
1.  Introduction
The response of vegetation activity—photosynthesis in particular—to changes in climate is strongly controlled 
by both anthropogenically induced climate change and natural drivers induced by internal variability of the 
climate system (Arias et al., 2021). In northern South America (NSA), the El Niño Southern Oscillation (ENSO) 
is considered the main driver of interannual variability of cloud cover, rainfall and temperature (Cai et al., 2020; 
Cess et al., 2001; Eleftheratos et al., 2011; Hilker et al., 2014; Philander, 2018; Poveda et al., 2006; Tedeschi 

Abstract  Interannual variability of vegetation activity (i.e., photosynthesis) is strongly correlated with 
El Niño Southern Oscillation (ENSO). Globally, a reduction in carbon uptake by terrestrial ecosystems has 
been observed during the ENSO warm phase (El Niño) and the opposite during the cold phase (La Niña). 
However, this global perspective obscures the heterogeneous impacts of ENSO at regional scales. Particularly, 
ENSO has contrasting impacts on climate in northern South America (NSA) depending on the ENSO phase 
and geographical location, which in turn affect the activity of vegetation. Furthermore, changes of vegetation 
activity during multiple ENSO events are not well understood yet. In this study, we investigated the spatial and 
temporal differences in vegetation activity associated with ENSO variability and its three phases (El Niño, La 
Niña, Neutral) to identify hotspots of ENSO impacts in NSA, a region dominated by rainforest and savannas. 
To achieve this, we investigated time series of vegetation variables from 2001 to 2014 at moderate spatial 
resolution (0.0083°). Data were aggregated through dimensionality reduction analysis (i.e., Global Principal 
Component Analysis). The leading principal component served as a proxy of vegetation activity (VAC). We 
calculated the cross-correlation between VAC and the multivariate ENSO index separately for each ENSO 
phase. Our results show that El Niño phase has a stronger impact on vegetation activity both in intensity and 
duration than La Niña phase. Moreover, seasonally dry ecoregions were more susceptible to El Niño impacts 
on vegetation activity. Understanding these differences is key for regional adaptation and differentiated 
management of ecosystems.

Plain Language Summary  Precipitation and temperature are important climatic drivers of 
vegetation processes. In particular, El Niño Southern Oscillation (ENSO) events are related to changes in 
precipitation and temperature over large regions, which in turn affects the activity of the vegetation. In northern 
South America (NSA), these changes on climate are opposite during the same ENSO event depending on the 
geographical location. Moreover, local conditions and vegetation type can moderate or amplified changes 
in vegetation activity. Currently, the contrasting vegetation changes during the ENSO warm (El Niño) 
and cold (La Niña) phase are not well understood in NSA. Furthermore, it is unknown where the largest 
vegetation variability is occurring during ENSO phases. We combined different vegetation variables related to 
vegetation greenness and plant productivity over 14 years to estimate changes in vegetation activity related to 
photosynthesis. In this way, we assessed the variability of vegetation activity during El Niño and La Niña. We 
found that variability of vegetation activity is stronger and longer during El Niño than La Niña. In addition, 
vegetation in semi-arid ecoregions was more susceptible to El Niño. A better understating of how vegetation 
activity varies during different ENSO phases will improve regional conservation strategies under the increasing 
ENSO frequencies.
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et al., 2016), with important impacts on the productivity of vegetation within this region (Bastos et al., 2018; 
Köhler et  al.,  2018; Liu et  al.,  2017; Luo et  al.,  2018; Salas et  al.,  2020; van Schaik et  al.,  2018). ENSO is 
a coupled oceanic-atmospheric event in the Pacific ocean that can lead to excesses or deficits of rainfall for 
different parts of NSA depending on the season and geographical location. ENSO can be considered an excel-
lent example to investigate extreme weather conditions, and can contribute significantly to assess the implica-
tions of  extreme climate on vegetation at multiple spatial scales. Increasing our regional understanding of ENSO 
impacts on climate and vegetation variability, is of paramount importance to predict more accurately the impacts 
of global change on natural ecosystems, and, in consequence, its further implications to the human populations 
that inhabit this region.

Hydro-climatological studies have shown important changes in precipitation and temperature associated with 
ENSO phases (i.e., El Niño, La Niña and Neutral) both at regional and subregional scales (Bolaños et al., 2021; 
Cai et al., 2020; Poveda et al., 2001, 2006; Waylen & Poveda, 2002). These studies have shown that each ENSO 
phase does not manifest homogeneously across the entire NSA domain, but rather at different intensities and with 
contrasting patterns of precipitation. The complex topography imposed by the Andean mountains as well as the 
diversity of ecosystem types characteristic of the tropical rain and dry forests, savannas and wetlands of NSA 
pose big challenges to understanding the impacts of different ENSO phases on climate and vegetation activity. In 
particular, there is limited knowledge on how variability among ENSO phases affects vegetation activity taking 
into account the diverse topography and ecosystems in NSA.

In general, the impacts of ENSO on vegetation are studied for individual events (e.g., El Niño 2015–2016) 
from local to global scales. Local studies have used ground data and permanent plots to assess plant functional 
traits, and changes in floristic biodiversity in regions affected by ENSO (González-M et al., 2021; Muenchow 
et al., 2013; Muenchow et al., 2020). Regional and global analyses have assessed changes on vegetation produc-
tivity and photosynthesis (Bastos et al., 2018; Liu et al., 2017; Luo et al., 2018; Patra et al., 2017) and tele-
connections between gross primary productivity (GPP) and ENSO (Le et al., 2021). Specifically, for tropical 
South America, research has focused extensively on productivity in the Amazon biome. For example, van Schaik 
et al. (2018) compared GPP anomalies among the Amazon sub-basins for El Niño 2015–2016 and found that the 
northeastern sub-basin hosted the largest GPP loss (56% from October to March). In contrast to analyses based 
on El Niño events, analyses related to La Niña are scarce and usually carried out at global scales. For instance, 
Bastos et al. (2013) found that La Niña of 2011 explained more than 40% of the variance in global net primary 
productivity. For the same La Niña event, Pandey et al.  (2017) reported an increase in methane emissions by 
wetlands (5%). Analyses of individual events contribute to explain yearly changes in global vegetation activity 
but they are limited in: (a) detecting systematic/concurrent hotspots of ENSO across time; and, (b) identifying 
differences in ecosystem responses due to local conditions.

An alternative to evaluating individual ENSO events is to implement time series analyses of climatological 
and ecosystem-productivity variables that cover multiple ENSO events. This approach can be very powerful 
in assessing and comparing changes over time that could be associated with lagged effects during transitions 
between ENSO phases. Currently, multiple proxies of vegetation activity are available (e.g., greenness, produc-
tivity). Some of these variables are either calculated from direct satellite retrievals such as vegetation indices 
(Huete et al., 1997, 2002; Tucker & Sellers, 1986) or data products obtained from model-data fusion methods or 
data-driven models (Jiang & Ryu, 2016; Jung et al., 2020; Running et al., 2015). Nevertheless, tropical regions 
such as NSA usually face challenges related to data availability and quality due to cloud cover and lack of 
ground-truthing (Estupinan-Suarez et al., 2017; Hilker et al., 2012).

Another important challenge in analyzing vegetation activity metrics is that multiple data products are available 
that may provide contrasting results concerning the relationships between climatic and ecosystem variables. It 
is often difficult to determine whether one single vegetation variable is preferable over others, but data analysis 
methods such as dimensionality reduction contributes to capturing a clearer vegetation signal and to reducing 
noise (Estupinan-Suarez et al., 2021; Kraemer et al., 2020). In particular, these methods can combine the infor-
mation from multiple data streams into a small set of indicator variables retaining most of the shared information 
in the data, which offers an opportunity to aggregate different metrics of vegetation activity without a major loss 
of information.

In this study, we investigated the spatial and temporal differences in vegetation activity associated with ENSO 
phases (i.e., El Niño, La Niña) in NSA from 2001 to 2014. In particular, we address three main research questions; 
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How well is vegetation activity captured by a single indicator variable obtained from a dimensionality reduction 
analysis? Are there differences in time lags of vegetation activity between ENSO phases? And, where are the 
hotspots in which vegetation activity responds more strongly to inter ENSO variability in NSA?

2.  Methods
2.1.  Study Area

This study was carried out in NSA, in a domain that includes the countries of Panama, Colombia, Venezuela, 
Ecuador, and partially Peru and Brazil (Figure 1). This region hosts one of the largest biodiversity levels on Earth 
with a high degree of species endemism (Andrade, 2011; Myers et al., 2000). In addition, the region is home to 
more than 100 million inhabitants (United Nations, 2019) that rely on a number of ecosystem services, but are 
also a major driver of deforestation and land use change. The most extensive natural land covers are broadleaved 
evergreen forests (72%), grasslands (7%), and shrublands (4%) (See Table A1 for area per land cover classes) 
(ESA, 2017).

The study area is encompassed from latitude 14°N to 14°S and longitude 83°W to 60°W, and it is in good agreement 
with the Northwestern South America region suggested by the IPCC AR6 report (Arias et al., 2021). The highest 
elevation is 6,500 m asl in the Peruvian Andes, and the wettest region is the Biographic Choco on the Pacific 
coast with more than 11,000 mm mean annual precipitation. NSA is characterized by regional water cycling and 
nutrient feedbacks between the Amazon and the Andes (Poveda et al., 2006) as well as atmospheric-vegetation 
feedbacks (Zemp et al., 2017). It offers a unique opportunity to analyze different topographic and moisture gradi-
ents, represented in diverse climatic zones and ecoregions within the tropics.

In this region, the impacts of ENSO on weather are contrasting depending on the season (i.e., austral summer and 
winter), ENSO phase, and geographical location (NOAA, 2021a). The main climatic impacts in the Caribbean 
and Pacific coast, and the Amazon are summarized on Table A2.

Figure 1.  Map of northern South America. Gray polygons are selected ecoregions from Olson et al. (2001). The numbers indicate the ecoregions name. The black lines 
are the country borders.
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2.2.  Vegetation Variables

As a proxy of vegetation activity, we selected two vegetation indices and two data sets derived from models. 
These variables are the normalized difference vegetation index (NDVI) (Tucker & Sellers, 1986), the enhanced 
vegetation index (EVI) (Huete et al., 1997, 2002) and the fraction of absorbed photosynthetically active radiation 
(FPAR) (Knyazikhin et al., 1998; Sellers et al., 1997) from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Terra. Specifically, we worked with version 6 of MOD13A2 (layer 1 and 2 for NDVI and EVI respec-
tively) and MOD15A2H (layer 1 for FPAR). GPP was obtained from the Breathing Earth System Simulator (Ryu 
et al., 2011). Data sets were acquired from the Regional Earth System Data Lab (RegESDL) where they are 
available in a harmonized grid at 0.0083° spatial resolution and 8-daily temporal resolution (Estupinan-Suarez 
et al., 2021). Quality flags were previously implemented by the RegESDL for the MODIS products (for more 
details see Table S2 in Estupinan-Suarez et al. (2021)). Data spans from 2001 to 2014, a period when all four 
variables overlapped. Detailed information on how to access the RegESDL is in the Supporting Information S1.

2.3.  Global Principal Component Analysis

Each variable was normalized pixel-wise to a global mean of zero and a variance of one. To extract the main 
features of vegetation activity, we used dimensionality reduction analysis. Specifically, we used an online version 
of the principal component analysis (PCA) developed to deal with very large data sets and spherical distortions 
(Kraemer et al., 2020), and refer to it as Global PCA. Within this framework, the entire data set was projected 
into a unified principal component space regardless of the time and space features. The Global PCA steps are: (a) 
to create covariance matrices for each time step; (b) to combine the covariance matrices of each time step into a 
global covariance matrix; (c) to calculate the loadings of the PCA from the global covariance matrix; and (d) to 
project data pixel by pixel to the new principal component (PC) space.

In addition, the first PC (PC1) trajectory was cross-checked with the one from the input variables. This is because 
the PCA orthogonal rotation is arbitrary and not sensitive to the variables directions. In our case, the PC1 trajec-
tory was opposite to the one from the input variables, then PC1 was flipped with a simple multiplication by −1. 
Moreover, the Global PCA handles no data values, and also it assigns a weighted factor to each covariance matrix 
per time step. Therefore data was not gap-filled. To account for pixel size variations and accurately estimate the 
final covariance matrix we used the WeightedOnlineStats.jl package (https://doi.org/10.5281/zenodo.6494412) 
that efficiently handles large data sets.

Furthermore, we conducted a separate Global PCA for each of the dominant natural land cover classes, and 
referred to it as the land cover PCA for simplicity (see Appendix). With this approach, we compared the fraction 
of variance captured for PCs when doing a separate analysis for broadleaved evergreen forests, shrublands and 
grasslands.

Subsequent analyses were performed with the PC1 that captures the largest fraction of variation, and holds the 
main information of vegetation activity (see Section 3.1). Henceforth, we refer to PC1 as the leading vegetation 
activity component (VAC).

2.4.  Time-Lagged Correlations Between ENSO Phases and the Vegetation Activity Component

We calculated the Spearman correlation (ρ) between VAC and the bi-monthly Multivariate ENSO index v2.0 
(MEI) on a pixel-by-pixel level. MEI is calculated based on five atmospheric and oceanic variables (i.e., sea 
level pressure, sea surface temperature, surface zonal winds, surface meridional winds, and outgoing longwave 
radiation) between 30°S–30°N and 100°E–70°W over the tropical Pacific, and it takes into account seasonal and 
sub-seasonal variability (NOAA, 2021b). Time series of monthly MEI are available from the National Oceanic 
and Atmospheric Administration (NOAA) (https://psl.noaa.gov/enso/mei/, last access 1 September 2021). To 
match the variable's temporal resolution with the one of MEI, the index was interpolated to 8-daily time steps 
using B-splines. Based on MEI thresholds by NOAA, the index values were classified as follows: ≤−0.5 corre-
spond to La Niña whereas values ≥0.5 to El Niño, values from −0.5 to 0.5 are Neutral (NOAA, 2021b).

The Spearman correlation was computed separately for El Niño, La Niña and the Neutral phases. Furthermore, 
we calculated cross-correlations between MEI and VAC to assess time-lagged correlations from zero to 6 months. 
Due to seasonal variability, we only considered the months that have data from all three ENSO phases (January–
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March and August–December). Finally, we used the Neutral phase as a base-
line to compare VAC during El Niño and La Niña. Thus, we subtracted the 
correlation coefficient difference between El Niño (La Niña) and the Neutral 
phase pixel-wise. Henceforth, we refer to this difference as the correlation 
anomalies, and interpreted it as a measure of the effect of the ENSO phases 
on variation in vegetation activity.

2.5.  Hotspots of Correlations Between ENSO and Vegetation Activity 
by Ecoregions

To investigate regions with the strongest association between ENSO phases 
and vegetation activity, we evaluated the study area by terrestrial ecoregions 
(Figure  1). The ecoregion map integrates biogeographical principles with 
spatial distribution models of species and communities (Olson et al., 2001). 

Within these ecoregions, we computed the median Spearman correlation between ENSO phases and the vegeta-
tion component.

All data analyses were conducted in Julia 1.3 and used the ESDL.jl package (https://esa-esdl.github.io/ESDL.jl/
latest/) that allows efficient processing over time series and multivariate statistics (Estupinan-Suarez et al., 2021; 
Mahecha et al., 2020).

3.  Results
3.1.  Global PCA

We calculated a unified principal component space for the entire study area. VAC, the leading vegetation activity 
component, captured a fraction of 0.45 of the variance. The second and third PC explained a fraction of 0.21 and 
0.19 of total variance, respectively. Vegetation indices such as EVI and NDVI were the main variables contribut-
ing to the leading component (Table 1). In general, VAC had a good agreement with the input variables in grass-
lands and shrublands, with correlation coefficients ρ > 0.7 (Figure A1). Nevertheless, the agreement between 
VAC and GPP decreases when GPP ≥6 gCm 2/day, highlighting that VAC is not sensitive when productivity 
is high. Regarding broadleaf evergreen forests, the correlation between VAC and the input variables dropped 
dramatically ρ ≤ 0.5, except for EVI. In fact, EVI has a nearly linear relationship with VAC within each of the 
assessed land cover classes, which contrasts with the observed pattern for NDVI. In this sense, we found that the 
correlation with NDVI highly varies among land cover classes with a ρ ∼ 0.3 in broadleaved evergreen forests in 
comparison with ρ ∼ 0.7 in savannas.

When conducting the Global PCA separately by land cover class (i.e., land cover PCA), we found that VAC 
accounted for 0.68 and 0.71 of the variance in shrublands and savannas, respectively, and decreased to 0.33 in 
broadleaved evergreen forests (Table A3). Additionally, EVI, NDVI and GPP had similar loadings for savannas 
and shrublands (from −0.51 to −0.53), whereas EVI was the main variable in broadleaved evergreen forest 
(−0.67 vs. ≥−0.42) (Table A4).

3.2.  Vegetation Activity During Different ENSO Phases Along Lags

We compared the variability of VAC-MEI correlations among ENSO phases. The correlation anomalies map 
(Figure 2) shows the differences of the Spearman correlation coefficients between the El Niño (La Niña) and the 
Neutral phase. The differences of correlation coefficients at each pixel and for each time lag illustrate how the 
strength of these correlations change spatially and temporally. Specifically, areas near the Pacific coast of Ecua-
dor and Peru, the Caribbean coast, and northern inland savannas (i.e., Llanos and surroundings) are the areas with 
the highest variability in vegetation activity associated to El Niño and La Niña.

In general, we observed contrary patterns between areas north and south from the equator during all ENSO 
phases. In the northern region, correlation anomalies were negative during El Niño while positive during La 
Niña. Additionally, the correlation anomalies were stronger during El Niño than La Niña either in intensity (ρ) 
and duration (along lags). For example, in the Caribbean coast of Venezuela, the correlation anomalies were 

Variable VAC (PC1) PC2 PC3 PC4

EVI −0.58 −0.22 0.09 −0.78

FPAR −0.41 0.85 −0.34 0.02

GPP −0.49 −0.49 −0.59 0.43

NDVI −0.51 0.04 0.73 0.46

Note. EVI: Enhanced vegetation index. FPAR: Fraction of absorbed 
photosynthetically active radiation. GPP: Gross primary productivity. 
NDVI: Normalized difference vegetation index. VAC: Vegetation activity 
component. PC: Principal component.

Table 1 
Loadings From the Global PCA by (Normalized) Variable
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Figure 2.  Map of correlation anomalies. The color map represents the difference in lagged Spearman correlations between MEI and the leading vegetation activity 
component (VAC) for (a) the El Niño and Neutral phase, and (b) the La Niña and Neutral phase. The black lines are country borders.
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stronger for all lags during El Niño and only from 4 to 6 months during La Niña. In the Sinu valley, the correla-
tion anomalies was stronger during El Niño in the first lags (0–2 months), whereas for La Niña occurred from 3 
to 6 months lags.

The opposite was reported for the southern regions near the Ecuadorian and northern Peruvian coast, it was an 
increase on the correlation anomalies during El Niño that also became stronger along time (2–6 months lag). 
During La Niña, the correlation anomalies turned negative and stronger from 3 to 6 months lag. The Amazon 
biome included in the study area, that is, the upper western Amazon basin, showed a more homogeneous pattern 
during La Niña than during El Niño. Mostly, during La Niña the correlation diminished from 2 to 6-month lag. 
The strongest period was at 3-month lag, then it slightly increased in the following months. Contrary, there was 
not a unified response of vegetation activity during El Niño. Around 10°S, the correlations were negative whereas 
in the northern part of the Amazon they were positive (Figure 2a). This heterogeneity is more discernible between 
2 and 6 months lag, and highlights the variety of responses within the Amazon biome.

Despite these strong spatial differences, these results consistently show that time lags are more pronounced 
during El Niño than during La Niña phase. In brief, variability of the vegetation activity is higher during El Niño 
in the mountain ranges near the southern Pacific coast, Caribbean coast and the Llanos along all lags. On the 
contrary, changes in vegetation activity related to La Niña are narrowed to specific lags.

3.3.  Hotspots of ENSO Impacts on Vegetation Activity

We also calculated the lagged Spearman correlation between VAC and MEI by ecoregions for each ENSO phase. 
We found that El Niño had the strongest correlation with VAC, and followed the same trajectory that the Neutral 
phase which had weaker values (Figure 3). On the contrary, the trajectory observed during La Niña is opposite to 
the ones from other ENSO phases, and also had weak correlations.

Contrasting correlation patterns emerged from the ecoregions along the latitude gradient. In fact, we clearly 
observed that in the northern region, the VAC–MEI correlations were stronger and negative during El Niño while 
they were weakly positive during La Niña. Conversely, we found a positive (negative) correlation with El Niño 
(La Niña) in the southern region. Interestingly, El Niño showed the strongest correlation in ecoregions located 
north and south from the equator, despite the opposite signs of the correlation that is, a positive correlation in the 
southern region and a negative one in the north.

In particular for El Niño, the strongest correlation, and smallest standard deviation, was found in ecoregions closer 
to the coasts. Specifically, ecoregions closer to the Pacific ocean (i.e., Central Andean Puna and Central Andean 
wet Puna) and the Caribbean coast (i.e., La costa xeric shrublands) have the strongest correlation |ρ| > 0.6. 
Continental ecoregions such as Guianan savanna, Llanos and Beni savanna had |ρ| ∼ 0.5 and a larger standard 
deviation. Overall, we observed a higher variability of VAC associated to ENSO in dry ecosystems; from the 16 
ecoregions with the strongest correlation (|ρ| > 0.4), 69% are either savannas, dry forests, or xeric shrubs/scrubs. 
Figure A2 illustrates the gradient between ρ and precipitation of the driest quarter, this suggests that the correla-
tion becomes weaker in wetter ecoregions.

To understand the climatic drivers of these ecoregional changes on vegetation, we explored time series of precip-
itation and air temperature. In general, plots of MEI against the climate variables showed similar trajectories 
that the ones observed with VAC (Figure A3). As expected, rainfall increases during La Niña in the norhthern 
ecoregions and decreases during El Niño in the southern ecoregions, highlighting the importance of regional 
heterogeneity. Otherwise, the trajectories regarding the MEI-temperature correlation were not uniform along lags 
and often overlapped (Figure A4).

4.  Discussion
We analyzed time series of four vegetation variables to assess the effects of inter ENSO variability across time 
and space in NSA. To do this, we implemented the Global PCA approach (Kraemer et al., 2020) with the aim 
to capture a clearer vegetation activity signal that incorporated information from different sources. The derived 
leading component (i.e., VAC) was correlated to MEI within the different ENSO phases. Our findings show: (a) 
VAC captures the largest amount of variation from vegetation variables but its performance varies among land 
cover classes. (b) There are opposite patterns of vegetation activity along time lags during El Niño and La Niña. 
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Figure 3.  Median values of the lagged Spearman correlation between VAC and MEI by ecoregions. Ecoregions are in rows. From left to right: first column shows the 
ecoregion location. Second column represents the median correlations within the ecoregion by ENSO phases. The ribbon correspond to the standard deviation. Data 
distribution from El Niño, La Niña and Neutral phases by lags is showed in columns three to five respectively. Showed ecoregions have the highest correlation and an 
area larger than 50,000 km 2.
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In addition, (c) vegetation in drier ecoregions show higher variability in El Niño regardless of the correlation sign 
with MEI. And, (d) the trajectories of the lagged correlations are opposite in La Niña in comparison to the Neutral 
phase. In the following we discuss these findings in detail.

4.1.  The Vegetation Activity Component From the Global PCA

Our understanding of vegetation activity in the tropics is still limited. Recent studies are clarifying the climatic 
drivers at seasonal scales in different ecosystems (Chen et al., 2021; Hashimoto et al., 2021; Li et al., 2021; Uribe 
et al., 2021), but its variability at longer temporal scales is still in a very early phase. One of the major challenges 
is that clear-sky observations are limited due to high cloud cover, and occasionally aerosols from fire (Hilker 
et  al.,  2012). In addition, ground data for models calibration is limited in the tropics reducing their regional 
predictability (Jung et al., 2020). Using the Global PCA approach, we captured the main characteristics of vege-
tation variables related to greenness and productivity. The derived vegetation activity proxy defined as VAC 
captured the largest amount of variation in seasonally dry climate ecosystems such as savannas and grasslands, 
but it was limited in the rainforest regions (Figure A1). This was expected due mostly to two main reasons. First, 
areas such as the western Amazon or the Biogeographic Chocó, where annual precipitation could reach levels 
above 2,500 mm and 11,000 mm respectively (Poveda & Mesa, 2000), present large seasonal data gaps (Hilker 
et al., 2012) offering limited yearly data. Second, there are known drawbacks of optical satellites to detect changes 
in vegetation activity in ecosystem with very dense canopies such as the rainforest (Asner & Alencar, 2010; Huete 
et al., 1997; Köhler et al., 2018).

In general, our results show that VAC is dominated by the EVI signal. As a consequence, the information content 
in VAC is closer to vegetation greenness than to productivity. When looking at the dominant land cover classes, 
we found certain characteristics. For example, all variables show similar linear trends and correlations in grass-
lands with the exception of a nonlinear relationship between VAC and GPP (Figure A1). This clearly delineates 
the limitations of VAC regarding its ability to represent spatio-temporal variation of photosynthetic activity. With 
respect to broadleaved evergreen forests, EVI is the variable with the highest Spearman correlation (ρ = 0.67), 
and NDVI has the weakest correlation (ρ = 0.3). This was unexpected considering that both are measuring green-
ness, but reinforces the idea that EVI is more suitable for broadleaved evergreen vegetation because its lower 
sensitivity to atmospheric effects as well as less canopy saturation (Huete et al., 1997, 2002).

4.2.  Lagged Effects of ENSO in Vegetation Activity in NSA

Regions near the coast of southern Ecuador and northern Peru, including La Sierra, experienced a progressive 
increase on the correlations anomalies from lag zero to six during El Niño (Figure 2). In this area, the dominant 
land cover is grasslands and shrublands that might benefit from an increase in rainfall associated to El Niño. 
A similar response was observed in the Caribbean coast and neighbor inland areas such as the Sinu Valley and 
Orinoquia savannas (Llanos), but for La Niña phase and from lag three to six. Conversely, these ecoregions 
showed a negative correlation between VAC and El Niño across all lags, which can be related to a stronger water 
deficit during the dry season.

In comparison to studies that pointed to a reduction of vegetation activity during El Niño episodes in the Amazon 
basin (Hilker et al., 2014; Liu et al., 2017; Luo et al., 2018; Patra et al., 2017), we observed a more heterogeneous 
pattern. During the first 3 months, the western Amazon basin, covered by our study area, had a boost on the corre-
lation anomalies. This could be explained by the fact that solar radiation is a limiting factor in tropical rainforests 
(Graham et al., 2003; Nemani et al., 2003), which benefit from less clouds during El Niño (Moura et al., 2019). 
Furthermore, this area is part of the wettest sub-basin in the Amazon (van Schaik et al., 2018), therefore plants 
are not exposed to water stress in the early stages. However, at a 6 month lag, the correlation of vegetation activ-
ity with MEI became predominantly negative. This reveals contrasting vegetation responses related to a lagged 
effect, and it could be indicative of a link between prolonged solar radiation and the crossing of other environ-
mental thresholds in the Amazon (Brando et al., 2010).

In general, we found negative correlations in the Amazon region during both ENSO phases at lag six, although the 
spread of these correlations cover a larger area during La Niña phase. Taking into account that higher precipita-
tion and less solar radiation is expected during La Niña, the vegetation activity should drop (Moura et al., 2019). 
This is consistent with observations by Graham et  al.  (2003) at the site level in the Panama rainforest, who 
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reported light as the main limiting factor for forest carbon uptake. Nevertheless, this result has to be carefully 
interpreted when working with optical satellite data due to quality issues in tropical forests and saturation of 
vegetation indices.

Overall, we summarize the interplay between ENSO phases and VAC as follows. There is a clear and contrast-
ing response between the Ecuadorian and Peruvian regions near the coast on the one hand, and the Caribbean 
coast and Orinoquia savannas on the other hand, during both the El Niño and La Niña phases. This highlights 
the importance of spatial heterogeneity within the region, with a clear separation of the northern and southern 
regions of the study area. This variability is associated to the complex climatology of the region. For instance, 
Salas et al. (2020) showed that anomalies in precipitation and streamflow during ENSO phases are interlinked 
with moisture advection of regional jets affecting the anomalies in magnitude and spatial distribution. Thus, the 
Caribbean Jet, Choco Jet, and Orinoco Jet caused different anomaly patterns in the Caribbean, northern Pacific 
coast (Choco) and the Amazon, respectively.

Finally, the VAC–MEI correlation anomalies are stronger during El Niño than La Niña both in terms of intensity 
and delayed effects in the southern Pacific and Caribbean coasts as well as in the Orinoquia savannas. Elucidating 
these differences in ENSO phases is key for assessing changes, not only for the natural ecosystems but also in 
terms of further impacts for the population depending on them.

4.3.  ENSO Hotspots by Ecoregions

Of significant importance is our finding of a high correlation between vegetation activity and MEI during El 
Niño in dry ecoregions. About 67% of ecoregions with ρ  >  |±0.4| are considered arid or semi-arid ecosys-
tems. Currently, there is limited understanding on the physiological and climatological mechanisms that may 
lead to this response in such ecosystems, but some authors have highlighted some implications. For example, 
González-M et al. (2021) reported a negative net biomass balance in tropical dry forests during El Niño of 2015 
for NSA. For similarly dry ecosystems such as the Cerrado in Brazil, Zanella De Arruda et al. (2016) found that 
this grassland dominated ecosystem is a source of CO2 during the drier years. In general, research on tropical 
ecosystems with seasonal dry climate is still limited (Pennington et al., 2018), and even scarcer regarding their 
response to ENSO. Taking into account that semi–arid ecosystems are considered the main driver of interannual 
variability of GPP (Ahlström et al., 2015), and that ENSO is the main climatic driver at the same temporal scale, 
it is crucial to increase our understanding in this context. Moreover, research focused on tropical savannas and dry 
forests is extremely relevant in light of decreased rainfall scenarios in places such as the Amazon due to the ampli-
fied effects of deforestation, drought, and climate change (Hilker et al., 2014; Parsons et al., 2018; Shiogama 
et al., 2011; Vilanova et al., 2021; Zemp et al., 2017).

In addition, our results also show that ecoregions with the highest correlation anomalies (ρ > |±0.6|) were in rela-
tive proximity to the coast, that is, La Costa xeric shrublands and Central Andean puna, followed by continental 
ecoregions such as Guianan savanna, Llanos and Benni savanna. This suggests that ecoregions near the coast 
are slightly more sensitive to MEI than the continental ones independent of their latitudinal location. Another 
geographical remark is the clear inverse response of VAC in ecoregion's located North and South from the equa-
tor during the same ENSO phase. In summary, while the sign correlation between VAC and MEI is positive in the 
North, it becomes negative in the South and conversely. This pattern can be explained by the opposite effects  that 
ENSO phases have in the different geographical locations in NSA, and it is aligned with the diverse changes 
on temperature and rainfall previously described for the region (NOAA, 2021a; Salas et al., 2020). Overall, our 
results suggest that due to the warm ENSO phase, the identified ecoregions have a higher sensitivity to changes 
in climate. Therefore, we considered them as the hotspots of ENSO effects on vegetation activity.

Lastly, we highlight the opposite trajectory of the lagged correlations during La Niña in comparison to the Neutral 
phase (Figure 3). Although the correlations between VAC and MEI are weaker during La Niña (from −0.23 to 
0.09), the trend consistently has the opposite direction than the Neutral phase along lags. We repeated the same 
lagged correlation analysis but replacing VAC by precipitation (Figure A3). Our results showed the same trajec-
tories along lags for each ENSO phase and are consistent with the trajectories observed with VAC. These results 
were unexpected because La Niña is defined as an enhanced Neutral phase from the atmospheric point of view 
(Bureau of Meteorology, 2012; Philander, 2018). These findings require further investigation to assess the local 
climate conditions during La Niña in the identified ecoregions. Currently, the assessment of land vegetation 
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variability during La Niña and the Neutral phase is limited. But studies such as Pandey et al. (2017) reporting 
a global methane increase (6–9 Tg CH4 yr −1) during La Niña 2011 reveal the large impact and relevance of the 
ENSO cold phase. Regionally, important questions emerged after the extensive flooding by La Niña 2011. For 
example,; how did the ecosystems recover after nutrients were recharged by the river sediments? For how long 
were soils water-logged? And, What are the consequences for the carbon cycle? Unfortunately, assessments of 
such impacts of La Niña are still pending.

4.4.  Limitations and Opportunities

The Global PCA approach aggregates the largest vegetation variability from the entire region into a unified PCA 
space. This has the advantage that all pixels are projected using the same loadings, and prevents opposite loading 
signs among neighboring pixels in a pixel-wise analysis. Nevertheless, PCA relies on orthogonal linear transfor-
mations and is limited for analyzing nonlinear processes. There is an opportunity to use nonlinear dimensionality 
reduction methods such as Isomap (Tenenbaum et al., 2000) or locally linear embeddings (Roweis & Saul, 2000) 
in future studies. Until now, these methods have not been computationally implemented for capturing simultane-
ously the variability in multiple dimensions (e.g., variables, space, time).

This study was carried out in a limited temporal and spatial domain that was defined by the overlap in the time 
spans of the assessed variables, together with consistency requirements for their spatial resolution. Neverthe-
less, there are opportunities to expand this analysis to cover larger areas such as the entire tropical domain and 
include longer time windows as more information becomes available. Moreover, our method can be used to 
assess different ENSO indices in addition to the MEI used here. Preliminary studies assessing covariability 
between ENSO and vegetation variables for watersheds in NSA found similar results regardless of the ENSO 
index (Estupinan-Suarez et al., 2020), but this needs to be investigated further, and may not be the case for other 
regions. Otherwise, big hopes are in forthcoming data sets such as the Advanced Baseline Imager (ABI), a geosta-
tionary satellite for NSA that will increase data availability of vegetation greenness (Hashimoto et al., 2021). 
Better estimates of the vegetation activity will contribute significantly to investigating the lagged correlations 
shifts in the Amazon, and also causal relations in tandem with other variables such as soil moisture, vegetation 
type, among others.

Finally, in the last decade, we have witnessed an increase in extreme events. Droughts, floods and compound 
events are occurring with greater frequency and intensity (AghaKouchak et  al.,  2020; Beniston et  al.,  2007; 
Myhre et al., 2019; Papalexiou & Montanari, 2019; Rahmstorf & Coumou, 2011). Likewise, extreme weather 
events have also occurred in the past during ENSO years. Government strategies and environmental interventions 
(e.g., policies) to address the climate and ecological crisis could benefit from a deeper regional understanding of 
ENSO-induced extreme weather events and associated changes in vegetation activity. This can be seen from two 
perspectives. First, due to the expected increase of ENSO events in terms of frequency and intensity and its causal 
effect in the tropics (Cai et al., 2014; Fasullo et al., 2018; Yun et al., 2021), it is necessary to pay more attention 
to tropical regions taking into account the multiple facets of ENSO. Second, although predictions of El Niño and 
La Niña teleconnections remain largely uncertain for the extratropics (Johnson et al., 2022; Singh et al., 2022; 
Williams et al., 2023), identifying hotspots of high vegetation variability during multiple ENSO events could 
elucidate vegetation characteristics related to repetitive exposure to climate extremes in the past, and may inform 
what to expect during similar conditions in the future.

5.  Conclusion
Our results show that in NSA, a region with high heterogeneity in terms of climate and biophysical character-
istics, vegetation activity presents opposite patterns within the same ENSO phase. Thus, when the correlation 
between vegetation activity and ENSO is positive during El Niño south of the equator, it is negative toward the 
north, and vice versa during La Niña. Understanding these differences is key for regional adaptation to more 
frequent and prolonged droughts or floods. Moreover, this could also contribute to the development of differen-
tiated management plans for different ecosystem types that respond differently to the extreme phases of ENSO.

According to the lagged effects of ENSO, the variability of vegetation activity is stronger in intensity and more 
prolonged during El Niño than during La Niña. Interestingly, this is independent of the sign of the correlation, 
highlighting that positive and negative correlations are stronger during El Niño events. In addition, seasonally 
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dry ecosystems require more attention, considering that they are the most sensitive to ENSO. Advancing knowl-
edge of these ecosystems is key to understanding the interannual variability of vegetation activity at regional and 
global scales. It is also important to promote research efforts in this ecosystem, since in NSA they are mostly 
focused on the tropical rainforest.

Furthermore, different environmental thresholds may occur over time during prolonged El Niño events in the 
Amazon. This was indicated by the shift in the correlation sign at around five-to-six-month lag in the western 
Amazon. This lag value is expected to vary throughout the Amazon basin due to the decrease in the humidity 
gradient from West to East. Analyses of extended periods of solar radiation, as well as water availability, could 
help elucidate ecosystem thresholds during consecutive months for specific ENSO events.

Overall, our approach captured the integrated response of vegetation as assessed by the combined information 
content of different metrics of vegetation activity. Although we observed a large heterogeneity of responses in 
space and time, our analysis unequivocally shows the contrasting variability of vegetation activity during ENSO 
phases in NSA. By integrating different data sources, and by combining spatial and temporal analyses, our results 
provide relevant information to disentangle the different responses related to large-scale climate events such as 
ENSO considering those specific characteristics that are endemic to each ecoregion in NSA.

Appendix A:  Spatial Patterns of Vegetation Activity Related to ENSO in Northern 
South America
A1.  Estupinan-Suarez et al.

•	 �The area calculated per land cover classes (Table  A1) as well as the separated Global PCA analysis per 
land cover classes (Table  A3) was carried out using the ESA land cover map for 2014 (ESA,  2017), 
maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf) resampled to 0.0083° and 
available at the RegionalESDL (Estupinan-Suarez et al., 2021).

•	 �Data of precipitation of the driest month, used on Figure  A2 correspond to the bioclimatic variables of 
WorldClim.

(See Appendix Figure A1)

Figure A1.  Density plots of vegetation variables (y-axis) against PC1 (x-axis) for homogeneous land covers. Top: Grasslands. Bottom: Broadleaved Evergreen.
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(See Appendix Figure A2)

Figure A2.  Absolute values of Spearman correlation (y-axis) versus precipitation of the driest month (x-axis) for all 
ecoregions in the study area.
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Figure A3.  Median values of the lagged Spearman correlation between MEI and precipitation (source: Global Precipitation Climatology Project) by ecoregions. 
Ecoregions are in rows. From left to right: first column shows the ecoregion location. Second column is the median correlation values within the ecoregion by ENSO 
phases. The ribbon correspond to the standard deviation. Data distribution from El Niño, La Niña and Neutral phases by lags is shown in columns three to five 
respectively. Shown ecoregions have the highest correlation and an area larger than 50,000 km 2.
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Figure A4.  Median values of the lagged Spearman correlation between MEI and air temperature at 2 m above the ground (source: source: ERA-Interim 80 km) by 
ecoregions. Ecoregions are in rows. From left to right: first column shows the ecoregion location. Second column is the median correlation values within the ecoregion 
by ENSO phases. The ribbon correspond to the standard deviation. Data distribution from El Niño, La Niña and Neutral phases by lags is shown in columns three to 
five respectively. Shown ecoregions have the highest correlation and an area larger than 50,000 km 2.

(See Appendix Figure A4)
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Land cover Area (km 2)

Bare areas 35114.1

Cropland, irrigated or post-flooding 77.0

Tree cover, broadleaved, deciduous, closed to open (>15%) 35235.1

Permanent snow and ice 2166.0

Mosaic cropland natural vegetation 311498.0

Shrub or herbaceous cover, flooded, fresh/saline/brakish water 89556.2

Tree cover, flooded, fresh or brakish water 130449.7

Urban areas 9777.3

Grassland 401763.0

Tree cover, needleleaved, deciduous, closed to open (>15%) 358.0

Tree cover, mixed leaf type (broadleaved and needleleaved) 4.3

Tree cover, needleleaved, evergreen, closed to open (>15%) 4027.7

Tree cover, broadleaved, evergreen, closed to open (>15%) 4024793.5

Tree cover, flooded, saline water 10236.4

Cropland, rainfed 175301.9

Shrubland 226126.7

Mosaic tree shrub herbaceous cover 112697.8

Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 33666.0

Table A1 
Area Calculated per Land Cover Classes for NSA in 2014 Based on the Global Land Cover Map by ESA (Source: 
ESA (2017))

Region

El Niño La Niña

Austral summer Austral winter Austral summer Austral winter

Pacific coast Warm and wet Warm Cool and dry Cool

Caribbean coast * Warm and dry * Cool and wet

Amazon Dry * Wet *

Note. *: Anomalies not reported. Source: NOAA (2021a).

Table A2 
Climatic Impacts of El Niño and La Niña in Northern South America

(See Appendix Table A1)

(See Appendix Table A2)

(See Appendix Table A3)

PC Global PCA

Land cover PCA

Broadleaved Evergreen Shrublands Grasslands

PC1 0.45 0.33 0.68 0.71

PC2 0.21 0.26 0.15 0.15

PC3 0.19 0.23 0.10 0.09

PC4 0.15 0.18 0.07 0.05

Table A3 
Explained Fraction of Variance by Principal Components (PC) From the Global PCA and the Land Cover PCA
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(See Appendix Table A4)

Land cover PCA

Variable Global PCA PC1 Broadleaved ever-green forest PC1 Shrublands PC1 Grasslands PC1

EVI −0.58 −0.67 −0.53 −0.53

FPAR −0.41 −0.38 −0.44 −0.42

GPP −0.49 −0.48 −0.51 −0.51

NDVI −0.51 −0.42 −0.52 −0.53

Table A4 
First Principal Component Loadings From the Global PCA and the Land Cover PCA
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