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Abstract
Understanding the future climate is crucial for informed policy decisions on climate
change prevention and mitigation. Earth system models play an important role
in predicting future climate, requiring accurate representation of complex sub-
processes that span multiple time scales and spatial scales. One such process that
links seasonal and interannual climate variability to cyclical biological events is tree
phenology in deciduous broadleaf forests. Phenological dates, such as the start and
end of the growing season, are critical for understanding the exchange of carbon
and water between the biosphere and the atmosphere. Mechanistic prediction
of these dates is challenging. Hybrid modelling, which integrates data-driven
approaches into complex models, offers a solution. In this work, as a first step
towards this goal, train a deep neural network to predict a phenological index from
meteorological time series. We find that this approach outperforms traditional
process-based models. This highlights the potential of data-driven methods to
improve climate predictions. We also analyze which variables and aspects of the
time series influence the predicted onset of the season, in order to gain a better
understanding of the advantages and limitations of our model.

1 Introduction

Understanding the future climate is important
towards making political decisions for climate
change prevention and mitigation. The main
method to predict future climate are large Earth’s
system models (ESMs). These models need to
represent many complex sub-processes that span
multiple time scales and spacial scales to make
good predictions. One such process is tree phe-
nology in deciduous broadleaf forest. Phenology
describes the timing of periodic events in biolog-
ical life cycles and links them to seasonal and
interannual variations in climate[12], for example
the date when trees start to grow or shed their
leafs. Since understanding the length of the sea-
son in which the trees carry functional leafs is
essential to understand the exchange of carbon
and water between the biosphere and the atmo-
sphere [28], in this work, we aim to predict the
stat of this season (SoS) and end of this season
(EoS).

Two challenges emerge when predicting these
phenological dates. First, the change between
dormancy and maximum leafs is not instanta-
neous but the number and maturity of leaves in-
creases gradually. Hence, researchers have to rely
on thresholds. However, previous work demon-
strated that the choice of threshold has a signifi-
cant influence on interannual patterns and long-
term trends of these dates [14]. Second, the pro-
cesses that relate meteorological events to these
dates are non-linear, complex and not fully under-
stood. Nevertheless, ESMs often rely on simple
models that use only very few simple meteorolog-
ical features, for example [16], or even prescribed
phenology, for example [1, 22, 31].

One approach that can aid in addressing these
challenges is hybrid modeling, as suggested by
[15] and applied in similar situations, for exam-
ple, by [3, 5]. Hybrid modeling is an approach
where, in a complex model, some parts are re-
placed by data-driven models. For phenology,
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Figure 1: Our approach to predicting the green chromatic coordinate from meteorological variables.
We use a wavelet transform on meteorological data from the current and previous years and an
ensemble of ResNets to predict phenology and several auxiliary labels.

large datasets are available from satellite observa-
tions [26], in-situ studies [11], and near-remote
sensing [28, 23]. In this work, we present a data-
driven model for phenology. This is a first step
towards replacing the phenology model in a land
surface model (LSM). We train a convolutional
neural network (CNN), namely a ResNet-152[7],
on near-remote sensing observations of a plant
phenological index in deciduous broadleaf forest.

Near-remote sensing data is available in higher
temporal resolutions and is more objective than in-
situ observations [11]. Further, they are less sus-
ceptible to atmospheric disturbance like clouds
than satellite observations [19]. To tackle the
challenges mentioned above, we, first, not only
predict the phenological dates SoS and EoS, but
daily greenness indices, allowing us to calculate
the dates with different thresholds post-hoc. Sec-
ond, we use a ResNet, which can learn complex
relations between meteorological time series and
the phenological index from the data.

We compare our data-driven approach to two
process-based approaches. First, LoGrop-P, the
phenology model of JSBACH [16], the LSM of
ICON-ESM [10]; and second, a model that pre-
scribes phenology. We find that the data-driven
model reduces the error compared to these mod-
els for daily greenness by 16% and for the start
of season (SoS) by 47% / 9%. However, we find
no improvement in predicting the end of season
(EoS) and, in an ablation study, we find that our
approach is only slightly better than simpler data-
driven models.

Finally, we use two methods to interpret the neu-
ral network. First, we use Integrated Gradients
(IG) [24] to understand which variables have the
largest influence towards the start of season. To
understand, in particular, which time scales are
important, we perform a wavelet transformation
(WT) on the input time series before using the
CNN. We find that the network relies primarily

on features and scales that are more informative
of the general climate than meteorological events.

Secondly, we employ an approach based on
causal inference [18] to validate that the CNN re-
lies on growing degree days (GDD) and chilling
days two higher level descriptors of the temper-
ature time-series that are known to be important
towards the SoS and are used by the LoGro-P
model.

2 Related Work

Predicting the greenness of forests using machine
learning has been attempted before. For example,
[27] conducted a challenge where teams predicted
the greenness of multiple different sites up to 30
days ahead. In contrast to this work, where we
train one global model, the teams in the challenge
trained one model per site. Further, they did not
use deep learning, but mostly simpler data-driven
approaches. In contrast, [6] trained a Long Short
Term Memory model but also only on a single
site in the US.

3 Data and Methods

To calculate the phenological state of the forest,
we use the green chromatic coordinate (GCC)
[19] from observations provided by the Pheno-
Cam network [23]. Digital images are captured at
various locations throughout North America at in-
tervals ranging from half-hourly to daily. For each
site, a region of interest containing the canopy is
selected, and the mean RGB color is calculated.
The GCC is given by

GCC = G/(R+G+B). (1)

Following previous work [28], we use the 90th

percentile of GCC for each day as the target. The
GCC dataset we use is provided by the PhenoCam
network [23]. We use the data from all deciduous
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broadleaf forest sites in the network that, con-
tain at least one year of observations, are in the
top two data-quality groups and contain no GCC
value below 0.1 or above 0.6. The data is stan-
dardized such that the smallest value becomes
zero and the largest value becomes one. We split
the sites randomly into 66 sites for training (247
site years), 9 sites for validation (37 site years),
and 16 sites for testing (73 site years).

As input, we use eleven meteorological variables:
day length, precipitation, short-wave radiation,
snow-water equivalent, vapor pressure, vapor
pressure deficit (VPD), minimum and maximum
air temperature (Tmin, Tmax), potential evapo-
transpiration, snow, and surface air pressure. The
first ten variables are part of Daymet project[25],
a project that interpolates meteorological vari-
ables from ground-based measurements, and the
air pressure is taken from ERA-5 [8] reanalysis
data.

Following [30], we decided for a direct rather
than iterative multi-step prediction. We predict
the 365 yearly values of GCC simultaneously us-
ing one neural network with 365 outputs. Further,
to account for legacy effects in vegetation, for
example, reported in [29], we use the meteorolog-
ical observations of the current and the previous
year, leaving us with eleven time series of 730
days. We use a continuous wavelet transforma-
tion on each of the time series individually. We
use the Ricker-wavelet [20] with a scale of 2i

days for i ∈ {−1, . . . , 8} positioned at each day
of the time series using zero padding.

We train a ResNet [7] on the wavelet-transformed
time series. We stack the results for the ten scales
for all eleven variables along the first axis to cre-
ate a 108 by 730 input with one channel. All input
values are normalized to mean zero and standard
deviation one. Further, we use a late fusion of
the annual temperature and precipitation means
over 30 years after the convolutional part of the
ResNet. We pre-train on ImageNet [21] and af-
terwards alter the CNN to the suitable input and
output dimensions.

Using [2], we optimize the size of the ResNet
({18, 34, 50, 101, 152}; optimal: 152) along
other hyper-parameters on the validation set. The
other hyper-parameters are batch size ([1, 128];
optimal: 1), learning rate ([0.00001, 1]; opti-
mal: 0.912), the parameters of the cosine anneal-
ing with warm restarts (t0: [10, 1000]; optimal:
790), the optimizer used ({Adam, SGD}; optimal:
SGD), and the number of epochs before training
stops early ([1, 100]; optimal: 18).

To avoid over-fitting, we use multiple auxil-
iary tasks. In addition to the 90th GCC per-

centile, we predict 20 additional color indices pro-
vided by the PhenoCam network, as well as five
yearly values for kernel-NDVI [26] from MODIS
[13]: mean, standard deviation, and 50th, 75th,
and 90th percentile. We standardize all labels
and minimize the sum over the individual mean
squared errors. To focus on GCC, we multiply
the loss of the auxiliary tasks with a constant
0 < λ < 1, which we optimized as an additional
hyper-parameter on the validation set ([0,1]; opti-
mal: 0.890). An overview is displayed in Figure 1.
Finally, we add a random walk as an additional
input. Later, we want to interpret the importance
of each variable, time-point, and scale using IG.
To this end, we dismiss any value that is less im-
portant than the 99.9 percentile of the random
walk’s importance scores.

To reach a better generalization performance, we
train twenty of these neural networks and use
them in an ensemble for inference. To this end,
we calculate the final prediction as a weighted
mean over the predictions of the individual mod-
els. The weights are optimized using the valida-
tion set.

Additionally, we want to understand whether our
data-driven model relies on high level features of
the temperature time-series. Since these features
are not input variables, we cannot use IG or com-
parable methods to determine whether they are
relevant to the decision of the neural network. In-
stead we use [18], a method based on causal infer-
ence. This method reduces the question whether a
feature is used by a deep neural network to a con-
ditional dependence test. We use the HSConIC
[4] for this conditional dependence test with a
level of significance of p = 0.05. Following [17],
we validate that this method is suitable, by adding
two features that do not influence the SoS but are
of similar complexity to the features of interest.

4 Experiments and Results

To understand the quality and limitations of our
data-driven model, we conduct four experiments:
First, we evaluate our model against two mech-
anistic models; second, we conduct an ablation
study on the different parts of our model; third,
we quantify the importance of each variable to-
wards the SoS; and finally, we evaluate whether
the network uses the same features as mechanistic
models.

We compare the data-driven model (last line of Ta-
ble 1) to two mechanistic models. The first model
uses a prescribed phenology (first line of Table 1).
For this model we prescribe E(GCC |DoY ) the
average GCC per day of year on the training set.
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The second model is LoGro-P, the phenology
model of JSBACH [16] (second line of Table 1).

For these models we compare the coefficient
of determination between predictions and obser-
vations for GCC (R2), on the GCC anomalies
(R2

anomalies), on the start of season (SoS R2),
and end of season (EoS R2). Additionally, we
report the root mean squared error for the GCC
values (RMSE), the SoS (SoS RMSE), and the
EoS (EoS RMSE).

To estimate the start and end of season, we use
the halfway point between the highest and lowest
GCC as a threshold. The LoGro-P model predicts
the leaf area index instead of GCC but it is highly
related to GCC [28]. For this reason and because
of the difficulties mentioned in [14], we calibrate
the estimations of the SoS and EoS of each model
by training a linear correction on the validation
set.

The results of the comparison are presented in
Table 1. The data-driven approach outperforms
the mechanistic models for GCC and SoS, but
not for EoS. The model increases R2 by 13% and
reduces the RMSE by 16% compared to prescrib-
ing phenology. For the SoS, the model reduces
the RMSE by 47% (7.0 days) compared to the
prescribed phenology and by 9% (0.9 days) com-
pared to LoGro-P. However, the coefficient of de-
termination on the anomalies is only 0.198, and,
for EoS, the error increased by 3% (1.2 days).

In the ablation study, we remove the wavelet trans-
formation and/or replace the ResNet by linear re-
gression. We find that the simpler models have
a similar performance. The R2 of the full model
is identical to the linear regression and the SoS
RSME of the linear regression is 3.7% higher than
for the full model. Only R2

anomalies improved
notably (27%).

Third, we want to quantify the importance of each
variable towards the prediction of SoS by IG [24].
However, the SoS is not directly the output of the
neural network. To be able to use IG, we add an
additional layer to the CNN, calculating

150−
150∑
t=80

σ(gcct − 0.5) (2)

with σ the sigmoid function. The result of this
calculation is virtually identical to the values de-
termined by the threshold method (R2 = 0.986).
For the importance analysis, we exclude years
where the start of season is predicted before day
80. The results are displayed in Figure 3. The
most important variables are the snow, the poten-
tial evapotranspiration, which is a predictor of
the soil moisture, and the minimum temperature.
While these features are known to be meaningful

Figure 2: The observation and prediction for one
example from the test set.

Figure 3: The importance of each variable as
evaluated by IG. The variables are ordered by
absolute mean importance. Each row shows the
distribution of influences on the SoS over all site-
years. The orange line marks the mean.

towards the SoS, we find that all days are of simi-
lar importance and long, close to yearly, periods
are much more relevant than daily periods, indi-
cating that the network relies on a general climate
rather than specific meteorological events.

We compare this result, to the coefficients of the
linear classifier. Following [9] we multiply each
linear coefficient with the standard deviation of
the variable. We consider the linear classifier for
day of year (DoY) 120. Similar to our model,
the linear classifier also relies on all days and
not specifically on the DoYs directly prior to
DoY 120. Further, the three most importance fea-
tures according to the linear classifier are the air
pressure, the vapor pressure and the vapor pres-
sure deficit. The minimum temperature, a feature
that many mechanistic models use exclusively, is
ranked eighths.

Finally we want to test whether our model relies
on the same high-level features as the mechanis-
tic LoGro-P model. This model relies on two
features to predict the SoS [16]: the chill days,
the number of days below four degrees Celsius
before a day of the year, and the growing degree
days

GDD =

doy∑
t=1

max(0, Tt − 277.15K) (3)
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Table 1: The performance on the twelve holdout test sets. The best value in each column is bold

Model R2 R2

anomalies RMSE SoS R2 SoS RMSE EoS R2 EoS RMSE

Prescribed Phenology 0.599 0.000 0.031 0.000 14.9 0.000 34.9
LoGro-P[16] – – – 0.688 8.7 -0.010 34.9
Linear Regression 0.661 0.155 0.026 0.697 8.2 -0.056 35.2

+ Wavelet 0.630 0.078 0.028 0.632 9.0 -0.024 35.8
ResNet 0.643 0.112 0.028 0.716 7.9 -0.094 37.0

+ Wavelet 0.678 0.198 0.026 0.720 7.9 -0.025 36.1

where Tt is the mean temperature at day t. We
determine whether our model also relies on these
features at DoY 120. To avoid detecting the im-
portance of the average temperature, we decor-
relate these features from from the average tem-
perature. Following [17], we validate that this
method of [18] is suitable, by testing two addi-
tional features that do not influence the SoS but
are of similar complexity to the features of in-
terest: the chill days and GDD of the previous
year.

We find that the network uses the chill days and
growing degree days of the current but not the
previous year to determine the SoS.

5 Conclusions and Future Research

In this work we compare a data-driven method to
two mechanistic models. We find that our model
performs better in predicting the greenness of
canopies and in predicting the start of season.
However, the architecture only slightly outper-
forms much simpler architectures. We further
analysed which features are used by the neural
network to predict the start of season. While we
found that our model considers the features used
by the mechanistic LoGro-P model and considers
variables relevant that are considered by experts,
the analysis with integrated gradients revealed
that the model considers mainly long time scales
and does not focus on the time period directly
before the start of season. This indicates that the
model understood the impact of the brought cli-
mate on the phenology but not the influence of
meteorological events.

We found that no model can detect the end of
season with any accuracy. This might be due to
problems in the data that might already add a high
amount of uncertainty to the day of year when the
end of season is observed. Further, the data has
considerable differences between sites, likely due
to differences in the data acquisition, for example,
different orientations and angles of the cameras.

Therefore, this approach could be improved by
considering data from different sources or putting

a stronger focus on normalizing the GCC data
according to site specific properties.
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