Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Kinetically stable and highly ordered two-dimensional CN2 crystal structures

MPG-Autoren

Nolkemper,  Karlo
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus       
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nolkemper, K., Antonietti, M., Kühne, T. D., & Ghasemi, S. A. (2024). Kinetically stable and highly ordered two-dimensional CN2 crystal structures. The Journal of Physical Chemistry C, 128(1), 330-338. doi:10.1021/acs.jpcc.3c03539.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-29EB-C
Zusammenfassung
We present three dynamically and thermally stable polymorphs of CN2, which we identify through a systematic, multistep, and comprehensive structure search. They consist of nitrogen-rich structural motifs and modestly large pores. Kinetic stability is examined through long-term molecular dynamical simulations at an elevated temperature, where the interatomic interactions are treated using a new machine learning potential. Using density functional theory, we demonstrate their structural and electronic properties and compare them to polymorphs already available in the literature. The proposed structures are considerably more thermodynamically stable than their counterparts while desirably exhibiting energy levels suitable for photocatalytic water splitting. Also, calculations of enthalpy up to a modest value of external pressure show that the predicted polymorphs are thermodynamically more favorable than the previously proposed structures for high-pressure CN2.