
SOFTWARE

PyRates—A code-generation tool for

modeling dynamical systems in biology and

beyond

Richard GastID
1,2*, Thomas R. KnöscheID

3, Ann Kennedy1,2

1 Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,

United States of America, 2 Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network,

Chevy Chase, Maryland, United States of America, 3 Brain Networks Group, Max Planck Institute for Human

Cognitive and Brain Sciences, Leipzig, Germany

* richard.gast@northwestern.edu

Abstract

The mathematical study of real-world dynamical systems relies on models composed of dif-

ferential equations. Numerical methods for solving and analyzing differential equation sys-

tems are essential when complex biological problems have to be studied, such as the

spreading of a virus, the evolution of competing species in an ecosystem, or the dynamics of

neurons in the brain.

Here we present PyRates, a Python-based software for modeling and analyzing differen-

tial equation systems via numerical methods. PyRates is specifically designed to account

for the inherent complexity of biological systems. It provides a new language for defining

models that mirrors the modular organization of real-world dynamical systems and thus sim-

plifies the implementation of complex networks of interacting dynamic entities. Furthermore,

PyRates provides extensive support for the various forms of interaction delays that can be

observed in biological systems.

The core of PyRates is a versatile code-generation system that translates user-

defined models into “backend” implementations in various languages, including Python,

Fortran, Matlab, and Julia. This allows users to apply a wide range of analysis methods

for dynamical systems, eliminating the need for manual translation between code

bases.

PyRates may also be used as a model definition interface for the creation of custom

dynamical systems tools. To demonstrate this, we developed two extensions of PyRates

for common analyses of dynamic models of biological systems: PyCoBi for bifurcation

analysis and RectiPy for parameter fitting. We demonstrate in a series of example mod-

els how PyRates can be used in combination with PyCoBi and RectiPy for model analy-

sis and fitting. Together, these tools offer a versatile framework for applying

computational modeling and numerical analysis methods to dynamical systems in biol-

ogy and beyond.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gast R, Knösche TR, Kennedy A (2023)

PyRates—A code-generation tool for modeling

dynamical systems in biology and beyond. PLoS

Comput Biol 19(12): e1011761. https://doi.org/

10.1371/journal.pcbi.1011761

Editor: Daniele Marinazzo, Ghent University,

BELGIUM

Received: September 15, 2023

Accepted: December 14, 2023

Published: December 27, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011761

Copyright: © 2023 Gast et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Scripts to reproduce

figures 2-4 are available at https://github.com/

pyrates-neuroscience/use_examples/.

Funding: The study is funded by the joint efforts of

The Michael J. Fox Foundation for Parkinson’s

https://orcid.org/0000-0002-4445-0340
https://orcid.org/0000-0001-9668-3261
https://doi.org/10.1371/journal.pcbi.1011761
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011761&domain=pdf&date_stamp=2024-01-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011761&domain=pdf&date_stamp=2024-01-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011761&domain=pdf&date_stamp=2024-01-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011761&domain=pdf&date_stamp=2024-01-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011761&domain=pdf&date_stamp=2024-01-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011761&domain=pdf&date_stamp=2024-01-09
https://doi.org/10.1371/journal.pcbi.1011761
https://doi.org/10.1371/journal.pcbi.1011761
https://doi.org/10.1371/journal.pcbi.1011761
http://creativecommons.org/licenses/by/4.0/
https://github.com/pyrates-neuroscience/use_examples/
https://github.com/pyrates-neuroscience/use_examples/


Author summary

We present PyRates, a code-generation tool for dynamical systems modeling applied to

biological systems. Together with its extensions PyCoBi and RectiPy, PyRates provides a

framework for modeling and analyzing complex biological systems via methods such as

parameter sweeps, bifurcation analysis, and model fitting. We highlight the main features

of this framework, with an emphasis on new features that have been introduced since the

initial publication of the software, such as the extensive code generation capacities and

widespread support for delay-coupled systems. Using a collection of mathematical models

taken from various fields of biology, we demonstrate how PyRates enables analysis of the

behavior of complex nonlinear systems using a diverse suite of tools. This includes exam-

ples where we use PyRates to interface a bifurcation analysis tool written in Fortran, to

optimize model parameters via gradient descent in PyTorch, and to serve as a model defi-

nition interface for new dynamical systems analysis tools.

Introduction

Scientists have been using differential equation systems to study real-world dynamical systems

since the formulation of classical mechanics by Newton [1–4]. Disciplines as diverse as physics,

biology, neuroscience, and earth sciences have applied differential equation systems to model

phenomena such as fluid dynamics, population growth, neural synchronization, and climate

change. While some simple differential equation systems have analytical solutions, most real-

world systems are too complex to study analytically [3]. Hence, numerical methods are critical

to gain a scientific understanding of differential equation systems [5, 6]. Numerical methods can

find solutions to complex problems such as the prediction of weather changes [7], the conditions

for an ecosystem to approach a stable state [8], or the optimal application of electrical stimula-

tion for treating a neurological disorder [9]. Solving these problems using numerical methods

can involve the integration of differential equation systems with thousands of state variables, the

application of automated parameter optimization algorithms in high-dimensional parameter

spaces, or the automated detection of stable solutions of differential equation systems.

The research community has developed many software packages that efficiently implement

the most widely used numerical analyses for dynamical systems (see Table 1 for examples).

However, there is no standardization in how dynamical systems models must be formulated or

how analysis models are implemented across different packages. Additionally, different pack-

ages differ in their degree and style of software documentation, versioning, and automated

testing. These idiosyncrasies impede the adoption, reproducibility, shareability, and transpar-

ency of numerical dynamical system analysis results [10–12]. Here, we present PyRates, an

Table 1. Exemplary list of dynamical systems analysis software packages that are supported by one of the backends available in PyRates.

Name Description Backend

DifferentialEquations.jl [14] Toolbox for numerical analysis of various types of differential equation systems Julia
BlackBoxOptim.jl [15] Toolbox for model-independent parameter optimization Julia
Auto-07p [16] Toolbox for numerical parameter continuation and bifurcation analysis of differential equation systems Fortran
SciPy [17] Toolbox that includes methods for differential equation integration and parameter optimization NumPy
PyTorch [18] A machine learning library that includes methods for gradient-based parameter optimization PyTorch
pygpc [19] Model-independent sensitivity and uncertainty analysis toolbox NumPy
DDE-BIFTOOL [20] Toolbox for numerical parameter continuation and bifurcation analysis of delayed differential equation systems Matlab

https://doi.org/10.1371/journal.pcbi.1011761.t001

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 2 / 24

Research (MJFF) and the Aligning Science Across

Parkinson’s (ASAP) initiative. The salary of R.G.

was paid via the grant ASAP-020551 which A.K.

received and which MJFF administers on behalf of

ASAP and itself. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1011761.t001
https://doi.org/10.1371/journal.pcbi.1011761


open-source Python toolbox for dynamical systems modeling that addresses these problems by

allowing users to access a wide variety of dynamical systems tools (e.g. the ones listed in

Table 1) from a single model implementation.

Main features of PyRates

While PyRates was previously developed as a toolbox for neural network simulations [13], it

has since evolved into a general framework for modeling and analyzing dynamical systems.

We have made significant updates, including the addition of new backends, substantial expan-

sion of the software’s code generation capabilities, support for delay differential equation sys-

tems, and the introduction of new interfaces that enable the use of PyRates as a model

definition interface for other tools. In its current form, PyRates extensively supports the

demands for modeling complex biological systems. Most importantly, PyRates provides a vari-

ety of methods to model delays in the interaction between dynamical processes, such as the

synaptic transmission delay between interacting neurons, or the delay until the reduction in

the population size of a species affects the stability of an ecosystem. The purpose of this paper

is to demonstrate these capabilities, and establish PyRates as a code generation tool for dynam-

ical systems methods applied to biological and physical systems.

PyRates provides a flexible model definition language, which is parsed by the library’s code-

generation tools into output code that can be run in various third-party software packages or

“backends”. The model definition language enables users to define simple mathematical opera-

tors (differential equation systems) and connect them hierarchically to form networks of inter-

acting elements. Models defined via PyRates can be translated into other programming

languages by PyRates’s code generation system, and this auto-generated code then run inde-

pendently in any supported backend (see Table 1 for examples). PyRates thus provides easy

access to the diverse dynamical systems analysis tools that these backends provide, without

requiring the user to re-implement dynamical systems models in each new language. For

example, the same model definition can be used to perform parameter optimization via the

Julia toolbox BlackBoxOptim.jl [15] and bifurcation analysis via the Fortran-based software

Auto-07p [16]. Thus, PyRates offers (i) a simplified process for implementing dynamical sys-

tem models with minimal potential for errors, (ii) a transparent model definition language

that simplifies sharing and reproducing model analyses, and (iii) access to a wide range of

dynamical system analysis packages through its code generation approach.

In the following sections, we first compare PyRates to other, related dynamical systems

modeling software. We then present the software structure of PyRates in detail, noting novel

features that have been added since our previous manuscript [13]. This is followed by use cases

that demonstrate the main features of PyRates using a number of well-known dynamical sys-

tem models that previously have been applied to model biological systems. Finally, we discuss

the potential of the software to advance the application of dynamical systems methods to bio-

logical questions.

PyRates in comparison to other dynamical systems tools

As shown in the Results section, PyRates supports numerical integration of differential equa-

tion systems and parallelized parameter sweeps. While this feature is useful for model valida-

tion and small dynamical system analyses, it is not the main purpose of the software. Other

tools such as DifferentialEquations.jl for Julia [14], SciPy for Python [17], or XPPAUT for

Matlab [21] offer a wide range of numerical differential equation solvers. The main advantage

of PyRates is that it allows users to interface these tools from a single model definition, giving

them the flexibility to choose the best solver for their purposes.

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 3 / 24

https://doi.org/10.1371/journal.pcbi.1011761


Regarding the model definition, PyRates is the framework with the most extensive support

for modeling delayed interactions between dynamical processes. Each connection between

variables in a dynamical system can be given either a fixed delay, or a distributed delay. Dis-

tributed delays are automatically translated into sets of coupled differential equations, thus

making them compatible with any ordinary differential equation solver. Finally, PyRates pro-

vides support for defining delayed differential equations, including interfaces to analysis tools

for delayed differential equations such as DDE-BIFTOOL [20].

PyRates’s code-generation approach sets it apart from dynamical system modeling frame-

works such as COMSOL MultiPhysics [22], PyDS [23], PySD [24], Simupy [25], The Virtual
Brain [26, 27], the Brain Dynamics Toolbox [28], or the Brain Modeling Toolkit [29], which

provide a range of dynamical system analysis methods within a single framework. These tools

can be useful for minimizing implementation errors, and for users that want a single tool with

a set of analysis and visualization options. However, if a specific analysis method or algorithm

is not provided, these tools lack the flexibility to interface with third-party software. In con-

trast, PyRates’s code-generation approach allows users to choose the best algorithms and

implementations for each step in a dynamical system analysis pipeline. For example, given a

single model definition, PyRates can export one piece of code to use scipy.optimize to fit

your model to data, another to use DDE-BIFTOOL for bifurcation analysis around the opti-

mized parameter set, and finally a third to generate time series in different parameter regimes

via DifferentialEquations.jl.
This code-generation framework makes PyRates similar to tools such as Brian [30], ANNar-

chy [31], RateML [32], NESTML [33], NeuroML [34], or CellML [35]. All of these tools gener-

ate code from user-defined model equations and are designed for numerical integration of

neurodynamic models. Their use of code generation allows users to design a custom model via

the software frontend, and obtain optimized code for backend implementation that is efficient

on specific hardware. However, they each only generate code for a specific third-party backend

(such as C or Python), and the generated code is not directly accessible to the user. PyRates, on

the other hand, provides inherent access to the code generated for its different backends, while

still offering run-time optimization options such as vectorizing the model equations or using

function decorators like Numba [36] (see the gallery example on run-time optimization at

https://pyrates.readthedocs.io/en/latest/). The user can easily manipulate PyRates-generated

code, for example to embed it into other scripts, thus maintaining full control even after the

model is translated into a specific backend. This is an advantage over other string-based code

generation methods, as the generated code can be easily observed and analyzed. Therefore,

PyRates is attractive to experts and scholars in dynamical system modeling. It provides the flex-

ibility to implement complex models and use expert-level analysis tools, while also offering full

control over the model equations, allowing scholars to examine and adjust the output of

PyRates and gain a deeper understanding of the models and analysis techniques.

In summary, PyRates is more than just a differential equation solver. It is a dynamical sys-

tem modeling framework that offers a range of differential equation solving options, but

mostly stands out for (i) a simple, yet powerful model definition language, (ii) its extensive

support for modeling biological interaction delays, and (iii) translating these models into equa-

tion files for interfacing with other dynamical system tools.

Design and implementation

PyRates consists of a frontend and a backend. The frontend provides a user-friendly interface

for model definition, numerical simulations, and code generation, while the backend allows

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 4 / 24

https://pyrates.readthedocs.io/en/latest/
https://doi.org/10.1371/journal.pcbi.1011761


efficient evaluation of the model equations using a number of powerful programming lan-

guages and toolboxes. See Fig 1 for a visualization of this structure.

The PyRates frontend

PyRates allows the implementation of dynamical system models of the form

_y ¼ FðyðtÞ; y; t;yðt � t1Þ; . . . ;yðt � tnÞÞ; ð1Þ

with N-dimensional state-vector y and N-dimensional vector-field F. This vector field can

depend on the current state of the system y(t) as well as previous states of the system y(t − τi)
8 i 2 1, . . ., n, a parameter vector θ and time t. Thus, PyRates supports the implementation

of autonomous and non-autonomous dynamical systems, and allows for the use of ordinary

and delayed first-order differential equation systems. For more information on the mathe-

matical framework and syntax supported by PyRates, see https://pyrates.readthedocs.io/en/

latest/math_syntax.html.

Dynamical systems models that follow Eq (1) are implemented in PyRates via a hierarchy of

template classes (see Fig 1A). In the following, we will provide a brief demonstration of how to

implement a model via template classes, using the example of the Lotka-Volterra equations.

For a more detailed introduction to the PyRatesmodel definition language, see our online doc-

umentation at https://pyrates.readthedocs.io/en/latest.

The Lotka-Volterra equations are a classic model of the dynamics of interacting predator

and prey populations in an ecological system [37] where the dynamics of the population den-

sity xi of each species is given by

_xi ¼ xðai þ
XN

j¼1

bjxjÞ; ð2Þ

with growth rates α and coupling constants β. The following Python code implements Eq (2)

via an operator template in PyRates:
1 from pyrates import OperatorTemplate

2

3 op = OperatorTemplate (

4 name="lv",

5 equations="x' = x�(alpha + x_in)",

6 variables={"x": "output(0.5)", "alpha": 0.5,

7 "x_in": "input(0.0)"}

8 )

Listing 1. Lotka-Volterra operator template definition.

The OperatorTemplate is the basic functional unit of PyRates and is composed of a set

of equations (eq can be either a single equation or a list of equations) and its associated input,

output, and intrinsic variables. In the context of the Lotka-Volterra equations, the output is the

density of the population under consideration and the input is the population density of other

species that interact with the species under consideration. For each time-dependent variable,

the initial condition can optionally be provided in parentheses, as in “x”: “output(0.
5”), which declares x as an output variable of the operator with initial state x(t0) = 0.5.

Once the operator templates for a model are defined, they are organized into nodes and

edges, where nodes represent the atomic units of the dynamical system, and edges represent

coupling functions between these units (see Fig 1A). For this simple example, we need only the

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 5 / 24

https://pyrates.readthedocs.io/en/latest/math_syntax.html
https://pyrates.readthedocs.io/en/latest/math_syntax.html
https://pyrates.readthedocs.io/en/latest
https://doi.org/10.1371/journal.pcbi.1011761


Fig 1. PyRates software structure. (A) Depiction of the user interface: PyRatesmodels are implemented via different templates that can be defined via

a YAML or Python interface. OperatorTemplate instances are used to define equations and variables and serve as basic building blocks for

NodeTemplate and EdgeTemplate instances. The latter can be used to define CircuitTemplate instances which are used to represent the

final models in PyRates. CircuitTemplate instances can also be incorporated in higher-level CircuitTemplate instances to allow for complex

hierarchies, as depicted by the coupling of circuit 1 and circuit 2 within a CircuitTemplate. (B) Structure of the backend: Each model is translated

into a compute graph, which in turn is parsed into a backend-specific model implementation. The latter can be used for code generation and numerical

analyses.

https://doi.org/10.1371/journal.pcbi.1011761.g001

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 6 / 24

https://doi.org/10.1371/journal.pcbi.1011761.g001
https://doi.org/10.1371/journal.pcbi.1011761


op operator that we defined above. To set up the Lotka-Volterra system, we instantiate a set of

nodes based on this operator, and relate them through a set of edges:

1 from pyrates import NodeTemplate, CircuitTemplate

2

3 # set up nodes for a predator and a prey population

4 alphas = {"predator": -1.0, "prey": 0.7}

5 nodes = {key: NodeTemplate(name="population", operators={op: {"alpha":

alphas[key]}}) for key in ["predator", "prey"]}

6

7 # connect predator and prey population in a circuit

8 model = CircuitTemplate (

9 name="network",

10 nodes=nodes,

11 edges=[

12 ("predator/lv/x", "prey/lv/x_in", None,

13 {"weight": -1.3}),

14 ("prey/lv/x", "predator/lv/x_in", None,

15 {"weight": 1.0, "delay": 0.5})

16 ]

17 )

Listing 2. Definition of a network of interacting species via node and circuit templates.

First, we created NodeTemplate instances for two species, namely a predator and a prey

population, each governed by the population growth rate operator that we previously defined.

By providing a dictionary to the keyword argument operators of NodeTemplate, we set

the species-specific growth rates α to values distinct from the default value of α = 0.5 set in the

operator template.

We next integrated these nodes into a CircuitTemplate and connected them via sim-

ple linear edges. Each edge is articulated using a tuple with four elements: the source variable,

the target variable, an optional EdgeTemplate (not used in this example), and a dictionary

holding edge attributes. When specifying a variable, such as the source variable of an edge, the

following syntax should be used: “<node>/<operator>/<variable>”. This is a

unique pointer that identifies a variable in terms of the target node in the network, the desig-

nated operator on that node, and the specific variable of that operator. The most important

edge attribute is “weight”, which determines the edge’s projection strength. In this example,

we also added the “delay”: 0.5 attribute to the edge connecting the prey to the predator

population, thereby rendering the system a delay-coupled system. This feature can effectively

simulate temporal delays in the species interaction [38, 39].

The showcased example demonstrates nodes defined with a single operator and straightfor-

ward linear projections for edges, which doesn’t necessitate an operator. For more complex

models, multiple operators can be combined to represent the underlying equations governing

atomic units (nodes) and their interconnections (edges). The primary advantage of this tem-

plate-based model definition lies in the reusability of each template across models, capitalizing

on the commonality of mathematical models that describe many biological processes. This is

shown in Fig 1A, where three operator templates are used multiple times in the nodes and

edges in the circuit template. Likewise, the nodes (edges) that share a structure in Fig 1A only

require a single node (edge) template for their definition. Finally, as seen in Fig 1A, the tem-

plate-based model definition interface allows for the use of circuit templates to define higher-

level circuits, enabling the creation of models of complex, hierarchically structured dynamical

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 7 / 24

https://doi.org/10.1371/journal.pcbi.1011761


system. This is particularly useful to examine how different hierarchical levels of complex

dynamical systems interact with each other, and under which conditions lower-level dynamics

may be neglected for the benefit of reduced model complexity and thus improved simulation

speed. For further documentation of the template user interface and the various modeling

option it provides, see https://pyrates.readthedocs.io/en/latest/template_specification.html.

The PyRates backend

Fig 1B illustrates the working principles of the PyRates backend. Whenever a model template

is used for simulations or code generation, the model is first translated into a compute graph.

This is done using the equation parsing functionalities of SymPy, a well-known Python library

for symbolic mathematics [40]. The resulting graph represents all variables and the mathemati-

cal operations connecting them, creating a flow chart from the differential equation system

input to its output, i.e. the vector field of the model. Following its construction, the compute

graph is translated into a backend-specific function for the evaluation of the vector field. This

function can be used directly for numerical simulations of the system dynamics, or it can be

written to a file, with the syntax and file type depending on the chosen backend. Currently, the

following backends are available in PyRates:

• NumPy [41],

• TensorFlow [42],

• PyTorch [18],

• Fortran 90 [43],

• Julia [44],

• Matlab [45].

Due to the modular structure and open-source nature of PyRates, additional backends can

be added with relatively little effort. Generated function files can be used to interface other

tools such as the ones listed in Table 1, or numerical integration of the model equations or

parameter sweeps can directly be performed in PyRates. In that case, PyRates will automatically

use the generated function file.

As an example, we generate the run function for the predator-prey model we defined in the

previous section:

1

2 model.get_run_func (

3 "predator_prey", backend="matlab",

4 step_size=1e-3, adaptive=True

5 )

Listing 3. Numerical simulation of the Lottka-Volterra equations.

During the call of the CircuitTemplate.get_run_func method, PyRates automat-

ically translates the model equations into a compute graph and generates a function file from

the compute graph in the language of the specified backend (Matlab).

The step_size indicates at which step size the model equations are going to be inte-

grated and the adaptive flag permits integration with an adaptive step size. In the latter

case, step_size specifies the initial integration step size and the step size at which extrinsic

inputs to the model would have to be defined. When adaptive=True, the generated func-

tion file will contain a set of delayed differential equations that could for example be used for

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 8 / 24

https://pyrates.readthedocs.io/en/latest/template_specification.html
https://doi.org/10.1371/journal.pcbi.1011761


bifurcation analysis of the delay-coupled Lotka-Volterra equations via theMatlab software

DDE-BIFTOOL [20]. If adaptive=False, PyRates would add an intrinsic buffer to the

model equations which implements the interaction delays but requires a fixed integration step

size. TheMatlab file generated by the above code is provided in the supporting information

(S2 File), and a script containing the Lotka-Volterra model definition as well as a simulation of

the model dynamics is available at https://www.github.com/pyrates-neuroscience/use_

examples.

PyRates as a model definition interface

PyRates can also be used as a model definition interface for more specialized dynamical sys-

tems tools. Tools that extend PyRates can take advantage of its template-based, hierarchical

model definition system, and use PyRates’s code generation capacities to translate model defi-

nitions for a target backend. Here, we present two Python tools that we developed using

PyRates as their model definition interface: PyCoBi, for parameter continuation and bifurca-

tion analysis, and RectiPy for recurrent neural network modeling. Both tools are part of the

collection of open-source software provided with PyRates and are freely available at https://

github.com/pyrates-neuroscience.

PyCoBi. This package provides specialized support for parameter continuation and bifur-

cation analysis, two common numerical computing tasks in the characterization of dynamical

systems. PyCoBi is based on the Fortran software Auto-07p, one of the most popular and pow-

erful tools for parameter continuations. By leveraging the code generation functionality of

PyRates, PyCoBi provides a modern user interface to Auto-07p that does not require any For-
tran coding (although users can also use PyCoBi on existing Fortran files.) We demonstrate

the functionality of PyCoBi in the following section, where we use PyRates to generate Fortran
files for a dynamical system and use those files to perform bifurcation analysis via PyCoBi.

RectiPy. This package extends PyRates with custom methods for recurrent neural net-

work optimization and simulation. RectiPy uses PyRates both to define networks of recurrent

rate or spiking neurons and to translate those networks into a PyTorch graph. The PyTorch
graph represents the model equations, and is called at run-time to evaluate the right-hand side

of Eq (1). It is thus a PyTorch-specific version of the compute graph created in PyRates via

SymPy, and provides access to the high-level routines for gradient-based parameter optimiza-

tion and numerical integration of the network equations available in PyTorch. We demonstrate

the functionalities of RectiPy and how it integrates PyRates as a user interface in the following

section.

Results

In this section, we demonstrate different stages of the PyRates workflow using differential

equation systems that have previously been applied to model biological systems. We show how

different dynamical system analysis methods can be applied to these models via PyRates, and

demonstrate the flexibility that PyRates offers in analyzing dynamical system model dynamics

and parameter dependencies.

The dynamical system models used in the examples below come pre-implemented with

PyRates and are explained in detail in our online documentation at https://pyrates.

readthedocs.io/en/latest/. Furthermore, we provide a YAML file that contains the definitions

of all models used below in the supporting information (S1 File). Scripts to reproduce the

results and figures of each of our use examples at https://www.github.com/pyrates-

neuroscience/use_examples. Both these scripts and the code snippets below were developed

and tested with the following software versions: PyRates 1.0.4 [46], PyCoBi 0.8.5 [47], and

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 9 / 24

https://www.github.com/pyrates-neuroscience/use_examples
https://www.github.com/pyrates-neuroscience/use_examples
https://github.com/pyrates-neuroscience
https://github.com/pyrates-neuroscience
https://pyrates.readthedocs.io/en/latest/
https://pyrates.readthedocs.io/en/latest/
https://www.github.com/pyrates-neuroscience/use_examples
https://www.github.com/pyrates-neuroscience/use_examples
https://doi.org/10.1371/journal.pcbi.1011761


RectiPy 0.12.0 [48]. You can download the full source code for these versions by following the

DOIs provided in the references.

Using PyRates for numerical simulations and parameter sweeps

In this example, we demonstrate how PyRates can be used to perform numerical simulations

and parameter sweeps. We study a Van der Pol oscillator, an oscillator model with non-linear

damping which has been considered as a phenomenological model of the heartbeat [49]. Driv-

ing the Van der Pol oscillator with periodic input from a simple Kuramoto oscillator, a model

which has been applied to oscillatory processes as diverse as the synchronization of spiking

neurons [50] or the interactions of social agents [51], we examine its entrainment to the Kura-

moto oscillator frequency as a function of the input strength and frequency. In the context of

cardiac modeling, this analysis would reveal which configurations of a periodic electrical stim-

ulation would speed up or slow down the heartbeat. We perform this analysis using a PyRates
function that executes multiple, vectorized numerical integrations of the differential equation

system (3–5), one for each parametrization of interest. The equations of the system are:

_x ¼ z; ð3Þ

_z ¼ mzð1 � x2Þ � x � Jsinð2pyÞ; ð4Þ

_y ¼ o: ð5Þ

The state variables of the differential equation system (3–5) are the Van der Pol oscillator

state variables x and z and the Kuramoto oscillator phase θ, and the system parameters are

given by the damping constant μ, the input strength J, and the intrinsic frequency of the Kura-

moto oscillator ω.

Equations for both the Van der Pol and Kuramoto oscillators are pre-implemented in

PyRates. For comprehensive reviews of the properties of these oscillators, see [52, 53]. The fol-

lowing code uses the NodeTemplate class to load the definitions of the Van der Pol oscilla-

tor and Kuramoto oscillator, then uses the CircuitTemplate class to define the network

of nodes and edges that make up the dynamical system given by Eqs (3)–(5):

1 from PyRates import CircuitTemplate, NodeTemplate

2

3 # define nodes

4 VPO = NodeTemplate.from_yaml (

5 "model_templates.coupled_oscillators.vanderpol.vdp_pop"

6 )

7 KO = NodeTemplate.from_yaml (

8 "model_templates.coupled_oscillators.kuramoto.sin_pop"

9 )

10

11 # define network

12 net = CircuitTemplate (

13 name="VPO_forced", nodes={'VPO': VPO, 'KO': KO},

14 edges=[('KO/sin_op/s', 'VPO/vdp_op/inp', None, {'weight':1.0})]

15 )

Listing 4. Definition of the Van der Pol oscillator model.

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 10 / 24

https://doi.org/10.1371/journal.pcbi.1011761


With the model loaded into PyRates, we can use numerical integration to generate time

series of its dynamics for different values for J and ω. To minimize the runtime of this problem,

we use the function pyrates.grid_search, which takes a set of multiple model parame-

trizations and performs the numerical integration in a single combined model by vectorizing

the model equations. The code below defines a parameter sweep with 20 values of J and 20 val-

ues of ω, resulting in N = 400 model parametrizations.

1 # imports

2 import numpy as np

3 from PyRates import grid_search

4

5 # define parameter sweep

6 n_om = 20

7 n_J = 20

8 omegas = np.linspace(0.3, 0.5, num=n_om)

9 weights = np.linspace(0.0, 2.0, num=n_J)

10

11 # map sweep parameters to network parameters

12 params = {'omega': omegas, 'J': weights}

13 param_map = {'omega': {'vars': ['phase_op/omega'],

14 'nodes': ['KO']},

15 'J': {'vars': ['weight'],

16 'edges': [('KO/sin_op/s', 'VPO/vdp_op/inp')]}

17 }

18

19 # perform parameter sweep

20 results, res_map = grid_search(

21 circuit_template=net, param_grid=params, param_map=param_map,

22 simulation_time=T, step_size=dt, inputs=None, vectorize=True,

23 outputs={'VPO': 'VPO/vdp_op/x', 'KO': 'KO/phase_op/theta'},

24 solver='scipy', method='DOP853', clear=False,

25 permute_grid=True, cutoff=cutoff, sampling_step_size=dts

26 )

Listing 5. Parameter sweep over periodic forcing parameters in the Van der Pol oscillator

model.

The grid_search call takes the given circuit_template and creates copies of it

for each set of parameters in param_grid. It adjusts the parameters of each copy accord-

ingly, using the information in param_map to locate the parameters that should be adjusted.

It then places all copies of the circuit_template in one big model and performs the sim-

ulation, with the remaining arguments controlling the numerical integration procedure. Given

a set of N different model parametrizations, this procedure results in an implementation of the

differential equation system (3–5) where each variable in the equations is represented by a vec-

tor of length N. For the numerical integration, we instructed grid_search to use a Runge-

Kutta algorithm of order 8 with automated adaptation of the integration step size, via the flag

method=“DOP853”. This solver is available in PyRates through the scipy.integrate.
solve_ivp method of SciPy [17]. Alternative choices of numerical integration methods are

available via the keyword arguments solver and method of grid_search. For more

details on how to specify parameter sweeps via the grid_search function and the different

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 11 / 24

https://doi.org/10.1371/journal.pcbi.1011761


options available to adjust the behavior of the function, see https://pyrates.readthedocs.io/en/

latest/auto_analysis/parameter_sweeps.html.

We use the returned values of the grid-search call in Listing 5 to compute the

coherence between θ and x for each set of ω and J. This results in a triangularly shaped

coherence profile, also know as an Arnold tongue (see Fig 2A), which describes the charac-

teristic entrainment behavior of a non-linear oscillator subject to a periodic driving force

[54].

The larger the difference between the driving frequency and the intrinsic frequency of

the non-linear oscillator (or one of its harmonics), the stronger the required amplitude of

the driving signal for entraining the oscillator to the driving frequency. Our example con-

firms that the Van der Pol oscillator expresses this behavior. In Fig 2B, we show an example

where the driving force J was too small to entrain the oscillator given the substantial differ-

ence between ω and the intrinsic frequency of the oscillator. In Fig 2C, on the other hand,

we show an example where the driving force J was sufficiently high and the difference

between ω and the intrinsic frequency of the oscillator was sufficiently low to entrain the

oscillator.

Thus, the above example demonstrates how PyRates can be used to perform the first steps

of any dynamical system analysis, numerical integration of the differential equation system

and parameter sweeps. We studied the entrainment of the Van der Pol oscillator to the Kura-

moto oscillator frequency as a function of the input strength and frequency. We used the

PyRates function pyrates.grid_search to perform multiple, vectorized numerical inte-

grations of the differential equation system. The results confirm previous findings on the

entrainment of a non-linear oscillator and show that the numerical integration and parameter

sweep functionalities of PyRates work as expected.

Fig 2. Entrainment of the Van der Pol oscillator in response to periodic forcing. (A) Coherence between the state variables x of the Van der Pol

oscillator (VPO) and θ of the Kuramoto oscillar (KO). For each pair of ω and J, we bandpass-filtered x at the frequency ω and extracted the phase of the

bandpass-filtered signal via the Hilbert transform. We then created a sinusoidal signal from the VPO and KO phases and used scipy.signal.
coherence to calculate the coherence between the two sinusoids. The result is depicted as color-coding. (B and C) State variables x (black) and θ
(orange) displayed over time. (B) No entrainment of the VPO phase for ω = 0.33 and J = 0.5. (C) Entrainment of the VPO phase to the KO phase for ω
= 0.42 and J = 1.0.

https://doi.org/10.1371/journal.pcbi.1011761.g002

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 12 / 24

https://pyrates.readthedocs.io/en/latest/auto_analysis/parameter_sweeps.html
https://pyrates.readthedocs.io/en/latest/auto_analysis/parameter_sweeps.html
https://doi.org/10.1371/journal.pcbi.1011761.g002
https://doi.org/10.1371/journal.pcbi.1011761


Using PyRates for bifurcation analysis

In this example we present PyCoBi, one of PyRates’s extensions for applying numerical bifur-

cation analysis to a dynamical system model. Numerical bifurcation analysis is an essential

tool to study qualitative changes in model dynamics caused by small variations in model

parametrization [6, 55].

In neuroscience, bifurcation analysis can identify transitions between different firing

regimes of a model neuron or neural population. To demonstrate this, we study the neurody-

namic model described in detail in [56], which is a mean-field model of coupled quadratic

integrate-and-fire (QIF) neurons with spike-frequency-adaptation:

t _r ¼
D

pt
þ 2rv; ð6Þ

t _v ¼ v2 þ �Z þ IðtÞ � aþ Jrt � ðprtÞ2; ð7Þ

ta _a ¼ x; ð8Þ

ta _x ¼ atar � 2x � a: ð9Þ

The state variables of this model are r and v, the average firing rate and membrane potential

of the QIF population, and a and x, which describe the spike-frequency-adaptation dynamics.

While these equations have been derived from a network of coupled spiking neurons, they do

not explicitly model spiking neurons, but rather the macroscopic dynamics of the network.

Because these macroscopic equations do not contain discontinuities such as single neuron

spiking events, they can be analyzed via methods from bifurcation theory. For more details on

the model equations and constants, see [56].

We are interested in the effects of the adaptation strength α and the average neural excit-

ability �Z on population dynamics, and would use Auto-07p [16] to carry out the bifurcation

analysis. The goal is to reproduce the bifurcation diagrams reported in [56], where the effects

of α and �Z on the dynamics of (6–9) have already been investigated.

Auto-07p requires used-supplied Fortran files that include the model equations and con-

stants. As demonstrated below, PyRates can be used to generate these files. First, we need to

load the model into PyRates. Since the dynamical system given by (6–9) exists as a pre-imple-

mented model in PyRates, this can be done via a single function call:

1 from PyRates import CircuitTemplate

2 qif = CircuitTemplate.from_yaml(

3 "model_templates.neural_mass_models.qif.qif_sfa"

4 )

Listing 6. Definition of the QIF model.

After the model is loaded, it can be used to generate the input required for Auto-07p:

1 qif.get_run_func(

2 func_name='qif_run', file_name='qif_sfa',

3 step_size=1e-4, backend='fortran',

4 solver='scipy', vectorize=False,

5 float_precision='float64', auto=True

6 )

Listing 7. Auto-07p file generation via PyRates.

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 13 / 24

https://doi.org/10.1371/journal.pcbi.1011761


This method generates two files required to run Auto-07p: a Fortran 90 file containing the

model equations and a simple text file containing the meta parameters of Auto-07p. The equa-

tion file, which includes a vector field evaluation function named func_name, can be found

in the location indicated by file_name; the meta parameter file, named c.ivp, is in the

same directory. Providing the keyword argument auto=True, ensures that the output files

are in a format compatible with Auto-07p.

At this point, PyRates has generated the meta parameters and equation files needed for

parameter continuations and bifurcation analysis in Auto-07p. To demonstrate this, we use

PyCoBi, which allows the calling of Auto-07p functions from Python. In Listing 8, we perform

a simple numerical integration of the differential equation system over time, allowing it to con-

verge to a steady-state solution that we can then further analyze via parameter continuations.

For the example to execute without errors, provide a path to the installation directory of Auto-
07p via auto_dir=<path>.

1 # initialize PyCoBi

2 from pycobi import ODESystem

3 qif_auto = ODESystem(working_dir=None, auto_dir=<path>,

4 init_cont=False)

5

6 # perform numerical integration

7 t_sols, t_cont = qif_auto.run(

8 e='qif_sfa', c='ivp', name='time', DS=1e-4, DSMIN=1e-10,

9 EPSL=1e-08, EPSU=1e-08, EPSS=1e-06, DSMAX=1e-2,

10 NMX=1000, UZR={14: 5.0}, STOP={'UZ1'}

11 )

Listing 8. Numerical integration of the QIF model via Auto-07p.

The arguments provided to ODESystem.run are mostly identical to the arguments

required to run Auto-07p, which are explained in detail in the documentation at: https://

github.com/auto-07p/auto-07p/tree/master/doc. Most importantly, pointers to the generated

equation and meta parameters files have been provided via the arguments e=‘qif_sfa’
and c=‘ivp’, respectively.

In Fig 3B, we see that the QIF mean-field model converged to a steady-state solution within

the provided integration time of the differential equation system (6–9).

Starting from this steady-state solution, we can perform parameter continuations and auto-

mated bifurcation analysis. We first continue the steady-state solution we calculated previously

in the background input parameter �Z. To do so, we make use of the pseudo-arclength continu-

ation method with automated bifurcation detection, implemented in Auto-07p [16] and inter-

faced here through PyCoBi. This continuation method starts from the fixed point solution that

the system converged to (see Fig 3B); to find a solution for a different value of the bifurcation

parameter �Z, a small perturbation is applied to the known solution and a new solution is found

in its vicinity. The pseudo-arclength continuation method determines both the size of the per-

turbation in the continuation parameter and the approximate location of the new solution by

making a step in the tangent space of the curve of solutions that the algorithm attempts to fol-

low [6]. By successively perturbing the most recently found solution and searching for a new

solution, the algorithm numerically approximates a curve of fixed point solutions in the bifur-

cation parameter space. Bifurcation points along such a curve can be detected by monitoring

the local eigenvalues of the linearized vector field around the solutions. As can be seen in Fig

3A, the steady-state solution branch undergoes a number of bifurcations within the examined

range of �Z: Two fold bifurcations and two sub-critical Hopf bifurcations. By continuing the

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 14 / 24

https://github.com/auto-07p/auto-07p/tree/master/doc
https://github.com/auto-07p/auto-07p/tree/master/doc
https://doi.org/10.1371/journal.pcbi.1011761


unstable periodic solutions emerging from the latter, we next identified fold of limit cycle

bifurcations that give rise to a regime of synchronized oscillations (see Fig 3C). The code to

reproduce the bifurcation analysis results in Fig 3A can be found at https://www.github.com/

pyrates-neuroscience/use_examples.

These results confirm the findings reported in [56], where a more detailed description of

the QIF model’s bifurcation structure is provided. Thus, we have successfully demonstrated

that PyRates provides an interface to the parameter and bifurcation analysis software Auto-
07p, one of the most powerful tools for studying solutions of differential equation systems and

how they change with underlying system parameters.

Parameter fitting in a delay-coupled leaky integrator model

In our final example, we demonstrate the capacity of PyRates as a model definition interface

for other tools and show how it can support the definition of large-scale, delay-coupled

dynamical systems, which are ubiquitous in biological systems due to inherently limited

signal transmission speed [57, 58]. To do so, we show how RectiPy leverages PyRates as a

frontend and allows PyRates models to be optimized using any PyTorch parameter optimi-

zation routine. In the example below, we use RectiPy for gradient-based parameter optimi-

zation in a recurrent neural network model with delay coupling that is implemented in

PyRates.
Building the network with RectiPy. We use a set of N leaky integrators with non-linear

delay-coupling as an exemplary model. Similar models have been applied in various biological

domains such as epidemiology, population dynamics, or neuroscience [38, 39]. In neurosci-

ence, it has been used as a phenomenological model of neurons coupled via synapses with syn-

aptic transmission delays [59]. The model dynamics are determined by the following evolution

Fig 3. Bifurcation analysis of the QIF model. (A) Bifurcation diagram showing the solutions of Eqs (6)–(9) in the state variable r as a function of the

parameter �Z. Solid (dotted) lines represent stable (unstable) solutions. Bifurcation points are depicted as symbols along the solution branches. Green

circles represent Hopf bifurcations whereas grey triangles represent fold bifurcations. (B) Convergence of the average firing rate r of the QIF model to a

steady-state solution in the asynchronous, high-activity regime (�Z ¼ 3). (C) Convergence of the average firing rate r of the QIF model to a periodic

solution in the synchronous, oscillatory regime (�Z ¼ � 2).

https://doi.org/10.1371/journal.pcbi.1011761.g003

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 15 / 24

https://www.github.com/pyrates-neuroscience/use_examples
https://www.github.com/pyrates-neuroscience/use_examples
https://doi.org/10.1371/journal.pcbi.1011761.g003
https://doi.org/10.1371/journal.pcbi.1011761


equations:

_ui ¼ �
ui
t
þ IextðtÞ þ k

XN

j¼1

Jij tanhðGij ∗ ujÞ; ð10Þ

GijðtÞ ¼
abijij tbij � 1eaijt

ðbij � 1Þ!
; ð11Þ

where τ is a global decay time constant, k is a global coupling constant, Jij are connection-spe-

cific coupling strengths, and Iext is a variable that allows for extrinsic forcing. The term Γij � uj
is a convolution of the rate uj with the gamma kernel given by Eq (11). This type of gamma-

kernel convolution is a popular model for delay-coupled systems with distributed delays, such

as neural populations interacting via axons with different lengths [60] or viral spread with dif-

ferent incubation delays for the cell-to-cell transmission [61].

The following code implements a network of N = 5 coupled leaky integrators using Recti-
Py’s Network class, with random coupling weights and gamma kernel parameters as given by

Eqs (10) and (11).

1 import numpy as np

2 from rectipy import Network

3

4 # network parameters

5 node = "neuron_model_templates.rate_neurons.leaky_integrator.tanh_pop"

6 N = 5

7 J = np.random.uniform(low=-1.0, high=1.0, size=(N, N))

8 D = np.random.choice([1.0, 3.0], size=(N, N))

9 S = D�0.3

10 dt = 1e-3

11

12 # initialize network

13 net = Network(dt=dt, device="cpu")

14

15 # add a recurrently coupled population of leaky integrators to the

network

16 net.add_diffeq_node(

17 "tanh", node=node, weights=J,

18 edge_attr={'delay': D, 'spread': S},

19 source_var="tanh_op/r", target_var="li_op/r_in",

20 input_var="li_op/I_ext", output_var="li_op/u"

21 )

Listing 9. Initialization of the delay-coupled leaky integrator model in RectiPy.
As shown in line 16 of Listing 9, rectipy.Network.add_diffeq_node provides an

interface for adding a PyRatesmodel as a node to a rectipy.Network instance.

Network.add_diffeq_node first uses NodeTemplate.from_yaml(node) to set

up the governing equations of each network node. It then uses the connectivity weights pro-

vided via the weights keyword argument together with all additional edge attributes

(edge_attr) to create a CircuitTemplate, and fill it with N2 edges. This is imple-

mented by a call to

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 16 / 24

https://doi.org/10.1371/journal.pcbi.1011761


pyrates.CircuitTemplate.add_edges_from_matrix, a method that adds

edges of the following form to the network:

1 edge = ("<pi>/tanh_op/m", "<pj>/li_op/m_in", None,

2 {"weight": C_ij, "delay": D_ij, "spread": S_ij}

3 )

Listing 10. Definition of an edge in PyRates.
Here, Dij and Sij refer to the mean and variance of the gamma kernel Γij and are related to

its parameters via Dij ¼
aij
bij

and Sij ¼
aij
b2
ij
. Each edge definition that includes both the “delay”

and the “spread” keyword is automatically translated into a gamma kernel convolution of

the source variable by PyRates. PyRates implements the convolution operation as a set of cou-

pled differential equations that it adds to the model, using the ‘linear chain trick’ [61].

All string-based keyword arguments provided in lines 17–19 of Listing 9 are pointers to

model variables defined in the YAML template specified in line 5 of Listing 9. This ensures

that the network equations generated by PyRates are properly integrated into the PyTorch
graph. For example, the keyword argument input_var=“li_op/I_ext” indicates that

any input provided to the network should enter the network equations via the variable I_ext
that is defined in the operator li_op of the NodeTemplate.

Having constructed the network, RectiPy uses the PyTorch backend of PyRates to generate a

vector field function that can be used for simulations and parameter optimization via PyTorch.

This way, RectiPy extends PyRates to enable quick generation of PyTorch compute graphs

from YAML templates. RectiPy can thus provide a powerful user interface for simulating and

fitting recurrent neural networks with minimal coding effort.

Performing parameter optimization in a RectiPy model. We next demonstrate the use

of RectiPy for parameter optimization. Our goal will be to recover the values of model parame-

ters in the rectipy.Network instance defined in the previous section, specifically the

global time constant τ = 2.0 and the global coupling constant k = 1.0. To do so, we’ll sample

the model’s response to a 200Hz sinusoidal driving input, and then use this observed response

to fit the values of k and τ in a second, identical model instance in which k and τ are initialized

from a uniform distribution over [0.1, 10.0].

We can sample the target model’s activity similarly to in PyTorch:

1 # simulation parameters

2 dt = 1e-3

3 steps = 30000

4 f = 0.2

5 beta = 0.1

6

7 # simulate target signal

8 targets = []

9 for step in range(steps):

10 I_ext = np.sin(2�np.pi�freq�step�dt) � beta

11 u = net.forward(I_ext)

12 targets.append(u)

Listing 11. Generation of the target signal for parameter optimization in RectiPy.
Where, as in torch.nn, rectipy.Network.forward generates the output variable

u from the input Iext, using the functional relationship defined by Eqs (10) and (11). Alterna-

tively, numerical simulation can be performed in a single line with:

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 17 / 24

https://doi.org/10.1371/journal.pcbi.1011761


1 obs = net.run(inputs, sampling_steps=1)

where inputs is a vector of the extrinsic input to the network at each time point. This

rectipy.Network.run method returns an instance of rectipy.Observer, which

provides access to all network state variables recorded during the simulation.

Next, we will fit our second network model to the observed dynamics of our target network.

The code example below shows how to perform a single optimization step in PyTorch using a

mean-squared error loss function and the resilient backpropagation algorithm [62] to calculate

the gradient of the error with respect to the free parameters τ and k.

1 import torch

2

3 # loss function definition

4 loss = torch.nn.MSELoss()

5

6 # optimizer definition

7 opt = torch.optim.Rprop(net.parameters(), lr=0.01)

8

9 # calculate cumulative error over entire target signal

10 mse = torch.zeros(1)

11 for step in range(steps):

12 I_ext = np.sin(2�np.pi�f�step�dt) � beta

13 u_target = targets[step]

14 u = net.forward(I_ext)

15 mse += loss(u, u_target)

16

17 # optimization step

18 opt.zero_grad()

19 error.backward()

20 opt.step()

Listing 12. Parameter optimization step in RectiPy.
A target signal can be fitted by iterating over optimization steps until convergence. Alter-

natively, the entire optimization procedure is also available via the rectipy.Network.
fit_bptt method:

1 obs = net.fit_bptt(inputs, targets, optimizer="rprop", loss="mse",

lr=0.01)

The results of the parameter optimization are depicted in Fig 4. As can be seen, the optimi-

zation algorithm succeeded in finding values of the parameters τ and k for which the network

reproduces the target dynamics of the 5 leaky integrators.

In conclusion, we successfully used the PyTorch equations generated by PyRates to run

parameter optimizations via RectiPy.

Availability and future directions

In this work, we presented the dynamical systems modeling software PyRates for simulating

and interpreting the dynamics of biological systems. We focused on updates to the software

since its initial release as a neural network simulation tool [13], emphasizing the new code gen-

eration capacities, additional backends, and extended support for delay-coupled systems. In a

series of detailed use-cases, we showed how PyRates can be used to (i) perform numerical

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 18 / 24

https://doi.org/10.1371/journal.pcbi.1011761


integration of a differential equation system via scipy.integrate.solve_ivp, (ii) gen-

erate the Fortran files to run bifurcation analysis in Auto-07p, and (iii) generate the equations

for a PyTorch compute graph to perform parameter optimization via RectiPy. PyRates thus

enables the application of complex dynamical system analysis workflows to biological prob-

lems, in a manner that helps reduce implementation errors and facilitates reproducibility and

shareability of mathematical models [11, 63, 64].

PyRates is open-source, freely available on GitHub, and comes with detailed documenta-

tion. Each version is released on PyPI and can easily be installed using the pip package man-

ager. For installation instructions, see the GitHub repository: https://github.com/pyrates-

neuroscience/PyRates. The repository also provides information on officially supported

Python versions and the status of the extensive test library included with PyRates. The latter

ensures that all main features and models are working as expected in the current version of

PyRates. The structure of the software can be viewed in the API section of our documentation

website: https://pyrates.readthedocs.io/en/latest/.

Limitations

The main limitation of PyRates is the family of dynamical system models it supports. Cur-

rently, PyRates provides support for ordinary and delayed differential equation systems, and

state variables of these systems can be real or complex-valued. Examples of each of these differ-

ential equation types can be found in the use example section at https://pyrates.readthedocs.io/

en/latest/. PyRates does not currently support partial differential equations, which involve

derivatives in multiple variables and can be used to model dynamical systems in continuous

time and space, and stochastic differential equations, which are typically used to model inher-

ent stochastic fluctuations of dynamical processes. Both types of differential equation systems

have been widely used in dynamical system modeling [4]. In neuroscience, for instance, partial

differential equations have been applied in the context of neural field models [65, 66]. A num-

ber of dynamical system analysis libraries currently supported by PyRates such as SciPy [17] or

DifferentialEquations.jl [14] provide algorithms for the numerical integration of partial and

stochastic differential equations. Thus, adding support for these types of differential equations

would be a useful extension to the currently supported list of dynamical system models.

Fig 4. Comparison of the dynamics of the target leaky integrator model and the fitted leaky integrator model. (A) Logarithm of the mean-squared

error (color-coded), depicted over the search range of the two parameters that were optimized: κ and τ. The white trace shows the steps taken by the

optimizer from its initialization point to the global minimum. (B and C) Rate signals of all N LI units over time of the fitted network and the target

network, respectively.

https://doi.org/10.1371/journal.pcbi.1011761.g004

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 19 / 24

https://github.com/pyrates-neuroscience/PyRates
https://github.com/pyrates-neuroscience/PyRates
https://pyrates.readthedocs.io/en/latest/
https://pyrates.readthedocs.io/en/latest/
https://pyrates.readthedocs.io/en/latest/
https://doi.org/10.1371/journal.pcbi.1011761.g004
https://doi.org/10.1371/journal.pcbi.1011761


Another limitation of PyRates is its inability to define specific events that may occur during

the numerical integration of a differential equation system. An example of such an event is the

membrane potential of a neuron crossing a certain threshold and eliciting a spike, which can

be modeled as a singular event in time [67]. Events like this introduce discontinuities to the

differential equation system, which are not currently supported by PyRates. However, although

PyRates does not support event definition in general, the PyRates extension RectiPy allows for

the definition of spike conditions for the specific case of spiking neural networks. RectiPy pro-

vides support for numerical simulations and parameter optimization, and supports the use of

both rate neurons and spiking neurons.

Future directions

It is important to note that the limitations of PyRates are not inherent limitations that cannot

be overcome by the software; rather, they are areas where the software has not yet been

extended. Due to the highly modular structure and open-source nature of PyRates, such exten-

sions can readily be implemented. For example, adding another backend to PyRates can be

done without any changes to the frontend, whereas added support for stochastic differential

equations would mostly involve changes to the frontend. Additionally, some of the limitations

outlined above can be addressed by using additional software packages that extend PyRates
with specific functionalities. We have shown here that packages that extend PyRates can simply

be built by employing PyRates as a model definition interface and instructing it to generate the

output files required for a specific extension. We have demonstrated that by generating For-
tran files for PyCoBi and PyTorch files for RectiPy, which are software packages for bifurcation

analysis and artificial neural network training, respectively.

In summary, PyRates already supports a large family of dynamical system systems and

backends, and is designed be easily extendable in the future. This makes it a versatile dynam-

ical system model definition language and code-generation tool that provides access to a wide

variety of dynamical system analysis methods and allows for sharing models without being

tied to specific programming languages or analysis tools. In the future, we aim to extend both

the number of backends and the family of dynamical systems models that PyRates supports,

thus extending its capacity as a model definition interface.

Supporting information

S1 File. Model definitions. YAML file that includes the equations and model definitions of all

dynamical systems models that are used in the Results section.

(YAML)

S2 File. Matlab function file. Matlab file that includes the forward function of the predator-

prey model that is generated by Listing 3.

(M)

Author Contributions

Conceptualization: Richard Gast, Thomas R. Knösche, Ann Kennedy.

Data curation: Richard Gast.

Formal analysis: Richard Gast.

Funding acquisition: Ann Kennedy.

Investigation: Richard Gast.

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 20 / 24

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011761.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011761.s002
https://doi.org/10.1371/journal.pcbi.1011761


Methodology: Richard Gast.

Project administration: Richard Gast, Ann Kennedy.

Resources: Ann Kennedy.

Software: Richard Gast.

Supervision: Thomas R. Knösche, Ann Kennedy.

Validation: Richard Gast.

Visualization: Richard Gast.

Writing – original draft: Richard Gast, Thomas R. Knösche, Ann Kennedy.

Writing – review & editing: Richard Gast, Thomas R. Knösche, Ann Kennedy.

References
1. Newton SI. Philosophiae naturalis principia mathematica. G. Brookman; 1833.

2. Hubbard JH, West BH. Differential Equations: A Dynamical Systems Approach: Ordinary Differential

Equations. Springer; 2013.

3. Strogatz SH. Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Phys-

ics, Biology, Chemistry, and Engineering, Second Edition. CRC Press; 2018.

4. Hutt A. Synergetics: An Introduction. In: Hutt A, Haken H, editors. Synergetics. Encyclopedia of Com-

plexity and Systems Science Series. New York, NY: Springer US; 2020. p. 1–3. Available from: https://

doi.org/10.1007/978-1-0716-0421-2_534.

5. Stuart A, Humphries AR. Dynamical Systems and Numerical Analysis. Cambridge University Press;

1998.

6. Meijer Hil G E, Dercole Fabio, Oldeman Bart, Myers R A. Numerical Bifurcation Analysis. In: Encyclope-

dia of Complexity and Systems Science. Springer; 2009. p. 6329–6352. Available from: https://

research.utwente.nl/en/publications/numerical-bifurcation-analysis(714badd3-0caa-457a-9b45-

a662527c1cb7).html.

7. Coiffier J. Fundamentals of Numerical Weather Prediction. Cambridge University Press; 2011.

8. Jost C, Ellner SP. Testing for predator dependence in predator-prey dynamics: a non-parametric

approach. Proceedings of the Royal Society of London Series B: Biological Sciences. 2000; 267

(1453):1611–1620. https://doi.org/10.1098/rspb.2000.1186 PMID: 11467423

9. West TO, Magill PJ, Sharott A, Litvak V, Farmer SF, Cagnan H. Stimulating at the right time to recover

network states in a model of the cortico-basal ganglia-thalamic circuit. PLOS Computational Biology.

2022; 18(3):e1009887. https://doi.org/10.1371/journal.pcbi.1009887 PMID: 35245281

10. Freire J, Bonnet P, Shasha D. Computational reproducibility: state-of-the-art, challenges, and database

research opportunities. In: Proceedings of the 2012 ACM SIGMOD International Conference on Man-

agement of Data. SIGMOD’12. New York, NY, USA: Association for Computing Machinery; 2012.

p. 593–596. Available from: https://doi.org/10.1145/2213836.2213908.

11. Topalidou M, Leblois A, Boraud T, Rougier NP. A long journey into reproducible computational neuro-

science. Frontiers in Computational Neuroscience. 2015; 9:30. https://doi.org/10.3389/fncom.2015.

00030 PMID: 25798104

12. Grüning B, Chilton J, Köster J, Dale R, Soranzo N, van den Beek M, et al. Practical Computational

Reproducibility in the Life Sciences. Cell Systems. 2018; 6(6):631–635. https://doi.org/10.1016/j.cels.

2018.03.014 PMID: 29953862

13. Gast R, Rose D, Salomon C, Möller HE, Weiskopf N, Knösche TR. PyRates—A Python framework for

rate-based neural simulations. PLOS ONE. 2019; 14(12):e0225900. https://doi.org/10.1371/journal.

pone.0225900 PMID: 31841550

14. Rackauckas C, Nie Q. DifferentialEquations.jl—A Performant and Feature-Rich Ecosystem for Solving

Differential Equations in Julia. Journal of Open Research Software. 2017; 5(1):15. https://doi.org/10.

5334/jors.151

15. Feldt R. BlackBoxOptim.jl; 2022. Available from: https://github.com/robertfeldt/BlackBoxOptim.jl.

16. Doedel EJ, Fairgrieve TF, Sandstede B, Champneys AR, Kuznetsov YA, Wang X. AUTO-07P: Continu-

ation and bifurcation software for ordinary differential equations; 2007.

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 21 / 24

https://doi.org/10.1007/978-1-0716-0421-2_534
https://doi.org/10.1007/978-1-0716-0421-2_534
https://research.utwente.nl/en/publications/numerical-bifurcation-analysis(714badd3-0caa-457a-9b45-a662527c1cb7).html
https://research.utwente.nl/en/publications/numerical-bifurcation-analysis(714badd3-0caa-457a-9b45-a662527c1cb7).html
https://research.utwente.nl/en/publications/numerical-bifurcation-analysis(714badd3-0caa-457a-9b45-a662527c1cb7).html
https://doi.org/10.1098/rspb.2000.1186
http://www.ncbi.nlm.nih.gov/pubmed/11467423
https://doi.org/10.1371/journal.pcbi.1009887
http://www.ncbi.nlm.nih.gov/pubmed/35245281
https://doi.org/10.1145/2213836.2213908
https://doi.org/10.3389/fncom.2015.00030
https://doi.org/10.3389/fncom.2015.00030
http://www.ncbi.nlm.nih.gov/pubmed/25798104
https://doi.org/10.1016/j.cels.2018.03.014
https://doi.org/10.1016/j.cels.2018.03.014
http://www.ncbi.nlm.nih.gov/pubmed/29953862
https://doi.org/10.1371/journal.pone.0225900
https://doi.org/10.1371/journal.pone.0225900
http://www.ncbi.nlm.nih.gov/pubmed/31841550
https://doi.org/10.5334/jors.151
https://doi.org/10.5334/jors.151
https://github.com/robertfeldt/BlackBoxOptim.jl
https://doi.org/10.1371/journal.pcbi.1011761


17. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: funda-

mental algorithms for scientific computing in Python. Nature Methods. 2020; 17(3):261–272. https://doi.

org/10.1038/s41592-019-0686-2 PMID: 32015543

18. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: An imperative style, high-

performance deep learning library. Advances in neural information processing systems. 2019;32.

19. Weise K, Poßner L, Müller E, Gast R, Knösche TR. Pygpc: A sensitivity and uncertainty analysis

toolbox for Python. SoftwareX. 2020; 11:100450. https://doi.org/10.1016/j.softx.2020.100450

20. Sieber J, Engelborghs K, Luzyanina T, Samaey G, Roose D. DDE-BIFTOOL Manual—Bifurcation anal-

ysis of delay differential equations. arXiv:14067144 [math]. 2016;.

21. Ermentrout B. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for

Researchers and Students. Applied Mechanics Reviews. 2003; 56(4):B53. https://doi.org/10.1115/1.

1579454

22. Multiphysics C. Introduction to comsol multiphysics. COMSOL Multiphysics, Burlington, MA, accessed

Feb. 1998; 9(2018):32.

23. Clewley R. Hybrid Models and Biological Model Reduction with PyDSTool. PLOS Computational Biol-

ogy. 2012; 8(8):e1002628. https://doi.org/10.1371/journal.pcbi.1002628 PMID: 22912566

24. Houghton J, Siegel M. Advanced data analytics for system dynamics models using PySD. revolution.

2015; 3(4).

25. Margolis BWl. SimuPy: A Python framework for modeling and simulating dynamical systems. Journal of

Open Source Software. 2017; 2(17):396. https://doi.org/10.21105/joss.00396

26. Sanz Leon P, Knock S, Woodman M, Domide L, Mersmann J, McIntosh A, et al. The Virtual Brain: a

simulator of primate brain network dynamics. Frontiers in Neuroinformatics. 2013; 7. https://doi.org/10.

3389/fninf.2013.00010 PMID: 23781198

27. Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. Mathematical framework for large-scale brain network

modeling in The Virtual Brain. NeuroImage. 2015; 111:385–430. https://doi.org/10.1016/j.neuroimage.

2015.01.002 PMID: 25592995

28. Heitmann S, Aburn MJ, Breakspear M. The Brain Dynamics Toolbox for Matlab. Neurocomputing.

2018; 315:82–88. https://doi.org/10.1016/j.neucom.2018.06.026

29. Dai K, Gratiy SL, Billeh YN, Xu R, Cai B, Cain N, et al. Brain Modeling ToolKit: An open source software

suite for multiscale modeling of brain circuits. PLOS Computational Biology. 2020; 16(11):e1008386.

https://doi.org/10.1371/journal.pcbi.1008386 PMID: 33253147

30. Goodman DFM, Brette R. The Brian simulator. Frontiers in Neuroscience. 2009; 3. https://doi.org/10.

3389/neuro.01.026.2009 PMID: 20011141

31. Vitay J, Dinkelbach HÜ, Hamker FH. ANNarchy: a code generation approach to neural simulations on

parallel hardware. Frontiers in Neuroinformatics. 2015; 9. https://doi.org/10.3389/fninf.2015.00019

PMID: 26283957

32. van der Vlag M, Woodman M, Fousek J, Diaz-Pier S, Pérez Martı́n A, Jirsa V, et al. RateML: A Code

Generation Tool for Brain Network Models. Frontiers in Network Physiology. 2022; 2. https://doi.org/10.

3389/fnetp.2022.826345 PMID: 36926112

33. Plotnikov D, Rumpe B, Blundell I, Ippen T, Eppler JM, Morrison A. NESTML: a modeling language for

spiking neurons; 2016. Available from: http://arxiv.org/abs/1606.02882.

34. Kötter R, Goddard NH, Hucka M, Howell F, Cornelis H, Shankar K, et al. Towards NeuroML: Model

Description Methods for Collaborative Modelling in Neuroscience. Philosophical Transactions of the

Royal Society of London Series B: Biological Sciences. 2001; 356(1412):1209–1228. https://doi.org/10.

1098/rstb.2001.0910

35. Miller AK, Marsh J, Reeve A, Garny A, Britten R, Halstead M, et al. An overview of the CellML API and

its implementation. BMC Bioinformatics. 2010; 11(1):178. https://doi.org/10.1186/1471-2105-11-178

PMID: 20377909

36. Lam SK, Pitrou A, Seibert S. Numba: a LLVM-based Python JIT compiler. In: Proceedings of the Sec-

ond Workshop on the LLVM Compiler Infrastructure in HPC. LLVM’15. New York, NY, USA: Association

for Computing Machinery; 2015. p. 1–6. Available from: https://doi.org/10.1145/2833157.2833162.

37. Lotka AJ. Contribution to the Theory of Periodic Reactions. The Journal of Physical Chemistry. 1910;

14(3):271–274. https://doi.org/10.1021/j150111a004

38. Kuang Y. Delay Differential Equations: With Applications in Population Dynamics. Academic Press;

1993.

39. Bocharov GA, Rihan FA. Numerical modelling in biosciences using delay differential equations. Journal

of Computational and Applied Mathematics. 2000; 125(1):183–199. https://doi.org/10.1016/S0377-

0427(00)00468-4

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 22 / 24

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.1016/j.softx.2020.100450
https://doi.org/10.1115/1.1579454
https://doi.org/10.1115/1.1579454
https://doi.org/10.1371/journal.pcbi.1002628
http://www.ncbi.nlm.nih.gov/pubmed/22912566
https://doi.org/10.21105/joss.00396
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.3389/fninf.2013.00010
http://www.ncbi.nlm.nih.gov/pubmed/23781198
https://doi.org/10.1016/j.neuroimage.2015.01.002
https://doi.org/10.1016/j.neuroimage.2015.01.002
http://www.ncbi.nlm.nih.gov/pubmed/25592995
https://doi.org/10.1016/j.neucom.2018.06.026
https://doi.org/10.1371/journal.pcbi.1008386
http://www.ncbi.nlm.nih.gov/pubmed/33253147
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.3389/neuro.01.026.2009
http://www.ncbi.nlm.nih.gov/pubmed/20011141
https://doi.org/10.3389/fninf.2015.00019
http://www.ncbi.nlm.nih.gov/pubmed/26283957
https://doi.org/10.3389/fnetp.2022.826345
https://doi.org/10.3389/fnetp.2022.826345
http://www.ncbi.nlm.nih.gov/pubmed/36926112
http://arxiv.org/abs/1606.02882
https://doi.org/10.1098/rstb.2001.0910
https://doi.org/10.1098/rstb.2001.0910
https://doi.org/10.1186/1471-2105-11-178
http://www.ncbi.nlm.nih.gov/pubmed/20377909
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1021/j150111a004
https://doi.org/10.1016/S0377-0427(00)00468-4
https://doi.org/10.1016/S0377-0427(00)00468-4
https://doi.org/10.1371/journal.pcbi.1011761


40. Meurer A, Smith CP, Paprocki M,Čertı́k O, Kirpichev SB, Rocklin M, et al. SymPy: symbolic computing

in Python. PeerJ Computer Science. 2017; 3:e103. https://doi.org/10.7717/peerj-cs.103

41. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array program-

ming with NumPy. Nature. 2020; 585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2

PMID: 32939066

42. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: a system for large-scale

machine learning. In: Osdi. vol. 16. Savannah, GA, USA; 2016. p. 265–283.

43. Adams JC, Brainerd WS, Martin JT, Smith BT, Wagener JL. Fortran 90 handbook: complete ANSI/ISO

reference; 1993.

44. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A Fresh Approach to Numerical Computing.

SIAM Review. 2017; 59(1):65–98. https://doi.org/10.1137/141000671

45. Higham DJ, Higham NJ. MATLAB guide. SIAM; 2016.

46. Gast R, Rose DF. pyrates-neuroscience/PyRates: v1.0.4: Dropped support for Python 3.6 and added

support for Python 3.10; 2023. Available from: https://doi.org/10.5281/zenodo.10126327.

47. Gast R. pyrates-neuroscience/PyCoBi: v0.8.5: New method for creating ODESystem instances; 2023.

Available from: https://doi.org/10.5281/zenodo.10126340.

48. Gast R. pyrates-neuroscience/RectiPy: v0.12.0: New spike reset method; 2023. Available from: https://

doi.org/10.5281/zenodo.10126046.

49. Van Der Pol B, Van Der Mark J. LXXII. The heartbeat considered as a relaxation oscillation, and an

electrical model of the heart. The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science. 1928; 6(38):763–775. https://doi.org/10.1080/14786441108564652

50. Clusella P, Pietras B, Montbrió E. Kuramoto model for populations of quadratic integrate-and-fire neu-

rons with chemical and electrical coupling. Chaos: An Interdisciplinary Journal of Nonlinear Science.

2022; 32(1):013105. https://doi.org/10.1063/5.0075285 PMID: 35105122

51. González-Avella JC, Cosenza MG, San Miguel M. Localized coherence in two interacting populations

of social agents. Physica A: Statistical Mechanics and its Applications. 2014; 399:24–30. https://doi.org/

10.1016/j.physa.2013.12.035

52. Acebrón JA, Bonilla LL, Pérez Vicente CJ, Ritort F, Spigler R. The Kuramoto model: A simple paradigm

for synchronization phenomena. Reviews of Modern Physics. 2005; 77(1):137–185. https://doi.org/10.

1103/RevModPhys.77.137

53. Kanamaru T. Van der Pol Oscillator. Scholarpedia. 2007; 2(1):2202. https://doi.org/10.4249/

scholarpedia.2202

54. Boyland PL. Bifurcations of circle maps: Arnol’d tongues, bistability and rotation intervals. Communica-

tions in Mathematical Physics. 1986; 106(3):353–381. https://doi.org/10.1007/BF01207252

55. Kuznetsov YA. Elements of Applied Bifurcation Theory. Springer Science & Business Media; 2013.

56. Gast R, Schmidt H, Knösche TR. A Mean-Field Description of Bursting Dynamics in Spiking Neural Net-

works with Short-Term Adaptation. Neural Computation. 2020; 32(9):1615–1634. https://doi.org/10.

1162/neco_a_01300 PMID: 32687770

57. Orosz G, Moehlis J, Murray RM. Controlling biological networks by time-delayed signals. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010; 368

(1911):439–454. https://doi.org/10.1098/rsta.2009.0242 PMID: 20008410

58. Kageyama R, Isomura A, Shimojo H. Biological Significance of the Coupling Delay in Synchronized

Oscillations. Physiology. 2023; 38(2):63–72. https://doi.org/10.1152/physiol.00023.2022 PMID:

36256636

59. Roxin A, Brunel N, Hansel D. Role of Delays in Shaping Spatiotemporal Dynamics of Neuronal Activity

in Large Networks. Physical Review Letters. 2005; 94(23):238103. https://doi.org/10.1103/

PhysRevLett.94.238103 PMID: 16090506

60. Gast R, Gong R, Schmidt H, Meijer HGE, Knösche TR. On the Role of Arkypallidal and Prototypical

Neurons for Phase Transitions in the External Pallidum. Journal of Neuroscience. 2021; 41(31):6673–

6683. https://doi.org/10.1523/JNEUROSCI.0094-21.2021 PMID: 34193559

61. Smith H. Distributed Delay Equations and the Linear Chain Trick. In: Smith H, editor. An Introduction to

Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics. New

York, NY: Springer; 2011. p. 119–130. Available from: https://doi.org/10.1007/978-1-4419-7646-8_7.

62. Riedmiller M, Braun H. A direct adaptive method for faster backpropagation learning: the RPROP algo-

rithm. In: IEEE International Conference on Neural Networks; 1993. p. 586–591 vol.1.

63. LeVeque RJ, Mitchell IM, Stodden V. Reproducible research for scientific computing: Tools and strate-

gies for changing the culture. Computing in Science & Engineering. 2012; 14(4):13–17. https://doi.org/

10.1109/MCSE.2012.38

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 23 / 24

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1137/141000671
https://doi.org/10.5281/zenodo.10126327
https://doi.org/10.5281/zenodo.10126340
https://doi.org/10.5281/zenodo.10126046
https://doi.org/10.5281/zenodo.10126046
https://doi.org/10.1080/14786441108564652
https://doi.org/10.1063/5.0075285
http://www.ncbi.nlm.nih.gov/pubmed/35105122
https://doi.org/10.1016/j.physa.2013.12.035
https://doi.org/10.1016/j.physa.2013.12.035
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.4249/scholarpedia.2202
https://doi.org/10.4249/scholarpedia.2202
https://doi.org/10.1007/BF01207252
https://doi.org/10.1162/neco_a_01300
https://doi.org/10.1162/neco_a_01300
http://www.ncbi.nlm.nih.gov/pubmed/32687770
https://doi.org/10.1098/rsta.2009.0242
http://www.ncbi.nlm.nih.gov/pubmed/20008410
https://doi.org/10.1152/physiol.00023.2022
http://www.ncbi.nlm.nih.gov/pubmed/36256636
https://doi.org/10.1103/PhysRevLett.94.238103
https://doi.org/10.1103/PhysRevLett.94.238103
http://www.ncbi.nlm.nih.gov/pubmed/16090506
https://doi.org/10.1523/JNEUROSCI.0094-21.2021
http://www.ncbi.nlm.nih.gov/pubmed/34193559
https://doi.org/10.1007/978-1-4419-7646-8_7
https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.1371/journal.pcbi.1011761


64. Piccolo SR, Frampton MB. Tools and techniques for computational reproducibility. GigaScience. 2016;

5(1):s13742–016–0135–4. https://doi.org/10.1186/s13742-016-0135-4 PMID: 27401684

65. Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston KJ. The Dynamic Brain: From Spiking Neurons

to Neural Masses and Cortical Fields. PLOS Computational Biology. 2008; 4(8):e1000092. https://doi.

org/10.1371/journal.pcbi.1000092 PMID: 18769680

66. Coombes S. Large-scale neural dynamics: simple and complex. NeuroImage. 2010; 52(3):731–739.

https://doi.org/10.1016/j.neuroimage.2010.01.045 PMID: 20096791

67. Dayan P, Abbott LF. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural

Systems. MIT Press; 2001.

PLOS COMPUTATIONAL BIOLOGY PyRates—A code-generation tool for dynamical systems modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011761 December 27, 2023 24 / 24

https://doi.org/10.1186/s13742-016-0135-4
http://www.ncbi.nlm.nih.gov/pubmed/27401684
https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1371/journal.pcbi.1000092
http://www.ncbi.nlm.nih.gov/pubmed/18769680
https://doi.org/10.1016/j.neuroimage.2010.01.045
http://www.ncbi.nlm.nih.gov/pubmed/20096791
https://doi.org/10.1371/journal.pcbi.1011761

