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We introduce a quantum algorithm to efficiently prepare states with an arbitrarily small energy
variance at the target energy. We achieve it by filtering a product state at the given energy with
a Lorentzian filter of width δ. Given a local Hamiltonian on N qubits, we construct a parent
Hamiltonian whose ground state corresponds to the filtered product state with variable energy
variance proportional to δ

√
N . We prove that the parent Hamiltonian is gapped and its ground

state can be efficiently implemented in poly(N, 1/δ) time via adiabatic evolution. We numerically
benchmark the algorithm for a particular non-integrable model and find that the adiabatic evolution
time to prepare the filtered state with a width δ is independent of the system size N . Furthermore,
the adiabatic evolution can be implemented with circuit depth O(N2δ−4). Our algorithm provides
a way to study the finite energy regime of many body systems in quantum simulators by directly
preparing a finite energy state, providing access to an approximation of the microcanonical properties
at an arbitrary energy.

I. INTRODUCTION

Quantum computing introduces a novel approach to
computational tasks, with one of the main advantages be-
ing the efficient simulation of physical quantum systems.
The advantage lies in the potential for exponential en-
hancement in spatial resources by encoding the system’s
degrees of freedom into qubits, enabling direct operations
and calculations on them [1–4].

A particularly compelling application pertains to de-
termining the ground state properties of systems – a
realm of zero-temperature behavior. While, in general,
identifying the ground state of a local Hamiltonian stands
as a QMA-hard problem [5, 6], for typical physically rel-
evant systems solutions are attainable. Quantum adia-
batic evolution offers a method for preparing the ground
state of a specified Hamiltonian. This process commences
from a readily preparable ground state of the Hamilto-
nianH0 and involves time-evolving the system to a target
Hamiltonian H1. This strategy’s success relies on an en-
ergy gap that scales favorably with system size [7].

Nonetheless, studying excited states is equally impor-
tant, particularly to understand systems in thermal equi-
librium. In practice, addressing a particular eigenstate
of the system is extremely difficult. However, analyz-
ing states of a small energy variance around the target
energy is equally interesting. Having access to finite en-
ergy states of a small energy variance could be useful for
studying physics in many fields. In the field of many-
body physics, one can calculate the expectation values
for observables, perform time dynamics simulations, and
calculate entanglement properties of the state, i.e., Renyi
entropies [8, 9]. Furthermore, given access to two states
at different energies, it becomes possible to verify the pre-
dictions of the eigenstate thermalization hypothesis [10].

∗ reinis.irmejs@mpq.mpg.de

In chemistry, the excited states can be used to simulate
molecular dynamics [11]. The preparation of such states
has been well studied using tensor networks [12–14]. In
[13], a relationship between the energy variance and the
associated entanglement entropy of the state was estab-
lished, showing the need for a large bond dimension to
approximate the states with small energy variance.

The difficulty of analyzing the excited states classi-
cally has sparked an interest in developing quantum al-
gorithms for this purpose. The first quantum algorithm
to prepare excited states with reduced variance was quan-
tum phase estimation (QPE) [15, 16]; however, this ap-
proach is very costly. An alternative is to use time series
[17–21], which does not require preparation of the state
to extract its properties; nevertheless, it uses costly con-
trolled evolution operations. In [22], observables at a
given energy were calculated without direct state prepa-
ration but through energy filtering with a cosine filter,
deconstructing it into a sum of Loschmidt echoes cou-
pled with subsequent classical post-processing.

In this work, we propose a very different way of di-
rectly preparing a state of small energy variance. For a
given Hamiltonian H, we find a product state |Ψ⟩ at the
target energy and filter it to an arbitrarily small vari-
ance. This is achieved by defining a parent Hamilto-
nian H that depends on H, |Ψ⟩, and on a filter width
parameter δ that is proportional to the desired energy
variance. By construction, the unique ground state |Φ⟩
of the parent Hamiltonian H corresponds to the filtered
product state. Furthermore, we define a gapped adia-
batic path that connects the initial product state |Ψ⟩
with the filtered state |Φ⟩. Thus, performing adiabatic
evolution along this path allows one to efficiently prepare
a finite variance approximation of the excited eigenstate
at a given energy. We notice that in [23], a similar parent
Hamiltonian construction was used to prepare a Gibbs
state of a Hamiltonian with commuting terms.

In Section II, we formally introduce the algorithm, in
Section III, we perform a numerical investigation to es-
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FIG. 1. Illustration of the filtering. The figure shows the
density of states (DOS) for the Hamiltonian H and the prod-
uct state |Ψ⟩. The red line shows the process of applying the
Lorentzian filter F−1

L onto the product state |Ψ⟩, which leads
to a state of reduced energy variance.

tablish tighter bounds to the algorithmic runtime, fol-
lowed by a summary of our results in Section IV and our
conclusions and outlook in Section V.

II. METHOD

A. Outline

In this work, we set out to perform the following task.
We start with a local Hamiltonian H of interest and a
product state |Ψ⟩ that has energy E0 and variance σ2

0

with respect to H. We want to create a new state |Φ⟩
that has the same (or close) energy E0 but a substan-
tially reduced variance σ2

L. This is similar to preparing
a microcanonical superposition at energy E0, just with a
finite width. We develop an algorithm that allows us to
arbitrarily reduce the variance σ2

L in poly(N, δ−1) time.
We achieve this by applying a Lorentzian filter of width δ
on top of the product state |Ψ⟩ (FIG. 1) and suppressing
the components of eigenstates with energy far away from
E0. In the rest of the section, we formally show how this
task can be done in a polynomial time, with respect to
the system size N and the desired energy variance σ2

L.
The algorithm informally proceeds as follows:

1. Start with a product state |Ψ⟩, at the desired en-
ergy E0. Define projectors Pi on each site i that an-
nihilate the state |Ψ⟩. The sum of these projectors
P =

∑
i Pi defines a Hamiltonian whose ground

state is the product state (see Lemma II.1).

2. Pick the width δ of the Lorentzian filter to be ap-
plied to |Ψ⟩.

3. Construct the parent Hamiltonian:

H(E0, δ) =
∑
i

F†
LPiFL,

where FL = (1 + iδ−1(H − E0)).

The parent Hamiltonian H has a unique ground
state that corresponds to the filtered state
(Lemma II.1), and it remains gapped (Lemma II.2).

4. Prepare the filtered state |Φ⟩ by adiabatically
evolving the product state |Ψ⟩ with H(δ) by slowly
increasing δ−1(s) = sδ−1 from s = 0 to 1. In
Lemma II.3, we show that the adiabatic evolution
time is T = poly(N, δ−1). Note thatH(s = 0) = P .
In Lemma B, we address the circuit depth required
for Trotterized time evolution.

5. By choosing a suitable δ, we can thus prepare a fil-
tered product state of arbitrary energy variance. In
Lemma II.4, we discuss how the variance of the fil-
tered state decreases with δ in the thermodynamic
limit.

B. The algorithm

Let H be a local Hamiltonian of interest with eigen-
basis H |en⟩ = en |en⟩ and |Ψ⟩ be a product state for
which we can define local projectors Pi that annihilate
it. Let the energy of the product state be E0. We set out
to prepare the filtered state |Φ⟩, corresponding to filter
FL. This state is given by |Φ⟩ ∝ F−1

L |Ψ⟩. In this paper,
we will use the Lorentzian filter FL; however, the strat-
egy works for any filter that is polynomial in H. The
Lorentzian filter is given by

FL(E, δ) = (1 + iδ−1(H − E)), (1)

with the corresponding filtered state :

|Φ⟩ ∝ F−1
L |Ψ⟩ =

∑
n

cn
1 + iδ−1(en − E)

|en⟩ , (2)

|⟨en|Φ⟩|2 ∝ |cn|2

1 + δ−2(en − E)2
. (3)

Note that the probability amplitude of |en⟩ has been sup-

pressed here by a Lorentzian factor |cn|2
1+δ−2(en−E)2 .

For a filter FL and initial state |Ψ⟩ we can define the
parent Hamiltonian H:

H =
∑
i

F†
LPiFL. (4)

Note that for a local Hamiltonian H, the operator norm
of the parent Hamiltonian scales as ∥H∥ = O(N3δ−2).
We take this scaling into account when establishing the
bounds for the runtime and circuit depth. In the rest of
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the section, we formally show that by finding the ground
state of H, we obtain the filtered state |Φ⟩ and that one
can achieve this task in a polynomial time on a quantum
computer.

Lemma II.1. Let H be an arbitrary, k-local many
body Hamiltonian, |Ψ⟩ the initial product state and∑N

i=1 Pi a sum of local, commuting projectors satisfy-
ing Pi, [Pi, Pj ] = 0, Pi |Ψ⟩ = 0 ∀i, j. Let E and δ
be the center and width of the filter F−1(E, δ), respec-

tively. Then H = F†
(∑N

i=1 Pi

)
F is a parent Hamil-

tonian whose unique ground state is the filtered state
|GS⟩H = 1

N F−1(E, δ) |Ψ⟩, where N is a normalization
constant

Proof. The unique ground state of
∑N

i=1 Pi is the initial
state |Ψ⟩ with a ground state energy 0, by construction.
Note thatH is a sum of positive semi-definite terms since:

F†PiF = F†PiPiF = r†i ri where ri ≡ PiF , (5)

thus the ground state of the parent Hamiltonian H has
energy E ≥ 0. Furthermore, note that, by construction,

Pi |Ψ⟩ = PiFF−1 |Ψ⟩ = F†PiFF−1 |Ψ⟩ = 0. (6)

Hence the parent Hamiltonian H has ground state:

|GS⟩H =
1

N
F−1 |Ψ⟩ = |Φ⟩ , (7)

with ground state energy 0. Therefore,

0 =

(
N∑
i=1

Pi

)
|Ψ⟩ =

(
N∑
i=1

Pi

)
FF−1 |Ψ⟩ ,

and thus,

HF−1(E, δ) |Ψ⟩ = F†

(
N∑
i=1

Pi

)
FF−1 |Ψ⟩ = 0, (8)

where the normalized ground state is given by: |GS⟩H =
1
N F−1(E, δ) |Ψ⟩, which corresponds to the filtered state
|Φ⟩.

Next, we prove that the parent Hamiltonian H is
gapped.

Lemma II.2. The parent Hamiltonian H is gapped with
a gap ∆ ≥ 1 for a filter satisfying F†F ⪰ 1.

Proof. We use the martingale method [24] to prove that
H is gapped; in particular, we show that H2 −∆H ⪰ 0

for a gap of ∆ = 1.

H2 −H =

= F†

(
N∑
i=1

Pi

)
F†F

(
N∑
i=1

Pi

)
F − F†

(
N∑
i=1

Pi

)
F

= F†

(
N∑
i=1

Pi

)
F†F

(
N∑
i=1

Pi

)
F − F†

(
N∑
i=1

P 2
i

)
F

⪰ F†

(
N∑
i=1

Pi

)
F†F

(
N∑
i=1

Pi

)
F − F†

(
N∑
i=1

Pi

)2

F

= F†

(
N∑
i=1

Pi

)
(F†F − 1)

(
N∑
i=1

Pi

)
F

= V †(F†F − 1)V

⪰ 0,

since (F†F − 1) ⪰ 0, where V =
(∑N

i=1 Pi

)
F .

In the following Lemma II.3, we combine the results to
show that the algorithm has a polynomial run time.

Lemma II.3. Provided that the parent Hamiltonian
H is k-local, we can prepare the ground state |Φ⟩ =
1
N F−1(E, δ) |Ψ⟩, hence perform the filtering, in time

T = poly(N, δ−1) and consequently with circuit depth
D = poly(N, δ−1).

The proof is given in the Appendix A.
In Lemma II.4, we establish the relationship of the

obtained energy variance σ2
L and the Lorentzian filter

width δ.

Lemma II.4. Let H be a local Hamiltonian on N qubits,
|Ψ⟩ the initial product state, and FL the Lorentzian fil-
ter with parameters E, δ. If the filter energy is E =
⟨Ψ|H |Ψ⟩, then the variance of the filtered state is σ2

L ≈
δ
√
2σ2

0/π, in the limit where δ/
√
σ2
0 << 1.

See Appendix C for the proof and the exact variance
dependence.
The above results prove that the filtering of a prod-

uct state with a Lorentzian filter can be achieved in
poly(N, δ−1) time.

C. Product State remarks

For a product state |Ψ⟩ with regards to the energy
eigenbasis of a local Hamiltonian H =

∑
j hj , the vari-

ance scales as:

σ2
0 = ⟨Ψ|H2 |Ψ⟩ − ⟨Ψ|H |Ψ⟩2 = O(N), (9)

where E0 = ⟨Ψ|H |Ψ⟩. Furthermore, E0 and the initial
variance σ2

0 can be easily computed classically. If the
filter energy E is chosen to be the product state energy
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E0 = ⟨Ψ|H |Ψ⟩, provably successful energy filtering of
the product state |Ψ⟩ can be achieved.

For any product state |Ψ⟩ = ⊗i |ϕi⟩ we can always
create the projectors Pi acting on a single qubit by
Pi = I− |ϕi⟩ ⟨ϕi|. For a local H, product states span an
extensive energy range [25]. For a target energy within
that range, it is then possible to prepare a state with a
small energy variance on a quantum computer. Note that
our runtime guarantees are provable only when we filter
around the product state energy E0. This arises from
the fact that the Lorentzian and Gaussian functions de-
cay at different speeds. Thus, if we pick E ̸= E0, the
final energy ⟨Φ|H |Φ⟩ can differ from the filter energy E.

III. RESULTS

In the previous sections, we have shown that the
Lorentzian filtering can be done in a polynomial time
by adiabatic evolution since the gap of the parent Hamil-
tonian H does not close throughout the evolution. How-
ever, the bounds on the adiabatic runtime are often loose,
and in practice, one requires a much shorter runtime. We
numerically benchmark the algorithm to show that we al-
ready observe a good agreement with theory for moderate
system sizes N and show that the algorithm requires a
significantly shorter adiabatic evolution time. For the nu-
merical results, we use the Transverse Field Ising (TFI)
Hamiltonian H

H = J

(
N−1∑
i=1

ZiZi+1 +

N∑
i=1

gXi + hZi

)
, (10)

with coefficients (J, g, h) = (1,−1.05, 0.5), far away from
integrability. The (Xi, Zi) denotes the respective Pauli
matrix on site i. We consider two types of initial prod-
uct states |Ψ⟩. Firstly, the antiferromagnetic (AFM)
state |AFM⟩ = |101 . . .⟩. Secondly, we look at a fam-
ily of translationally invariant product states of the form
|p(θ)⟩ = (cos(θ) |0⟩ + sin(θ) |1⟩)⊗N . In principle, vary-
ing θ allows us to cover an extensive range of energies
(see Appendix D). While in the thermodynamic limit,
the product states have a Gaussian eigenstate distribu-
tion, for small systems, the distribution can differ. We
investigate the case for θ = π/6 as the state lies closer to
the center of the spectrum, where the density of states
is larger, and has an eigenstate distribution closer to the
Gaussian one. We expect this to give a better agreement
with the theory for small systems.

For a given product state |Ψ⟩, we create the projec-
tors Pi on each site that annihilate it. We proceed to
investigate the parent Hamiltonian:

H = (1− i

δ
(H −EF ))

(
N∑
i=1

Pi

)
(1 +

i

δ
(H −EF )). (11)

In this section, we show numerical results obtained
with exact diagonalization for system sizes up to N = 18

FIG. 2. The figure shows, for various system sizes N , the
performance of the filter applied on the AFM product state
at the mean energy which, in the thermodynamic limit, cor-
responds to energy density E0/JN = 1. The black line shows
the expected variance decay (Eq. 12).

sites. Reaching larger system sizes with a classical sim-
ulation proves to be a computationally prohibitive task.
In particular, since we are targeting states in the middle
of the spectrum, the entanglement entropy is expected
to scale as a volume law, preventing a systematic ex-
ploration with matrix product state methods [26], as we
discuss more in detail in Appendix E.

A. Expected decrease of the energy variance

Here, we numerically investigate the ground state of H
corresponding to the filtered product state. In particu-
lar, we investigate how the variance σ2

L of the Lorentzian-
filtered state depends on the parameter δ for various sys-
tem sizes N . In Lemma II.4, we derive the relationship
between variance and δ. For low δ values, this relation-
ship reduces to:

σ2
L/
√

σ2
0 = δ

√
2/π. (12)

In Fig. 2, we consider the decay of the variance for the
AFM initial state, which lies at the edge of the spectrum
of the Hamiltonian H. Fig. 3 correspondingly shows the
results for the initial state |p(θ = π/6)⟩, which lies more
toward the center of the spectrum. We observe a good
agreement with theory in both cases, with a better agree-
ment for the small system sizes in the case of |p(θ = π/6)⟩
initial state.
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FIG. 3. The figure shows, for various system sizes N , the
performance of the filter applied on the |p(θ = π/6)⟩ product
state at the mean energy which, in the thermodynamic limit,
corresponds to energy density E0/JN = −0.409. The black
line shows the expected variance decay (Eq. 12).

B. Adiabatic Evolution

To better understand the actual adiabatic runtime T
required, we numerically investigate the performance of
the adiabatic evolution in practice. On a quantum de-
vice, one could prepare the filtered state by time evolv-
ing the product state with H(δ) while smoothly increas-
ing δ−1 from 0 to the desired value. In particular, for
this study, we choose the adiabatic scheduling δ−1(s) =

sin
(
π/2 sin(sπ/2)

2
)2

δ−1
max which ensures a slower change

of the parameter at the beginning and end of the evolu-
tion. This scheduling of the adiabatic evolution is essen-
tial for an optimal runtime [27].

To investigate the accuracy of the adiabatic evolution
for various system sizes, we study the fidelity of the adia-
batic state F with respect to the exact filtered state and
monitor the ground state energy of the parent Hamilto-
nian H since, for perfectly adiabatic evolution, it should
remain zero throughout. Note that the parent Hamil-
tonian H (Eq. 11) has a norm that increases with δ−1.
To keep it normalized throughout adiabatic evolution, we
rescale it to H̃(δ) = H(δ)/(1+δ−2). Note that the rescal-
ing affects the gap, which we take into account when es-
tablishing the runtime. We apply the adiabatic evolution
in the following way:

|Φ⟩adi =
T/τ∏
l=1

exp
(
−iτH̃{δ(l τ

T
)}
)
|Ψ⟩ , (13)

where τ is the discrete adiabatic time step, and T is the
total adiabatic evolution time. To benchmark the adi-
abatic evolution, we fix the desired filter width to be

δ = 0.1 and perform the evolution for several system sizes
N and runtimes T . In Fig. 4 and Fig. 5, we show the de-
pendence of the fidelity F and the parent Hamiltonian
H energy with respect to the adiabatic evolution time T .
In both cases, the parent Hamiltonian H energy appears
independent of the system size, while the fidelity shows a
favorable behavior towards larger N . These results pro-
vide a more favorable scaling for the adiabatic runtime
T compared to the adiabatic theorem, which suggests
that T = O(N3). The results suggest that the adiabatic
evolution runtime could be taken independently of the
system size to prepare the state with a given fidelity F .
However, in Appendix B, we show that the circuit depth
required to implement this evolution via the first-order
Trotterization scales as O(N2) since ∥H∥ = O(N3).

IV. DISCUSSION

In this section, we review the results from Section III
and discuss the behavior and drawbacks of the Lorentzian
filtering for finite system sizes.
Firstly, Fig. 2 and Fig. 3 show that, even for small sys-

tem sizes N , the variance of the filtered state follows the
decreasing behavior expected in the thermodynamic limit
(Eq. 12). In the numerics, we observe that the smaller
systems start to deviate from this behavior first. The
first reason for this behavior is that the eigenstate dis-
tribution of the product state is not Gaussian for small
systems. The second reason is the discreteness of the
spectrum. In Eq. (3), we establish that the suppression

due to Lorentzian filtering is given by |cn|2
1+δ−2(en−E)2 . Sup-

pose that the closest eigenstate is η = minn |en − E| away
from the center of the filter. It is clear that further low-
ering δ leads to no further filtering when δ−1η ≳ 1. How-
ever, for larger systems, the discreteness of the spectrum
should not pose any problems. Note that for a Hamil-
tonian H on N sites, the energy extent is O(N), while
there are 2N eigenstates. This means that the density
of states, along with the number of states supported by
the product state, increases exponentially with N , and
thus η becomes exponentially small in N . The exponen-
tial density of states allows for successful filtering to be
performed up to exponentially small δ values.
Secondly, in Fig. 4 and Fig. 5, we observe that the adi-

abatic runtime required to reach a certain precision is es-
sentially independent of the system size N . Even though
the fidelity is only accessible in exact calculations, mea-
suring the energy of the parent Hamiltonian H at the
end of the evolution, as seen in the figures, provides a
reliable indication that the adiabatic evolution has in-
deed prepared the required state. The numerics indicate
that the runtime of the algorithm is much faster than
expected, and one can prepare a state of given δ with a
fixed number of Trotter steps that are independent of N .
Thirdly, perhaps the biggest drawback of the proposed

algorithm is the fact that it requires evolving the system
under a geometrically non-local Hamiltonian. Whereas
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FIG. 4. The figure shows results for adiabatic evolution of
the |AFM⟩ initial product state for final filter width δ = 0.1
and several system sizes N . We use τ = 0.1. The upper plot
shows one minus the fidelity between the evolved state and
the exact filtered one as a function of the number of timesteps
T/τ . The lower plot shows the parent Hamiltonian H energy
at the end of the adiabatic evolution.

this would, in principle, be possible on some platforms,
like trapped ions [28], on other quantum computer im-
plementations with only local gates available, it would
require O(N) additional swap operations, which will in-
crease the cost of the algorithm and, potentially, render
it unsuitable for NISQ devices. This is, however, not sur-
prising when considering that the states we are trying to
filter are excited eigenstates of the Hamiltonian, which
usually exhibit an entanglement volume law [29–31], and
thus cannot be encoded, in general, in the ground state
of a geometrically local Hamiltonian (which would only
accommodate area law entanglement).

FIG. 5. The figure shows results for adiabatic evolution of
|p(θ = π/6)⟩ initial product state for final filter width δ = 0.1
and various system sizes N . We use τ = 0.1. The upper plot
shows one minus the fidelity between the evolved state and
the exact filtered one as a function of the number of timesteps
T/τ . The lower plot shows the parent Hamiltonian H energy
at the end of the adiabatic evolution.

V. CONCLUSION

We have developed a novel algorithm for preparing
states with an arbitrarily small energy variance at a tar-
get energy on a quantum computer. The algorithm effec-
tively prepares a state that would result from applying
a Lorentzian filter of width δ to an initial product state.
The filtered state is, in fact, adiabatically prepared as
the ground state of a parent Hamiltonian. Furthermore,
we prove that the algorithm is efficient since the par-
ent Hamiltonian remains gapped with a gap independent
of system size; thus, it can be efficiently prepared with
adiabatic evolution. Indeed, the running time of the al-
gorithm is polynomial both in the system size and the
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inverse width.
We show that when preparing the finite energy state,

its variance decreases with the parameter δ that de-
fines the Lorentzian filter, and already for moderate sys-
tem sizes, we observe good agreement with the asymp-
totic predictions for large sizes. While according to
the theoretical bounds, the adiabatic runtime scales as
O(N3δ−4), our numerics suggest that in practice, the re-
quired time is much more favorable due to the looseness
of the theoretical bound from the adiabatic theorem. In
practice, we estimate that the adiabatic runtime scales
as O(δ−4), thus allowing us to perform adiabatic evolu-
tion and prepare the finite energy state with circuit depth
O(N2δ−4) (see Appendix B).

Our approach provides a new way of probing finite
energy physics on quantum devices by directly giving ac-
cess to small energy variance states. Having access to
the state itself provides novel ways to probe finite energy
regimes of isolated quantum systems and allows this al-
gorithm to serve as a subroutine in more complicated
analysis on quantum devices. Future work should focus

on developing new algorithms that take advantage of the
access to filtered product states.

ACKNOWLEDGMENTS

We thank Georgios Styliaris for helpful discussions.
We acknowledge the support from the German Federal
Ministry of Education and Research (BMBF) through
FermiQP (Grant No. 13N15890) and EQUAHUMO
(Grant No. 13N16066) within the funding program
quantum technologies—from basic research to market.
This research is part of the Munich Quantum Valley
(MQV), which is supported by the Bavarian state gov-
ernment with funds from the Hightech Agenda Bayern
Plus. This work was partially supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – EXC-
2111 – 390814868; and by the EU-QUANTERA project
TNiSQ (BA 6059/1-1).

[1] D. Deutsch, Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences 400, 97 (1985).

[2] S. Lloyd, Science 273, 1073 (1996).
[3] J. I. Cirac and P. Zoller, Physics Today 57, 38 (2004).
[4] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod.

Phys. 86, 153 (2014).
[5] J. Kempe, A. Kitaev, and O. Regev, SIAM Journal on

Computing 35, 1070 (2006).
[6] T. Cubitt and A. Montanaro, SIAM Journal on Comput-

ing 45, 268 (2016).
[7] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser,

(2000), arXiv:0001106 [quant-ph].
[8] S. Johri, D. S. Steiger, and M. Troyer, Physical Review

B 96, 195136 (2017).
[9] Y. Wang, B. Zhao, and X. Wang, Physical Review Ap-

plied 19, 044041 (2023).
[10] J. M. Deutsch, Reports on Progress in Physics 81, 082001

(2018).
[11] I. O. Sokolov, P. K. Barkoutsos, L. Moeller, P. Suchsland,

G. Mazzola, and I. Tavernelli, Phys. Rev. Res. 3, 013125
(2021).

[12] X. Yu, D. Pekker, and B. K. Clark, Phys. Rev. Lett.
118, 017201 (2017).
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Appendix A: Adiabatic runtime

In this appendix we discuss the adiabatic runtime and
prove Lemma II.3.

Proof. The adiabatic theorem states that if the adiabatic
evolution is slow enough and the state is gapped then the
system will remain in the instantaneous ground state of
the Hamiltonian H(s). The result from [27, 32, 33] states
that the required runtime for the adiabatic evolution is:

T ≥ max
s

(
∥∥∥Ḣ(s)

∥∥∥/∆(s)2), (A1)

where we smoothly vary the parameter s from 0 to 1. To
keep the norm of the parent Hamiltonian independent of
δ−1 throughout the adiabatic evolution, we rescale it as
follows:

H̃(s) =
1

1 + s2δ−2
V

(
N∑
i=1

Pi

)
V †, where

V =
(
1 + isδ−1(H − E)

)
.

When rescaled in this way from Lemma II.2 one can
clearly see that the gap ∆(s) ≥ 1

1+s2δ−2 . Furthermore,

by differentiating H̃(s) with respect to s we obtain that:

˙̃H(s) =
−2sδ−2

(1 + s2δ−2)2
V

(
N∑
i=1

Pi

)
V †

+
1

1 + s2δ−2
(V̇

(
N∑
i=1

Pi

)
V † + V

(
N∑
i=1

Pi

)
V̇ †)

=
1

1 + s2δ−2
(−2sδ−2H(s)

+ δ−1(i(H − E)

(
N∑
i=1

Pi

)
V † + h.c.)

= O(N3),

since ∥V ∥ = O(δ−1N) and ∥H∥ = O(N) Combining the

previous bound for
∥∥∥ ˙̃H(s)

∥∥∥ and the scaling of the gap

∆(s) we arrive at the adiabatic runtime:

T ≥ max
s

(
∥∥∥ ˙̃H(s)

∥∥∥/∆(s)2)

= O(N3δ−4),

which gives the T = poly(N, δ) adiabatic runtime.
Secondly, we use the fact that the time evolution on

quantum computers can be performed efficiently for a

local Hamiltonian H =
∑M

γ=1 hγ using any of the algo-

rithms [34–36]. Thus, the evolution can be simulated
with a poly(N, δ)-depth quantum circuit. In Appendix
B, we explicitly show the depth required to implement
the first-order Trotter evolution.

Appendix B: Trotter Circuit depth for the adiabatic
evolution

This appendix shows that the first-order Trotterized
time evolution of H can be implemented with depth D =
O(TN2).

Lemma B.1. Suppose {Pi} are a set of one-site projec-

tors, and H =
∑M

γ hγ is a local Hamiltonian such the

range of interactions |sup hγ | ≤ w and that for any site i
there are at most v terms hγ acting on it. Then the first-
order Trotterized evolution of the parent Hamiltonian

H = (1−iδ−1(H−E0))
(∑N

i=1 Pi

)
(1+iδ−1(H−E0)) for

time T with timestep τ can be implemented with circuit
depth D = O(TN2)

Proof. Let’s consider the circuit depth required to imple-
ment a single Trotter step of the parent Hamiltonian H
for a small τ . The parent Hamiltonian H can be split
into parts:

H =

(
N∑
i=1

Pi

)

− i

δ

[
H,

(
N∑
i=1

Pi

)]

+
1

δ2
(H − EF )

(
N∑
i=1

Pi

)
(H − EF ).

It’s clear that the terms in
(∑N

i=1 Pi

)
are 1-local;

thus, their evolution can be implemented with a D =
O(1) circuit. Similarly, for the second set of terms[
H,
(∑N

i=1 Pi

)]
, it’s clear to see that it is a sum of

O(N) geometrically local terms of weight at most w; thus
can be implemented with a circuit of depth O(1). The
most complicated terms arise from the third set of terms

(H − EF )
(∑N

i=1 Pi

)
(H − EF ). First, note that we can

implement any evolution of type exp(−iτhiPjhk) with
a constant circuit depth, assuming that the qubits have
all-to-all connectivity. Suppose we pick any three sites
i, j, k. Then, the support of all the terms acting on all 3
of these vertices can be described by:

Sijk = {i− (w − 1) . . . i+ (w − 1)

∪ j − (w − 1) . . . j + (w − 1)

∪ k − (w − 1) . . . k + (w − 1)},

and |Sijk| ≤ 3(2w − 1). Since for any vertex i, there are

at most v terms in H and one term in
(∑N

i=1 Pi

)
acting

https://doi.org/10.1007/s10955-004-4298-5
http://arxiv.org/abs/cond-mat/0406100
http://arxiv.org/abs/cond-mat/0406100
https://doi.org/10.1007/s00220-015-2366-0
https://doi.org/10.1007/s00220-015-2366-0
http://arxiv.org/abs/1403.1121
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on it, the number of terms acting on all 3 of these ver-
tices is at most (v+1)3, and they all have support within
Sijk, allowing them to be implemented with circuit depth
independent of N . There are N3 combinations of ver-
tices i, j, k, but each of these terms only have support
on sites within Sijk; thus, we can implement the evolu-
tion of N/(3(2w−1)) combinations in parallel, leading to
the necessary circuit depth being O(N2). Thus, the en-
tire evolution of the parent Hamiltonian H can be imple-
mented with circuit depth D = O(T/τN2) = O(TN2),
which concludes the proof.

Appendix C: Theoretical Variance decay

In this appendix, we prove Lemma II.4.

Proof. We investigate the theoretical variance decay pro-
vided by filtering the product state |Ψ⟩ by a Lorentzian
filter L(EF , δ) ∝ 1

(e−EF )2+δ2 , where e is the energy of

eigenstate |e⟩. For a local Hamiltonian H, at large N
the local density of states (or energy distribution) of
the product state g(E) can be approximated by a Gaus-
sian [37, 38] G(E0, σ

2
0) centered at E0 = ⟨Ψ|H |Ψ⟩ and

with variance σ2
0 = ⟨Ψ|H2 |Ψ⟩ − ⟨Ψ|H |Ψ⟩2. This allows

us to estimate the variance upon the application of the
filter L(EF , δ) as follows:

σ2
L =

∫∞
−∞ e2G(E0, σ

2
0)L(EF , δ)de∫∞

−∞ G(E0, σ2
0))L(EF , δ)de

−

(∫∞
−∞ eG(E0, σ

2
0)L(EF , δ)de∫∞

−∞ G(E0, σ2
0))L(EF , δ)de

)2

=
I2
I0

−
(
I1
I0

)2

.

We investigate the filtered energy variance when the
Lorentzian filter is applied at the center of the product
state energy, thus EF = E0. In this case, the above
integrals can be evaluated to yield:

I0 =

∫ ∞

−∞

exp
(
−(e− E0)

2/2σ2
0

)
(e− E0)2 + δ2

de

=

∫ ∞

−∞

exp
(
−e′2/2σ2

0

)
e′2 + δ2

de′

=
π

δ
exp

(
δ2

2σ2
0

)[
1− erf

(
δ/
√
2σ2

0

)]
,

I1 =

∫ ∞

−∞

exp
(
−(e− E0)

2/2σ2
0

)
(e− E0)2 + δ2

ede

=

∫ ∞

−∞

exp
(
−e′2/2σ2

0

)
e′2 + δ2

(e′ + E0)de
′

= 0 +

∫ ∞

−∞

exp
(
−e′2/2σ2

0

)
e′2 + δ2

E0de
′

= I0E0,

I2 =

∫ ∞

−∞

exp
(
−(e− E0)

2/2σ2
0

)
(e− E0)2 + δ2

e2de

=

∫ ∞

−∞

exp
(
−e′2/2σ2

0

)
e′2 + δ2

(e′ + E0)
2de′

=

∫ ∞

−∞

exp
(
−e′2/2σ2

0

)
e′2 + δ2

e′2de′ + E2
0

= −πδ exp

(
δ2

2σ2
0

)(
1− erf(δ/

√
2σ2

0)

)
+
√
2πσ2

0 + E2
0

= −δ2I0 +
√

2πσ2
0 + E2

0 .

Combining the above results in the following filtered vari-
ance:

σ2
L = −δ2 +

δ exp
(
− δ2

2σ2
0

)√
2σ2

0/π(
1− erf(δ/

√
2σ2

0)
) . (C1)

Note that in the limit where:

lim
δ→∞

σ2
L = σ2

0 .

However, we are interested in the limit for small δ values
(δ/
√

2σ2
0 << 1) for which we get the asymptotic behav-

ior:

σ2
L ≈ δ

√
2σ2

0/π = O(δ
√
N). (C2)

This establishes the bound for the theoretical decay of
the variance in the thermodynamic limit.

Appendix D: Translationaly invariant product states

A family of states we consider in our investigation is
translationally invariant product states, defined by:

|p(θ)⟩ = (cos(θ) |0⟩+ sin(θ) |1⟩)⊗N . (D1)

For the TFI Ising model Eq. 10, such product state
parametrization covers a range of energies, allowing us to
investigate the performance of the filter across the whole
spectrum. In the thermodynamic limit, the energy of
|p(θ)⟩ is E/JN = cos2(2θ) + h cos(2θ) + g sin(2θ). The
dependence on the angle θ is depicted in Fig. 6.
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FIG. 6. E/JN dependence on the parameter θ. We have
marked the θ = π/6 value used in the work. The AFM state
has E/JN = −1 in the thermodynamic limit.

Appendix E: MPS investigation

We have limited the numerics in Section III to only ex-
act calculations for small systems. One could expect that
matrix product state (MPS) methods [26] would allow us
to reach larger system sizes. However, this proves to be
a very challenging task. In this appendix, we provide de-
tails about the drawbacks of such MPS calculations for
this particular model and illustrate why it is hard to go
beyond the system sizes accessible with the exact meth-
ods.

Firstly, we investigate the ground state of H using
DMRG. In Fig. 7, we show that we approach the ground
state slowly in the number of sweeps. As shown in the
figure, which illustrates the ground state search corre-
sponding already for a small system size N = 16 (which
can be solved with exact diagonalization), even after 1000
sweeps, the error in the energy is considerably large (note
that the exact value is zero).

Secondly, we look at the entanglement entropy of the
filtered states and how it depends on the system size N
and δ−1 to understand the fundamental limitations in
their approximability as MPS. Fig. 8 shows the depen-
dence of the entropy of half chain with δ−1 for various
system sizes, obtained from our exact calculations. The
results indicate a tendency to a linear increase with N
for sufficiently small δ, consistent with a volume law. We
thus conclude that the MPS techniques will not be able
to efficiently capture the ground state, respectively, the
adiabatic evolution of the parent Hamiltonian H. This

behavior is expected since we are trying to approximate
an energy eigenstate at the center of the spectrum,
which follows the volume law of entanglement. The
inability to express these states as MPS further solidifies
the need for a quantum algorithm that is capable of
preparing such states and investigating their properties.

FIG. 7. The figure shows the decay of the parent Hamil-
tonian H energy with the number of DMRG sweeps. The
convergence to the true value of ⟨H⟩ = 0 happens slowly.

FIG. 8. The figure shows the dependence of the bipartite
entanglement entropy with δ−1 and for various system sizes
N . We observe that for a given δ−1, the entanglement grows
linearly with N .
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