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We introduce a quantum algorithm to effi-
ciently prepare states with a small energy vari-
ance at the target energy. We achieve it by
filtering a product state at the given energy
with a Lorentzian filter of width δ. Given a
local Hamiltonian on N qubits, we construct a
parent Hamiltonian whose ground state corre-
sponds to the filtered product state with vari-
able energy variance proportional to δ

√
N . We

prove that the parent Hamiltonian is gapped
and its ground state can be efficiently imple-
mented in poly(N, 1/δ) time via adiabatic evo-
lution. We numerically benchmark the algo-
rithm for a particular non-integrable model
and find that the adiabatic evolution time to
prepare the filtered state with a width δ is
independent of the system size N . Further-
more, the adiabatic evolution can be imple-
mented with circuit depth O(N2δ−4). Our al-
gorithm provides a way to study the finite en-
ergy regime of many body systems in quantum
simulators by directly preparing a finite energy
state, providing access to an approximation of
the microcanonical properties at an arbitrary
energy.

1 Introduction
Quantum computing introduces a novel approach to
computational tasks, with one of the main advantages
being the efficient simulation of physical quantum sys-
tems. The advantage lies in the potential for expo-
nential enhancement in spatial resources by encoding
the system’s degrees of freedom into qubits, enabling
direct operations and calculations on them [1, 2, 3, 4].

A particularly compelling application pertains to
determining the ground state properties of systems
– a realm of zero-temperature behavior. While, in
general, identifying the ground state of a local Hamil-
tonian stands as a QMA-hard problem [5, 6], for typ-
ical physically relevant systems solutions are attain-
able. Quantum adiabatic evolution offers a method
for preparing the ground state of a specified Hamilto-
nian. This process commences from a readily prepara-
ble ground state of the Hamiltonian H0 and involves
time-evolving the system to a target Hamiltonian H1.
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This strategy’s success relies on an energy gap that
scales favorably with system size [7].

Nonetheless, studying excited states is equally im-
portant, particularly to understand systems in ther-
mal equilibrium. In practice, addressing a partic-
ular eigenstate of the system is extremely difficult.
However, analyzing states of a small energy variance
around the target energy is equally interesting. Hav-
ing access to finite energy states of a small energy
variance could be useful for studying physics in many
fields. In the field of many-body physics, one can
calculate the expectation values for observables, per-
form time dynamics simulations, and calculate entan-
glement properties of the state, i.e., Renyi entropies
[8, 9]. Furthermore, given access to two states at dif-
ferent energies, it becomes possible to verify the pre-
dictions of the eigenstate thermalization hypothesis
[10]. In chemistry, the excited states can be used to
simulate molecular dynamics [11]. The preparation
of such states has been well studied using tensor net-
works [12, 13, 14]. In [13], a relationship between the
energy variance and the associated entanglement en-
tropy of the state was established, showing the need
for a large bond dimension to approximate the states
with small energy variance.

The difficulty of analyzing the excited states classi-
cally has sparked an interest in developing quantum
algorithms for this purpose. The first quantum algo-
rithm to prepare excited states with reduced variance
was quantum phase estimation (QPE) [15, 16]; how-
ever, this approach is very costly. An alternative is
to use time series [17, 18, 19, 20, 21], which does not
require preparation of the state to extract its proper-
ties; nevertheless, it uses costly controlled evolution
operations.

An alternative to the direct preparation of the state
was proposed in [22], where observables at a given en-
ergy were calculated by means of a cosine filter on en-
ergy, deconstructed as a sum of Loschmidt echoes and
combined with subsequent classical post-processing.

In this work, we propose a very different way of
directly preparing a state of small energy variance.
For a given Hamiltonian H, we find a product state
|Ψ⟩ at the target energy and filter it to a small en-
ergy variance. This is achieved by defining a parent
Hamiltonian H that depends on H, |Ψ⟩, and on a filter
width parameter δ that is proportional to the desired
energy variance. By construction, the unique ground
state |Φ⟩ of the parent Hamiltonian H corresponds
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Figure 1: Illustration of the filtering. The figure shows the
density of states (DOS) for the Hamiltonian H and the prod-
uct state |Ψ⟩. The red line shows the process of applying the
Lorentzian filter F−1

L onto the product state |Ψ⟩, which leads
to a state of reduced energy variance.

to the filtered product state. Furthermore, we de-
fine a gapped adiabatic path that connects the initial
product state |Ψ⟩ with the filtered state |Φ⟩. Thus,
performing adiabatic evolution along this path allows
one to efficiently prepare a finite variance approxima-
tion of the excited eigenstate at a given energy. This
parent Hamiltonian construction is inspired by the
one introduced in [23] to prepare a Gibbs state of a
Hamiltonian with commuting terms.

The rest of the paper is organized as follows. In Sec-
tion 2, we formally introduce the algorithm, in Section
3, we perform a numerical investigation to establish
tighter bounds to the algorithmic runtime, followed
by a summary of our results in Section 4 and our con-
clusions and outlook in Section 5.

2 Method

2.1 Outline
In this work, we set out to perform the following task.
We start with a local Hamiltonian H of interest and a
product state |Ψ⟩ that has energy E0 and variance σ2

0
with respect to H. We want to create a new state
|Φ⟩ that has the same (or close) energy E0 but a
substantially reduced variance σ2

L. This is similar to
preparing a microcanonical superposition at energy
E0, just with a finite width. We develop an algorithm
that allows us to arbitrarily reduce the variance σ2

L
in poly(N, δ−1) time. We achieve this by applying
a Lorentzian filter of width δ on top of the product
state |Ψ⟩ (Fig. 1) and suppressing the components of
eigenstates with energy far away from E0. In the rest
of the section, we formally show how this task can be
done in a polynomial time, with respect to the system
size N and the variance σ2

L. The algorithm informally

proceeds as follows:

1. Start with a product state |Ψ⟩, at the desired en-
ergy E0. Define projectors Pi on each site i that
annihilate the state |Ψ⟩. The sum of these pro-
jectors P =

∑
i Pi defines a Hamiltonian whose

ground state is the product state.

2. Choose the width δ of the Lorentzian filter to be
applied to |Ψ⟩.

3. Construct the parent Hamiltonian:

H(E0, δ) =
∑

i

F†
LPiFL,

where FL = (1 + iδ−1(H − E0)).

The parent Hamiltonian H has a unique ground
state that corresponds to the filtered state and it
remains gapped (see Sec. 2.2).

4. Prepare the filtered state |Φ⟩ via adiabatic evo-
lution of the product state |Ψ⟩ with H(δ) by
slowly increasing δ−1(s) = sδ−1 from s = 0 to
1. In Appendix B, we show that the adiabatic
evolution time is T = poly(N, δ−1). Note that
H(s = 0) = P . In App. C, we address the circuit
depth required for Trotterized time evolution.

For typical product states and a typical (local) Hamil-
tonian, the energy variance of the filtered state de-
creases as O(δ

√
N) in the limit of small δ. By choos-

ing a suitable δ, we can thus prepare a filtered product
state of arbitrary energy variance.

2.2 The algorithm
Let H be an arbitrary local Hamiltonian on N sites
with eigenbasis H |en⟩ = en |en⟩ and |Ψ⟩ be a prod-
uct state for which we can define local projectors Pi

that annihilate it. Let the energy of the product
state be E0. We set out to prepare the filtered state
|Φ⟩, corresponding to filter FL. This state is given
by |Φ⟩ ∝ F−1

L |Ψ⟩. In this paper, we will use the
Lorentzian filter FL, but the strategy works for any
filter that is polynomial in H. The Lorentzian filter
is given by

FL(E, δ) = (1 + iδ−1(H − E)), (1)

with the corresponding filtered state :

|Φ⟩ ∝ F−1
L |Ψ⟩ =

∑
n

cn

1 + iδ−1(en − E) |en⟩ , (2)

|⟨en|Φ⟩|2 ∝ |cn|2

1 + δ−2(en − E)2 . (3)

Note that the probability amplitude of |en⟩ has been
suppressed here by a Lorentzian factor 1

1+δ−2(en−E)2 .
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Parent Hamiltonian: For a filter FL and initial
state |Ψ⟩ we can define the parent Hamiltonian H:

H =
∑

i

F†
LPiFL. (4)

Note that for a local Hamiltonian H, the operator
norm of the parent Hamiltonian scales as ∥H∥ =
O(N3δ−2). We take this scaling into account when
establishing the bounds for the runtime and circuit
depth. To show that |Φ⟩ is the ground state of H
note that by construction, |Ψ⟩ is the unique ground

state of
∑N

i=1 Pi, with zero energy. Note that H is a
sum of positive semi-definite terms since:

F†PiF = F†PiPiF = r†
i ri where ri ≡ PiF , (5)

thus the ground state of the parent Hamiltonian H
has energy E ≥ 0. Furthermore, note that, by con-
struction,

Pi |Ψ⟩ = PiFF−1 |Ψ⟩ = F†PiFF−1 |Ψ⟩ = 0. (6)

Hence the parent Hamiltonian H has a unique ground
state that corresponds to the filtered state |Φ⟩

|GS⟩H = 1
N

F−1 |Ψ⟩ = |Φ⟩ , (7)

with ground state energy 0 and normalization factor
N .

Gap of the Parent Hamiltonian H.— To ensure
that we can efficiently perform the adiabatic evolu-
tion, we need to ensure that the parent Hamiltonian H
is gapped. We show this using the martingale method
[24]; in particular, we show that H2 − ∆H ⪰ 0 for a
gap of ∆ = 1. The proof is given in Appendix A.

Adiabatic runtime.— Firstly, note that the par-

ent Hamiltonian H(δ−1 = 0) =
(∑N

i=1 Pi

)
, which is

the sum of projectors with the initial product state
|Ψ⟩ as the ground state. Secondly, note that H re-
mains gapped for any finite δ−1 value. Thus, we can
construct a gapped adiabatic path from the initial
product state |Ψ⟩ to the filtered state |Φ⟩ by start-
ing with H(δ−1 = 0) and increasing δ−1 from 0 to
the desired filter width. In the Appendix B, we look
at the adiabatic runtime in more detail and estab-
lish that the filtered state |Φ⟩ can be prepared on a
quantum computer with an adiabatic evolution time
T = poly(N, δ−1) and consequently with circuit depth
D = poly(N, δ−1).

2.3 Considerations about product states
Given a local Hamiltonian H =

∑
j hj , the energy

variance of a typical product state |Ψ⟩ = ⊗i |ϕi⟩ scales
as

σ2
0 = ⟨Ψ| H2 |Ψ⟩ − ⟨Ψ| H |Ψ⟩2 = O(N). (8)

Both the mean energy E0 = ⟨Ψ| H |Ψ⟩ and the vari-
ance σ2

0 can be efficiently computed classically, and
the projectors Pi can be constructed as Pi = I −
|ϕi⟩ ⟨ϕi|. Note also that for a local H, product states
span an extensive energy range [25].

Energy distribution of product states.— The
result of applying the filter F on the state |Ψ⟩ depends
on the initial energy distribution, |cn|2, given by the
coefficients in the energy eigenbasis,

|Ψ⟩ =
∑

cn |en⟩ . (9)

For a product state and a local Hamiltonian, this dis-
tribution can, to some extent, be approximated by
a Gaussian in the thermodynamic limit, as shown
in [26, 27] using the central limit theorem. In [28],
authors extend this result using Berry-Essen theorem
to show that the difference in the cumulative distribu-
tion of a product state and a Gaussian scales with the
system size as O(N−1/2) in the worst case scenario.
An example of the worst-case scaling is given by a
state |Ψ⟩ = |+⟩⊗N

for a non-interacting H =
∑

i Zi

which has a binomial density of states. Thus, there
are initial states, for which the lowest variance we can
possibly reach with this procedure is O(1). However,
for typical, interacting systems, this difference in dis-
tribution is much smaller.

Energy variance of the filtered state.— In or-
der to estimate the dependence of the filtered state
energy variance with the width of the Lorentzian fil-
ter δ, we use a Gaussian approximation for the energy
distribution of the initial product state, justified, in
the generic case, by the above considerations. More
concretely, we will assume that, for a typical prod-
uct state, the energy distribution is exactly Gaussian,
with mean E0 and variance σ0. Based on this ap-
proximation, in Appendix D, we show that the energy
variance of the filtered state scales as

σ2
L/σ0 ≈ δ

√
2/π for δ/

√
2σ2

0 ≪ 1. (10)

Note that in Appendix D we only consider the sce-
nario when the filter energy EF coincides with the
product state energy E0. When using a filter with
EF ̸= E0, one should not expect the energy of |Φ⟩
to be the filter parameter EF since the decay of the
Gaussian eigenstate distribution is much faster than
that of the Lorentzian filter, making the algorithm
impractical in this case.

3 Results
In the previous sections, we have shown that the
Lorentzian filtering can be done in a polynomial time
by adiabatic evolution since the gap of the parent
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Hamiltonian H does not close throughout the evo-
lution. However, the bounds on the adiabatic run-
time are often loose, and in practice, one requires a
much shorter runtime. We numerically benchmark
the algorithm to show that we already observe a good
agreement with theory for moderate system sizes N
and show that the algorithm requires a significantly
shorter adiabatic evolution time. For the numeri-
cal results, we use the Transverse Field Ising (TFI)
Hamiltonian H

H = J

(
N−1∑
i=1

ZiZi+1 +
N∑

i=1
gXi + hZi

)
, (11)

with coefficients (J, g, h) = (1, −1.05, 0.5), far away
from integrability. The (Xi, Zi) denotes the respec-
tive Pauli matrix on site i. We consider two types of
initial product states |Ψ⟩. Firstly, the antiferromag-
netic (AFM) state |AFM⟩ = |101 . . .⟩. Secondly, we
look at a family of translationally invariant product
states of the form |p(θ)⟩ = (cos(θ) |0⟩ + sin(θ) |1⟩)⊗N .
In principle, varying θ allows us to cover an extensive
range of energies (see Appendix E). While in the ther-
modynamic limit, the product states have a Gaussian
eigenstate distribution, for small systems, the distri-
bution can differ. We investigate the case for θ = π/6
as the state lies closer to the center of the spectrum,
where the density of states is larger, and has an eigen-
state distribution closer to the Gaussian one. We ex-
pect this to give a better agreement with the theory
for small systems.
For a given product state |Ψ⟩, we create the projec-

tors Pi on each site that annihilate it. We proceed to
investigate the parent Hamiltonian:

H = (1− i

δ
(H−EF ))

(
N∑

i=1
Pi

)
(1+ i

δ
(H−EF )). (12)

In this section, we show numerical results obtained
with exact diagonalization for system sizes up to
N = 18 sites. Reaching larger system sizes with a
classical simulation proves to be a computationally
prohibitive task. In particular, since we are targeting
states in the middle of the spectrum, the entangle-
ment entropy is expected to scale as a volume law,
preventing a systematic exploration with matrix prod-
uct state methods [29], as we discuss more in detail
in Appendix F.

3.1 Expected decrease of the energy variance
Here, we numerically investigate the ground state of
H corresponding to the filtered product state. In par-
ticular, we investigate how the variance σ2

L of the
Lorentzian-filtered state depends on the parameter δ
for various system sizes N . In Appendix D, we derive
the relationship between variance and δ. For low δ
values, this relationship reduces to:

σ2
L/
√

σ2
0 = δ

√
2/π. (13)

Figure 2: The figure shows, for various system sizes N ,
the performance of the filter applied on the AFM product
state at the mean energy which, in the thermodynamic limit,
corresponds to energy density E0/JN = 1. The black line
shows the expected variance decay (Eq. 13).

In Fig. 2, we consider the decay of the variance for the
AFM initial state, which lies at the edge of the spec-
trum of the Hamiltonian H. Fig. 3 correspondingly
shows the results for the initial state |p(θ = π/6)⟩,
which lies more toward the center of the spectrum.
We observe a good agreement with theory in both
cases, with a better agreement for the small system
sizes in the case of |p(θ = π/6)⟩ initial state.

3.2 Adiabatic Evolution

To better understand the actual adiabatic runtime T
required, we numerically investigate the performance
of the adiabatic evolution in practice. On a quantum
device, one could prepare the filtered state by time
evolving the product state with H(δ) while smoothly
increasing δ−1 from 0 to the desired value. In particu-
lar, for this study, we choose the adiabatic scheduling

δ−1(s) = sin
(

π/2 sin(sπ/2)2
)2

δ−1
max which ensures a

slower change of the parameter at the beginning and
end of the evolution. This scheduling of the adiabatic
evolution is essential for an optimal runtime [30].

To investigate the accuracy of the adiabatic evolu-
tion for various system sizes, we study the fidelity of
the adiabatic state F with respect to the exact fil-
tered state and monitor the ground state energy of
the parent Hamiltonian H since, for perfectly adi-
abatic evolution, it should remain zero throughout.
Note that the parent Hamiltonian H (Eq. 12) has a
norm that increases with δ−1. To keep it normal-
ized throughout adiabatic evolution, we rescale it to
H̃(δ) = H(δ)/(1+δ−2). Note that the rescaling affects
the gap, which we take into account when establish-
ing the runtime. We apply the adiabatic evolution in
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Figure 3: The figure shows, for various system sizes N , the
performance of the filter applied on the |p(θ = π/6)⟩ product
state at the mean energy which, in the thermodynamic limit,
corresponds to energy density E0/JN = −0.409. The black
line shows the expected variance decay (Eq. 13).

the following way:

|Φ⟩adi =
T/τ∏
l=1

exp
(

−iτH̃{δ(l τ

T
)}
)

|Ψ⟩ , (14)

where τ is the discrete adiabatic time step, and T is
the total adiabatic evolution time. To benchmark the
adiabatic evolution, we fix the desired filter width to
be δ = 0.1 and perform the evolution for several sys-
tem sizes N and runtimes T . In Fig. 4 and Fig. 5, we
show the dependence of the fidelity F and the parent
Hamiltonian H energy with respect to the adiabatic
evolution time T . In both cases, the parent Hamilto-
nian H energy appears independent of the system size,
while the fidelity shows a favorable behavior towards
larger N . These results provide a more favorable scal-
ing for the adiabatic runtime T compared to the adia-
batic theorem, which suggests that T = O(N3). The
results suggest that the adiabatic evolution runtime
could be taken independently of the system size to
prepare the state with a given fidelity F . However,
in Appendix C, we show that the circuit depth re-
quired to implement this evolution via the first-order
Trotterization scales as O(N2) since ∥H∥ = O(N3).

4 Discussion
In this section, we review the results from Section
3 and discuss the behavior and drawbacks of the
Lorentzian filtering for finite system sizes.
Firstly, Fig. 2 and Fig. 3 show that, even for small

system sizes N , the variance of the filtered state fol-
lows the decreasing behavior expected in the thermo-
dynamic limit (Eq. 13). In the numerics, we observe
that the smaller systems start to deviate from this

Figure 4: The figure shows results for adiabatic evolution of
the |AF M⟩ initial product state for final filter width δ = 0.1
and several system sizes N . We use τ = 0.1. The upper plot
shows one minus the fidelity between the evolved state and
the exact filtered one as a function of the number of timesteps
T/τ . The lower plot shows the parent Hamiltonian H energy
at the end of the adiabatic evolution.

behavior first. The first reason for this behavior is
that the eigenstate distribution of the product state
is not Gaussian for small systems. The second rea-
son is the discreteness of the spectrum. In Eq. (3),
we establish that the suppression due to Lorentzian

filtering is given by |cn|2

1+δ−2(en−E0)2 . Suppose that the

closest eigenstate is η = minn |en − E| away from the
center of the filter. It is clear that further lowering δ
leads to no further filtering when δ−1η ≳ 1. However,
for larger systems, the discreteness of the spectrum
should not pose any problems. Note that for a Hamil-
tonian H on N sites, the energy extent is O(N), while
there are 2N eigenstates. This means that the density
of states, along with the number of states supported
by the product state, increases exponentially with N ,
and thus η becomes exponentially small in N .

Secondly, in Fig. 4 and Fig. 5, we observe that the
adiabatic runtime required to reach a certain precision
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Figure 5: The figure shows results for adiabatic evolution of
|p(θ = π/6)⟩ initial product state for final filter width δ = 0.1
and various system sizes N . We use τ = 0.1. The upper plot
shows one minus the fidelity between the evolved state and
the exact filtered one as a function of the number of timesteps
T/τ . The lower plot shows the parent Hamiltonian H energy
at the end of the adiabatic evolution.

is essentially independent of the system size N . Even
though the fidelity is only accessible in exact calcula-
tions, measuring the energy of the parent Hamiltonian
H at the end of the evolution, as seen in the figures,
provides a reliable indication that the adiabatic evo-
lution has indeed prepared the required state. The
numerics indicate that the runtime of the algorithm
is much faster than expected, and one can prepare
a state of given δ with a fixed number of Trotter
steps that are independent of N . Thirdly, perhaps the
biggest drawback of the proposed algorithm is the fact
that it requires evolving the system under a geometri-
cally non-local Hamiltonian. Whereas this would, in
principle, be possible on some platforms, like trapped
ions [31], on other quantum computer implementa-
tions with only local gates available, it would require
O(N) additional swap operations, which will increase
the cost of the algorithm and, potentially, render it

unsuitable for NISQ devices. This is, however, not
surprising when considering that the states we are
trying to filter are approximations of excited eigen-
states of the Hamiltonian, which usually exhibit an
entanglement volume law [32, 33, 34], and thus can-
not be encoded, in general, in the ground state of
a geometrically local Hamiltonian (which would only
accommodate area law entanglement).

5 Conclusion
We have developed a novel algorithm for preparing
states with an arbitrarily small energy variance at a
target energy on a quantum computer. The algorithm
effectively prepares a state that would result from ap-
plying a Lorentzian filter of width δ to an initial prod-
uct state. The filtered state is, in fact, adiabatically
prepared as the ground state of a parent Hamiltonian.
Furthermore, we prove that the algorithm is efficient
since the parent Hamiltonian remains gapped with a
gap independent of system size; thus, it can be ef-
ficiently prepared with adiabatic evolution. Indeed,
the running time of the algorithm is polynomial both
in the system size and the inverse width.

We show that the variance of the filtered state
decreases with the parameter δ that defines the
Lorentzian filter, and already for moderate system
sizes, we observe good agreement with the asymptotic
predictions for large sizes.

While according to the theoretical bounds, the adi-
abatic runtime scales as O(N3δ−4), our numerics sug-
gest that, in practice, the required time is much more
favorable due to the looseness of the theoretical bound
from the adiabatic theorem. In practice, we estimate
that the adiabatic runtime scales as O(δ−4), thus al-
lowing us to perform adiabatic evolution and prepare
the finite energy state with circuit depth O(N2δ−4)
(see Appendix C).

Our approach provides a new way of probing fi-
nite energy physics on quantum devices by directly
giving access to small energy variance states. Hav-
ing access to the state itself provides novel ways to
probe finite energy regimes of isolated quantum sys-
tems and allows this algorithm to serve as a subrou-
tine in more complicated analysis on quantum de-
vices. Future work should focus on developing new
algorithms that take advantage of the access to fil-
tered product states.
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[29] Ulrich Schollwöck. “The density-matrix renor-
malization group in the age of matrix product
states”. Annals of Physics 326, 96–192 (2011).

[30] Ben W Reichardt. “The quantum adiabatic op-
timization algorithm and local minima”. In Pro-
ceedings of the thirty-sixth annual ACM sympo-
sium on Theory of computing. Pages 502–510.
(2004).

[31] Nikodem Grzesiak, Reinhold Blümel, Kenneth
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A Parent Hamiltonin Gap
In this appendix, we prove that the parent Hamilto-
nian H is gapped with a gap ∆ ≥ 1. Consider the
parent Hamiltonian H:

F = (1 + iδ−1(H − E)), (15)

H = F†

(
N∑

i=1
Pi

)
F , (16)

and note that F†F ⪰ 1. In fact, this is the only
requirement for the filter that we use in the proof, so
in principle, the results also hold for other, higher-
order filters that satisfy this property. We use the
martingale method [24] to prove that H is gapped; in
particular, we show that H2 − ∆H ⪰ 0 for a gap of
∆ = 1.

H2 − H =

= F†

(
N∑

i=1
Pi

)
F†F

(
N∑

i=1
Pi

)
F − F†

(
N∑

i=1
Pi

)
F

= F†

(
N∑

i=1
Pi

)
F†F

(
N∑

i=1
Pi

)
F − F†

(
N∑

i=1
P 2

i

)
F

⪰ F†

(
N∑

i=1
Pi

)
F†F

(
N∑

i=1
Pi

)
F − F†

(
N∑

i=1
Pi

)2

F

= F†

(
N∑

i=1
Pi

)
(F†F − 1)

(
N∑

i=1
Pi

)
F

= V †(F†F − 1)V
⪰ 0,

since (F†F − 1) ⪰ 0, where V =
(∑N

i=1 Pi

)
F . In

line 3, we have used the fact that P 2
i = Pi, and in line

4, we have relied on the fact that any term PiPj ⪰ 0,
since each of the projectors Pi ⪰ 0 and they commute
[Pi, Pj ] ⪰ 0.

B Adiabatic runtime
In this appendix, we discuss the adiabatic runtime
required for filtering. The adiabatic theorem states
that if the adiabatic evolution is slow enough and the
state is gapped then the system will remain in the
instantaneous ground state of the Hamiltonian H(s).
The result from [35, 30, 36] states that the required
runtime for the adiabatic evolution is:

T ≥ max
s

(
∥∥Ḣ(s)

∥∥/∆(s)2), (17)
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where we smoothly vary the parameter s from 0 to
1. To keep the norm of the parent Hamiltonian in-
dependent of δ−1 throughout the adiabatic evolution,
we rescale it as follows:

H̃(s) = 1
1 + s2δ−2 V

(
N∑

i=1
Pi

)
V †, where

V =
(
1 + isδ−1(H − E)

)
.

When rescaled in this way, the gap bound from Ap-
pendix A states that the gap ∆(s) ≥ 1

1+s2δ−2 . Fur-

thermore, by differentiating H̃(s) with respect to s we
obtain that:

˙̃H(s) = −2sδ−2

(1 + s2δ−2)2 V

(
N∑

i=1
Pi

)
V †

+ 1
1 + s2δ−2 (V̇

(
N∑

i=1
Pi

)
V † + V

(
N∑

i=1
Pi

)
V̇ †)

= 1
1 + s2δ−2 (−2sδ−2H(s)

+ δ−1(i(H − E)
(

N∑
i=1

Pi

)
V † + h.c.)

= O(N3),

since ∥V ∥ = O(δ−1N) and ∥H∥ = O(N) Combining

the previous bound for
∥∥∥ ˙̃H(s)

∥∥∥ and the scaling of the

gap ∆(s) we arrive at the adiabatic runtime:

T ≥ max
s

(
∥∥∥ ˙̃H(s)

∥∥∥/∆(s)2)

= O(N3δ−4),

which gives the T = poly(N, δ) adiabatic runtime.
Secondly, we use the fact that the time evolution on

quantum computers can be performed efficiently for
a local Hamiltonian H =

∑M
γ=1 hγ using any of the

algorithms [37, 38, 39]. Thus, the evolution can be
simulated with a poly(N, δ)-depth quantum circuit.
In Appendix C, we explicitly show the depth required
to implement the first-order Trotter evolution.

C Trotter Circuit depth for the adia-
batic evolution
This appendix shows that the first-order Trotterized
time evolution of H can be implemented with depth
D = O(TN2). Suppose {Pi} are a set of one-site

projectors, and H =
∑M

γ hγ is a local Hamiltonian
such the range of interactions |sup hγ | ≤ w and that
for any site i there are at most v terms hγ act-
ing on it. Then the first-order Trotterized evolu-
tion of the parent Hamiltonian H = (1 − iδ−1(H −
E0))

(∑N
i=1 Pi

)
(1 + iδ−1(H − E0)) for time T with

timestep τ can be implemented with circuit depth
D = O(TN2)

We prove this as follows. Let’s consider the circuit
depth required to implement a single Trotter step of
the parent Hamiltonian H for a small τ . The parent
Hamiltonian H can be split into parts:

H =
(

N∑
i=1

Pi

)

− i

δ

[
H,

(
N∑

i=1
Pi

)]

+ 1
δ2 (H − E0)

(
N∑

i=1
Pi

)
(H − E0).

It’s clear that the terms in
(∑N

i=1 Pi

)
are 1-local;

thus, their evolution can be implemented with a
D = O(1) circuit. Similarly, for the second set of

terms
[
H,
(∑N

i=1 Pi

)]
, it’s clear to see that it is a

sum of O(N) geometrically local terms of weight at
most w; thus can be implemented with a circuit of
depth O(1). The most complicated terms arise from

the third set of terms (H − E0)
(∑N

i=1 Pi

)
(H − E0).

First, note that we can implement any evolution of
type exp(−iτhiPjhk) with a constant circuit depth,
assuming that the qubits have all-to-all connectivity.
Suppose we pick any three sites i, j, k. Then, the sup-
port of all the terms acting on all 3 of these vertices
can be described by:

Sijk = {i − (w − 1) . . . i + (w − 1)
∪ j − (w − 1) . . . j + (w − 1)
∪ k − (w − 1) . . . k + (w − 1)},

and |Sijk| ≤ 3(2w − 1). Since for any vertex i, there

are at most v terms in H and one term in
(∑N

i=1 Pi

)
acting on it, the number of terms acting on all 3 of
these vertices is at most (v + 1)3, and they all have
support within Sijk, allowing them to be implemented
with circuit depth independent of N . There are N3

combinations of vertices i, j, k, but each of these terms
only have support on sites within Sijk; thus, we can
implement the evolution of N/(3(2w − 1)) combina-
tions in parallel, leading to the necessary circuit depth
being O(N2). Thus, the entire evolution of the par-
ent Hamiltonian H can be implemented with circuit
depth D = O(T/τN2) = O(TN2), which concludes
the proof.

D Filtered energy variance
In this appendix, we derive the relationship between
the filter width δ and the energy variance of |Φ⟩ by
approximating that the eigenstate distribution of the
initial product state |Ψ⟩ is Gaussian, which has been
shown to be a good approximation for local Hamilto-
nians at large N [26, 40, 41]. Assume |Ψ⟩ has a Gaus-
sian distribution of eigenstates G(E0, σ2

0) centered at
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E0 = ⟨Ψ| H |Ψ⟩ and with variance σ2
0 = ⟨Ψ| H2 |Ψ⟩ −

⟨Ψ| H |Ψ⟩2
. This allows us to estimate the variance

upon the application of the filter L(EF , δ) as follows:

σ2
L =

∫∞
−∞ e2G(E0, σ2

0)L(EF , δ)de∫∞
−∞ G(E0, σ2

0))L(EF , δ)de

−

(∫∞
−∞ eG(E0, σ2

0)L(EF , δ)de∫∞
−∞ G(E0, σ2

0))L(EF , δ)de

)2

= I2

I0
−
(

I1

I0

)2
.

We investigate the filtered energy variance when the
Lorentzian filter is applied at the center of the product
state energy, thus EF = E0. In this case, the above
integrals can be evaluated to yield:

I0 =
∫ ∞

−∞

exp
(
−(e − E0)2/2σ2

0
)

(e − E0)2 + δ2 de

=
∫ ∞

−∞

exp
(
−e′2/2σ2

0
)

e′2 + δ2 de′

= π

δ
exp
(

δ2

2σ2
0

)[
1 − erf

(
δ/
√

2σ2
0

)]
,

I1 =
∫ ∞

−∞

exp
(
−(e − E0)2/2σ2

0
)

(e − E0)2 + δ2 ede

=
∫ ∞

−∞

exp
(
−e′2/2σ2

0
)

e′2 + δ2 (e′ + E0)de′

= 0 +
∫ ∞

−∞

exp
(
−e′2/2σ2

0
)

e′2 + δ2 E0de′

= I0E0,

I2 =
∫ ∞

−∞

exp
(
−(e − E0)2/2σ2

0
)

(e − E0)2 + δ2 e2de

=
∫ ∞

−∞

exp
(
−e′2/2σ2

0
)

e′2 + δ2 (e′ + E0)2de′

=
∫ ∞

−∞

exp
(
−e′2/2σ2

0
)

e′2 + δ2 e′2de′ + E2
0

= −πδ exp
(

δ2

2σ2
0

)(
1 − erf(δ/

√
2σ2

0)
)

+
√

2πσ2
0 + E2

0

= −δ2I0 +
√

2πσ2
0 + E2

0 .

Combining the above results in the following filtered
variance:

σ2
L = −δ2 +

δ exp
(

− δ2

2σ2
0

)√
2σ2

0/π(
1 − erf(δ/

√
2σ2

0)
) . (18)

Figure 6: E/JN dependence on the parameter θ. We have
marked the θ = π/6 value used in the work. The AFM state
has E/JN = −1 in the thermodynamic limit.

Note that in the limit where:

lim
δ→∞

σ2
L = σ2

0 .

However, we are interested in the limit for small δ val-
ues (δ/

√
2σ2

0 << 1) for which we get the asymptotic
behavior:

σ2
L ≈ δ

√
2σ2

0/π = O(δ
√

N). (19)

This establishes the bound for the scaling of the
filtered energy variance.

E Translationaly invariant product
states
A family of states we consider in our investigation is
translationally invariant product states, defined by:

|p(θ)⟩ = (cos(θ) |0⟩ + sin(θ) |1⟩)⊗N . (20)

For the TFI Ising model Eq. 11, such product state
parametrization covers a range of energies, allowing
us to investigate the performance of the filter across
the whole spectrum. In the thermodynamic limit, the
energy of |p(θ)⟩ is E/JN = cos2(2θ) + h cos(2θ) +
g sin(2θ). The dependence on the angle θ is depicted
in Fig. 6.

F MPS investigation
We have limited the numerics in Section 3 to only
exact calculations for small systems. One could ex-
pect that matrix product state (MPS) methods [29]
would allow us to reach larger system sizes. How-
ever, this proves to be a very challenging task. In this
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appendix, we provide details about the drawbacks of
such MPS calculations for this particular model and
illustrate why it is hard to go beyond the system sizes
accessible with the exact methods.

Firstly, we investigate the ground state of H us-
ing DMRG. In Fig. 7, we show that we approach
the ground state slowly in the number of sweeps. As
shown in the figure, which illustrates the ground state
search corresponding already for a small system size
N = 16 (which can be solved with exact diagonaliza-
tion), even after 1000 sweeps, the error in the energy is
considerably large (note that the exact value is zero).

Secondly, we look at the entanglement entropy of
the filtered states and how it depends on the system
size N and δ−1 to understand the fundamental limi-
tations in their approximability as MPS. Fig. 8 shows
the dependence of the entropy of half chain with δ−1

for various system sizes, obtained from our exact cal-
culations. The results indicate a tendency to a linear
increase with N for sufficiently small δ, consistent
with a volume law. We thus conclude that the MPS
techniques will not be able to efficiently capture the
ground state, respectively, the adiabatic evolution of
the parent Hamiltonian H. This behavior is expected
since we are trying to approximate an energy eigen-
state at the center of the spectrum, which follows the
volume law of entanglement. The inability to express
these states as MPS further solidifies the need for
a quantum algorithm that is capable of prepar-
ing such states and investigating their properties.

Figure 7: The figure shows the decay of the parent Hamil-
tonian H energy with the number of DMRG sweeps. The
convergence to the true value of ⟨H⟩ = 0 happens slowly.

Figure 8: The figure shows the dependence of the bipartite
entanglement entropy with δ−1 and for various system sizes
N . We observe that for a given δ−1, the entanglement grows
linearly with N .
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