YZKTdFQlHMyLjgxJJECI/QgHQ15UjvdNPpZ8bwWCs+7IdCP67gVJ1PpCiQMgk87czOlIuzTKz6MgtXMx6hh/A/bzdW/Qs3pTyKFeF4trgfM6hCmDUFfSoIVizRBGFB9e0QD5FAWBFR0J1Yiw0sk1a9Zp3VrBurbF+CGfLgCJRABVjgHNjgGjRAE2DwCF7AK3gzno1348P4nFlzxm/mEPyB8fUDgZGkKQ==</latexit>

(2Z2 ⇥Z2, 0)

<latexit sha1_base64="d0ly6HBuj+p2C+1jakCR0zqu+Lw=">AAACGHicbVC7TsMwFHV4lvIKMLJYrZCKqKqkAzBGsDAWiT5EE1WO47ZWnYdsBylEWfkCJr6BFWY2xMrWkT/BaYsELUeydO659+heHzdiVEjDGGtLyyura+uFjeLm1vbOrr633xJhzDFp4pCFvOMiQRgNSFNSyUgn4gT5LiNtd3SZ99t3hAsaBjcyiYjjo0FA+xQjqaSeDiu2j+TQE6mZ2ZL6RPzUt1mvXjWOe3rZqBkTwEVizkjZKtknj2MrafT0L9sLceyTQGKGhOiaRiSdFHFJMSNZ0Y4FiRAeoQHpKhogtdNJJz/J4JFSPNgPuXqBhBP1tyNFvhCJ76rJ/Ewx38vFqidyczXnEboP/5vtxrJ/7qQ0iGJJAjxd3I8ZlCHMY4Ie5QRLliiCMKfqdoiHiCMsCS+qTMz5BBZJq14zT2vmtVm2LsAUBXAISqACTHAGLHAFGqAJMHgAz+AFvGpP2pv2rn1MR5e0mecA/IH2+Q1+56Mf</latexit>

(1⇥Z2, 0)

<latexit sha1_base64="b5rkK/1OI8l2akGu5Gkn1S4i06g=">AAACG3icbVC7TsMwFHXKq5RXgZElaoVURFUlHYAxgoWxSPQhmqhyHLe16tiR7SCFqB/Azso3sMLMhlgZOvInOC1DaTmSpaNzz9G9Pn5EiVSWNTFyK6tr6xv5zcLW9s7uXnH/oCV5LBBuIk656PhQYkoYbiqiKO5EAsPQp7jtj66yefseC0k4u1VJhL0QDhjpEwSVlnrFcqXuhlANA5nejXt1V5EQy3mlap9ol1WzpjCXif1Lyk7JPX2aOEmjV/x2A47iEDOFKJSya1uR8lIoFEEUjwtuLHEE0QgOcFdTBvVOL51+ZmweayUw+1zox5Q5VecTKQylTEJfO7Mz5eIsE6uBzMLVjEfwgf/n7caqf+GlhEWxwgzNFvdjaipuZk2ZAREYKZpoApEg+nYTDaGASGFR0J3Yiw0sk1a9Zp/V7Bu77FyCGfLgCJRABdjgHDjgGjRAEyDwCF7AK3gzno1348P4nFlzxm/mEPyB8fUDgyWkKg==</latexit>

(2Z2 ⇥Z2, 1)
<latexit sha1_base64="ZPr35Nyo+9kw89TpSmuS6D/zh78=">AAACGHicbVDLSsNAFJ3UV62vqEs3Q4tQsZRERF0G3bisYB/YhDKZTNuhkwczEyGGbP0CV36DW127E7fuuvRPnLQK2npg4HDuOdw7x40YFdIwxlphYXFpeaW4Wlpb39jc0rd3WiKMOSZNHLKQd1wkCKMBaUoqGelEnCDfZaTtji7yefuWcEHD4FomEXF8NAhon2IkldTTYdX2kRx6Ir3Jese2pD4RP4qZ1YyDnl4x6sYEcJ6Y36Rile3Dh7GVNHr6p+2FOPZJIDFDQnRNI5JOirikmJGsZMeCRAiP0IB0FQ2Q2uikk59kcF8pHuyHXL1Awon6O5EiX4jEd5UzP1LMznKx5ok8XMt5hO7C/7zdWPbPnJQGUSxJgKeL+zGDMoR5TdCjnGDJEkUQ5lTdDvEQcYQl4SXViTnbwDxpHdXNk7p5ZVasczBFEeyBMqgCE5wCC1yCBmgCDO7BE3gGL9qj9qq9ae9Ta0H7zuyCP9A+vgCAy6Mh</latexit>

(Z4 ⇥ 1, 0)
<latexit sha1_base64="S9YyMnOpRFXCgN2VtQjAvljzhg0=">AAACGXicbVC7TsMwFHXKq5RXgJEltEIqoqqSDsAYwcJYJPoQTRQ5jttadR6yHaQQZeYH2PgGVpjZECtTR/4Epy0StBzJ0tG55+heHzeihAtdHyuFpeWV1bXiemljc2t7R93da/MwZgi3UEhD1nUhx5QEuCWIoLgbMQx9l+KOO7rM5507zDgJgxuRRNj24SAgfYKgkJKjHlYblg/F0OPpbeY0LEF8zH8UI6vpx45a0ev6BNoiMWakYpatk8exmTQd9cvyQhT7OBCIQs57hh4JO4VMEERxVrJijiOIRnCAe5IGUG6008lXMu1IKp7WD5l8gdAm6u9ECn3OE9+VzvxIPj/LxZrH83At5xG8D//z9mLRP7dTEkSxwAGaLu7HVBOhlvekeYRhJGgiCUSMyNs1NIQMIoFZSXZizDewSNqNunFaN66NinkBpiiCA1AGVWCAM2CCK9AELYDAA3gGL+BVeVLelHflY2otKLPMPvgD5fMb97ujWw==</latexit>

(2Z2 ⇥ 1, 0)

<latexit sha1_base64="zwHTZLdG2dgR4AlHkBkavn8FjP8=">AAACFnicbVDLSsNAFJ3UV62vqEtBQotQsZTEhboMunFZwT6gCWUymbRDJ5kwMxFi6M5PcOE3uNW1O3Hrtkv/xElbUFsPDJx77j3cO8eLKRHSNMdaYWl5ZXWtuF7a2Nza3tF391qCJRzhJmKU8Y4HBaYkwk1JJMWdmGMYehS3veFV3m/fYS4Ii25lGmM3hP2IBARBqaSeflh1QigHvsiskSNJiMVPXTOPe3rFrJsTGIvEmpGKXXZOHsd22ujpX47PUBLiSCIKhehaZizdDHJJEMWjkpMIHEM0hH3cVTSCaqObTf4xMo6U4hsB4+pF0piovx0ZDIVIQ09N5keK+V4u1nyRm2s5j+E9+2+2m8jgws1IFCcSR2i6OEioIZmRh2T4hGMkaaoIRJyo2w00gBwiiXlJZWLNJ7BIWqd166xu3VgV+xJMUQQHoAyqwALnwAbXoAGaAIEH8AxewKv2pL1p79rHdLSgzTz74A+0z2/29aJR</latexit>

(1⇥ 1, 0)

<latexit sha1_base64="3UfHUCIAse+I59qHv9/J8CwwfP4=">AAAB+3icbZC9TsMwFIWd8lfKX4GRxaJCYqiipAMwVrAwFom0ldqocpyb1qrjRLZTqVR9BlaY2RArD8PIm+C0GaDlSJY+nXuufHWClDOlHefLKm1sbm3vlHcre/sHh0fV45O2SjJJwaMJT2Q3IAo4E+Bppjl0UwkkDjh0gvFdPu9MQCqWiEc9TcGPyVCwiFGijeVpySb2oFpzbGchvA5uATVUqDWofvfDhGYxCE05UarnOqn2Z0RqRjnMK/1MQUromAyhZ1CQGJQ/Wxw7xxfGCXGUSPOExgv398aMxEpN48AkY6JHanWWm/VQ5cv1nFPylPyX7WU6uvFnTKSZBkGXH0cZxzrBeRM4ZBKo5lMDhEpmbsd0RCShGmTFdOKuNrAO7YbtXtnuQ6PWvC3aKaMzdI4ukYuuURPdoxbyEEUMPaMX9GrNrTfr3fpYRktWsXOK/sj6/AFYSJTU</latexit>

triv.

<latexit sha1_base64="NiEi92kJNm973i89TSchh+XOt14=">AAAB+XicbZA7T8MwFIWd8irlVWBksaiQGKoq6QCMFSyMRX1KbVQ5zk1r1Ykj20EqUX8CK8xsiJVfw8g/wWkzQMuRLH0691z56ngxZ0rb9pdV2Njc2t4p7pb29g8Oj8rHJ10lEkmhQwUXsu8RBZxF0NFMc+jHEkjoceh507ts3nsEqZiI2noWgxuSccQCRok2VqvVbI/KFbtmL4TXwcmhgnI1R+XvoS9oEkKkKSdKDRw71m5KpGaUw7w0TBTEhE7JGAYGIxKCctPFqXN8YRwfB0KaF2m8cH9vpCRUahZ6JhkSPVGrs8ys+ipbrmYckyfxX3aQ6ODGTVkUJxoiuvw4SDjWAmc9YJ9JoJrPDBAqmbkd0wmRhGqQJdOJs9rAOnTrNeeq5jzUK43bvJ0iOkPn6BI56Bo10D1qog6iaIye0Qt6tVLrzXq3PpbRgpXvnKI/sj5/AH4Ok8Q=</latexit>

SPT

<latexit sha1_base64="YKipjNxUcrss2PehRY/QtUKPszQ=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIVdC7UJBm0sEzAXSJYwOzmbjJm9MDMrhCVPYGOhiK0+jL2N+DZOEgtN/GHg4//PYc45fiK40o7zZeWWlldW1/Lr9sbm1vZOYXevoeJUMqyzWMSy5VOFgkdY11wLbCUSaegLbPrDq0nevEOpeBzd6FGCXkj7EQ84o9pYtXK3UHRKzlRkEdwfKF682+Xk7dOudgsfnV7M0hAjzQRVqu06ifYyKjVnAsd2J1WYUDakfWwbjGiIysumg47JkXF6JIileZEmU/d3R0ZDpUahbypDqgdqPpuY/2XtVAfnXsajJNUYsdlHQSqIjslka9LjEpkWIwOUSW5mJWxAJWXa3MY2R3DnV16ExknJPS25NbdYuYSZ8nAAh3AMLpxBBa6hCnVggHAPj/Bk3VoP1rP1MivNWT89+/BH1us37pyQBQ==</latexit>=

v

P3<latexit sha1_base64="Mf1BUhmEOUalOUVtmEOvoAe6fmI=">AAACC3icbVDLTgIxFO3gC/GFunTTQExMSMiMC3U50Y1LTOSRMEA6pQMNnXbSdkzGkU9w58Kt/oI749aP4A/8DDvAQsCT3OTknPvK8SNGlbbtiZVbW9/Y3MpvF3Z29/YPiodHDSViiUkdCyZky0eKMMpJXVPNSCuSBIU+I01/dJP5zQciFRX8XicR6YRowGlAMdJG6j55tSHtVjyJ+ICRXrFsV+0p4Cpx5qTslrzKy8RNar3ij9cXOA4J15ghpdqOHelOiqSmmJFxwYsViRAeoQFpG8pRSFQnnX49hqdG6cNASFNcw6n6dyJFoVJJ6JvOEOmhWvYy8T+vHevgqpNSHsWacDw7FMQMagGzCGCfSoI1SwxBWFLzK8RDJBHWJqiFK9nuCD2KccFE4ywHsUoa51XnourcOWX3GsyQByegBM6AAy6BC25BDdQBBhK8gjfwbj1bH9an9TVrzVnzmWOwAOv7F7DTns4=</latexit>

|F+i

P3

measure

join using circuit

measure again

error-state

succesful 
outcome

measurement

auxiliary system

unitary gate

measurement outcome

physical site

projective 
measurement

local unitary

residual error

<latexit sha1_base64="sC08CwGtYMdizBK6ElfXp8wkd5k=">AAAB6nicbZA7TgMxEIZneYaER4CSxiIgUUW7FEAZQUMZBHlISRR5ndnEite7sr2RolWOQEMBQrScgQtwAzoOAjXOo4CEX7L06f9n5JnxY8G1cd1PZ2l5ZXVtPbORzW1ube/kd/eqOkoUwwqLRKTqPtUouMSK4UZgPVZIQ19gze9fjfPaAJXmkbwzwxhbIe1KHnBGjbVuy+2gnS+4RXcisgjeDAqlo6+390Huu9zOfzQ7EUtClIYJqnXDc2PTSqkynAkcZZuJxpiyPu1iw6KkIepWOhl1RI6t0yFBpOyThkzc3x0pDbUehr6tDKnp6flsbP6XNRITXLRSLuPEoGTTj4JEEBOR8d6kwxUyI4YWKFPczkpYjyrKjL1O1h7Bm195EaqnRe+s6N14hdIlTJWBAziEE/DgHEpwDWWoAIMu3MMjPDnCeXCenZdp6ZIz69mHP3JefwDjHZH5</latexit>

Pf
<latexit sha1_base64="27KMMSPLTEKIYLmU9Y1pr04qQ68=">AAAB8HicbZC7TsMwFIZPyq2UW4GRAYsKiYWSMABjVRbGIvWG2hA5rtNadZzIdpCqqE/BwgBCrEw8A4/AxsjKU+BeBmj5JUuf/v8c+Zzjx5wpbdufVmZhcWl5JbuaW1vf2NzKb+/UVZRIQmsk4pFs+lhRzgStaaY5bcaS4tDntOH3L0d5445KxSJR1YOYuiHuChYwgrWxbipecJtWvfLQyxfsoj0WmgdnCoXSydf+8fvbd8XLf7Q7EUlCKjThWKmWY8faTbHUjHA6zLUTRWNM+rhLWwYFDqly0/HAQ3RonA4KImme0Gjs/u5IcajUIPRNZYh1T81mI/O/rJXo4MJNmYgTTQWZfBQkHOkIjbZHHSYp0XxgABPJzKyI9LDERJsb5cwRnNmV56F+WnTOis61UyiVYaIs7MEBHIED51CCK6hADQiEcA+P8GRJ68F6tl4mpRlr2rMLf2S9/gDX55Qv</latexit>

PTB

f . (35)

Here, TB denotes the partial transpose on the second
system. To summarize, one finds that

p(x) =

{
1

2n−1 | f | even,
0 | f | odd.

(36)

Now equipped with the probability distribution on
the outputs, we consider which outcomes with at least
one unsuccessful outcome can be corrected. Any post-
measurement states can always be brought to the form

|ψ(x)⟩ ∝ |Φ+⟩⊗n−| f | ⊗ P⊗| f |
f |SPT| f |⟩ . (37)
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To transform the error-state, |err⟩ = P⊗| f |
f |SPT| f |⟩, to a

product state, one notices that it can be written as

|err⟩ ∝ |0110⟩| f |/2 + |1001⟩| f |/2 , (38)

which is a GHZ-type state, and where we have paired
up neighboring sites. Physically, this may be achieved
by applying a quantum circuit, with a depth depending
on the maximum distance between sites of the error-
state. In order to break the GHZ entanglement, one
notices that there exist states η0 ∝ |0110⟩+ |1001⟩, and
η1 ∝ |0110⟩ − |1001⟩ that are symmetric with respect to
U⊗2

g , and |err⟩ ∝ |η0 + η1⟩| f |/2 + |η0 − η1⟩| f |/2. Thus,
we can measure the error state on pairs of sites in
the basis {|η0⟩⟨η0| , |η1⟩⟨η1| , P⊥

η1η2
} to obtain a symmet-

ric pure product state, which can be locally corrected
to the state |Φ+⟩. Thus, for this example, the protocol
will terminate after two rounds, using measurements
on O(1) systems. Note, this is a consequence of the fact
that the non-abelian linear irreps of D8 become abelian
under tensor powers.

Finally, we need to ensure that the circuits we use
to pair up the sites have O(polylog(n))-depth. That
is, it may happen that the distances between sites of
the error state become too large to be correctable with
short-depth circuits. However, in Appendix D 3, we
show that, in the limit n → ∞, the probability of ob-
taining error-states that require more than log(n)-depth
circuits to join nearest neighbors tends to zero. We can
thus transform any SPT state under D8 asymptotically-
deterministically to the trivial phase.

Note, that this also implies the reverse transforma-
tion is possible as one can prepare two copies of the SPT
state (which belongs to the trivial phase and can there-
fore be reached via short-depth circuits from a prod-
uct state) and then transforming one copy to a product
state.

Finally, we wish to emphasize that the protocol above
relied on the fact that tensor-squares of all non-abelian
irreps of D8 are completely decomposable into abelian
irreps. This feature is not unique to the group D8.

C. Transforming GHZ States to the Trivial State under D8

Finally, let us consider non-normal states and show
that there is an asymptotically deterministic transfor-
mation to the trivial phase. Specifically, we show that a
similar protocol as above can be used to transform the
GHZ state to the product state under the symmetry D8.
As a representation, we choose the regular represen-
tation of D8, i.e., the eight dimensional representation

given by

Ug = [χ(0)]φ0 ⊕ [χ(1)]φ1 ⊕ [χ(2)]φ2 ⊕ [χ(3)]φ3

⊕ [U(4) ⊕ U(4)]Pf , (39)

where Pf denotes the projector onto the non-abelian
subspace and

|φi⟩ =
1

2
√

2
∑

g∈D8

e−iφi
g |g⟩ = Z̃i |φ0⟩ , (40)

with |φ0⟩ = 1/
√
|G|∑g∈G |g⟩, {e−iφi

g} are 1D irreps of
D8, and

Z̃i = diag({e−iφi
g}). (41)

As an initial state, we consider the GHZ state on n par-
ticles

|GHZ8
n⟩ =

1
2
√

2
(|00 . . . 0⟩+ · · ·+ |77 . . . 7⟩). (42)

It is easily verified that this state belongs to the symme-
try breaking phase (H, µ) = (1, 0) (see Appendix A).

A local symmetric projective measurement is then
given by {Pk}k∈{0,...,3, f } = {Z̃i |φ0⟩⟨φ0| (Z̃†)i}i=0,...,3 ∪
{Pf }. The first four outcomes are successful outcomes
and the fifth outcome is the only unsuccessful outcome.
For the state and the measurement defined above, the
following relations hold;

(Z̃i
k)

† |GHZ8
n⟩ = (Z̃i

j)
† |GHZ8

n⟩ , ∀ j, k ∈ [n], (43)

⟨φ0|GHZ8
n⟩ =

1
2
√

2
|GHZ8

n−1⟩ , (44)

[Pf , (Z̃i)†] = 0. (45)

As before, these relations ensure that it is sufficient to
coarse-grain the outcomes and only consider whether
outcomes are successful or unsuccessful. That is, con-
sider the probability distribution for x ∈ {s, f }×n.

From the relations above one can deduce that, after
the first round of measurements, the probability distri-
bution of outcomes is again flat on even strings; namely,
one finds

p(x) =

{
1

2n−1 | f | even,
0 | f | odd,

(46)

(see Appendix D 4 for a proof). Moreover, one can
show that all post-measurement states are, up to quasi-
commuting local unitary corrections, of the form

|ψ(x)⟩ ∝ |φ0⟩⊗n−| f | ⊗ P⊗| f |
f |GHZ8

| f |⟩ . (47)

To transform the error-state to a product state, one
again uses the fact that the subspace spanned by Pf ⊗ Pf
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can be completely decomposed into 1D irreps. There-
fore, after bringing neighboring sites together by using
a log(n)-depth circuit, one can perform a measurement
that with unit probability disentangles the error state.
Once again, one needs to ensure that the probability of
obtaining non-correctable error configurations vanishes
in the thermodynamic limit; however, the same reason-
ing as in the case of SPT states also applies here.

VI. DISCUSSION AND CONCLUSIONS

We have studied how symmetry-preserving measure-
ments with feedforward alter the phase classification of
MPS in the presence of global on-site symmetries. Let
us stress here again that this classification in natural
in the context of quantum simulation. Moreover, this
work is a natural extension of the results in Ref. [29, 35]
to include symmetry constraints.

We completely solve this classification for finite
abelian groups, showing that the phase diagram triv-
ializes. Therefore, in contrast to Ref. [10, 11], adding
symmetries does not alter the phase classification of
Ref. [29]. In particular, for any pair of phases, we con-
struct a protocol that uses finite-depth symmetric cir-
cuits, a constant number of auxiliary systems, and two
rounds of symmetric measurements to transform any
state in the initial phase to a state in the target phase.
The non-abelian case is more challenging as one cannot
deterministically transform any state on-site to a prod-
uct state. Nonetheless, by providing explicit examples,
we have shown that with log(n)-depth circuits and two
round of symmetric measurements, non-abelian SPT
phases can trivialize.

Looking forward, it would be interesting to investi-
gate to what extent join-and-measure protocols can be
used to asymptotically-deterministically transform be-
tween nontrivial phases of groups that have a more
intricate structure than the examples we have consid-
ered. Moreover, it would be interesting to ascertain
lower-bounds on the cumulative circuit depth required
to asymptotically trivialize non-abelian phases. Finally,
the phase classification of matter with symmetries has
been extended to higher dimensions (see, e.g., Ref. [49]),
and so it would be interesting to also extend this work
to higher dimensions.
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Appendix A: Symmetries and Phases of MPS

In this Appendix, we review details on how tensors
of MPS transform under global on-site symmetries and
how this then characterizes the phases of matter un-
der symmetries (without measurements). We include
this appendix for clarity and so that this work is self-
contained. However, these details can be found in
Refs [11, 37, 39]. In Section A 1, we give a mathemat-
ical background to projective representations. In Sec-
tion A 2, we explain in more detail the action of sym-
metries on non-injective MPS. In Section A 3, we discuss
the relationship between the original on-site symmetry
and the effective physical symmetry. In Section A 4, we
discuss the classification of phases in Ref. [11] via par-
ent Hamiltonians. Finally, in Section A 5, we provide
more detail on how the phases in the Hamiltonian pic-
ture relate to phases in the circuit picture.

1. Projective Representations

In this section, we provide the relevant background
for projective representations, appearing, for instance,
in the action of global on-site symmetries of MPS in
Eqs (6) and (7) in the main text.

To begin, projective representations differ from linear
representations in that they must only be closed up to
a phase, i.e.,

ωgωh = γ(g, h)ωgh, (A1)

for all g, h ∈ G, where γ : G × G → U(1) is referred
to as a cocycle. Two projective representations are said
to be projectively equivalent if there is a set of phases
{ν(g)}g∈G and a unitary V such that

ω̃g = ν(g)V†ωgV. (A2)

This induces an equivalence relation on the cocycles;
namely

γ(g, h) ∼ ν(gh)
ν(g)ν(h)

γ(g, h) (A3)

for any ν : G → U(1). The induced equivalence classes
of the γ(g, h) are isomorphic to the second cohomology
group of G over U(1), H2(G, U(1)), where the group
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operation in H2(G, U(1)) is induced by tensor products
of the projective representation, i.e.,

ω
µ1
g ⊗ ω̃

µ2
g ∼= ω̂

µ1⊕µ2
g . (A4)

Thus the µ are typically referred to as cohomology
classes. Correspondingly, we refer to a projective repre-
sentation with a cocycle belonging to µ as a µ-projective
representation, and write it as ω

µ
g .

As with linear representations, a projective repre-
sentation is said to be irreducible if it has no nontriv-
ial invariant subspaces. We refer to an irreducible µ-
projective representation as a µ-irrep. Moreover, any µ-
projective representation of a finite group is completely
reducible to a direct sum of µ-irreps [50]. For finite
groups, there is a finite number of µ-irreps (up to pro-
jective equivalence) for each cohomology class. More-
over, for abelian groups, there is a unique µ-irrep per
class [51].

Finally, we note that the cohomology class associated
with an MPS and a symmetry is not stable under tensor
products. Namely, consider an injective MPS, |ψn[A]⟩,
such that the corresponding action of Ug in the virtual
space is given by ω

µ
g . Then, taking two copies, it is easy

to see that the corresponding action of U⊗2
g in the vir-

tual space of |ψn[A]⟩⊗2 is (ω
µ
g )

⊗2 which, by Eq. (A4),
belongs to the cohomology class µ ⊕ µ ∈ H2(G, U(1)).
In particular, as H2(G, U(1)) is a group, there is an in-
verse element, µ−1 ∈ H2(G, U(1)), such that if Ũg act-

ing on
∣∣ψn[Ã]

〉
induces ω

µ−1

g in the virtual space, then
the action of Ug ⊗ Ũg on |ψn[A]⟩ ⊗

∣∣ψn[Ã]
〉

corresponds
to the trivial cohomology class (a linear representation).

2. Transformation of Non-Normal MPS under Global
On-Site Symmetries

In this section, we discuss the action of symmetries
on non-injective MPS, as derived in Ref. [11], see also
Eq. (7) in the main text. More precisely, we will discuss
how the fact that Ug is a linear representation gives Pg,
eiϕα

g and ωg,α their further structure.
To begin, Pg forms a permutation representation of

the group G by permuting the blocks of A. A permu-
tation representation π : G → Sym([m]) is a homomor-
phism from the group G to the symmetric group on the
set [m]. This allows one to write

Pg = ∑
α∈[m]

|πg(α)⟩⟨α| , (A5)

where m is the number of blocks in the canonical form.
Now consider the orbits of each block α ∈ [m] under
the permutation action, G · α = {πg(α) : g ∈ G}.
It may be the case that some nontrivial subset of [m]

is left invariant by Pg; that is, it could be that there is
an S ⊊ [m] such that G · S = S. In these cases, this
block-structure is not ”protected” by the symmetry and
is referred to as ”accidental degeneracy”. In this paper,
we only consider MPS with symmetries such that there
are no such nontrivial invariant subsets.

So from now on let us consider the case in which
[m] has no nontrivial subsets under the action of G, i.e.,
G · α = [m] for all α ∈ [m]. Let us consider the orbit
of 0 ∈ [m] (i.e., the first block in A). Whilst 0 cannot
be invariant under all g ∈ G (unless [m] = {0}), it may
be invariant under a subgroup. That is, we can consider
the stabilizer subgroup of G with respect to 0, H0, given
by

H0 = {g ∈ G : πg(0) = 0} ≤ G. (A6)

The orbit stabilizer theorem states that

|G · 0| = |G|
|H0|

. (A7)

Note, as G · 0 = [m], we therefore have that the number
of blocks in the tensor is given by |G|/|H0|.

Next, one can consider the left cosets induced by this
subgroup

[G : H0] = {k0H0, k1H0, . . . , k|G/H0|−1H0}. (A8)

By construction Pg1 = Pg2 if and only if g1, g2 belong to
the same coset. Moreover, as G · 0 = [m], for each coset
one may choose a representative, kα ∈ G, such that kα

maps the block 0 to the block α, i.e.,

πkα
(0) = α. (A9)

Having chosen the representations, one can uniquely
define maps h : G × [m] → H0 and a maps ξ : G ×
[m] → [m] by the relation

gkα = kξ(g,α)h(g, α). (A10)

That is, for all g ∈ G and α ∈ [m], the group element
gkα ∈ G [with kα defined by Eq. (A9)] belongs to the
ξ(g, α) coset.

Observe, that Eqs (A9) and (A10) in-fact completely
specify the entire permutation action as

πg(α) = πg[πkα
(0)] (A11)

= πgkα
(0) (A12)

= πkξ(g,α)h(g,α)(0) (A13)

= πkξ(g,α)
(0) (A14)

= ξ(g, α). (A15)

Thus, one could have equivalently characterized the
permutation action by specifying H0. However, the
choice of 0 was completely arbitrary. In fact, as all
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a ∈ [m] yield the same orbit (as there is only one invari-
ant subspace), the stabilizers Hα∈[m] are all isomorphic.
Thus, the permutation action of Ug is, up to relabeling,
completely specified by a subgroup H ≤ G.

Before moving on, we make two final comments re-
garding the permutation representation. Firstly, the
subgroup, H, need not be normal. However, if it is (as,
for example, in the case of abelian groups), then [G : H]
can be given a well-defined group multiplication, yield-
ing the quotient group G/H, with a homomorphism
k : G → G/H. In such cases, Pg = Pk(g) is a repre-
sentation of G/H. This will become important later in
the construction of protocols showing the trivialization
of the phases of non-injective MPS under abelian sym-
metries, cf. Appendices B and C. Secondly, as we have
assumed that there is only one invariant subspace un-
der the action of the permutation group, if H = G, then
[m] = {0}, i.e., our tensor has only one block. Thus, the
MPS is normal.

3. Comment on Blocking and Locality of the Physical
Symmetry

In this section, we discuss the mathematical details
of how the effective symmetry on the blocked MPS in
canonical form relates to the global on-site symmetry
on the MPS before blocking to canonical form. We
chose to define our operations with respect to some pre-
determined global on-site symmetry as this fits more
naturally with the circuit picture of phases. However,
in the previous section, the symmetry action was de-
fined on the canonical form. This canonical form is de-
fined after blocking. This means that the symmetry con-
sidered in, for example, Eq. (7) in the main text is not
necessarily the original symmetry of the system. Here
we explicitly provide the mathematical background re-
garding how this tension is resolved.

To make this concrete, consider an MPS |ψn[A]⟩ ∈
H⊗n

d with a global on-site symmetry Ug. Consider this
to be the original system. Let us also say we must block
this tensor at least l times in order to bring the tensor to
canonical form (that is, l is the so-called block-injectivity
length of A). We write (A(l))i1,...,im = ∏m

j=1 Aij . The
canonical form, Ãi = ⊕α Ãi

α, then has the property that

|ψm[Ã]⟩ = |ψm[A(l)]⟩ = |ψn=ml [A]⟩ ∈ C⊗n
d . (A16)

Note, we have deliberately expressed this state as an
element of the original Hilbert space. Consequently, it
is only defined for n equal to integer multiples of l.
However, as we are ultimately interested in the thermo-
dynamic limit, this is not a problem.

Now, if we consider the reduced density matrix of
this state on l sites, we find that the rank is equal
to ∑α D2

α, where Dα is the dimension of the blocks

Ai
α [39] 6. In particular, it may be less than dl . In this

case, one can verify that the structure of Eq. (7) in the
main text, with Ug := U⊗l

g , means that U⊗l
g (in an ap-

propriate physical basis) can be written as

U⊗l
g

∼=LU

(
Wg 0
0 Uextra

g

)
, (A17)

where Uextra
g acts locally on the space where |ψm[A]⟩ ∈

C⊗m
dl has no support, and

Wg =

[
⊕

α∈K
eiϕα

g (ωµ)∗h(g,α) ⊗ (ωµ)h(g,α)

] (
Pg ⊗ 1⊗2

)
.

(A18)
That is, the nontrivial action of the symmetry on
|ψn[A]⟩ on l sites is equivalent to the action of the sym-
metry in the virtual space (after blocking and bringing
it to CF).

Furthermore, it is clear from Eq. (7) in the main text,
that blocking past the block-injectivity length will at
most change the phases eiϕα

g . Indeed, in the case of finite
groups, it is clear that after blocking a finite number of
times these phases can be eliminated. Thus, for any
l greater than or equal to the block-injectivity length,
Eq. (A17) holds.

4. Phases of Matter under Symmetries using Parent
Hamiltonians

We are now in a position to review the classification
of phases of MPS.

Theorem 7. [10, 11] Let G be a finite group and Ug be
a global on-site symmetry. Two symmetry-protected MPS
belong to the same phase under G if and only if the action of
the symmetry on the tensor in canonical form corresponds to
the same subgroup, H ≤ G, and the same cohomology class,
µ ∈ H2(H, U(1)).

An example of this classification is provided in Ap-
pendix B.

Some comments are in order. Firstly, the fact that
the phase depends only on (H, µ), both of which corre-
spond to group properties, reveals a small technicality
regarding the phase diagram associated with a given
Ug; it may be the case that not every global on-site sym-
metry is capable of supporting every phase of matter
associated with G. That is, for some Ug, there may be
certain phases for which no MPS exists that belongs to
this phase. In order for a global on-site symmetry, Ug,
to be able to support every phase, (H, µ), of G, there

6 Note that D = ∑α Dα. Thus ∑α D2
α ≤ D2.
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must be an m ∈ N such that U⊗m
g

∼= Wg(H, µ)⊕ Uextra
g

[with Wg(H, µ) as in Eq. (A18)]. This may not be the
case, even when Ug is a faithful representation of a
finite group. As a concrete example, consider the fi-
nite, abelian group, K4

∼= Z2 × Z2, and the represen-
tation U(i,j)∈Z2×Z2

= (−1)i ⊕ (−1)j. It is easy to ver-
ify that this representation is indeed faithful. Now
consider the phase (H = K4, µ = 1). One can ver-
ify that the associated symmetry action is given by
W(i,j) = 1 ⊕ (−1)i ⊕ (−1)j ⊕ (−1)ij. However, W(i,j)
is not found as a sub-representation of U⊗m

g for any
m ∈ N.

In general, it requires some computation to say which
phases of G are supported by a given global on-site
symmetry, Ug. Nonetheless, this is not a problem for
our results as, for example in Result 2, we show that
whatever the phase diagram is for a given Ug, it triv-
ialises through the inclusion of symmetric measure-
ments and feedforward. This follows as whenever a
phase is non-empty, the analysis from the previous
section guarantees that there is a m ∈ N such that
U⊗m

g contains our construction in Eq. (12) as a sub-
representation.

Secondly, we say a state is in the trivial phase if it
is in the same phase as a product state. All symmetric
product states are in the same phase and correspond to
normal, symmetric MPS. Normal symmetric MPS that
are not in the trivial phase are referred to as symme-
try protected topological (SPT) phases. With the above
notation, these correspond to phases labeled by (H =
G, µ ̸= 0) and which depend only on the cohomol-
ogy class of the corresponding projective representa-
tion. However, as discussed in Appendix A 1, the coho-
mology class of projective representations is not stable
under tensor products. Consequently, SPT phases are
also not stable under tensor products. In particular, for
any SPT, |ψn[A(µ)]⟩, there is another state

∣∣ψn[A(µ−1)]
〉

such that |ψn[A(µ)]⟩ ⊗
∣∣ψn[A(µ−1)]

〉
∈ (H⊗2)⊗n is in

the trivial phase.

Thirdly, phases of matter with label (H ⪇ G, µ) corre-
spond to non-normal symmetric MPS and are referred
to as symmetry breaking phases. As mentioned before,
the parent Hamiltonians of non-injective MPS have de-
generate ground state subspaces. In the absence of sym-
metries, this degeneracy is not stable to perturbations,
and thus it is often said that there is no topological
order in 1D [10] (see also discussion in Ref. [52, 53]).
However, in the presence of symmetries, this ground
state degeneracy is believed to be stable to symmetric
perturbations (see discussion in Ref. [11]). In this pa-
per, we make no claims about the stability of phases as
classified by Theorem 7.

5. Correspondence between the Classification of Phases
for Hamiltonians and Circuits

The classification from Ref. [11] is derived from con-
sidering continuous paths of gapped, parent Hamilto-
nians. It is widely believed that the classification is
the same with respect to local symmetric circuits of
O(1) gate-size and O(polylog n) depth, as defined in
the main text [16, 42]. We now make some remarks
regarding this correspondence.

Note that both definitions invoke the thermodynamic
limit. The Hamiltonian classification uses the notion of
a spectral gap, while the circuit version is formulated
over sequences of states. Moreover, parent Hamiltoni-
ans might have a degenerate ground state subspace. In
that case, the corresponding state transformed by the
quantum circuit is taken to be the (non-injective) MPS
formed by the direct sum of the normal tensors span-
ning the ground state subspace (e.g., a GHZ state, see
Ref. [11]).

The origin of the polylogarithmic scaling in the cir-
cuit can be traced back to the tails occurring when a
local Hamiltonian is evolved for finite time. Such uni-
taries arise in the quasi-adiabatic continuation [40] (see
the discussion in Ref. [42]). Note that a strictly con-
stant depth is not sufficient to reproduce every short-
range correlated state in the trivial phase. In particular,
no local quantum circuit with depth l = O(log N) can
faithfully approximate a translation-invariant injective
MPS with a nonzero correlation length in the thermo-
dynamic limit [35].

In the absence of symmetries, the equivalence of
phases of MPS can be made exact by constraining the
quantum circuit to O(polylog n) depth with O(1) size
gates [11, 16, 35, 42, 43]. Moreover, as all of our con-
structions in this paper only use finitely-many, finite-
sized operations, our results hold for any other rea-
sonable classification of phases with “shallow” sym-
metric circuits. In particular, one could also consider
finite-depth circuits with polylogarithmic-size gates, for
which it is known that state transformations within the
same phase are possible even in the presence of sym-
metries [42].

Appendix B: An Example of Phases under an Abelian
Symmetry

In this appendix, we provide an example to accom-
pany Result 2. To this end, we will consider the finite
abelian group Z4 ×Z2, and discuss the associated sym-
metry protected and symmetry breaking phases of mat-
ter. Moreover, we will introduce some notation that will
be quite useful in the proof of Result 2 in Appendix C.
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FIG. 4. Phases under Z4 ×Z2: The phase H̃ = Z4 ×Z2 with
the trivial cohomology class (µ = 0) corresponds to the trivial
phase; the phase H̃ = Z4 ×Z2 with the nontrivial cohomol-
ogy class (µ = 1) corresponds to the only SPT phase. All other
phases are symmetry breaking, and therefore are associated
with non-normal MPS.

1. Phases of Matter under Z4 ×Z2

The finite abelian group G = Z4 ×Z2 consists of the
elements

{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}
(B1)

with the group operation given by

(i, j)⊕G (k, l) = (i ⊕4 k, j ⊕2 l) (B2)

where ⊕4 and ⊕2 indicate modulo 4 and 2 addition
respectively. In the following, we will refer to the group
elements either by writing g ∈ G, or more explicitly by
writing (i, j) ∈ G, whatever is more convenient.

As a linear unitary representation of G, let us con-
sider Ug=(j,k) = 1 ⊕ (i)j ⊕ (−1)k 7. Correspondingly, as
a local system, let us consider qutrits, H = C3. As ex-
plained in Appendix A, we may read off the associated
phases of matter solely from the group properties of G
and its subgroups. G has six subgroups:

1. Z4 ×Z2 = G,

2. 2Z2 ×Z2 = {(0, 0), (0, 1), (2, 0), (2, 1)}8,

3. 1×Z2 = {(0, 0), (0, 1)},

4. Z4 × 1 = {(0, 0), (1, 0), (2, 0), (3, 0)},

5. 2Z2 × 1 = {(0, 0), (2, 0)},

6. 1× 1 = {(0, 0)}.

7 It is easily verified that this is a faithful representation of G that
generates all representations under tensor powers, and therefore
Ug supports all phases of G (see discussion in Appendix A 3). In-
deed, it can be easily verified that any smaller representation does
not have this property. Note, there are, however, smaller faithful
representations.

8 Note, we use the notation 2Z2 to indicate multiplying the elements
of Z2 by 2. This is because all these subgroups are groups with
respect to the group operation defined in Eq. (B2).

Of these subgroups, only the first two have a nontrivial
cohomology group, both of which are isomorphic to Z2
[54]. Therefore, there are eight phases associated with
Z4 ×Z2, as shown in Figure 4.

We will now pick a nontrivial phase, (H̃, µ) 9, and
provide the details of the symmetries and the measure-
ments that allow one to transform a product state to
this phase. In particular, we choose the subgroup

H̃ = 2Z2 ×Z2 (B3)

as it contains all the details one needs to fully gener-
alize the protocol. This subgroup is isomorphic to the
Klein 4 group, and it is well known that the second co-
homology group of the Klein 4 group is isomorphic to
Z2, i.e., H2[H̃, U(1)] ∼= Z2. Moreover, we choose the
nontrivial cohomology class µ = 1. To summarize, we
will demonstrate that under Z4 ×Z2, the phase

(H̃, µ) = (2Z2 ×Z2, 1) (B4)

is reachable from a product state.
As explained above, this example will serve as a tem-

plate from which we can completely generalize our con-
struction to reach not only all phases under G, but all
phases under any finite abelian group. To this end, we
begin with the group properties of G and H, including
their linear and projective representations, using nota-
tion that will allow us to generalize to the full proof
in Appendix C. We will then explicitly define Ug in
Eq. (12) and {Pq,r}q,r∈G in Eq. (19).

2. Group Properties of Z4 ×Z2 and Z2 ×Z2

As aforementioned, we begin by discussing the group
properties of G and H, including their linear and pro-
jective representations.

a. Subgroup Properties of Z4 ×Z2

In this section, we discuss how the subgroup, H̃ fits
into the structure of G. In doing so, we will introduce
a detailed notation that will allow us to fully generalize
the following discussion in Appendix C 1 a. Recall, we
chose to consider the subgroup

H̃ = 2Z2 ×Z2 = {(0, 0), (0, 1), (2, 0), (2, 1)} ≤ G. (B5)

It will be useful to also define

H = Z2 ×Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)} ⊆ G. (B6)

9 Note, we use H̃ instead of H to denote the subgroup so to have a
more convenient notation later
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Note, H is only a subset of G. However, defining the
group operation (i, j)⊕H (k, l) = (i ⊕2 j, k ⊕2 l), for all
(i, j), (k, l) ∈ H, we have (H̃,⊕G) ∼= (H,⊕H).

As discussed in Appendix A, our choice of subgroup,
H̃, implicitly defines a permutation action of Ug. In par-
ticular, the permutation action is constant on the cosets
of H̃. In the case of abelian groups, all subgroups are
normal 10. Consequently, the set of cosets can be pro-
moted to the quotient group, and the permutation ac-
tion of Ug becomes a representation of this quotient
group. Explicitly, we write the quotient group as

G/H̃ = {(0, 0)H̃, (1, 0)H̃} (B7)

which is isomorphic to

K = Z2 × 1 = {(0, 0), (1, 0)} ⊆ G (B8)

equipped with (i, 0) ⊕K (k, 0) = (i ⊕2 k, 0), for all
(i, 0), (k, 0) ∈ K.

It will be useful to note that there is a natural bijection
between G and H × K, g 7→ (h(g), k(g)), corresponding
to element-wise Euclidean division. Namely, let us de-
fine

h(g) =
(⌊

i
2

⌋
, j
)

(B9)

k(g) = (Mod(i, 2), 0) (B10)

for all g = (i, j) ∈ G.
The reverse map of this bijection is given by11

g = (i, j) = |K| h (g)⊕G k (g) (B11)

= (2, 1)
(⌊

i
2

⌋
, j
)
⊕G (Mod(i, 2), 0) (B12)

=

(
2
⌊

i
2

⌋
⊕4 Mod(i, 2), j

)
(B13)

where we have defined |K| = (2, 1). Thus, we see that
the bijection corresponds to element wise Euclidean di-
vision with respect to |K|, where h(g) is the tuple of
quotients and k(g) the tuple of remainders. As a re-
sult of this structure, h(g) and k(g) obey a number of
identities [see Eqs. (C3) to (C8) in the next appendix].

Finally, the structure of finite abelian groups means
that the quotient group is in fact isomorphic to an-
other subgroup of G. Namely, (K,⊕K) is isomorphic
to (K̃,⊕G) with

K̃ = |H|K = {(0, 0), (2, 0)} = 2Z2 × 1 ≤ G, (B14)

10 A subgroup is normal if it is invariant under conjugation by all
members of the group. It is a special property of abelian groups
that all subgroups are normal.

11 Note that the image of h can be viewed as elements of either the
group H or the group G (likewise for K). Hence this expression is
well-defined.

where |H| = (2, 2). As with H̃, one can then take the
quotient of G by K̃

G/K̃ = {(0, 0)K̃, (0, 1)K̃, (1, 0)K̃, (1, 1)K̃}. (B15)

This yields a second natural bijection between G and
(H, K)

ĥ ((i, j)) = (Mod(i, 2), j) (B16)

k̂ ((i, j)) =
(⌊

i
2

⌋
, 0
)

. (B17)

Note, under this bijection, elements of H now corre-
spond to the remainders and elements of K correspond
to the quotients.

b. Linear Representation Properties of Z4 ×Z2

Next, we discuss the linear representations of G and
H. As G is abelian, the irreps of G are 1D and can be
labeled by elements of G. Specifically, we may write

χq∈G(g) = χ
q=(c,d)∈G
g=(a,b)∈G = ((i)c)a × ((−1)d)b, (B18)

where q ∈ G labels the irrep and χ
q
g is therefore a phase.

These can be understood as powers of roots of unity, in
which q ∈ G specifies the root of unity, and g specifies
to which power this root should be raised.

One can also consider the irreps of the subgroup H̃ ∼=
H

χ̃
p=(c,d)∈H
h=(a,b)∈H = ((−1)c)a × ((−1)d)b (B19)

Clearly, the irreps of H are contained in the irreps of G.
Explicitly, we may write

χ̃
(c,d)∈H
(a,b)∈H = χ

(2c,d)∈G
(a,b)∈G . (B20)

But we can also reference irreps of G using elements of
H, e.g.,

χ
(1,0)∈H⊆G
g=(a,b) = ia. (B21)

Here we are considering (1, 0) ∈ H as an element of G.
We will find this notation useful later when defining Ug
and Pr,q (see also Appendix C 1 b).

c. Projective Representations of Z2 ×Z2

We now consider projective representations of the
subgroup H̃ ∼= H = Z2 ×Z2. As mentioned, it is well
known that Z2 × Z2 has a second cohomology group
isomorphic to Z2. Moreover, finite abelian groups have
the property that, up to projective equivalence, there



18

is only one irreducible projective representation per co-
homology class. The trivial projective representation,
µ = 0, can be chosen as ω0

g = 1 for all g ∈ H. For
the nontrivial class, µ = 1, it is well-known that the ir-
reducible projective representation can be chosen to be
the Pauli representation:

ω1
(0,0)∈H = 1, ω1

(1,0)∈H = σz,

ω1
(0,1)∈H = σx, ω1

(1,1)∈H = σy. (B22)

In the following, we consider the nontrivial cohomol-
ogy class, µ = 1, and therefore drop the µ from now
on. It is easily verified by considering commutation re-
lations that

ωgωh = χ̃
ϕ(h)
g ωhωg, ∀g, h ∈ H, (B23)

where χ̃ϕ(h) is an irrep of H labeled by ϕ : H → H,
which is given by

ϕ((i, j)) = (j, i). (B24)

Later, we will use the fact that ϕ : H → H is in fact a
homomorphism. One might also note that {ωg} forms
an orthonormal basis for 2× 2 matrices. This also is not
a coincidence as we will see later in Appendix C 1 c.

3. Example of Symmetry and Measurements

Let us finish this appendix by explicitly providing the
symmetry in Eq. (12) and the measurements in Eq. (19)
using the notation introduced above.

To begin, the symmetry we chose in Eq. (12) is given
by

Ug=(i,j) =

(
⊕

α∈K
(ω

µ

h(g,α))
∗ ⊗ (ω

µ

h(g,α))

)(
Xk(g)
|K| ⊗ 1⊗2

)

=


 ⊕

a∈{0,1}

(
σ

j
xσ

⌊ i⊕4a
2 ⌋

z

)⊗2


(

σ
Mod(i,2)
x ⊗ 1⊗2

)

(B25)

Note, as |K| = 2, the cyclic permutation is simply a
Pauli-x. Additionally, note that this is not the same as
the original symmetry12. Nonetheless, it is easy to ver-
ify that this symmetry appears as a sub-representation
of U⊗4

g . Thus, following the discussion in Appendix
A 3, we consider all actions after blocking four sites to-
gether.

12 Strictly speaking, using the notation of Eq. (A17), the above equa-
tion is for Wg

Next, we have the measurements. As explained, we
project onto (1⊗ Vr,q)

∣∣Φ̃+
〉
, where now

|Φ̃+⟩ ∝ ∑
i∈{0,1}

∑
j,k∈{0,1}

|i, j, k, i, k, j⟩ (B26)

and

Vr,q = UrṼq ≡ Ur [Z̃q ⊗ 1⊗ (ω
µ

h(q))], (B27)

where

Z̃q=(c,d) = Zk(q)
|K|

(
⊕

α∈K
χ

ϕµ(h(q))
α

)
(B28)

= σ
Mod(c,2)
z

(
1 0
0 (i)d

)
(B29)

In Eq. (B28), we decompose the phase matrix into a gen-
eralized Pauli-z (which, as |K| = 2, is in fact just Pauli-
z) and a phase matrix. This second phase matrix en-
sures that Ṽq quasi-commutes with Ug when h(g) ̸= e.
Note in Eq. (B28), we are referencing an irrep of G using
an element of H ⊆ G, as discussed in Appendix B 2 b.

Given this definition of Ug and Vr,q, it is easy to ver-
ify that Vr,q quasi-commutes with Ug and forms an or-
thonormal unitary matrix basis. Moreover, it is easy to
verify that Eq. (20) and Eq. (21) hold. Consequently, the
protocol as described in the main text is symmetry pre-
serving and the phase (2Z2 × Z2, 1) is reachable from
the trivial phase. In the next appendix, we generalize
these constructions for all phases of all finite abelian
groups and show the same properties hold.

Appendix C: Proof of Result 2

In this section, we prove Lemmata 3, and 4, and con-
sequently Result 2 in the main text. As some of the
notation can be dense, we remind the reader that one
can always consult the detailed example given in Ap-
pendix B.

1. Properties of Finite Abelian Groups

As before, we begin by recapping some general prop-
erties of finite abelian groups and their subgroups, in-
cluding linear and projective representations.

a. Group Properties

To begin, by the Fundamental Theorem of Finite
Abelian Groups, any finite abelian group is isomorphic
to a product of cyclic groups of prime power order, i.e.,

G ∼= ×m∈[M]Zprm
m

≡ ×m∈[M]Gm (C1)
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with pm, rm, M ∈ N and pm are prime. We will
sometimes write the corresponding group elements of
G as g = (gm)m∈[M]. We use ⊕G to denote element-
wise modulo addition, i.e, g1 ⊕G g2 = ((g1)m ⊕|Gm |
(g2)m)m∈[M] [see Eq. (B2)].

For abelian groups, any subgroup, H̃ ≤ G, is also
isomorphic to a product of cyclic groups of the-same-
prime power order, i.e., H̃ ∼= ×m∈[M]Zpr̃m

m
≡ H with

r̃m ≤ rm. Moreover, every subgroup is normal. There-
fore, given a subgroup H̃ ≤ G, the quotient group G/H̃
is well-defined. For H̃ ≤ G as above, we define

G/H̃ ∼= ×m∈[M]Zprm−r̃m
m

≡ K ≡ ×m∈[M]Km. (C2)

Note, in the above notation, we use H̃ to denote the
subgroup of G (equipped, therefore, with the group op-
eration of G), i.e., H̃ ≤ G. On the other hand, H is in
fact a subset of G, i.e., H ⊆ G [see Eq. (B5) and Eq. (B6)].
We can promote H to a group by equipping it with its
own group multiplication, ⊕H , in which case we have
(H̃,⊕G) ∼= (H,⊕H). Similarly, K is also a subset of G,
i.e., K ⊆ G, but we can equip it with ⊕K to promote it
to a group, yielding (G/H,⊕G) ∼= (K,⊕K). We make
this distinction between the subset H and the subgroup
H̃ as we will need the subset H for the constructions Ug
and Pr,q. For a concrete example of this convention, see
Appendix B 2 a.

Given the quotient group, there is then a natu-
ral bijection, g ∈ G 7→ (h(g), k(g)) ∈ (H, K), cor-
responding to element-wise Euclidean division [see
Eqs. (B9), (B10), and (B13)]. Generally, only k(g) is a
homomorphism. Indeed, we have the following identi-
ties

k(c) = c, (C3)
k(g1 ⊕G g2) = k(g1)⊕K k(g2), (C4)
h(g1 ⊕G g2) = h(g1)⊕H h(k(g1)⊕G g2), (C5)

g = |K|h(g)⊕G k(g), (C6)

for all g1, g2 ∈ G and c ∈ K ⊆ G, and where ⊕G,⊕H ,
and ⊕K refer to modulo-addition in G, H and K respec-
tively. Moreover, |K| should be understood as the vector
|K| = (|Km|)m∈[M], and multiplication is element-wise
(again, see Appendix B 2 a for a concrete example).

Finally, we can consider the elements in H ⊆ G as el-
ements in G via two further identities. For this, we first
recognize that there is another subgroup of G isomor-
phic to K, K̃ ≡ |H|K ≤ G13. As with H̃, one may also
quotient G by K̃. This yields a second, different natural

13 Note, this is another consequence of the Fundamental Theorem of
Abelian Groups; that every quotient group of an abelian group is
isomorphic to some subgroup of G. This is a special property that
is not true for general groups.

bijection g ∈ G 7→ (ĥ(g), k̂(g)) ∈ (H, K) [see Eq. (B16)
and (B17)]. Equipped with this bijection, we can then
write

h1 ⊕G h2 = (h1 ⊕H h2)⊕G |H| k̂(h1 ⊕G h2), (C7)

h1 ⊖G h2 = (h1 ⊖H h2)⊕G |H| k̂(h1 ⊖G h2), (C8)

for all h1, h2 ∈ H ⊆ G.

b. Linear Representations

All irreps of an abelian group, χq : G → U(1), are
one dimensional. As the set of irreps of a finite abelian
group, G∗, is isomorphic to the group itself, we can
choose to the label irreps of G by the elements of G
itself. Explicitly, for the group given in Eq. (C1), the
irrep labeled by q ∈ G is given by

χq(g) = χ
q
g = ∏

m∈[M]

exp
(

2πi
gmqm

|Gm|

)
(C9)

= χ
g
q (C10)

[see also Eq. (B18)].
In the following, we will also consider irreps of sub-

groups. In particular, let χ̃ correspond to irreps of
(H,⊕H). Then we have

χ̃
p∈H
h∈H = χ

|K|p∈G
h∈H⊆G = χ

p∈G
|K|h∈G. (C11)

That is, we can relate irreps of H to irreps of G [see
Eq. (B20)]. We introduce this notation as in order to
define our physical symmetry later on, we will need
to reference irreps of G using elements of H ⊆ G [see
Eq. (B21)]. For a concrete example of this notation, see
Appendix B 2 b.

c. Projective Representations

Here we introduce several properties of projective
representations for finite abelian groups that will be
useful in the following derivation (see Appendix A for
general properties of projective representations). As in
our subsequent arguments we only consider projective
representations of the subgroup, we will consider here
projective representations of H.

So, to begin, let ω
µ
g∈H be the µ-irrep14 obeying the

relation

ω
µ
g ω

µ
h = γµ(g, h) ω

µ
gh, (C12)

14 For definition of µ-irrep, see Appendix A 1, and note, for abelian
groups, projective irreps are unique up to projective equivalence.
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for all g, h ∈ H, where γµ : H × H → U(1) is the cor-
responding cocycle. One can show that, for any g ∈ H,
γ̃µ,g : H 7→ U(1), given by

γ̃µ,g(x) =
γµ(x, g)
γµ(g, x)

, (C13)

is in-fact a homomorphism between H and the irreps
of H [55, 56]. That is, there is some homomorphism,
ϕµ : H → H such that

γ̃µ,g(x) = χ
ϕµ(g)
x (C14)

[see Eq. (B24)]. Moreover, we have

ω
µ
g ω

µ
h = χ

ϕµ(h)
g ω

µ
h ω

µ
g , ∀g, h ∈ H. (C15)

We may also define the projective center of H with re-
spect to µ,

Zµ(H) = {g ∈ H : ϕµ(g) = e} ≤ H. (C16)

That is, Zµ(H) is the set of g ∈ H for which γ̃µ,g is the
trivial representation. When Zµ(H) = {e}, µ is referred
to as a maximally non-commuting (MNC) phase. It is
easily verified that the Pauli representation from the ex-
ample in Appendix B 2 c corresponds to one of these
MNC phases. Indeed, these phases have found con-
siderable applications in measurement-based quantum
computing [20, 56, 57].

Given Zµ(H) the dimension of the µ-irrep is then
given by [50]15

Dµ =

√
|H|

|Zµ(H)| . (C17)

Finally, for any µ-irrep, the following holds [50]

tr[ωµ
h ] =

{
Dµ, if h ∈ Zµ(H)

0, if h ̸∈ Zµ(H).
(C18)

This yields the following corollary.

Corollary 8. Consider an µ-irrep ω
µ
g∈H ∈ U(Dµ). Let

Q ⊆ H be a set of representatives for each of the cosets H
Zµ(H)

.

Then {ω
µ
g}g∈Q is an orthonormal basis for Dµ × Dµ com-

plex matrices.

15 See the Pauli representation in Appendix B 2 c. |H| = |Z2 ×Z2| = 4
and the projective center is trivial. Therefore, Dµ =

√
4/1 = 2.

Proof. Firstly, note that |Q| = | H
Zµ(H)

| = (Dµ)2. Sec-
ondly,

tr
[
(ω

µ
x )

†ω
µ
y

]
∝ tr

[
ω

µ

x−1y

]
(C19)

=

{
Dµ, if x−1y ∈ Zµ(H)

0, if x−1y ̸∈ Zµ(H)
(C20)

=

{
Dµ, if y ∈ xZµ(H)

0, if y ̸∈ xZµ(H)
(C21)

=

{
Dµ, if x = y
0, if x ̸= y

(C22)

for all x, y ∈ Q, where the last line follows as there is
a unique element in Q per coset. Thus {ω

µ
g}g∈Q is an

ONB.

Note that if µ corresponds to a MNC class, then
{ω

µ
g}g∈H is an ONB for CDµ ,Dµ (see also [58]). That

is the full set, {ω
µ
g}g∈H , is an ONB rather than a strict

subset. Once again, for a concrete example of any of the
introduced notation, see Appendix B 2 c.

2. Symmetries and Measurements

Given the above notation, we now precisely define,
in full generality, the physical symmetry Ug, referred to
in Eq. (12), and the symmetric, projective measurement,
{Pr,q}r,q∈S referred to in Eq. (16).

a. Symmetry

We begin with the physical symmetry. Recall, given
the phase (H, µ), in Eq. (12), we had

(C23)

Equivalently, we can write this as

Ug =

(
⊕

α∈K
(ω

µ

h(g,α))
∗ ⊗ (ω

µ

h(g,α))

)(
Pk(g) ⊗ 1⊗ 1

)

(C24)

=

[
⊕

α∈K
Wµ

h(g⊕Gα)

] (
Pk(g) ⊗ 1⊗ 1

)
(C25)

where we have defined Wµ

h(g,α) = (ω
µ

h(g,α))
∗ ⊗ (ω

µ

h(g,α))

to simplify notation16. Explicitly, we choose the permu-

16 Note, that Wµ
h is a linear representation of H.
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tation representation to be given by

Pk(g) = ⊗m∈[M]X
km(g)
|Km | ≡ Xk(g)

|K| (C26)

where X|Ki | is |Ki|-dim shift operator, i.e., X|Ki | =

∑i∈[|Ki |] |i⟩ ⟨i ⊕ 1|17. Additionally, (ωµ)h is the µ-irrep
of H and h(g, α) = h(g ⊕G α), where α ∈ K ⊆ G is
considered as an element in G and ⊕G denotes group
addition in G. Note, that

d ≡ dim(Ug) = |K|D2
µ =

|G|
|H|

|H|
|Zµ(H)

=
|G|

|Zµ(H)| .
(C27)

In particular, if µ corresponds to a MNC phase (of H),
then d = |G|. Finally, one can verify that Ug is indeed a
linear representation.

b. Measurements

Recall that we defined the following measurement
operators in Eq. (16) in the main text

Pr,q = (1⊗ Vr,q) |Φ̃+⟩⟨Φ̃+| (1⊗ V†
r,q), (C28)

where

|Φ̃+⟩ ∝ ∑
i∈[|K|]

∑
j,k∈[Dµ ]

|i, j, k, i, k, j⟩ . (C29)

We emphasize again that the state |Φ̃+⟩ is different
from the typical |Φ+⟩ state as we must ensure the legs
connect appropriately. This can be seen for instance
from the following graphical representation of the mea-
surement operators.

Let us now describe in detail the structure of the unitary
Vr,q. It is given by Vr,q = UrṼq, where r, q ∈ G, and thus,
is a product of the physical symmetry Ur, and a unitary
Ṽq. The latter is given by

Ṽq∈G ≡ Z̃q ⊗ 1⊗ (ω
µ

h(q)). (C30)

17 The shift operator here generalizes the Pauli X operator from the
example in Appendix B to higher dimensions. It is easily verified
that this satisfies the properties of Pg as discussed in Appendix A
[see Eq. (A5)].

The last tensor factor, ω
µ

h(q), is the same projective rep-

resentation as in Ug, and the first tensor factor, Z̃q, is
a diagonal phase matrix. This phase matrix is itself a
product of two phase matrices

Z̃q = Zk(q)
|K|
︸ ︷︷ ︸
(1)

(
⊕

α∈K
χ

ϕµ(h(q))
α

)

︸ ︷︷ ︸
(2)

. (C31)

The first phase matrix is defined by

Zk(q)
|K| ≡

⊗

m∈[M]

Zkm(q)
|Km | , (C32)

where Z|Km | is the |Km|-dim clock operator, i.e.,

Z|Km | = ∑
j∈[|Km |]

exp
(

2πi
|Km|

j
)
|j⟩⟨j| . (C33)

In the second phase matrix χ
ϕµ(h(q))
α is a linear irrep of

G, with α ∈ K ⊆ G, and ϕµ(h(q)) ∈ H ⊆ G coming
from the quasi-commutation relation in Eq. (C15).

Let us now elaborate more on the multiplication
properties of the matrices {Ṽq}g, which will become
useful later. It is important to note that {Ṽq}g∈G is
closed under multiplication, up to phases, as the fol-
lowing lemma shows.

Lemma 9. Let Ṽp,q be defined as above. Then,

ṼpṼq ∝ Ṽf (p,q), (C34)

Ṽ†
p Ṽq ∝ Ṽf̃ (p,q), (C35)

where f : G × G → G is defined by

f (p, q) = |K| (h(p)⊕h h(q))⊕G{
k(p)⊕K k(q)⊕K k̂

[
ϕµ (h(p))⊕G ϕµ (h(q))

]}
,

(C36)

and f̃ : G × G → G is defined by

f̃ (p, q) = |K| (h(q)⊖h h(p))⊕G{
k(q)⊖K k(p)⊕K k̂

[
ϕµ (h(q))⊖G ϕµ (h(p))

]}
.

(C37)
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Proof. To see this, first note that

Z̃pZ̃q =
⊕

α∈K⊆G
χ̂

k(p)
α χ

ϕµ(h(q))
α χ̂

k(q)
α χ

ϕµ(h(p))
α (C38)

=
⊕

α∈K⊆G
χ̂

k(p)⊕Kk(q)
α χ

ϕµ(h(p))⊕Gϕµ(h(q))
α (C39)

=
⊕

α∈K⊆G
χ̂

k(p)⊕Kk(q)
α χ

ϕµ(h(p))⊕Hϕµ(h(q))
α

× χ
|H|k̂[ϕµ(h(p))⊕Gϕµ(h(q))]
α (C40)

=
⊕

α∈K⊆G
χ̂

k(p)⊕Kk(q)⊕K k̂[ϕµ(h(p))⊕Gϕµ(h(q))]
α

× χ
ϕµ(h(p))⊕Hϕµ(h(q))
α (C41)

= Z̃ f (p,q), (C42)

where we have used the group identity in Eq. (C7) in
the 3rd line and the irrep identity in Eq. (C11) in the
fourth line. Returning to Ṽ, we have

ṼpṼq = Z̃pZ̃q ⊗ 1⊗ ωh(p)ωh(q) (C43)

∝ Z̃ f (p,q) ⊗ 1⊗ ωh(p)⊕H h(q) (C44)

= Z̃ f (p,q) ⊗ 1⊗ ωh( f (p,q)) (C45)

= Vf (p,q) (C46)

where we have used h( f (p, q)) = h(p)⊕H h(q). Thus,
the set {Ṽq}g∈G is closed up to phases. By an identical
argument, we also have

Ṽ†
p Ṽq ∝ Vf̃ (p,q). (C47)

Moreover, the following lemma holds.

Lemma 10. Let Ṽp,q be defined as above. Then,

Ṽ†
p Ṽq = V0 = 1⇔ p = q. (C48)

Proof. To begin, f̃ (p, q) = 0 only if h(q) = h(p). In
this case, ϕµ(h(q)) = ϕµ(h(p)) and thus k̂[ϕµ(h(q))⊖G

ϕµ(h(p))] = k̂(0) = 0. Thus f̃ (p, q) = 0 only if k(q) =

k(p). Therefore, f̃ (p, q) = 0 if and only if h(q) = h(p)
and k(q) = k(p).

3. Proof of Lemma 3

Having explicitly defined Ug, and Pr,q, we now prove
Lemma 3. For clarity, let us begin by restating Lemma 3

more precisely.

Lemma 3. Let G be a finite abelian group and (H, µ) label a
phase under G. Let Q ∈ H be a set of representatives for the

cosets H
Zµ(H)

and Sµ = {g ∈ G : h(g) ∈ Q}. Correspond-
ingly, let Ug be given as in Eq. (C25) and let {Pr,q}q,r∈Sµ

be given as in Eq. (C28). Then {Pr,q}q,r∈Sµ is a complete,
symmetric projective measurement.

Proof. We start by verifying that Pr,q is symmetric for all
r, q ∈ G. It is easily verified that 18

(Ug ⊗ Ug)(1⊗ A) |Φ̃+⟩ = (1⊗ Ug AU†
g) |Φ̃+⟩ (C49)

for any operator A. Thus it is clear that [U⊗2
g , Pr,q] =

0, ∀g ∈ G if and only if UgṼq ∝ ṼqUg, ∀g ∈ G. We can
verify this as follows. Consider

UgṼq =

[
⊕

α∈K
Wµ

h(g⊕Gα)

] (
Xk(g) ⊗ 1⊗ 1

)

(
Zk(q)
|K|

[
⊕

α∈K
χ

ϕµ(h(q))
α

]
⊗ 1⊗ (ω

µ

h(q))

)
.

(C50)

First, we move the clock matrix through the shift ma-
trix, yielding a global phase which is a irrep of K. The
clock matrix then commutes with the projective repre-
sentations, and therefore, we can move it all the way to
the front. This results in

χ̂
k(q)
k(g)

(
Zk(q)
|K| ⊗ 1⊗ 1

) [⊕

α∈K
Wµ

h(g⊕Gα)

]

(
Xk(g) ⊗ 1⊗ 1

)([⊕

α∈K
χ

ϕµ(h(q))
α

]
⊗ 1⊗ (ω

µ

h(q))

)
.

(C51)

Next, we move the rest of the diagonal phase matrix
through the shift matrix. This will permute the diago-
nal elements. It can then be brought to the front, yield-
ing

χ̂
k(q)
k(g)

(
Zk(q)
|K|

[
⊕

α∈K
χ

ϕµ(h(q))
α⊕Kk(g)

]
⊗ 1⊗ 1

)

[
⊕

α∈K
Wµ

h(g⊕Gα)

] (
Xk(g) ⊗ 1⊗ (ω

µ

h(q))
)

. (C52)

Now we move the projective representation part of Ṽ
through to the left. This picks up a phase in each

18 Note, that we get a U† instead of a UT because of the structure of
|Φ̃+⟩.
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block according to Eq. (C15) when passing through
⊕αWh(g⊕α), yielding

χ̂
k(q)
k(g)

(
Zk(q)
|K|

[
⊕

α∈K
χ

ϕµ(h(q))
α⊕Kk(g)χ̃

ϕµ(h(q))
h(g⊕Gα)

]
⊗ 1⊗ (ω

µ

h(q))

)

[
⊕

α∈K
Wµ

h(g⊕Gα)

] (
Xk(g) ⊗ 1⊗ 1

)
. (C53)

The phase we picked up in each block, χ̃, is expressed
as irrep of H. We can convert it to an irrep of G, χ, via
the following equation

χ̃
ϕµ(h(q))
h(g⊕Gα)

= χ
ϕµ(h(q))
|K|h(g⊕Gα)

. (C54)

Using this, and the fact χϕµ(h(q)) is a homomorphism of
G, we have

χ
ϕµ(h(q))
α⊕Kk(g)χ̃

ϕµ(h(q))
h(g⊕Gα)

= χ
ϕµ(h(q))
α⊕Kk(g)χ

ϕµ(h(q))
|K|h(g⊕Gα)

(C55)

= χ
ϕµ(h(q))
(α⊕Kk(g))⊕G |K|h(g⊕Gα)

. (C56)

Then, using the group identity Eq. (C6), one notices that
(α ⊕K k(g))⊕G |K|h(g ⊕G α) = g ⊕G α, and then

χ
ϕµ(h(q))
g⊕Gα = χ

ϕµ(h(q))
g χ

ϕµ(h(q))
α . (C57)

Inserting this into Eq. (C53), one finds that

UgṼq = χ̂
k(q)
k(g)χ

ϕµ(h(q))
g ṼqUg. (C58)

Thus we have verified that Ug quasi-commutes with
Vq for all g, q ∈ G, and thus all projectors, Pq,r, are sym-
metric.

We now verify the second part of the Lemma, namely
that {Pr,q}r,q∈S is a complete measurement on C⊗2

d . It
is clear that this holds if and only if {Vr,q}r,q∈S is an
orthonormal basis for Cd×d. Recall, Q ⊆ H is a set of
representatives for the cosets H

Zµ(H)
and

S = {g ∈ G : h(g) ∈ Q}. (C59)

Note that |S| = |K||Q| = |K|(Dµ)2 = d ≡ dim(Ug).
Therefore, |{Vr,q}r,q∈S| = d2. Thus all that remains to
be shown is that the {Vr,q}r,q∈S are orthonormal. As
Ur and Ṽq quasi-commute, and are closed up to phases
(see Lemmata 9, and 10), it is sufficient to show that
tr
[
U†

r Vq
]
= δr,0δq,0 d.

Inserting Eqs. (C25) and (C30) one obtains

tr
[
U†

r Vq

]
= ∑

α,β∈K
tr
[
(Xk(r))T |α⟩⟨α| Zk(p)χ

ϕµ(h(q))
β |β⟩⟨β|

]

︸ ︷︷ ︸
(1)

⊗ tr
[
ωT

h(r⊕α)

]

︸ ︷︷ ︸
(2)

⊗ tr
[
ω†

h(r⊕α)(ωh(q))
]

︸ ︷︷ ︸
(3)

. (C60)

Evaluating the sum over β, the first term becomes

∑
α∈K

χ
ϕµ(h(q))
α ⟨α| Zk(q)(Xk(r))T |α⟩

= δk(r),0 ∑
α∈K

χ
ϕµ(h(q))
α ⟨α| Zk(q) |α⟩ . (C61)

In the second term, using Eq. (C5), one finds that
h(r ⊕ α) = h(r) ⊕H h(k(r) ⊕G α). As the first term is
proportional to δk(r),0, and h(α) = 0 for α ∈ K, we get
h(r ⊕ α) = h(r) and thus the second term in Eq (C60)
evaluates to Dµδh(r),0. This implies that the third term in
Eq (C60) evaluates to Dµδh(q),0. Due to δh(q),0 one finds

that χ
ϕµ(h(q))
α = 1 as ϕµ is a homomorphism. Then, the

sum in Eq. (C61) simplifies to |K|δk(q),0. Finally, we ar-
rive at

tr
[
U†

r Vq

]
= D2

µ|K|δk(r),0δk(q),0δh(q),0δh(r),0

= D2
µ|K|δr,0δq,0. (C62)

Thus {Vr,q}r,q∈S does indeed form an orthonormal ba-
sis that quasi-commutes with Ug, and thus {Vr,q}r,q∈S
forms a symmetric von Neumann measurement.

4. Proof of Eq. (20)

In this section, we prove the rules in Eq. (20) in the
main text, that describe how errors, induced by mea-
surements, propagate in the target MPS. The first rule
directly follows from the symmetry of the state with re-
spect to U⊗3

g . So let us prove the second rule. Let Vq
be defined as previously. Then the following identity
holds.

(C63)

This identity can be seen by observing that [Z̃q ⊗ 1⊗
ωh(q)]⊗ 1⊗ 1 |ψ⟩ = 1⊗ [Z̃q ⊗ ωT

h(q) ⊗ 1]⊗ 1 |ψ⟩, where
|ψ⟩ is the representative state depicted in Eq. (15) in
the main text. By inserting an identity, 1 = [1 ⊗
ωT

h(q) ⊗ ω†
h(q)][1 ⊗ ω∗

h(q) ⊗ ωh(q)], one notices that 1 ⊗
[Z̃q ⊗ ωT

h(q) ⊗ 1]⊗ 1 |ψ⟩ = 1⊗ [1⊗ ωT
h(q) ⊗ ω†

h(q)][Z̃
q ⊗

1⊗ ωh(q)]⊗ 1 |ψ⟩. Finally, by noticing that

1⊗ ωT
h(q) ⊗ ω†

h(q) = (1⊗ 1⊗ 1)
[
⊕

α∈K
W†

h(q)

]
(C64)

=
(

PT
k(|K|h(q)) ⊗ 1⊗ 1

) [⊕

α∈K
W†

h(|K|h(q)⊕Gα)

]
(C65)

= U†
|K|h(q), (C66)

where again we have used the group identities, the
identity directly follows.
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5. Proof of Lemma 4

Finally, we also prove Lemma 4. Let Ũ(0) = ∏n
j=1 Urj

as explained in the main text.

Lemma 4. Let Ũ(0) ̸= 1. The following equation holds.

(C67)

Proof. The left-hand side of Eq. (C67) can be written
equivalently as

|ψ⟩ = ∑
i,j,k

tr
[
Ug Ai1,j1,k1 Ai2,j2,k2 . . . Ain ,jn ,kn

]

|i1 j1k1i2 j2k2 . . . in jnkn⟩ , (C68)

for some g ∈ G. Consider the coefficients for each i, j, k.
We have

tr
[
Ug Ai1,j1,k1 Ai2,j2,k2 . . . Ain ,jn ,kn

]

= ∑
γ

tr
[
Ug |i1 j1γ1⟩⟨i1k1γ1| |i2 j2γ2⟩⟨i2k2γ2| . . .

|in jnγn⟩⟨inknγn|
]

(C69)

= δi2,i1 δi3,i2 . . . δin ,in−1 δj2,k1 δj3,k2 . . . δjn ,kn−1

∑
γ1

⟨inknγ1|Ug |i1 j1γ1⟩ (C70)

= δi2,i1 δi3,i2 . . . δin ,in−1 δj2,k1 δj2,k1 . . . δjn ,kn−1

∑
γ1

⟨i1knγ1|Ug |i1 j1γ1⟩ . (C71)

Now taking the last term, we have

∑
γ1

⟨i1knγ1|Ug |i1 j1γ1⟩

= ∑
α∈K

⟨i1| |α⟩⟨α| Xk(g) |i1⟩

⟨kn|ω∗
h(g⊕α) |j1⟩∑

γ1

⟨γ1|ωh(g⊕α) |γ1⟩ (C72)

= ⟨i1| Xk(g) |i1⟩ ⟨kn|ω∗
h(g⊕i1)

|j1⟩ tr
[
ωh(g⊕i1)

]
(C73)

= Dµδk(g),0δh(g⊕i1) ⟨kn|ω∗
0 |j1⟩ (C74)

= D2
µδk(g),0δh(g)δj1,kn (C75)

= δg,0δj1,kn D2
µ, (C76)

where we have used the group identities to reach the
second to last line. Thus, Eq. (C67) is zero unless g = 0,
i.e., unless Ug = 1.

Appendix D: Non-Abelian Symmetries

In this appendix, we provide the supporting proofs
for the claims made in Section V.

1. Proof of Result 5

In this section, we prove Result 5. Any linear uni-
tary representation of a non-abelian group can be split
into (1D) abelian irreps and (D > 1) non-abelian irreps.
That is, we may write Ug ∼=≡ UA

g ⊕ UNA
g . This decom-

position also decomposes the Hilbert space on which
Ug acts, H ∼= HA ⊕HNA. By Schur’s lemma, symmet-
ric reduced density matrices must also decompose this
way, ρ ∼= ρA ⊕ ρNA. Now, for convenience, let us restate
the theorem.

Result 5. Let G be a non-abelian group such that ω
µ
g ⊗

(ω
µ
g )

∗ is non-abelian for all nontrivial projective µ-irreps ω
µ
g .

Then, for any translationally invariant SPT state |ψn⟩ asso-
ciated with µ, there is some n0 such that ∀n > n0 |ψn⟩
cannot be deterministically converted via symmetric LOCC
to a product state.

Proof. Recall that SPT states correspond to normal MPS,
and therefore the tensor, after blocking and in canonical
form, has only one block. Consequently, as discussed in
Appendix A, after blocking sufficiently many sites, the
physical symmetry in an appropriate basis decomposes
as (ωg ⊗ω∗

g)⊕Uextra
g , where ωg is a projective represen-

tation corresponding to a nontrivial cohomology class
µ. At this length scale and in this decomposition, the
reduced density matrix of the MPS has the form ρ ⊕ 0,
where ρ is full rank [39]. In particular, as ωg ⊗ ω∗

g is
non-abelian, ρ has support on a non-abelian subspace.

Now, let n be big enough that one can bipartition the
state into two regions, A and B, large enough that the
above properties hold. Considered then as a bipartite
system, we have

UA
g ⊗ UB

g |ψ⟩AB ∝ |ψ⟩AB (D1)

for some non-abelian representations UA,B
g , and the re-

duced density matrices of |ψ⟩AB on A and B have sup-
port on the non-abelian subspaces. Note, that the fact
ρA has non-abelian support is alone sufficient to en-
sure that |ψ⟩AB is entangled as if tr

[
ρNA] ̸= 0, then

rk(ρ) > 1.
Let us consider a symmetric projective measurement

applied by Alice. As the measurement is symmet-
ric, by Schur’s lemma and the measurement complete-
ness, there must be some outcome that has support on
the non-abelian subspace. Moreover, again by Schur’s
lemma, the reduced density matrix cannot be rank 1.
Thus at least one outcome remains entangled.

Let us now consider all the possible allowed opera-
tions. As any auxiliary system must be initialized in
a pure eigenstate - therefore having support on the
abelian subspace - adding auxiliary systems cannot
eliminate the states support on the non-abelian sub-
space. Moreover, as with Ref. [59] (see also Refs [46,
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60]), any symmetric projective measurement by B can
be simulated by a projective measurement by A (with
symmetric local unitary corrections on B). Therefore,
no actions by either party can deterministically elimi-
nate the support on the non-abelian subspace. Finally,
by the assumption that ω

µ
g ⊗ (ω

µ
g )

∗ is non-abelian for all
nontrivial projective µ-irreps ω

µ
g , this holds for all SPT

states in the phases corresponding to the cohomology
class µ.

2. Proof of Eq. (36)

Starting from the expression

⟨SPT| f || P⊗| f |
f |SPT| f |⟩ , (D2)

one uses the fact that, in general, XAB ⊗ 1C |Φ+⟩ =

XT2
AC ⊗ |Φ+⟩, where T2 denotes the partial transpose

in the computational basis on the second system. This
leads to the expression

⟨SPT| f || P⊗| f |
f |SPT| f |⟩ = ⟨SPT| f || ∏

i∈| f |
P(i,i+1)

f |SPT| f |⟩ ,

(D3)
where, like |SPT| f |⟩, P(i,i+1)

f should be understood to
have periodic boundary conditions, and where we have
used that Pf is invariant under partial transposition as it
is diagonal in the computational basis. From there it is
easy to see that the operator product ∏i∈| f | P(i,i+1)

f = 0
iff | f | is odd. We may graphically represent the previ-
ously discussed steps for | f | = 3 as

v

<latexit sha1_base64="rfLsaMWi+KuZ+zBis2nt49CXNOI=">AAAB/3icbVDLTgIxFL2DL8QX6tJNAzHBmJAZF+pyohuXGAVJYEI6pUBDZzppOybjhIUf4M7oJ7gzbv0UvsDfsAMsBDxJk5Nz7qvHjzhT2rbHVm5ldW19I79Z2Nre2d0r7h80lIgloXUiuJBNHyvKWUjrmmlOm5GkOPA5ffCH15n/8EilYiK810lEvQD3Q9ZjBGsj3VXYSadYtqv2BGiZODNSdkvt09exm9Q6xZ92V5A4oKEmHCvVcuxIeymWmhFOR4V2rGiEyRD3acvQEAdUeenk1BE6NkoX9YQ0L9Roov7tSHGgVBL4pjLAeqAWvUz8z2vFunfppSyMYk1DMl3UiznSAmX/Rl0mKdE8MQQTycytiAywxESbdOa2ZLMj/CRGJhlnMYdl0jirOudV59Ypu1cwRR6OoAQVcOACXLiBGtSBQB9e4A3erWfrw/q0vqalOWvWcwhzsL5/AQS3mbM=</latexit>

(i)

<latexit sha1_base64="pktvC6U6oxNBSf19r27eNqSfXgE=">AAACAHicbVDLSgMxFL1TX7W+qi7dhBahIpQZF+py0I3LCvYB7VAyadqGZpIhyQjj0I0f4ErQT3Anbv2TfoG/4UzbhW09EDicc185fsiZNrY9sXJr6xubW/ntws7u3v5B8fCooWWkCK0TyaVq+VhTzgStG2Y4bYWK4sDntOmPbjO/+UiVZlI8mDikXoAHgvUZwSaTKoyddYtlu2pPgVaJMydlt9Q5f524ca1b/On0JIkCKgzhWOu2Y4fGS7AyjHA6LnQiTUNMRnhA2ykVOKDaS6a3jtFpqvRQX6r0CYOm6t+OBAdax4GfVgbYDPWyl4n/ee3I9K+9hIkwMlSQ2aJ+xJGRKPs46jFFieFxSjBRLL0VkSFWmJg0noUt2ewQP8lxmoyznMMqaVxUncuqc++U3RuYIQ8nUIIKOHAFLtxBDepAYAgv8Abv1rP1YX1aX7PSnDXvOYYFWN+/0m+aJg==</latexit>

(ii)

<latexit sha1_base64="aog/b02eWIgPc238k3K5U0nciJU=">AAACAXicbVDNTgIxGOziH+If6tFLAzHBmJBdD+pxoxePmLhAAhvSLV1o6Labtmuybjj5AF486CN4M159Ep7A17ALHAScpMlk5vvrBDGjStv2xCqsrW9sbhW3Szu7e/sH5cOjphKJxMTDggnZDpAijHLiaaoZaceSoChgpBWMbnO/9UikooI/6DQmfoQGnIYUI20kr0YpPeuVq3bdngKuEmdOqm6le/46cdNGr/zT7QucRIRrzJBSHceOtZ8hqSlmZFzqJorECI/QgHQM5Sgiys+mx47hqVH6MBTSPK7hVP3bkaFIqTQKTGWE9FAte7n4n9dJdHjtZ5THiSYczxaFCYNawPznsE8lwZqlhiAsqbkV4iGSCGuTz8KWfHaMnsTYJOMs57BKmhd157Lu3DtV9wbMUAQnoAJqwAFXwAV3oAE8gAEFL+ANvFvP1of1aX3NSgvWvOcYLMD6/gWgoZqZ</latexit>

(iii)

<latexit sha1_base64="I+JzbtxPAxE6phdHTQXxmzghegM=">AAACAHicbVDLTgIxFL2DL8QX6tJNAzHBmJAZF+pyohuXmAiYwIR0SgcaOtNJ2yEZCRs/wJWJfoI749Y/4Qv8DTvAQsCTNDk55756/JgzpW17YuXW1jc2t/LbhZ3dvf2D4uFRQ4lEElonggv56GNFOYtoXTPN6WMsKQ59Tpv+4Dbzm0MqFRPRg05j6oW4F7GAEawzqcKGZ51i2a7aU6BV4sxJ2S21z18nblrrFH/aXUGSkEaacKxUy7Fj7Y2w1IxwOi60E0VjTAa4R1uGRjikyhtNbx2jU6N0USCkeZFGU/VvxwiHSqWhbypDrPtq2cvE/7xWooNrb8SiONE0IrNFQcKRFij7OOoySYnmqSGYSGZuRaSPJSbaxLOwJZsd4ycxNsk4yzmsksZF1bmsOvdO2b2BGfJwAiWogANX4MId1KAOBPrwAm/wbj1bH9an9TUrzVnznmNYgPX9C+dBmjM=</latexit>

(iv)

<latexit sha1_base64="R6y/oVfcSr+uV7KzngoujhU85Tg=">AAAB+nicbVA9T8MwEHX4LOUrhZHFogIxVUkHYKzEwlgk+iG1UeW4TmvVdiL7AqpCfwoLAwix8kvY+Dc4bQZoedJJT+/d6e5emAhuwPO+nbX1jc2t7dJOeXdv/+DQrRy1TZxqylo0FrHuhsQwwRVrAQfBuolmRIaCdcLJTe53Hpg2PFb3ME1YIMlI8YhTAlYauBUzlZKB5hRTrmnKYeBWvZo3B14lfkGqqEBz4H71hzFNJVNABTGm53sJBBnRwKlgs3I/NSwhdEJGrGepIpKZIJufPsNnVhniKNa2FOC5+nsiI9LYE0PbKQmMzbKXi/95vRSi6yDjKkmBKbpYFKUCQ4zzHPCQa0ZBTC0hVHPIAxgTTSjYtMo2BH/55VXSrtf8y5p/V682zos4SugEnaIL5KMr1EC3qIlaiKJH9Ixe0Zvz5Lw4787HonXNKWaO0R84nz+tKZQt</latexit>

symmetric circuit

<latexit sha1_base64="plbCcy39TyTGO3vrejH/+5LFomo=">AAAB9HicbZA9TwJBEIbn8AvxC7W02UhMrMgdhVoSbSwxkY8ELmRvGWDD3t65u0dyufA7bCw0xtYfY+e/cYErFHyTTZ68M5OZfYNYcG1c99spbGxube8Ud0t7+weHR+Xjk5aOEsWwySIRqU5ANQousWm4EdiJFdIwENgOJnfzenuKSvNIPpo0Rj+kI8mHnFFjLT8ep9qyIJob7JcrbtVdiKyDl0MFcjX65a/eIGJJiNIwQbXuem5s/Iwqw5nAWamXaIwpm9ARdi1KGqL2s8XRM3JhnQEZRso+acjC/T2R0VDrNAxsZ0jNWK/W5uZ/tW5ihjd+xmWcGJRsuWiYCGIiMk+ADLhCZkRqgTLF7a2EjamizNicSjYEb/XL69CqVb2rqvdQq9Rv8ziKcAbncAkeXEMd7qEBTWDwBM/wCm/O1Hlx3p2PZWvByWdO4Y+czx/tL5Iy</latexit>

physical site

<latexit sha1_base64="FocHnFPSOqW9cluZZDdbeAxNWsE=">AAAB7nicbZDLSsNAFIZP6q3WW9WlIINFcFUSF+qytCAuK9gLNKFMppN06GQSZiZCCX0INxYUcevzuHPrkzhpu9DWHwY+/v8c5pzjJ5wpbdtfVmFtfWNzq7hd2tnd2z8oHx61VZxKQlsk5rHs+lhRzgRtaaY57SaS4sjntOOPGnneeaRSsVg86HFCvQiHggWMYG2sjltnYehm/XLFrtozoVVwFlCp3U5PvxvtabNf/nQHMUkjKjThWKmeYyfay7DUjHA6KbmpogkmIxzSnkGBI6q8bDbuBJ0bZ4CCWJonNJq5vzsyHCk1jnxTGWE9VMtZbv6X9VId3HgZE0mqqSDzj4KUIx2jfHc0YJISzccGMJHMzIrIEEtMtLlQyRzBWV55FdqXVeeq6tw7lVod5irCCZzBBThwDTW4gya0gMAInuAFXq3EerberPd5acFa9BzDH1kfP5Nlkrw=</latexit>(
<latexit sha1_base64="adHuQEHjlUVeXFOsKyTYoP9qcw8=">AAAB+nicbVA9T8MwEHXKVylfKYwsFhUSU5V0AMYKFsYi0Q+prSrHvbRWbSeyHSAK/SksDCDEyi9h49/gthmg5UknPb13p7t7QcyZNp737RTW1jc2t4rbpZ3dvf0Dt3zY0lGiKDRpxCPVCYgGziQ0DTMcOrECIgIO7WByPfPb96A0i+SdSWPoCzKSLGSUGCsN3DJJHhlnRKVYp9qA0AO34lW9OfAq8XNSQTkaA/erN4xoIkAayonWXd+LTT8jyjDKYVrqJRpiQidkBF1LJRGg+9n89Ck+tcoQh5GyJQ2eq78nMiK0TkVgOwUxY73szcT/vG5iwst+xmScGJB0sShMODYRnuWAh0wBNTy1hFDF7K2Yjoki1Ni0SjYEf/nlVdKqVf3zqn9bq9Sv8jiK6BidoDPkowtURzeogZqIogf0jF7Rm/PkvDjvzseiteDkM0foD5zPH+YclGk=</latexit>

auxiliary systems

<latexit sha1_base64="2zkxM/zZN/CCQ1bMeePJr9ac2IU=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMh82JmVgghH+HFgyJe/R5v/o2TZA+aWNBQVHXT3ZVozqwLw++gsLa+sblV3C7t7O7tH5QPj5pWZYbQBlFcmXaCLeVM0oZjjtO2NhSLhNNWMrqb+a0naixT8tGNNY0FHkiWMoKdl1pdgbV1qleuhNVwDrRKopxUIEe9V/7q9hXJBJWOcGxtJwq1iyfYOEY4nZa6maUakxEe0I6nEgtq48n83Ck680ofpcr4kg7N1d8TEyysHYvEdwrshnbZm4n/eZ3MpTfxhEmdOSrJYlGaceQUmv2O+sxQ4vjYE0wM87ciMsQGE+cTKvkQouWXV0nzohpdVaOHy0rtNo+jCCdwCucQwTXU4B7q0AACI3iGV3gLdPASvAcfi9ZCkM8cwx8Enz+MSY+2</latexit>7!
<latexit sha1_base64="13b4Pe7yDBpwb7v2tmUB9dxuGKU=">AAACKnicbVBNSwMxEM3Wr1q/qh69BIvgQcpuD+qx6sWjgq1Cdymz2akNTbJLklVK6e/x4l/x0oMiXv0hZtse/BoIPN57M5l5cSa4sb7/7pUWFpeWV8qrlbX1jc2t6vZO26S5ZthiqUj1XQwGBVfYstwKvMs0gowF3saDi0K/fUBteKpu7DDDSMK94j3OwDqqWz0LVcpVgspSM5QSreaMSgSTa5SONUehwsdiegVU8s2TK25BczTdas2v+9Oif0EwBzUyr6tudRImKcuL6UyAMZ3Az2w0Am05EziuhLnBDNgA7rHjoAKJJhpNTx3TA8cktJdq99zOU/Z7xwikcUvGzinB9s1vrSD/0zq57Z1GI66y3KJis496uaA2pUVuNOEamRVDB4Bp7nalrA8amHXpVlwIwe+T/4J2ox4c14PrRq15Po+jTPbIPjkkATkhTXJJrkiLMPJEXsgrefOevYn37n3MrCVv3rNLfpT3+QX8TqjS</latexit>

symmetric measurements,
and symmetric unitaries

P3 P3 P3P2 P2 P1

P3 P3 P3

<latexit sha1_base64="TeE+1h99abQJRYb9KbzhGP0iyj8=">AAAB+HicbVDLSsNAFJ3UV62PRl26CRZBUEriQl0W3bisYB/QxjCZ3KRDJ5M4MxFq6Bf4CW5cVMStn+LOD3Hv9LHQ1gMXDufcy733+CmjUtn2l1FYWl5ZXSuulzY2t7bL5s5uUyaZINAgCUtE28cSGOXQUFQxaKcCcOwzaPn9q7HfegAhacJv1SAFN8YRpyElWGnJM8tNLxcn98O7boCjCIRnVuyqPYG1SJwZqdSOv0dPUEnrnvnZDRKSxcAVYVjKjmOnys2xUJQwGJa6mYQUkz6OoKMpxzFIN58cPrQOtRJYYSJ0cWVN1N8TOY6lHMS+7oyx6sl5byz+53UyFV64OeVppoCT6aIwY5ZKrHEKVkAFEMUGmmAiqL7VIj0sMFE6q5IOwZl/eZE0T6vOWdW50WlcoimKaB8doCPkoHNUQ9eojhqIoAw9oxF6NR6NF+PNeJ+2FozZzB76A+PjB35Elqo=</latexit>

V †
r,q

<latexit sha1_base64="+LFP7EqJxYG3lWSE1Y1avlJu4rY=">AAAB73icbVC7SgNBFL0bXzHxsWppMxgFCwm7FmojBG0sI5gHJEuYncwmQ2ZnNzOzgbDkJ2wsFLH1B/wB/8DOD9HayaPQxAMXDufcy733+DFnSjvOp5VZWl5ZXcuu5/Ibm1vb9s5uVUWJJLRCIh7Juo8V5UzQimaa03osKQ59Tmt+73rs1wZUKhaJOz2MqRfijmABI1gbqV5upfKkP7ps2QWn6EyAFok7I4XS4dfb+yD/XW7ZH812RJKQCk04VqrhOrH2Uiw1I5yOcs1E0RiTHu7QhqECh1R56eTeEToyShsFkTQlNJqovydSHCo1DH3TGWLdVfPeWPzPayQ6uPBSJuJEU0Gmi4KEIx2h8fOozSQlmg8NwUQycysiXSwx0SainAnBnX95kVRPi+5Z0b01aVzBFFnYhwM4BhfOoQQ3UIYKEOBwD4/wZPWtB+vZepm2ZqzZzB78gfX6A3malAg=</latexit>

Pr,q =
<latexit sha1_base64="pZydFQCHeb4EXA6TQGPydJxfleM=">AAAB7nicbVC7SgNBFL0bXzHxEbW0GYyChYRdC7UM2lhGMA9IljA7mU2GzMyuM7OBsOQjbCwUsfUL/AH/wM4P0drJo9DEAxcO59zLvfcEMWfauO6nk1laXlldy67n8hubW9uFnd2ajhJFaJVEPFKNAGvKmaRVwwynjVhRLAJO60H/auzXB1RpFslbM4ypL3BXspARbKxUr7VTdXI3aheKbsmdAC0Sb0aK5cOvt/dB/rvSLny0OhFJBJWGcKx103Nj46dYGUY4HeVaiaYxJn3cpU1LJRZU++nk3BE6skoHhZGyJQ2aqL8nUiy0HorAdgpsenreG4v/ec3EhBd+ymScGCrJdFGYcGQiNP4ddZiixPChJZgoZm9FpIcVJsYmlLMhePMvL5Laack7K3k3No1LmCIL+3AAx+DBOZThGipQBQJ9uIdHeHJi58F5dl6mrRlnNrMHf+C8/gD+rZPH</latexit>

Vr,q

<latexit sha1_base64="RdEq/eugkMGMWgYK0LJGg+40NJg=">AAAB6XicbZDLSgMxFIbP1Fsdb1WXboJFcFVmXKibYtWNyyr2Au1QMmmmDc0kQ5IRytA3cONCEbd9GPduxLcxvSy0+kPg4//PIeecMOFMG8/7cnJLyyura/l1d2Nza3unsLtX1zJVhNaI5FI1Q6wpZ4LWDDOcNhNFcRxy2ggH15O88UCVZlLcm2FCgxj3BIsYwcZad5flTqHolbyp0F/w51C8eHfLyfjTrXYKH+2uJGlMhSEca93yvcQEGVaGEU5HbjvVNMFkgHu0ZVHgmOogm046QkfW6aJIKvuEQVP3Z0eGY62HcWgrY2z6ejGbmP9lrdRE50HGRJIaKsjsoyjlyEg0WRt1maLE8KEFTBSzsyLSxwoTY4/j2iP4iyv/hfpJyT8t+bd+sXIFM+XhAA7hGHw4gwrcQBVqQCCCR3iGF2fgPDmvztusNOfMe/bhl5zxN3ZUkFA=</latexit>

A =
<latexit sha1_base64="jhPtAG2b2xv1g5qMlRh1G38bDJM=">AAAB8XicbZDLSsNAFIZPvNZ6q7p0M7QIglASF+pGiLpxWcFesAllMp20QyeTMDMRQuxbdONCEbe+jbu+jdPLQlt/GPj4/3OYc06QcKa0bY+tldW19Y3NwlZxe2d3b790cNhQcSoJrZOYx7IVYEU5E7Sumea0lUiKo4DTZjC4m+TNZyoVi8WjzhLqR7gnWMgI1sZ6ernxJBY9Tq87pYpdtadCy+DMoeKWvbPR2M1qndK3141JGlGhCcdKtR070X6OpWaE02HRSxVNMBngHm0bFDiiys+nEw/RiXG6KIyleUKjqfu7I8eRUlkUmMoI675azCbmf1k71eGVnzORpJoKMvsoTDnSMZqsj7pMUqJ5ZgATycysiPSxxESbIxXNEZzFlZehcV51LqrOg1Nxb2GmAhxDGU7BgUtw4R5qUAcCAkbwBu+Wsl6tD+tzVrpizXuO4I+srx9xXpO/</latexit>|Ai =

<latexit sha1_base64="pgrvE9WyYROk4++X/hzUVo7sA40=">AAAB7HicbZDLSsNAFIZP6q3WW9Wlm6FFqCglcaEugy50WcG0hTaUyXTSDp1MwsxECKHP4KYLRdz6QO76Nk4vC63+MPDx/+cw55wg4Uxp255ahbX1jc2t4nZpZ3dv/6B8eNRUcSoJ9UjMY9kOsKKcCepppjltJ5LiKOC0FYzuZnnrmUrFYvGks4T6ER4IFjKCtbG82v2FfdYrV+26PRf6C84Sqm6lez6ZulmjV/7q9mOSRlRowrFSHcdOtJ9jqRnhdFzqpoommIzwgHYMChxR5efzYcfo1Dh9FMbSPKHR3P3ZkeNIqSwKTGWE9VCtZjPzv6yT6vDGz5lIUk0FWXwUphzpGM02R30mKdE8M4CJZGZWRIZYYqLNfUrmCM7qyn+heVl3rurOo1N1b2GhIpxABWrgwDW48AAN8IAAgxd4hTdLWBPr3fpYlBasZc8x/JL1+Q1U0ZCy</latexit>

(G, 0)

<latexit sha1_base64="UgGEri965slU46QvVJDfhgHw2rk=">AAAB7HicbZDLSsNAFIZP6q3WW9Wlm9AiVJSScaEugy50WcG0hTaUyXTSDp1MwsxECKHP4KYLRdz6QO76Nk4vC63+MPDx/+cw55wg4Uxpx5lahbX1jc2t4nZpZ3dv/6B8eNRUcSoJ9UjMY9kOsKKcCepppjltJ5LiKOC0FYzuZnnrmUrFYvGks4T6ER4IFjKCtbG82v0FOuuVq07dmcv+C2gJVbfSPZ9M3azRK391+zFJIyo04VipDnIS7edYakY4HZe6qaIJJiM8oB2DAkdU+fl82LF9apy+HcbSPKHtufuzI8eRUlkUmMoI66FazWbmf1kn1eGNnzORpJoKsvgoTLmtY3u2ud1nkhLNMwOYSGZmtckQS0y0uU/JHAGtrvwXmpd1dFVHj6jq3sJCRTiBCtQAwTW48AAN8IAAgxd4hTdLWBPr3fpYlBasZc8x/JL1+Q1WVpCz</latexit>

(G, 1)
<latexit sha1_base64="g/3ruVaf/Burn/M5ahFbbg8GvA0=">AAACG3icbVC7TsMwFHXKq5RXgZHFaoVURFUlHYAxgoWxSPQhmqhyHLe16jiR7SCFqB/Azso3sMLMhlgZOvInOC1DaTmSpaNzz9G9Pl7EqFSmOTFyK6tr6xv5zcLW9s7uXnH/oCXDWGDSxCELRcdDkjDKSVNRxUgnEgQFHiNtb3SVzdv3REga8luVRMQN0IDTPsVIaalXLFfqToDU0Jfp3bhXdxQNiJxXquaJdpk1cwq4TKxfUrZLzunTxE4aveK344c4DghXmCEpu5YZKTdFQlHMyLjgxJJECI/QgHQ15UjvdNPpZ8bwWCs+7IdCP67gVJ1PpCiQMgk87czOlIuzTKz6MgtXMx6hh/A/bzdW/Qs3pTyKFeF4trgfM6hCmDUFfSoIVizRBGFB9e0QD5FAWBFR0J1Yiw0sk1a9Zp3VrBurbF+CGfLgCJRABVjgHNjgGjRAE2DwCF7AK3gzno1348P4nFlzxm/mEPyB8fUDgZGkKQ==</latexit>

(2Z2 ⇥Z2, 0)

<latexit sha1_base64="d0ly6HBuj+p2C+1jakCR0zqu+Lw=">AAACGHicbVC7TsMwFHV4lvIKMLJYrZCKqKqkAzBGsDAWiT5EE1WO47ZWnYdsBylEWfkCJr6BFWY2xMrWkT/BaYsELUeydO659+heHzdiVEjDGGtLyyura+uFjeLm1vbOrr633xJhzDFp4pCFvOMiQRgNSFNSyUgn4gT5LiNtd3SZ99t3hAsaBjcyiYjjo0FA+xQjqaSeDiu2j+TQE6mZ2ZL6RPzUt1mvXjWOe3rZqBkTwEVizkjZKtknj2MrafT0L9sLceyTQGKGhOiaRiSdFHFJMSNZ0Y4FiRAeoQHpKhogtdNJJz/J4JFSPNgPuXqBhBP1tyNFvhCJ76rJ/Ewx38vFqidyczXnEboP/5vtxrJ/7qQ0iGJJAjxd3I8ZlCHMY4Ie5QRLliiCMKfqdoiHiCMsCS+qTMz5BBZJq14zT2vmtVm2LsAUBXAISqACTHAGLHAFGqAJMHgAz+AFvGpP2pv2rn1MR5e0mecA/IH2+Q1+56Mf</latexit>

(1⇥Z2, 0)

<latexit sha1_base64="b5rkK/1OI8l2akGu5Gkn1S4i06g=">AAACG3icbVC7TsMwFHXKq5RXgZElaoVURFUlHYAxgoWxSPQhmqhyHLe16tiR7SCFqB/Azso3sMLMhlgZOvInOC1DaTmSpaNzz9G9Pn5EiVSWNTFyK6tr6xv5zcLW9s7uXnH/oCV5LBBuIk656PhQYkoYbiqiKO5EAsPQp7jtj66yefseC0k4u1VJhL0QDhjpEwSVlnrFcqXuhlANA5nejXt1V5EQy3mlap9ol1WzpjCXif1Lyk7JPX2aOEmjV/x2A47iEDOFKJSya1uR8lIoFEEUjwtuLHEE0QgOcFdTBvVOL51+ZmweayUw+1zox5Q5VecTKQylTEJfO7Mz5eIsE6uBzMLVjEfwgf/n7caqf+GlhEWxwgzNFvdjaipuZk2ZAREYKZpoApEg+nYTDaGASGFR0J3Yiw0sk1a9Zp/V7Bu77FyCGfLgCJRABdjgHDjgGjRAEyDwCF7AK3gzno1348P4nFlzxm/mEPyB8fUDgyWkKg==</latexit>

(2Z2 ⇥Z2, 1)
<latexit sha1_base64="ZPr35Nyo+9kw89TpSmuS6D/zh78=">AAACGHicbVDLSsNAFJ3UV62vqEs3Q4tQsZRERF0G3bisYB/YhDKZTNuhkwczEyGGbP0CV36DW127E7fuuvRPnLQK2npg4HDuOdw7x40YFdIwxlphYXFpeaW4Wlpb39jc0rd3WiKMOSZNHLKQd1wkCKMBaUoqGelEnCDfZaTtji7yefuWcEHD4FomEXF8NAhon2IkldTTYdX2kRx6Ir3Jese2pD4RP4qZ1YyDnl4x6sYEcJ6Y36Rile3Dh7GVNHr6p+2FOPZJIDFDQnRNI5JOirikmJGsZMeCRAiP0IB0FQ2Q2uikk59kcF8pHuyHXL1Awon6O5EiX4jEd5UzP1LMznKx5ok8XMt5hO7C/7zdWPbPnJQGUSxJgKeL+zGDMoR5TdCjnGDJEkUQ5lTdDvEQcYQl4SXViTnbwDxpHdXNk7p5ZVasczBFEeyBMqgCE5wCC1yCBmgCDO7BE3gGL9qj9qq9ae9Ta0H7zuyCP9A+vgCAy6Mh</latexit>

(Z4 ⇥ 1, 0)
<latexit sha1_base64="S9YyMnOpRFXCgN2VtQjAvljzhg0=">AAACGXicbVC7TsMwFHXKq5RXgJEltEIqoqqSDsAYwcJYJPoQTRQ5jttadR6yHaQQZeYH2PgGVpjZECtTR/4Epy0StBzJ0tG55+heHzeihAtdHyuFpeWV1bXiemljc2t7R93da/MwZgi3UEhD1nUhx5QEuCWIoLgbMQx9l+KOO7rM5507zDgJgxuRRNj24SAgfYKgkJKjHlYblg/F0OPpbeY0LEF8zH8UI6vpx45a0ev6BNoiMWakYpatk8exmTQd9cvyQhT7OBCIQs57hh4JO4VMEERxVrJijiOIRnCAe5IGUG6008lXMu1IKp7WD5l8gdAm6u9ECn3OE9+VzvxIPj/LxZrH83At5xG8D//z9mLRP7dTEkSxwAGaLu7HVBOhlvekeYRhJGgiCUSMyNs1NIQMIoFZSXZizDewSNqNunFaN66NinkBpiiCA1AGVWCAM2CCK9AELYDAA3gGL+BVeVLelHflY2otKLPMPvgD5fMb97ujWw==</latexit>

(2Z2 ⇥ 1, 0)

<latexit sha1_base64="zwHTZLdG2dgR4AlHkBkavn8FjP8=">AAACFnicbVDLSsNAFJ3UV62vqEtBQotQsZTEhboMunFZwT6gCWUymbRDJ5kwMxFi6M5PcOE3uNW1O3Hrtkv/xElbUFsPDJx77j3cO8eLKRHSNMdaYWl5ZXWtuF7a2Nza3tF391qCJRzhJmKU8Y4HBaYkwk1JJMWdmGMYehS3veFV3m/fYS4Ii25lGmM3hP2IBARBqaSeflh1QigHvsiskSNJiMVPXTOPe3rFrJsTGIvEmpGKXXZOHsd22ujpX47PUBLiSCIKhehaZizdDHJJEMWjkpMIHEM0hH3cVTSCaqObTf4xMo6U4hsB4+pF0piovx0ZDIVIQ09N5keK+V4u1nyRm2s5j+E9+2+2m8jgws1IFCcSR2i6OEioIZmRh2T4hGMkaaoIRJyo2w00gBwiiXlJZWLNJ7BIWqd166xu3VgV+xJMUQQHoAyqwALnwAbXoAGaAIEH8AxewKv2pL1p79rHdLSgzTz74A+0z2/29aJR</latexit>

(1⇥ 1, 0)

<latexit sha1_base64="3UfHUCIAse+I59qHv9/J8CwwfP4=">AAAB+3icbZC9TsMwFIWd8lfKX4GRxaJCYqiipAMwVrAwFom0ldqocpyb1qrjRLZTqVR9BlaY2RArD8PIm+C0GaDlSJY+nXuufHWClDOlHefLKm1sbm3vlHcre/sHh0fV45O2SjJJwaMJT2Q3IAo4E+Bppjl0UwkkDjh0gvFdPu9MQCqWiEc9TcGPyVCwiFGijeVpySb2oFpzbGchvA5uATVUqDWofvfDhGYxCE05UarnOqn2Z0RqRjnMK/1MQUromAyhZ1CQGJQ/Wxw7xxfGCXGUSPOExgv398aMxEpN48AkY6JHanWWm/VQ5cv1nFPylPyX7WU6uvFnTKSZBkGXH0cZxzrBeRM4ZBKo5lMDhEpmbsd0RCShGmTFdOKuNrAO7YbtXtnuQ6PWvC3aKaMzdI4ukYuuURPdoxbyEEUMPaMX9GrNrTfr3fpYRktWsXOK/sj6/AFYSJTU</latexit>

triv.

<latexit sha1_base64="NiEi92kJNm973i89TSchh+XOt14=">AAAB+XicbZA7T8MwFIWd8irlVWBksaiQGKoq6QCMFSyMRX1KbVQ5zk1r1Ykj20EqUX8CK8xsiJVfw8g/wWkzQMuRLH0691z56ngxZ0rb9pdV2Njc2t4p7pb29g8Oj8rHJ10lEkmhQwUXsu8RBZxF0NFMc+jHEkjoceh507ts3nsEqZiI2noWgxuSccQCRok2VqvVbI/KFbtmL4TXwcmhgnI1R+XvoS9oEkKkKSdKDRw71m5KpGaUw7w0TBTEhE7JGAYGIxKCctPFqXN8YRwfB0KaF2m8cH9vpCRUahZ6JhkSPVGrs8ys+ipbrmYckyfxX3aQ6ODGTVkUJxoiuvw4SDjWAmc9YJ9JoJrPDBAqmbkd0wmRhGqQJdOJs9rAOnTrNeeq5jzUK43bvJ0iOkPn6BI56Bo10D1qog6iaIye0Qt6tVLrzXq3PpbRgpXvnKI/sj5/AH4Ok8Q=</latexit>

SPT

<latexit sha1_base64="YKipjNxUcrss2PehRY/QtUKPszQ=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIVdC7UJBm0sEzAXSJYwOzmbjJm9MDMrhCVPYGOhiK0+jL2N+DZOEgtN/GHg4//PYc45fiK40o7zZeWWlldW1/Lr9sbm1vZOYXevoeJUMqyzWMSy5VOFgkdY11wLbCUSaegLbPrDq0nevEOpeBzd6FGCXkj7EQ84o9pYtXK3UHRKzlRkEdwfKF682+Xk7dOudgsfnV7M0hAjzQRVqu06ifYyKjVnAsd2J1WYUDakfWwbjGiIysumg47JkXF6JIileZEmU/d3R0ZDpUahbypDqgdqPpuY/2XtVAfnXsajJNUYsdlHQSqIjslka9LjEpkWIwOUSW5mJWxAJWXa3MY2R3DnV16ExknJPS25NbdYuYSZ8nAAh3AMLpxBBa6hCnVggHAPj/Bk3VoP1rP1MivNWT89+/BH1us37pyQBQ==</latexit>=

v

P3<latexit sha1_base64="Mf1BUhmEOUalOUVtmEOvoAe6fmI=">AAACC3icbVDLTgIxFO3gC/GFunTTQExMSMiMC3U50Y1LTOSRMEA6pQMNnXbSdkzGkU9w58Kt/oI749aP4A/8DDvAQsCT3OTknPvK8SNGlbbtiZVbW9/Y3MpvF3Z29/YPiodHDSViiUkdCyZky0eKMMpJXVPNSCuSBIU+I01/dJP5zQciFRX8XicR6YRowGlAMdJG6j55tSHtVjyJ+ICRXrFsV+0p4Cpx5qTslrzKy8RNar3ij9cXOA4J15ghpdqOHelOiqSmmJFxwYsViRAeoQFpG8pRSFQnnX49hqdG6cNASFNcw6n6dyJFoVJJ6JvOEOmhWvYy8T+vHevgqpNSHsWacDw7FMQMagGzCGCfSoI1SwxBWFLzK8RDJBHWJqiFK9nuCD2KccFE4ywHsUoa51XnourcOWX3GsyQByegBM6AAy6BC25BDdQBBhK8gjfwbj1bH9an9TVrzVnzmWOwAOv7F7DTns4=</latexit>

|F+i

P3

measure

join using circuit

measure again

error-state

succesful 
outcome

measurement

auxiliary system

unitary gate

measurement outcome

physical site

projective 
measurement

local unitary

residual error
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Pf
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PTB

f = 0. (D4)

In case | f | is even the expression above yields 2
2| f | ,

which proves Eq. (36).

3. Probability of obtaining Non-Correctable Error States

Finally, here we expand on the argument for why,
in the limit n → ∞, a log(n)-depth circuit ensures an
asymptotically deterministic transformation. Let us as-
sume we are given a certain distribution of error out-
comes in the output string x, and we can apply a circuit
of a certain depth l. Then one needs a circuit of at least
depth l + 1 to correct x if and only if there is an error
at some ki with no other error outcome within distance

±2l to it. Such an output string is not correctable and
the protocol would fail. As derived in the main text, the
probability distribution is flat on outcomes with even
number of f s and zero otherwise. Therefore, the proba-
bility pfail to obtain a non-correctable outcome x is given
by pfail = (#x not correctable)/2n−1. The number of er-
ror strings can be upper bounded by fixing an error
at position i and no errors withing distance ±2l. This
is given by 2n−(4l+1)−1. There are n possibilities for i,
hence we can upper bound

pfail ≤
n2n−(4l+1)−1

2n−1 =
n

24l+1 . (D5)

If l = l(n) ≡ log(n) one obtains pfail → 0, for n → ∞.

4. Proof of Eq. (46)

From the relations in Eqs. (43), and (44) in the main
text one can deduce that upon the first round of mea-
surements, the probability of obtaining a completely
successful outcomes, i.e., x = (s, s, . . . , s), is given by

p(x) = ∑
i∈{0,...,3}n

|⟨ϕ0|⊗n ⊗

k∈[n]
(Z̃ik

k )
† |GHZ8

n⟩|
2

(D6)

=

(
1
8

)n−1

∑
i∈{0,...,3}n

|⟨φ0| ∏
k∈[n]

(Z̃ik )† |φ0⟩|
2

(D7)

=
1

2n−1 (D8)

where the second equation follows from Eqs. (43),
and (44) in the main text. The last equation follows from
the fact that the overlap is one in the case ∏k∈[n](Z̃ik )† =

1, for which there are 4n−1 possibilities, and zero other-
wise. Moreover, any post-measurement state is a prod-
uct state and, up to quasi-commuting unitaries, equiv-
alent to the state |φ0⟩⊗n.

Whenever unsuccessful outcomes occur one can ver-
ify that the probabilities of obtaining a certain distribu-
tion of successes can at most depend on the number of
successes, and not their distribution. To see this, con-
sider a p(x) with | f | unsuccessful outcomes; it reads

p(x) = 4n−| f |
(

1
8

)n−| f |
⟨GHZ8

| f || P⊗| f |
f |GHZ8

| f |⟩ . (D9)

Upon inspection one notices that |GHZ8
| f |⟩ ≃

|GHZ2
| f |⟩ ⊗ |GHZ2

| f |⟩ ⊗ |GHZ2
| f |⟩, and Pf = 12 ⊗

|−⟩⟨−| ⊗ 12. It follows that the probability above eval-
uates to zero whenever | f | is odd, and otherwise yields
a factor 1/2| f |−1. This proves that the probability dis-
tribution p(x) is flat for | f | even, and zero otherwise,
which we claimed in Eq. (46) in the main text.



26

[1] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cam-
bridge University Press, 2011).

[2] X.-G. Wen, Colloquium: Zoo of quantum-topological
phases of matter, Rev. Mod. Phys. 89, 041004 (2017).

[3] M. Fannes, B. Nachtergaele, and R. F. Werner, Finitely
correlated states on quantum spin chains, Commun.
Math. Phys. 144, 443 (1992).

[4] M. B. Hastings, An area law for one-dimensional quan-
tum systems, J. Stat. Mech.: Theory Exp. 2007 (08),
P08024.

[5] M. B. Hastings, Solving gapped hamiltonians locally,
Phys. Rev. B 73, 085115 (2006).

[6] A. Molnar, N. Schuch, F. Verstraete, and J. I. Cirac, Ap-
proximating Gibbs states of local hamiltonians efficiently
with projected entangled pair states, Phys. Rev. B 91,
045138 (2015).

[7] F. Verstraete and J. I. Cirac, Valence-bond states for quan-
tum computation, Phys. Rev. A 70, 060302 (2004).

[8] O. Buerschaper, M. Aguado, and G. Vidal, Explicit tensor
network representation for the ground states of string-net
models, Phys. Rev. B 79, 085119 (2009).

[9] J. I. Cirac, D. Perez-Garcia, N. Schuch, and F. Ver-
straete, Matrix product states and projected entangled
pair states: Concepts, symmetries, theorems, Rev. Mod.
Phys. 93, 045003 (2021).

[10] X. Chen, Z.-C. Gu, and X.-G. Wen, Classification of
gapped symmetric phases in one-dimensional spin sys-
tems, Phys. Rev. B 83, 035107 (2011).
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