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SUMMARY
Cancer is characterized by hypomethylation-associated silencing of large chromatin domains, whose contri-
bution to tumorigenesis is uncertain. Through high-resolution genome-wide single-cell DNA methylation
sequencing, we identify 40 core domains that are uniformly hypomethylated from the earliest detectable
stages of prostate malignancy through metastatic circulating tumor cells (CTCs). Nested among these
repressive domains are smaller loci with preserved methylation that escape silencing and are enriched for
cell proliferation genes. Transcriptionally silenced genes within the core hypomethylated domains are en-
riched for immune-related genes; prominent among these is a single gene cluster harboring all five CD1
genes that present lipid antigens to NKT cells and four IFI16-related interferon-inducible genes implicated
in innate immunity. The re-expression of CD1 or IFI16 murine orthologs in immuno-competent mice abro-
gates tumorigenesis, accompanied by the activation of anti-tumor immunity. Thus, early epigenetic changes
may shape tumorigenesis, targeting co-located genes within defined chromosomal loci. Hypomethylation
domains are detectable in blood specimens enriched for CTCs.
INTRODUCTION

Cancer is characterized by two primary changes at the level of

DNA methylation.1–4 Focal hypermethylation of CpG islands

(CGIs), often located within gene regulatory regions, results in

gene silencing, a well-established mechanism for the inactiva-

tion of tumor suppressor genes.5–7 In addition, long-range hypo-

methylated regions, partially methylated domains (PMDs), coin-

cide with nuclear lamina-associated domains (LADs) and large

organized chromatin lysine (K) (LOCK) domains.8–10 These

chromosomal loci are large (>100 kb), gene poor, correlated

with late-replicating DNA, and topologically associated with nu-

clear lamina. Repetitive sequences and retro-elements residing
Cell 186, 2765–2782, J
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within PMDs may be de-repressed in cancer, but the rare pro-

tein-encoding genes are silenced.11 Two repression-associated

chromatin modifications are evident: H3K9me3 is abundant

within hypomethylated blocks, whereas H3K27me3 denotes

their boundaries.12,13 Conflicting models have suggested that

hypomethylated blocks are either a direct consequence of

cell transformation14 or an incidental result of excessive cell pro-

liferation.13,15 The functional consequences of hypomethylation-

associated gene silencing and potential selection pressures that

shape such domains are not well understood. A recent study of

advanced colon cancers proposed an intrinsic tumor suppres-

sive mechanism that may counter cell proliferation,13 although

genome-wide hypomethylation is extensive in advanced
une 22, 2023 ª 2023 The Authors. Published by Elsevier Inc. 2765
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Figure 1. Partially methylated domains (PMDs) and preserved methylation islands (PMIs) in single metastatic prostate cancer cells

(A) Schematic of CTC enrichment (104-fold leukocyte depletion) and paired DNA methylation sequencing (nucleus) and RNA-seq (cytoplasm) from individual

prostate CTCs.

(B) Confirmation of CTC identity using stringent RNA expression thresholding of prostatic lineage and epithelial versus leukocyte markers. Maximum log10 (RPM)

expression of epithelial (KRT7, KRT8,KRT18,KRT19, and EPCAM) and prostatic markers (AR,KLK3, FOLH1, andAMACR) are plotted against leukocytemarkers

(CD45, CD16, CD37, CD53, CD7, and CD66b). Only confirmed CTCs without WBC contamination (red crosses) were used in analyses.

(legend continued on next page)
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cancers and may not reveal specific targets contributing to early

tumorigenesis.

Prostate cancer is noteworthy for its characteristically slow

evolution from precancerous lesions with low levels of cell prolif-

eration to more invasive and, ultimately, metastatic malignancy.

Localized prostate cancermay be classified as indolent (Gleason

score [GS] 6) or clinically significant (GSR 7) based on histolog-

ical grade, reflecting differences in differentiation, proliferative

index, and metastatic potential.16,17 GS6 tumors are often safely

monitored without therapy, whereas the more aggressive GS7

and higher tumors are resected surgically or treated with radia-

tion in combination with androgen deprivation therapy (ADT).

GS8–GS10 denote poorly differentiated tumors with an adverse

prognosis and high propensity for metastasis. Multiple heteroge-

neous foci of early tumors are often dispersed throughout the

prostate gland, complicating bulk molecular characterization

and necessitating careful dissection with single-cell analytic

strategies. Conversely, advanced metastatic prostate cancer

predominantly affects bone, making it difficult to perform bi-

opsies to study disseminated tumor deposits. Circulating tumor

cells (CTCs), comprising potential metastatic precursors isolated

from the bloodstream, thus enable single-cell analysis of

advanced prostate cancer. Immune checkpoint blockade (ICB)

is generally ineffective in treating prostate cancer,18–21 possibly

reflecting the stroma-rich, immunosuppressive environment of

primary prostate cancer, but tumor cell autonomous mecha-

nisms may also contribute, in both primary and metastatic dis-

eases. Epigenetic changes affecting the expression of immune

regulatory genes andmodulating the responsiveness of prostate

cancer to immunological therapies have not been characterized.

In addition to their biological significance, cancer-associated

methylation changes are of considerable molecular diagnostic

interest for blood-based cancer detection. These rely primarily

on CGI-enriched methylation within short DNA fragments

(170 bp) circulating in plasma, a fraction of which are tumor

derived (ctDNA).22–24 However, among patients with localized

prostate cancers, only 11.2% of cancers are detectable

using plasma CGI hypermethylation assays,25 leading us to

ask whether the large genomic coverage provided by hypome-

thylated domains within CTCs may provide complementary in-

formation. To address this question, we first established

genome-wide, high-resolution single-cell bisulfite sequencing

of hypomethylated domains within individual prostate CTCs

from multiple patients and cancer cell lines, identifying 40 core

PMDs, shared across metastatic prostate cancers. The timing

of DNA hypomethylation during prostate tumorigenesis reveals

that core PMDs are hypomethylated as early as indolent GS6 tu-

mors, identifying a single predominant genomic locus, the
(C) Representative DNA copy-number variation (CNV) analysis in individual CTC

(HPrEC) and a healthy-donor-derived leukocyte. Single-cell DNA methylation seq

(D) IGV representation (hg19) of DNA methylation spanning chromosome 8, sh

(GU114, GU216, GU181, and GURa15) and 17 cells from prostate cancer cell lin

tissues, 36 cells from two prostate epithelial cell lines (HPrEC and BPH-1), and n

(E and F) Higher resolution of chromosome 8 in IGV, showing precise PMD bou

magnified view of the nested PMI, bracketing a few genes, with precise bounda

(G and H) Components of coding genes and classes of repeats differentially enric

ns, not significant; *p < 0.05; **p < 0.01, assessed by permutation test.
CD1A-IFI16 gene cluster, encompassing the entire family of

CD1 lipid antigen presentation genes and multiple interferon-

inducible genes implicated in innate immunity. Early hypomethy-

lation-mediated gene silencing points to specific tumorigenic

pathways with both biological and diagnostic implications.

RESULTS

Identification of shared core PMDs and PMIs across
single metastatic prostate cancer cells
To characterize the genome-wide DNA methylation features of

single metastatic prostate cancer cells, we enriched CTCs

from five patients with castration-resistant prostate cancer

(CRPC), all withmultiple bonemetastases and disease refractory

to hormonal therapy, and performed individual cell micromanip-

ulation and single-cell sequencing26,27 (Table S1; see STAR

Methods). We compared 44 single CTCs with 40 single cells

from four prostate cancer cell lines (LNCaP, VCaP, PC3, and

22Rv1) and two non-transformed prostate epithelial cell lines

(human prostate epithelial cells [HPrECs] and benign prostate

hypertrophy cells [BPH-1]). HPrECs represent normal prostate

(N.P.) epithelium, whereas BPH-1 cells share luminal cell fea-

tures with cancer precursors.28–31 As control for contaminating

blood cells within CTC-enriched clinical specimens, we

compared single prostate cells with 13 microfluidic processed

single leukocytes (white blood cells [WBCs]) from four age-

matched healthy men. To confirm the identity of single CTCs,

we adapted single-cell multiomics sequencing to enable the

separation of nucleus from cytoplasm in individual cells, subject-

ing the former to single-cell whole-genome bisulfite sequencing

(scBS-seq)32 and the latter to single-cell RNA-seq (SMART-

seq2)33 (Figure 1A; see STAR Methods). On average, we de-

tected 9 million CpG sites for each single-cell DNA methylation

sequencing sample and 5,790 genes (RPM > 0) for each sin-

gle-cell RNA-seq library (Figures S1A and S1B). Transcriptomes

of prostate CTCs confirm the expression of expected lineage-

specific and epithelial transcripts and absence of hematopoietic

markers (Figures 1B and S1C). Unsupervised hierarchical clus-

tering analysis of all single-cell RNA-seq data reveals three

distinct clusters: leukocytes, N.P., and prostate cancer

(including CTCs and prostate cancer cell lines) (Figure S1D). In

addition to transcriptional confirmation, all prostate CTCs

demonstrate extensive DNA copy-number variations (CNV), as

inferred from single-cell DNA methylation sequencing (see

STARMethods). These CNV patterns are matched with those in-

ferred from cytoplasmic RNA-seq from the same single cells

(Figures 1C, S1E, and S1F). As controls, HPrEC cells and

WBCs show normal diploid copy numbers (Figure 1C; see
s from two patients, compared with a diploid normal prostate epithelial cell

uencing data were used to infer DNA copy number.

owing extensive PMDs (yellow) across 37 individual CTCs from four patients

es (LNCaP, PC3, VCaP, and 22Rv1). As controls, 4 bulk normal prostate (N.P.)

ormal leukocytes (WBCs) are shown. Normal methylation level (blue).

ndaries shared across individual CTCs and prostate cancer cell lines (E), with

ries of preserved methylation flanked by profound hypomethylation (F).

hed in PMDs versus PMIs (G), with differences among subtypes of repeats (H).
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Figure 2. Acquired chromatin marks in prostate cancer PMDs and nomination of shared core PMDs

(A) Differential enrichment of chromatin marks within prostate cancer PMDs and PMIs. Annotated chromatin marks from ChIP-seq dataset of PC3 cells in

ENCODE (https://www.encodeproject.org/). ns, not significant; *p < 0.05; **p < 0.01, assessed by permutation test.

(B) Line plots showing differential enrichment of silencing chromatin marks at PMDs across the genome in prostate cancer cells (LNCaP; 3 biological replicates,

red lines), compared with cultured benign prostatic hyperplasia cells (BPH-1; 2 biological replicates, green lines) and normal prostate epithelial cells (HPrECs; 2

(legend continued on next page)
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STAR Methods). As a final test, principal component analysis

(PCA) of promoter methylation patterns readily distinguishes all

tumor cells from normal controls (Figure S2A). Taken all together,

we applied highly stringent criteria, including both transcriptional

and DNA copy-number confirmation, to nominate 38/44 (86.4%)

initially selected CTCs as bona fide prostate CTCs for detailed

single-cell genomic analyses.

We quantified the methylation levels of individual cells by

binning the genome into 100 kb windows: the methylation distri-

bution of normal cells is unimodal, with a single peak near 80%

methylation, whereas virtually all tumor samples exhibit a

bimodal distribution, with a varying number of hypomethylated

regions (Figures 1D–1F and S2B; see STAR Methods). Overall,

DNA hypomethylation constitutes 20%–40% of the genome in

patient-derived prostate CTCs and prostate cancer cell lines

but <2.5%of the genome in N.P. cells or blood cells (Figure S2C).

In contrast to individual CGIs, which often demonstrate focal hy-

permethylation around gene regulatory regions, the hypomethy-

lated regions in prostate tumor cells span very large gene-poor

regions, consistent with previously described PMDs. In total,

we identified 1,496 PMDs with a mean size of 1.2 Mb (range

250 kb–9.2 Mb) across the prostate cancer genome, a number

consistent with previous measurements based on bulk tumor

sequencing in multiple advanced cancers8,12,34 (Figure S2D;

Table S2). Notably, in a chromosome-wide view and with the

high resolution afforded by single-cell methylation analysis,

some PMDs are punctuated by smaller regions, where DNA

methylation is retained (Figures 1D–1F). We call these preserved

methylation islands (PMIs; see defining criteria in STAR

Methods) (Figure S2D; Table S2). In contrast to large gene-

poor PMDs, the 1,412 PMIs interspersed within hypomethylated

domains are gene rich, with sharp methylation boundaries that

bracket a single gene or a small group of genes (mean PMI

size 1.3 Mb; range 30.8 kb–11.1 Mb) (Figures 1F and 1G). The

identification of PMIs raises the possibility that selection pres-

sures may preserve methylation, and potentially gene expres-

sion, at a small number of genes nested within PMDs.

As demonstrated in other cancers,12,13,35 PMDs are gene

poor and have strong enrichment of some endogenous retroviral

elements (ERVs), notably long terminal repeats (LTRs). In

contrast, PMIs in prostate cancer are gene rich with relative

absence of long interspersed nuclear elements (LINEs) and

LTRs (Figures 1G and 1H). Previous studies show that PMDs in

breast and colon cancers exhibit a depletion of active chromatin
biological replicates, blue lines). Across the genome, prostate cancer cells acquir

H3K9me3 enrichment toward the center of PMDs is not altered between cancer

(C) Boxplot showing the enrichment of Cut and Run signal for H3K27me3, but

transformed cell lines (HPrEC and BPH-1). p value, one-tailed Student’s t test.

(D) IGV track showing representative cancer-associated PMD (DNA hypomethy

cancer cells (LNCaP: red) versus non-transformed cells (HPrECs: blue, BPH-1: g

(E) Inter- and intra-patient heterogeneity of PMDs among single CTCs from four

Mean Jaccard index indicates heterogeneity, with higher mean score indicating

terval (CI).

(F and G) IGV representation of total PMDs and core PMDs at chromosome 3 loc

PMDs (blue) are the union of PMDs defined in each sample source, whereas core

PMDs from the single-cell components of an individual sample source (22 CTCs

(black) and neighboring non-core PMDs that are shared by >90% CTCs in this p

Methods for criteria in core PMD and PMI designation.
marks (H3K4me1/3, H3K27ac, and H3K36me3) and an enrich-

ment of repressive histone modifications, including H3K9me3

at the center of the domains and H3K27me3 at their borders.12,13

To confirm these chromatin changes in prostate cancer, we used

cultured cell lines to analyze chromatin landscapes using ChIP

assays. Analysis of prostate cancer cells (LNCaP and 22Rv1)

confirms the differential positioning of repressive H3K9me3

marks at the center and H3K27me3 at the border of hypomethy-

lated domains (Figures 2A, 2B, and S3A). However, direct com-

parison of cancer cells with non-transformed prostate epithelial

and basal cells (HPrEC and BPH-1) at the same PMDs indicates

that changes associated with malignancy primarily relate to

H3K27me3 deposition. Indeed, Cut and Run assays show pro-

found enrichment of H3K27me3 at PMD borders in cancer

cells compared with normal cells, whereas central H3K9me3

marks are abundant at these loci but invariant between normal

and cancer cells (Figures 2B–2D and S3A–S3C). Thus, hypome-

thylation-associated gene silencing in cancer cells is primarily

correlated with the acquisition of H3K27me3 histone modifica-

tion flanking these chromosomal domains. In contrast, genes

within PMIs show strong enrichment for the activation

(H3K4me1/3, H3K27ac, and H3K36me3) and absence of repres-

sion (H3K27me3 and H3K9me2/3) (Figure 2A).

At the single-cell level, both PMDs and PMIs show substantial

intra-patient and inter-patient heterogeneity (Figures 2E–2G and

S3D–S3F), leading us to define common domains shared across

all single prostate cancer cells that may identify common and,

hence, functionally significant pathways. Of 1,496 PMDs, only

40 (2.7%) are universally hypomethylated, with the mean quan-

tile normalized methylation level being <25%, across 78 cells

from all four patients with metastatic prostate cancer and four

prostate cancer cell lines (Figure S2D; Table S2; see STAR

Methods). The 40 core PMDs have a mean size of 2.5 Mb (range

353.4 kb–7.7 Mb) and encompass 143 protein-encoding genes,

a gene density of 1.44 gene/Mb. Hypomethylation associated

with cell proliferation is thought to be more rapid in loci that

have reduced CpG content.15,36 Indeed, we note that the core

prostate PMDs exhibit reduced CpG residue content, compared

with other PMDs across the genome (p < 0.0066, Figure S3G),

providing a possible explanation for their universal hypomethyla-

tion. In the same single prostate cancer cells, analysis of the

1,412 PMIs for intersection across all prostate cancer patients

and prostate cancer cell lines identifies 44 core PMIs (Fig-

ure S2D; Table S2; see STAR Methods). Core PMIs have a
e H3K27me3, with the highest levels at the boundaries of PMDs (left), whereas

and non-transformed prostate cells (right).

not H3K9me3, across prostate cancer PMDs between LNCaP cells and non-

lation: yellow), with pronounced enrichment of H3K27me3 at PMD borders in

reen), whereas PMD-centered H3K9me3 occupancy is unaltered.

prostate cancer patients (red) and single cells from prostate cancer cell lines.

less heterogeneity among samples. Error bar, mean with 95% confidence in-

us, across 8 sample sources (4 patients and 4 prostate cancer cell lines). Total

PMDs (black) are shared across all 8 sample sources (F); the representation of

from patient GU181) showing a core PMD shared across all sample sources

atient, but not across different sample sources (G). See Figure S2D and STAR

Cell 186, 2765–2782, June 22, 2023 2769
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Figure 3. Demethylation of core PMDs during

early prostate tumorigenesis suppresses im-

mune-related genes, whereas core PMIs

spare proliferation genes

(A) Schematic showing prostate tumor microdis-

section, single-nucleus isolation, and single-cell

DNA methylation sequencing.

(B) Ranking ofmethylation level at 40 core PMDs (red

dots) among all 1,496 total PMDs as a function of

timeline from normal prostate to localized (GS6 and

GS8) and metastatic cancers (CTCs), showing the

early demethylation of core PMDs. Within normal

prostate, all 40 core PMDs have methylation level

>75%, and 31 are hypomethylated as early as GS6.

(C) Quantitation of demethylation as a function of

Gleason score (GS). Demethylation of core PMDs

(red curve) precedes that of other PMDs (magenta)

within microdissected prostate tumor cells and in

CTCs. In contrast, core PMIs nested between PMDs

(blue) show minimal DNA methylation changes dur-

ing tumorigenesis. Error bar, mean with SEM. Sta-

tistical analysis of DNA methylation curves utilizing

longitudinal linear mixed effects model, by which

tumor progression 3 methylation domains was

tested.

(D) Quantitation of demethylation as a function of GS

in TCGA prostate cancer methylation array data,

showing early and progressive loss of methylation of

core PMDs (red curve), with an attenuated trend for

other PMDs (magenta). The core PMIs (blue) display

stable DNA methylation pattern during prostate

tumorigenesis. Statistical analysis as for (C).

(E and F) Gene set enrichment analysis (GSEA) of

genes residing within core PMDs and down-

regulated in primary prostate cancer (E) and of genes

residing within core PMIs with gene expression

preserved (upregulated and not significantly

changed) in primary prostate cancer (F), compared

with normal prostate. (FDR < 0.1; two-tailed Stu-

dent’s t test with FDR correction).
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mean size of 371.7 kb (range 27 kb–1.9 Mb) and harbor 255 pro-

tein-encoding genes, with a gene density of 15.6 genes/Mb

(Figure S3H).

Our single-cell analysis of prostate cancer cells identifies a

small fraction of PMDs that are universally shared, which we

describe as core PMDs, and it also reveals that interspersed

within these large PMDs are small gene-rich islands with pre-

served DNA methylation, which we call PMIs.

Hypomethylation of core PMDs is an early event in
prostate tumorigenesis
DNA hypomethylation progresses during cancer evolution to ul-

timately encompass large regions of the non-coding and gene-

poor genome within advanced cancers.37 By analogy with early

genetic driver mutations, however, non-random epigenetic
2770 Cell 186, 2765–2782, June 22, 2023
silencing may play an important role in initi-

ating tumorigenesis, with selection pres-

sures guiding recurrent early events. Hav-

ing defined core PMDs shared across

single metastatic prostate cancer cells,
we sought to identify genomic loci that are consistently subject

to early silencing during tumorigenesis. Given the characteristic

admixture of tumor and stromal cells in localized prostate can-

cer, we obtained frozen tissue sections from prostatectomy

specimens and purified single nuclei for molecular analysis.

The tumor origin of individual nuclei was confirmed by CNV in-

ferred from whole-genome bisulfite sequencing. In addition to

the Gleason histological scoring of localized prostate cancer,

we computed a CNV score (absolute DNA copy-number

changes per Mb) to quantify genomic instability in single nuclei

from different prostatectomy samples as an independent mea-

sure of tumor progression (Figure 3A; see STAR Methods). In to-

tal, we profiled 38 primary tumor nuclei from five patients with

low-grade (GS6) prostate cancer, 62 nuclei from another five pa-

tients with high-grade (GS R 8) disease, and 78 N.P. cells from
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adjacent tissue sections, comparing these with the 38 CTCs

from patients with metastatic disease (Table S1). Inferred CNV

from our high-resolution single-nucleus analysis identifies

Chr8p loss (containing NKX3-1, BMP1, and FGFR1 genes and

multiplemicroRNAs) as one of the earliest genetic events in pros-

tate tumorigenesis, shared by >43% of cancer cells in GS6 tu-

mors (Figure S4A). Early allelic loss of this locus has been re-

ported in prostate cancer.38–41 Interestingly, GS6 prostate

cancer cells with Chr8p loss showmore hypomethylation across

PMDs, pointing to coordinated early timing of CNV and hypome-

thylation (Figure S4B). At the single-cell level across different tu-

mors, hypomethylation at prostate PMDs exhibits less heteroge-

neity than hypermethylated CpG promoter regions (Figures S4C

and S4D).

Remarkably, core PMDs initially defined by their universal hy-

pomethylation in metastatic prostate cancer cells show pro-

found enrichment at the earliest stages of tumorigenesis. In early

GS6 tumors, 77.5% (31/40) core PMDs are hypomethylated,

compared with only 8% (115/1,456) of non-core PMDs (Fig-

ure 3B). Indeed, mean quantitative methylation levels within

core PMDs decline from 78.4% in N.P., to 70.4% in GS6,

57.2% in GS8, and 20.2% in metastatic CTCs. Comparable

methylation levels across all prostate PMDs declinemore slowly:

82.2% in N.P., 80.9% in GS6, 74.7% in GS8, and 57.6% in CTCs

(Figure 3C). By contrast, methylation at interspersed core PMIs

shows little change fromN.P. nuclei to GS6, GS8, andmetastatic

prostate CTCs. Compared with the hypomethylation of large

chromosomal domains, the focal hypermethylation of CGIs

within gene regulatory regions increases gradually from 27.5%

in N.P., to 30.7% in GS6, 31.9% in GS8, and 34.3% in CTCs

(Figure S4E), as does aneuploidy measured by CNV score (Fig-

ure S4F). We observed no confounding correlation (FDR > 0.1)

between CNV and DNAmethylation for core PMDs (Figure S4G).

Our observations of the accelerated progressive demethylation

of core PMDs in early prostate cancer are confirmed by the anal-

ysis of TCGA prostate cancer methylation array data stratified by

GS (Figure 3D), as well as whole-genome bisulfite sequencing in

primary and metastatic prostate tumors34,42 (Figure S4H). Core

PMIs show preserved methylation patterns independent of GS

(Figures 3D and S4H).

Taken together, core PMDs begin to lose DNA methylation

within indolent GS6 prostate cancers, one of the earliest identifi-

able lesions in prostate tumorigenesis. This early timing explains

their universal hypomethylation in advanced cancers, compared

with more heterogeneous hypomethylation domains that

emerge during subsequent tumor progression.

Silencing of immune-related genes within core PMDs
and persistent expression of proliferative genes
within PMIs
To address the functional consequences of early DNA hypome-

thylation, we identified protein-encoding genes localized to core

PMDs that display a loss of expression across the large prostate

cancer TCGA database.39 Among the 143 protein-coding genes

residing within the 40 core PMDs, 68 (48%) are consistently and

significantly differentially expressed between N.P. and primary

prostate tumors, with 61 (90%) suppressed and 7 (10%) induced

in cancer. Remarkably, 12 of 61 (20%) silenced genes within
core prostate PMDs are immune related. Gene set enrichment

analysis (GSEA) analysis reveals lipid antigen processing and

presentation (p < 1.96E�13) and cellular response to interferon

(p < 2.74E�5) as the two most highly enriched pathways (Fig-

ure 3E; see STAR Methods). Conversely, of the 255 protein-en-

coding genes within the 44 core PMIs, 161 (63.1%) are compa-

rably expressed in prostate cancer and N.P. tissues in the same

TCGA database. The top GSEA pathways all relate to cell prolif-

eration, including E2F targets (p < 0.000975) and DNA repair

(p < 0.00116) (Figures 3F, S4I, and S4J). As control, GSEA

pathway analysis does not identify statistically significant enrich-

ment among core PMD-derived genes that are not expressed or

not silenced in prostate cancer or among core PMI-derived

genes without preserved expression. Thus, the identification of

early and consistent changes in DNA methylation in prostate

cancer cells points to the silencing of immune-related genes

and selective sparing of genes encoding proliferative drivers as

initial steps in prostate tumorigenesis.

PMD-associated silencing of the CD1A-IFI16 gene
cluster
A remarkable feature of core PMD-associated gene silencing is

the targeting of the entireCD1 family of lipid antigen presentation

genes (CD1A, CD1B, CD1C, CD1D, and CD1E) and four inter-

feron-inducible genes of the Pyrin and HIN domain (PYHIN) fam-

ily involved in the immune sensing of non-self DNA (IFI16, AIM2,

PYHIN1, andMNDA). These genes are clustered within the same

core hypomethylation block at chromosome 1q23.1 (hereafter,

CD1A-IFI16 block), consistent with a single genomic locus play-

ing a major role in integrating these two immune recognition

pathways (Figure 4A). The CD1 gene family encodes MHC-

class-I-like molecules that exclusively present non-peptides

(e.g., glycolipids) to natural killer T (NKT) cells, a rare subset of

T cells implicated in both innate and adaptive immunity.43–45

The CD1 pathway is primarily implicated in innate immunity to

infectious agents, although a possible role for lipid antigens in

anti-tumor immunity is also postulated.46,47 Among interferon-

inducible genes, IFI16 is highly expressed in N.P. cells: it is re-

ported to bind non-self dsDNA in both nucleus and cytoplasm

in a DNA-length-dependent manner, recruiting STING and

further activating interferon signaling.48

The DNA methylation of the CD1A-IFI16 locus declines early

and rapidly, scoring as the 14th earliest across all genome-

wide PMDs measured at GS6 (Figure 4B). Heterogeneity in

hypomethylation at CD1A-IFI16 is evident within single prostate

cancer cells at early-stage GS6 tumors, progressively increasing

in both the fraction of tumor cells and degree of hypomethylation

within individual tumor cells as they evolve to GS8 and, ulti-

mately, to metastatic CTCs (Figures 4C and S5A). This early

and progressive loss of DNA methylation at the CD1A-IFI16

locus, compared with the slower rate of demethylation genome

wide, is also evident in the analysis of public databases of pri-

mary andmetastatic prostate cancers34,42 (Figure S5B). Analysis

of TCGA prostate cancer data stratified by GS further confirms

the early progressive loss of methylation within the CD1A-IFI16

locus (Figure S5C) and the associated transcriptional downregu-

lation of the encoded genes as early as GS6 tumors (Figure 4D).

The accelerated decline in DNA methylation at CD1A-IFI16 is
Cell 186, 2765–2782, June 22, 2023 2771



A B

C

D

F

E

G

H

I

J

(legend on next page)

ll
OPEN ACCESS

2772 Cell 186, 2765–2782, June 22, 2023

Article



ll
OPEN ACCESSArticle
not driven by gene copy-number changes, as confirmed by

comparing single nuclei with or without CNV at this locus

(Figure S5D).

Early DNA hypomethylation at the CD1A-IFI16 locus is not

restricted to prostate cancer. DNA methylation datasets at

defined stages of cancer progression are available for both colon

and thyroid cancers,9 both of which demonstrate earlier and

more progressive demethylation of CD1A-IFI16when compared

with other core PMDs (Figure S5E). Furthermore, the analysis of

methylation profiles in a TCGA cohort including more than 1,000

samples spanning 33 cancer types (https://portal.gdc.cancer.

gov) identifies the CD1A-IFI16 locus as consistently hypomethy-

lated in 23 different cancers (Figures S5F and S5G). Across all 33

cancer types, CD1A-IFI16 demonstrates the greatest degree of

DNA hypomethylation compared with all other core PMDs (Fig-

ure 4E), and 19 of the 33 cancers show a significant correlation

between the hypomethylation of this locus and reduced RNA

expression of CD1A-IFI16 resident genes (Figure S5H). Early

and profound DNA hypomethylation at CD1A-IFI16 is thus a

consistent feature across multiple cancers.

Along with the DNA hypomethylation of the CD1A-IFI16 locus,

we observed the expected enrichment for H3K27me3 chromatin

marks, comparing prostate cancer versus N.P. cell lines,

together with the suppression of the encoded genes within that

locus (Figures S6A–S6C; Table S3). Extending this analysis to

nuclei from microdissected GS6 and GS8 tumors using ultra-

low-input native ChIP-seq (ULI-NChIP), we observed marked

progressive enrichment of H3K27me3 at the CD1A-IFI16 locus

in early GS6 tumors compared with N.P. epithelium

(Figures S6D and S6E), whereas other PMDs show increased

H3K27me3 only at GS8 (Figure S6F). Finally, within high purity

TCGA prostate samples (tumor purity >0.5 inferred by

ABSOLUTE algorithm), all five lipid antigen presentation genes

and three of the four PYHIN interferon-inducible genes are sup-
Figure 4. Correlation of DNA demethylation at the CD1A-IFI16 locus wi

expression

(A) IGV of single-cell DNAmethylation at theCD1A-IF16 genomic locus including fi

cells (37 single CTCs from four prostate cancer patients [red] and 17 single cells fro

locus (shaded yellow), whereas normal samples (4 bulk normal prostate tissues a

preserved DNA methylation (shaded blue).

(B) Heatmap (upper; hypomethylation shaded yellow) andmatched quantitative sc

cancer PMDs, showing progression from normal prostate to localized prostate

vertical red line) shows early and profound demethylation, starting at GS6, with its

(C) IGV screenshot of single-cell DNA methylation data showing the progressive

prostate cells to localized (GS6 andGS8) andmetastatic prostate cancers (CTCs).

at GS6, becoming more prevalent at GS8 and uniform in CTCs.

(D) Plots showing the suppressed expression of lipid antigen presentation and int

normal prostate to low-grade GS6, with persistent silencing in higher-grade GS7

(E) Analysis of 33 different tumor types (TCGA) for DNA methylation differences at

of 35 (86%) evaluable PMDs are hypomethylated across all tumor types (red circ

(F) Histograms of DNAmethylation level within 100 kb windows (200 bp offsets) ac

(days 1 and 5), compared with DMSO control.

(G) Quantitation of H3K27me3-related fluorescence intensity within single-cell

Student’s t test.

(H) Sequential reduction in CD1d protein expression in normal prostate cells (BPH

flow cytometry (left); median fluorescence intensity (right). Error bar, mean with S

(I and J)Western blot showing reduced H3K27 trimethylation in 22Rv1 cells treated

IFI16 cluster show induced expression (J), whereas non-PMD-resident control g

comparison tests, in which GSK126 treatment conditions (red bars) were compa
pressed in primary prostate tumors (n = 188) compared with N.P.

(n = 14) (Figure S6G). The suppression of CD1A-IFI16 gene

expression is observed at the earliest time point of DNA hypome-

thylation (GS6), and it persists as DNA hypomethylation pro-

gresses, suggesting a potential threshold effect. Thus, im-

mune-related genes within the CD1A-IFI16 cluster are among

the earliest targets of cancer hypomethylation-induced tran-

scriptional silencing.

Functional recapitulation of hypomethylation-
associated silencing at the CD1A-IFI16 locus
To investigate the functional relationship amongDNAmethylation,

repressive chromatin marks, and the expression of PMD-resident

genes, we applied the DNA demethylating agent 5-azacytidine

(5 mM) to the human non-transformed cells (BPH-1), in which the

CD1A-IFI16 locus shows normal DNA methylation levels (Fig-

ure 4A). Global DNA methylation declines by 4.9% after 24 h of

5-azacytidine and by 37.7% after 5 days of drug exposure,

comparedwithDMSOcontrols (Figure4F),with theCD1A-IFI16 lo-

cus showing progressive DNA demethylation upon 5-azacytidine

treatment (FigureS7A). Bisulfite treatment andSanger sequencing

confirmgradual demethylation atCD1A-IFI16 (DMSO: 75.9%, day

5: 40.8%) (Figure S7B). Ectopically induced demethylation is

accompanied by a marked increase in the chromatin silencing

mark H3K27me3, as shown by the quantitative imaging of nuclei

(7.18-fold increase after 5 days) (Figures 4G and S7C), along with

H3K9me3 (FiguresS7DandS7E),andassociatedwith the reduced

expression of CD1 (Figure 4H). Thus, DNA hypomethylation ap-

pears to trigger the recruitment of chromatin suppressive marks

at the CD1A-IFI16 locus, along with the repression of the resident

genes.

We then tested the converse model using an inhibitor of

the EZH2 methyltransferase, GSK126, to suppress H3K27me3

in prostate cancer cells, in which the CD1A-IFI16 locus is
th the accumulation of chromatin silencing marks and reduced gene

ve lipid antigen presentation genes and four interferon-inducible genes. Tumor

m four prostate cancer cell lines [green]) exhibit marked hypomethylation at this

nd 37 single cells from normal prostate cell lines and leukocytes [blue]) show a

atter plots (lower) of single-cell DNAmethylation levels within all 1,496 prostate

cancer (GS6 and GS8) and metastatic CTCs. The CD1A-IFI16 locus (dashed

rank number across all PMDs at each tumor stage shown in parentheses (red).

demethylation of the CD1A-IFI16 locus (box with red dashed line) from normal

Heterogeneity of hypomethylation (shaded yellow) across single cells is evident

erferon-inducible genes within the CD1A-IFI16 locus during the transition from

, 8, and 9 cancers (TCGA dataset). Error bar, mean with SEM.

core prostate cancer PMDs, compared with corresponding normal tissues. 30

les), with the CD1A-IFI16 locus having the strongest hypomethylation.

ross the genome in normal prostate cells (BPH-1) after 5-azacytidine treatment

nuclei (confocal microscopy). Error bar, mean with SEM. p value, two-tailed

-1) treated with 5-azacytidine, compared with DMSO control. Representative

EM. p value, two-tailed Student’s t test.

with the EZH2 inhibitor GSK126 for 6 days (I); qPCR of genes within theCD1A-

enes (PP1A, HPRT, and b-actin) remain unchanged. p value, Tukey’s multiple

red with controls (blue bar). ns, not significant; ****p < 0.0001.
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hypomethylated and silenced. Treatment of three prostate can-

cer cell lines (22Rv1, LNCaP, and VCaP) with GSK126 results in

the loss of global H3K27 trimethylation, associated with a dra-

matic increase in the expression of all the genes within the

CD1A-IFI16 locus (Figures 4I, 4J, S7F, and S7G). Together, these

observations further support the role of chromatin silencing

marks in repressing coding genes within the CD1A-IFI16 locus

and other PMDs.

Re-expression of lipid antigen presentation or
interferon-inducible genes restores anti-tumor
immunity in mouse models
To explore the potential significance of CD1A-IFI16 silencing,

we tested the consequences of restored expression in a

murine model of early prostate tumorigenesis. The mouse pros-

tate cancer cell line Myc-CaP is derived from a genetically engi-

neered model with prostate-specific expression of a c-Myc

transgene driving androgen-dependent tumorigenesis.49 Sin-

gle-cell methylation sequencing ofMyc-CaP cells shows uniform

hypomethylation of two chromosomal loci syntenic with the sin-

gle human CD1A-IFI16 locus and encompassing the two murine

lipid antigen presentation genes (Cd1d1 and Cd1d2) and the

orthologous PYHIN interferon inducible genes (Ifi204, Aim2,

Pyhin1, andMnda), respectively (Figures S8A and S8B). Repres-

sive H3K27me3 and H3K9me3 marks are enriched at the Cd1d

and interferon-inducible genes (Figures S8A and S8B). The

major CD1murine orthologCd1d1 and the IFI16murine ortholog

Ifi204 are repressed inMyc-CaP tumor cells, comparedwith N.P.

tissues dissected from isogenic FVBmice (Figure 5A). We ectop-

ically expressedCd1d1 (16.1-fold) or Ifi204 (4.1-fold) inMyc-CaP

cells by lentiviral transduction, achieving levels comparable

with those of normal mouse prostate (Figure 5A; Table S3; see

STAR Methods). Cell surface localization of restored Cd1d1 is

evident using both flow cytometry and confocal microscopy

(Figures S8C and S8D).

Ectopic expression of Cd1d1 in Myc-CaP cells does not alter

proliferation in vitro, but these cells fail to produce tumors in

isogenic immune-competent FVB mice when inoculated either

subcutaneously or by direct intraprostatic injection (Figures 5B,

5C, and S8E). This effect is dependent upon immune cell activa-

tion because the inoculation of the same Cd1d1-expressing

Myc-CaP cells into immunodeficient NSG mice does not sup-

press their ability to give rise to primary tumors (Figure 5D).

Cd1d specifically mediates the presentation and activation of

lipogenic antigens to NKT cells, a rare T cell subpopulation ex-

pressing Cd40lg and Icos (http://rstats.immgen.org/Skyline/

skyline.html),50 and tumors from Cd1d1-restored Myc-CaP

cells in FVB immune-competent mice show an increased

expression of Cd40lg (2.8-fold; p = 0.0063) and Icos (3.2-fold;

p = 0.00023) compared with controls (Figure S8F; Table S3).

Flow cytometric analysis of tumor immune infiltrates in Cd1d1-

restored tumors indicates more abundant Cd1d-restricted

NKT cells (p = 0.0042), along with increased binding to the

high-affinity synthetic NKT cell ligand alpha-galactosyl ceramide

(a-GalCer) tetramer and an increase in the CD69 marker of NKT

cell activation (p = 0.0099) (Figures 5E and S9A–S9C). To test the

consequences of restored Cd1d1 expression in another mouse

isogenic tumor model, we restored Cd1d1 expression in the
2774 Cell 186, 2765–2782, June 22, 2023
LLC-1 lung epidermoid carcinoma model, which does not ex-

press Cd1d1. Ectopic expression of Cd1d1 in LLC-1 reduces

tumor growth upon subcutaneous inoculation into immune-

competent isogenic C57BL/6 mice, despite unaltered in vitro

proliferation (Figures S8G–S8J).

We then tested the effect of restored expression in Myc-CaP

cells of Ifi204, the murine ortholog of the interferon-inducible

gene IFI16. Re-expression of Ifi204 also suppresses Myc-CaP

tumorigenesis in immune-competent FVB mice, without any

anti-proliferative effect in vitro (Figures 5B and 5C). This effect

is not evident in immune-deficient NSG mice, pointing to an

immunological effect (Figure 5D). Tumors derived from Ifi204-ex-

pressing Myc-CaP cells in FVB mice show no difference in the

total number of CD4+ or CD8+ T cells or in the expression of

general markers of T cell activation (Figures 5F, S9D, and S9E).

However, compared with parental controls, Ifi204-reconstituted

tumors have a dramatic reduction in the expression of the co-

inhibitory receptor PD-1 within CD8+ T cells (p = 0.00042), along

with an increase in the functional intracellular cytokine tumor ne-

crosis factor (TNF)-a (p = 0.0374), all consistent with activated

CD8+ T cell cytotoxic function (Figures 5F, S9F, and S9G). No

change is evident in the expression of other co-inhibitory recep-

tors (TIGIT, LAG3, or TIM3) or cytokine (IFNg) in CD8+ T cells

(Figures S9H–S9K).

Thus, the ectopically restored expression of either CD1 or

IFI16 murine orthologs in cancer cells with DNA-hypomethyla-

tion-induced silencing suppresses tumor formation, a finding

only evident in immune-competent mice and associated with

the evidence of selectively increased anti-tumor activity. Our re-

sults indicate that at least two distinct immune populations are

impaired by the silencing of the CD1A-IFI16 locus (NKT cells

modulated by Cd1d1 and cytotoxic CD8+ T cells affected by

Ifi204), suggesting a complex immune-modulatory function of

this multigene locus in tumorigenesis.

Detection of CTC-derivedDNAhypomethylation in blood
specimens using nanopore sequencing
Although our study was focused on the characterization of

earlymethylation changes in prostate tumorigenesis and their po-

tential biological consequences, we also note the recent applica-

tion of CGI hypermethylation as a blood-based diagnostic assay

for early cancer detection.24,25 Genome-wide screening for

changes in DNA methylation may be more sensitive than muta-

tion-based assays, particularly in tumors like prostate cancers,

which do not harbor well-defined recurrent driver mutations.

Nonetheless among all the cancers tested, early prostate cancer

shows one of the lowest detection rates (11.2%), using screening

for CGI hypermethylation.25CTCs are shed into the bloodby inva-

sive localized prostate cancers long before they establish metas-

tases,51–53 raising the possibility that theymay provide an orthog-

onal assay for early cancer detection. Given the specificity of DNA

hypomethylation domains in cancer cells and their large genomic

size,we reasoned that theymayprovidehigh sensitivity andquan-

titative signal for cancer detection, after CTC enrichment in blood

specimens. For such blood-based rare cell signal detection

studies, we applied a screen for all prostate PMDs, rather than

the much smaller number of core PMDs, so as to increase

coverage to a large fraction of the prostate cancer genome.

http://rstats.immgen.org/Skyline/skyline.html
http://rstats.immgen.org/Skyline/skyline.html


A B

C D

FE

Figure 5. Restoring the expression of geneswithin theCD1A-IFI16 syntenic locus abrogates tumorigenesis in an immuno-competent mouse

prostate cancer model

(A) Plots quantifyingCd1d1 and Ifi204mRNA in the murine prostate tumor cell line Myc-CaP, which has silenced the syntenic genes (blue), compared with normal

prostate cells from 4 isogenic mice FVB (orange). Ectopic expression of murine Cd1d1 (CD1D ortholog, green) and Ifi204 (IFI16 ortholog, red) is comparable with

that of normal prostate. Error bar, mean with SEM.

(B) Overexpression (OE) of Cd1d1 or Ifi204 in Myc-CaP cells does not alter in vitro proliferation compared with controls. Error bar, mean with SD.

(C) Overexpression of eitherCd1d1 (green) or Ifi204 (red) inMyc-CaP cells (mCherry-luciferase tagged) suppresses tumorigenesis in isogenic immuno-competent

FVBmice.Mock-transfected control tumors are shown as control (blue). Tumor size quantified by luciferase imaging (representative images). Error bar, meanwith

SEM. Two subcutaneous tumors inoculated per mouse.

(D) Myc-CaP cells engineered as in (C) show no difference in tumor growth in immune-deficient NSG mice. Error bar, mean with SEM.

(E) Flow cytometry of Cd1d-restored Myc-CaP tumors in FVB mice, showing the recruitment of CD1d-restricted NKT cells (marked by a-GalCer CD1d tetramer)

and activated NKT cells (marked by CD69), compared with controls. Error bar, mean with SD.

(F) Flow cytometry of Ifi204-restored Myc-CaP tumors in FVB mice, showing unaltered infiltration of total CD4+ and CD8+ T cells but reduced immune infiltration

by PD-1+ CD8+ T cells and increased presence of TNF-a+ CD8+ T cells compared with controls. Error bar, mean with SD. p values, two-tailed Student’s t test; ns,

not significant.
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Oxford nanopore long-read native sequencing typically produces

sequencing reads up to 100 kb and directly identifies methylated

CpG residues (5mC) without requiring bisulfite conversion in

library preparation.54,55 In its current configuration, nanopore
signal analysis does not readily identify 5-hydroxymethyl cyto-

sines (5hmC), which are considerably less abundant than 5mC

and are also not distinguished from 5mC in conventional bisulfite

sequencing. Indeed, the nanopore sequencing of the VCaP
Cell 186, 2765–2782, June 22, 2023 2775
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prostate cancer cell line clearly defines DNA hypomethylation do-

mains, which faithfully recapitulate those identified in these cells

using standard bisulfite sequencing (Figures 6A and 6B). In

contrast to the short Illumina sequencing reads (usually harboring

<5 CpG sites per read), mathematical modeling indicates that the

long reads generated by nanopore sequencing would empower

detection with significantly higher precision for rare signal

(Figures 6C and 6D; see STAR Methods). We, therefore, pro-

cessed10mLbloodspecimens frompatientswith either localized

or metastatic prostate cancer using microfluidic enrichment to

deplete leukocytes (104-fold depletion) but without further CTC

purification or individual CTC micromanipulation (Figure 6E; see

STAR Methods). Although 23 age-matched healthy donors

(HDs) show minimal DNA hypomethylation signal (<0.6% of

sequencing reads), 6 out of 7 (86%) patientswithmetastatic pros-

tate cancer have significant signal (from 0.62% to 11.08% of

sequencing reads, p = 0.00011), as do6out of 16 (37.5%)patients

with localized prostate cancer (from 0.62% to 2.29% of

sequencing reads, p = 0.004) (Figures 6F and 6G; Tables S4 and

S5). Thus, long-range hypomethylated domains are universal

characteristics of prostate cancer, and they are detectable from

rare CTCs in patient-derived blood specimens. The simplicity

and cost effectiveness of nanopore sequencing raises the possi-

bility of hypomethylation-based cancer detection.

DISCUSSION

Using single-cell DNA methylation analysis, ranging from indo-

lent low-grade localized prostate cancer to metastatic

CTCs, we annotated at high resolution the shared hypomethyla-

tion domains that constitute core PMDs, along with interspersed

islands with preserved methylation, which we identify here as

PMIs. PMDs are known to be associated with the peripheral

and transcriptionally silenced B compartment of the nu-

cleus,13,56 raising the possibility that PMIs loop into the active

A compartment regions and hence are spatially distinct from

the surrounding silenced chromatin. Given intercellular hetero-

geneity, the denotation of core PMDswas derived from the inter-

section of PMDs acrossmany single cells frommultiple indepen-

dent prostate cancers. However, these core PMDs also stand

out by virtue of their detection in the earliest low-grade prostate

cancers (GS6), leading to the suggestion that they are driven by

early selective pressures in tumorigenesis and explaining their

universal silencing in advanced prostate cancers. Indeed,

silencing within core hypomethylation domains appears to target

immune-related genes, including a single chromosomal locus

containing the entire family of CD1 genes and a cluster of inter-

feron-inducible genes. PMIs, in contrast, preserve the expres-

sion of proliferation-associated genes implicated in cell-cycle

and DNA damage repair pathways. DNA methylation changes

may thus convey a selective advantage in prostate cancer devel-

opment, suppressing the expression of genes contributing to the

immune surveillance of nascent tumors while shielding neigh-

boring genes that enhance cell proliferation. Such selective pres-

sures could drive the very early targeting of the immune-rich

CD1A-IFI16 locus, as demonstrated by in vivo reconstitution ex-

periments in mouse models. Although early PMDs, such as the

CD1A-IFI16 locus, may emerge solely from selection pressures
2776 Cell 186, 2765–2782, June 22, 2023
favoring proliferating prostate cells that escape immune surveil-

lance, it is also possible that such loci have intrinsic properties

favoring the early loss of DNA methylation.

Early hypomethylation of core PMDs
The model that hypomethylation-associated gene silencing

occurs early and favors tumorigenesis differs conceptually

from a hypothesis proposed in a study of advanced colon can-

cers, according to which hypomethylation might serve an

intrinsic tumor suppressor mechanism, restraining uncontrolled

cell proliferation.13 Of note, the colon cancer study analyzed

bulk tumor material, encompassing cancer cells together with

reactive stroma and immune cells, and it, therefore, excluded

from analysis immune-related genes, whose cell of origin is

confounded by whole-tumor sequencing. Single-cell level anal-

ysis thus allows the assignment of all changes in DNA methyl-

ation to the appropriate cell type. Most important, however, is

our definition of a small subset of PMDs, annotated as core

PMDs (2.7% of all PMDs), that appear early in tumorigenesis

and are shared uniformly across multiple independent tumors.

The identification of early cancer drivers targeted by epigenetic

silencing is likely to differ from the contribution of additional

PMD-encoded genes that are silenced during subsequent can-

cer progression, as DNA hypomethylation extends across major

portions of the genome. Compared with the small number of

core PMDs identified in early cancers, the very large fraction of

the cancer genome that is hypomethylated in advanced tumors

may thus reflect distinct selection pressures, as well as

bystander effects affecting gene-poor PMDs and the de-repres-

sion of repetitive elements. Although our study was centered on

prostate cancer, the relevance of core PMDs extends to

other cancers, as illustrated by TCGA analyses showing their

consistent early hypomethylation across multiple tumors, in

contrast to most PMDs which show considerable inter-tumor

heterogeneity. Indeed, TCGA methylation data show that the

CD1A-IFI16 locus has the strongest difference in DNA methyl-

ation between 33 different cancers and their normal tissue coun-

terparts. This specific locus, encoding immune-related genes

that have not been previously nominated as critical cancer

genes, thus appears to be a consistent target of epigenetic

silencing in the early stages of tumorigenesis. Our functional as-

says using the demethylating agent 5-azacytidine and the EZH2

inhibitor GSK126 support the recruitment of chromatin silencing

marks to hypomethylated PMDs as a mechanism of transcrip-

tional silencing. However, further studies will be required to

better understand the selectivity of PMD hypomethylation

across the genome and both the genomic structure and selec-

tion pressures that distinguish core PMDs from more global

demethylation.

The CD1A-IFI16 immune gene cluster
The CD1A-IFI16 locus is unique in encompassing the entire

gene family of CD1 genes, which together mediate lipid

antigen presentation, together with the IFI16 class of inter-

feron-inducible genes. It is well established that genes that are

co-located within a single genomic locus may be targeted during

tumorigenesis by either chromosomal deletions or amplification

events, a single genetic event that may mediate simultaneous
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Figure 6. Detection of CTC-derived DNA hypomethylation in blood specimens using nanopore sequencing

(A) IGV screenshot showing the concordance of DNA hypomethylation measurements between the Oxford nanopore native sequencing of bulk VCaP cells

[B], compared with the Illumina bisulfite sequencing of three single VCaP cells (#1, #2, and #3). DNA methylation across the entire chromosome 4 is shown

(hypomethylation in shaded yellow).

(B) Scatter plot showing high Pearson correlation (r = 0.81) between nanopore native sequencing and Illumina bisulfite sequencing.

(C and D) Mathematical modeling showing minimal precision using short reads (average 5 CpG sites per read) for the detection of hypomethylated DNA domains.

Modest improvement in detection is provided by interrogating predetermined PMDs, instead of the whole genome (C). Significantly improved precision is

predicted using nanopore long-read sequencing (10 or 50 CpGs per read). Highest accuracy is predicted by combining nanopore long reads (>10 CpG sites per

read) with selected analysis-predetermined PMD regions (D).

(E) Schematic of microfluidic CTC enrichment, followed by direct nanopore sequencing of bulk cells (approximately 0.1% CTC purity). HMW, high molecular

weight.

(F and G) Scatter plot quantitation of hypomethylation signal by nanopore sequencing, comparing leukocyte-depleted blood samples from patients with either

metastatic (F) or localized prostate cancer before surgical resection or radiation therapy (G) versus blood samples from healthy age-matched male donors (HDs).

Error bar denotesmeanwith SEM. p value assessed by two-tailed Student’s t test. Dotted lines indicate the thresholds of hypomethylation signal that encompass

all healthy donors tested, with the fraction of cancer patients with hypomethylation signal above those thresholds considered positive.
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loss of function or gain of function among physically clustered

genes. Conceptually, the hypomethylation silencing of the

CD1A-IFI16 locus during early prostate tumorigenesis may

accomplish a similar function, suppressing the T cell recognition

of lipid antigens aswell as double-stranded DNA sensing, as part

of a single epigenetic event affecting both alleles. Such a potent

selective pressure could explain the early and frequent targeting

of this locus in cancer. The 1q23.1 genomic locus has been

linked in germline association studies to neurodegenerative dis-

ease and autoimmune diseases,57,58 and immunological path-

ways regulated by its resident genes have been linked to innate

immunity against infectious pathogens. The potential roles of

these genes in the immune surveillance of early cancers will

require further functional analyses. Alterations in antigen

presentation pathways constitute the most critical mechanisms

by which tumors evade both innate and therapeutic immune

activation.59,60 In this respect, the presentation of lipid antigens

to NKT cells, a highly specialized subpopulation of T cells, is of

particular interest, given potential therapeutic implications.

Within prostate cancer, the silencing of CD1A-IFI16 genes is

also noteworthy in that it points to tumor cell-intrinsic factors

contributing to the escape from immune surveillance, in addition

to the proposed immunosuppressive effects of the tumor

microenvironment.

Diagnostic implications
Finally, from a cancer diagnostic standpoint, the blood-based

detection of early invasive cancers remains a major technolog-

ical challenge. For prostate cancer, it requires the ability to distin-

guish between indolent lesions associated with non-specific

elevations in serum PSA and more aggressive cancers that

may have similar serum PSA levels but warrant therapeutic inter-

vention. Early invasive prostate cancers shed CTCs into the cir-

culation long before metastases are established,51–53 and

although these rare early CTCs may not be sufficient to cause

dissemination, they can serve as potential biomarkers of invasive

disease. Microscopic imaging of very rare CTCs in the blood-

stream is challenging; hence, there is a need for sensitive and

quantitative molecular readouts applied to CTC-enriched blood

specimens. Although this study was not designed to formally

test the nanopore sequencing of PMDs as a quantitative molec-

ular surrogate of CTCs, it suggests that such long-range DNA

sequencing strategies may complement current approaches

that rely on the hypermethylation of CGIs within short ctDNA

fragments. Such approaches may also enhance tissue-of-origin

determinations, given the information content inherent in such

long-range genomic analyses.

Limitations of the study
Our study suggests that the early hypomethylation of core PMDs

in prostate cancer differentially silences immune-surveillance-

associated genes while sparing genes that mediate cell prolifer-

ation. Although we find shared patterns of core PMDs across

multiple different cancers, it is also possible that distinct tumor

types will target alternative biologically relevant pathways. Addi-

tional studies in different early-stage cancers will be required to

distinguish shared hypomethylation targets from those showing

tissue-specific patterns, and additional patient-derived samples
2778 Cell 186, 2765–2782, June 22, 2023
will need to be analyzed within each tumor type. The potential

roles of lipid antigen presentation genes and IFI16-related dou-

ble-stranded-DNA-sensing genes in immune surveillance

deserve further functional analyses using additional experi-

mental systems to define their relevance in early tumorigenesis,

as well as their potential relevance for anti-cancer therapy.

Finally, the potential utility of PMD detection in blood-based can-

cer diagnostics will require further validation in larger numbers of

diverse clinical specimens.
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GCF_000001405.13/

Illumina Infinium Human Methylation 450 K

BeadChip

National Cancer; Institute’s

GDC Data Portal

https://portal.gdc.cancer.gov

DNA Methylation 450 K BeadChip datasets National Cancer Institute’s

GDC Data Portal

https://portal.gdc.cancer.gov

TCGA (PRAD samples) CBioPortal https://www.cbioportal.org/

Methylation profiles (TCGA cohorts, 33

cancer types)

TCGA Research Network https://portal.gdc.cancer.gov

Genome annotations (TSS, exon, intron, intragenic

regions, CpG islands (CGIs), repetitive elements

and UCSC gap regions) - UCSC genome table

browser

Karolchik et al.61 https://genome.ucsc.edu/cgi-bin/hgTables
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DNA methylation datasets (colon and thyroid) Timp et al.9 GEO: GSE53051

DNA methylation of normal prostate tissues and

primary prostate tumors

Yu et al.42 Obtained from authors. https://doi.org/10.1016/j.

ajpath.2013.08.0 18

DNA methylation of metastatic prostate tumors Zhao et al.34 dbGAP: phs001648

Experimental models: Cell lines

Human prostate cancer cell line (LNCaP,

clone FGC)

ATCC CRL-1740

Human prostate cancer cell line (VCaP) ATCC CRL-2876

Human prostate cancer cell line (PC3) ATCC CRL-1435

Human prostate cancer cell line (22Rv1 ) ATCC CRL-2505

Murine prostate cancer line (Myc-CaP) ATCC CRL-3255

Normal cultured prostate epithelial cells (HPrEC) ATCC PCS-440-010

Benign prostatic hypertrophy cells (BPH-1) Sigma-Aldrich SCC256

Murine Lewis lung carcinoma cells (LLC-1) ATCC CRL-1642

Experimental models: Organisms/strains

Mouse: FVB mice Jackson Laboratory Strain#001800

Mouse: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ Jackson Laboratory Strain#005557

Mouse: C57BL/6 Jackson Laboratory Strain#000664

Oligonucleotides

Primers for qRT-PCR This paper Table S3

Primers for Bisulfite PCR This paper Table S3

Recombinant DNA

pLenti-murine Cd1d1-mGFP Origene Cat#MR226027L4

pLenti-C-mGFP Origene Cat#PS100093

pLenti-Ifi204-Myc-DDK-Puro Origene Cat#MR222527L3

pLenti-C-Myc-DDK-Puro Origene Cat#PS100092

lentiCRISPRv2-blast Addgene Cat#98293; RRID:Addgene_982 93

N174-MCS Addgene Cat#81061; RRID:Addgene_810 61

pMD2.G Addgene Cat#12259; RRID:Addgene_122 59

psPAX2 Addgene Cat#12260; RRID:Addgene_122 60

Software and algorithms

QUMA Kumaki et al.62 http://quma.cdb.riken.jp/

ImageJ N/A https://imagej.nih.gov/ij/

FlowJo software (v10.4) BD Bioscience https://www.flowjo.com/

Trim Galore (v0.4.3) Babraham Bioinformatics https://github.com/FelixKrueger/TrimGalor e

Tophat (v2.1.1) Trapnell et al.63 https://github.com/inf hilo/tophat

Samtools (v1.3.1) Li et al.64 http://samtools.sourceforge.net/

HTseq (v0.6.1) Anders et al.65 https://htseq.readthedocs.io/en/master/

Cufflinks (v2.1.1) Trapnell et al.63 https://github.com/cole-trapnell- lab/cufflinks

R (v3.1.2) R Core Team66 https://www.R-project.org/

Graph Prism 9 GraphPad https://www.graphpad.com/

Bismark tool (v0.17.0) Krueger and Andrews67 https://github.com/FelixKrueger/Bismark

UCSC lift-over tool Hinrichs et al.68 https://genome.ucsc.edu/cgi- bin/hgLiftOver

ABSOLUTE algorithm Carter et al.69 http://software.broadinstitute.org/cancer/cga/

absolute_download

Molecular Signatures Database (MSigDB) (v7.2) Broad Institute & UC San

Diego; Subramanian, Tamayo

et al.,70; Liberzon et al71

https://www.gsea-msigdb.org/gsea/msigdb/

index.jsp
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Bioconductor package regioneR (v1.18.1) with

overlapPermTest function

Gel et al.72 https://www.bioconductor.org/packages/release/

bioc/html/regi oneR.html

Biological samples

Ginkgo Garvin et al.73 http://qb.cshl.edu/gin kgo

InferCNV (V 1.10.1) Tickle et al., 201974 https://github.com/broadinstitute/infercnv

BWA men Li and Durbin75 https://github.com/lh3/bwa

Sambamba Tarasov et al.76 https://github.com/biod/sambamba

MACS2 (v2.0.10) Zhang et al.77 https://github.com/macs3-project/MACS

DeepTools Ramı́rez et al.78 https://github.com/deeptools/deepTools

phyper R function Johnson et al., 199279 https://www.R-project.org/

ONT Albacore software (v2.3.1) Oxford Nanopore Technologies https://nanoporetech.com/community

Nanopolish software (v0.10.2) Simpson et al.54 https://github.com/nanoporetech/nanopoli sh

PRROC R-package Grau et al.80 https://cran.r-project.org/web/packages/

PRROC/index.html

BioRender BioRender https://www.biorender.com/

Other

Lipofectamine 2000 reagent Invitrogen Cat#1668019

LentiX concentrator Clontech Labs NC0448638

Polybrene Santa Cruz sc-134220

Nanopore MinION device with R9.4 flowcell Oxford Nanopore Technologies FLO-MIN106D

HRP conjugated secondary antibodies Bio-rad Cat#5196–2504

Laemmli buffer Sigma S3401-10VL
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RESOURCE AVAILABILITY

Lead contact
Further information required to reanalyze the data reported in this paper and requests for resources and reagents should be directed

to and will be fulfilled by the lead contact, Daniel A. Haber (dhaber@mgh.harvard.edu).

Materials availability
Plasmids generated in this study are available upon written request.

Data and code availability
d All raw and processed sequencing data in this study, including single-cell DNA methylation sequencing, single-cell RNA-seq,

ChIP-seq, Cut and Run assay and Nanopore sequencing, have been deposited to the NCBI Gene Expression Omnibus (GEO)

database under accession GSE208449. All data are publicly available as of the date of publication.

d This paper analyses existing, publicly available data or available upon request to the authors. These accession numbers for the

datasets are listed in the key resources table.

d This paper does not report original code. All the scripts andmathematical algorithms used in this studywill be available from the

corresponding authors upon request.

d All the versions of software packages used in this study are listed in the key resources table and noted in the data analysis

method accordingly.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical Specimens
All patient samples were collected in this study after written informed consent, in accordance with Institutional Review Board (IRB)

protocols (DF/HCC 05-300, 11-497, 13-217 or 14-375). For the CTC cohort, 10-20 ml of blood was drawn from patients with a diag-

nosis of metastatic prostate cancer, localized prostate cancer, or age-matched males without a diagnosis of cancer at Massachu-

setts General hospital (MGH). For the localized tumor tissue cohort, all samples were acquired from either core biopsies or surgical
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resection of untreated localized prostatic adenocarcinoma (Gleason scores 6 and 8) from patients at MGH. In cases with the lowest

grade tumors (Gleason score 6), normal prostate tissue was also identified in the tissue specimen by a Genito-Urinary (GU) special-

ized pathologist and used as a source of matched normal prostate cells. Both normal and tumor tissue samples were de-identified,

snap frozen and sectioned. Only tumor sections with >80% tumor content, as assessed by a specialized GU pathologist were used in

this study. The clinical data of the patients with metastatic prostate cancer enrolled in the single-cell CTC analysis and patients with

resected localized prostate cancer used for single nucleus analysis are described in Table S1. The clinical data of the patients with

localized prostate cancer and metastatic prostate cancer enrolled in Nanopore sequencing anlysis of CTC-enriched blood are

described respectively in Tables S4 and S5.

Cell culture
Human prostate cancer cell lines (LNCaP, VCaP, PC3 and 22Rv1), murine prostate cancer line (Myc-CaP), normal cultured prostate

epithelial cells (HPrEC), benign prostatic hypertrophy cells (BPH-1) and murine Lewis lung carcinoma cells (LLC-1) were all obtained

fromATCC, after authentication by short tandem repeat (STR) profiling. All cell lines used in the paper were derived frommalemice or

male human patients. They were cultured in the following media at 37�: RPMI-1640 (ATCC) medium supplemented with 10% FBS

(Gibco) and 1X Pen/Strep (Gibco) (for LNCaP, VCaP, PC3, 22Rv1 and BPH-1 cells); Prostate Epithelial Cell medium (ATCC) with

6 nM L-glutamine (ATCC), 0.4% Extract P (ATCC), 1.0 mMEpinephrine (ATCC), 0.5 ng/ml rh-TGFa (ATCC), 100ng/ml hydrocortisone

hemisuccinate (ATCC), 5 mg/ml rh-Insulin (ATCC), 5 mg/ml Apo-transferrin (ATCC), 33 mM Phenol red (ATCC) and 1X Pen/Strep/

Ampho Solution (ATCC) (for HPrEC cells); DMEM high glucose medium (Gibco) with 10% FBS (Gibco) and 1X Pen/Strep (Gibco)

(forMyc-CaP cells and LLC-1 cells). All the cell lines used in this studywere checked formycoplasma every 4months usingMycoalert

kit (Lonza).

Mouse xenograft assays
All animal experiments were carried out in accordancewith approved protocols by theMGHSubcommittee on Research Animal Care

(IACUC). All the mice used in this study were maintained under a 12/12 h light/dark cycle in MGH animal facility. 6-8 weeks old FVB

male mice (Jackson Laboratory, Strain#001800) or 6-8 weeks old male immunodeficient NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ)

mice (Jackson Laboratory, Strain#005557) were used for intraprostatic injection or subcutaneous injection of Myc-CaP cells stably

expressing luciferase and mCherry. 6-8 weeks old C57BL/6 female mice (Jackson Laboratory, Strain#000664) were used for subcu-

taneous injection of LLC-1 cells stably expressing luciferase. Littermates of the same sex were randomly assigned to experimental

groups. For intraprostatic inoculation, mice were first anesthetized using isoflurane, and a 1 cm skin incision was performed along the

midline of the abdomen to expose the inner muscle layer, which was then separated. The tip of seminal vesicle was raised gently with

forceps to expose the anterior lobe of the prostate gland. 50,000Myc-CaP cells 1:1mixedwithMatrigel (v/v) (total volume: 30 ml) were

slowly injected into the prostate lobe. All the tissues were then returned into the abdomen, and continuous sutures were used to close

the inner muscle layer, followed by separate skin closure. For subcutaneous injections, mice were anesthetized, and 50,000 Myc-

CaP cells or 1,000,000 LLC-1 cells 1:1 mixed with Matrigel (v/v) (total volume: 100 ml) were injected into the flank. Tumor cell-derived

bioluminescent signal was quantified every other day for the Myc-CaP cells and 3 times a week for the LLC-1 for mice after either

orthotopic injection or subcutaneous injection. At 2-3 weeks after inoculation, mice were sacrificed and tumors were harvested

for flow cytometry and RNA extraction for the Myc-CaP experiments.

METHOD DETAILS

CTC isolation
CTCswere isolated from fresh blood specimens drawn frompatients with prostate cancer, following negative depletion of leukocytes

using the microfluidic CTC-iChip as reported previously.26,27 Briefly, 10-20 ml of whole blood specimens were incubated with bio-

tinylated antibody cocktails against CD45 (R&D Systems, clone 2D1), CD66b (AbD Serotec, clone 80H3), and CD16 (BD Biosci-

ences), followed by incubation with DynabeadsMyOne Streptavidin T1 (Invitrogen) for magnetic labeling and depletion of leukocytes.

After CTC-iChip processing, the CTC-enriched product was further stained with FITC-conjugated antibody against EpCAM (Cell

Signaling Technology, clone VU1D9) and PE-conjugated antibody against CD45 (BD Biosciences, clone HI30). Single CTCs (FITC

positive and PE negative) or white blood cells (WBCs, FITC negative and PE positive) were individually picked into PCR tubes con-

taining 5 ml RNA/DNA lysis buffer using micromanipulator (Eppendorf TransferMan NK 2) and snap-frozen in liquid nitrogen. In total,

38 CTCs from 5 different patients (GU114, GU169, GU181, GU216 and GURa15) with metastatic prostate cancer were individually

picked, sequenced and lineage-confirmed based on transcriptome and DNA copy number. One patient sample (GU169) had only

one CTC, and it was therefore excluded from some downstream analyses focused on the four patients with multiple CTCs.

Nuclei isolation from frozen tumor sections
Tumor tissue sections with high tumor content (>80%) and adjacent normal tissue section were micro-dissected and transferred

into a pre-chilled Dounce homogenizer containing ice-cold 1 ml 1X HB buffer (0.26 M sucrose, 30 mM KCl, 10 mM MgCl2,

20 mM Tricine-KOH, 1 mM DTT, 0.5 mM Spermidine, 0.15 mM Spermine, 0.3% NP-40 and 1X complete protease inhibitor). Tissue

was homogenized with�10 strokes of ‘‘A’’ loose pestle, followed by another�10 strokes of ‘‘B’’ tight pestle. The tissue homogenate
Cell 186, 2765–2782.e1–e10, June 22, 2023 e5
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was then filtered using a 70 mm strainer and pelleted by centrifugation. Nuclear pellets were resuspended and purified by density

gradient centrifugation (top layer: 25% Iodixanol solution; middle layer: 30% Iodixanol solution; bottom layer: 40% Iodixanol solu-

tion). The nuclear band at the interface of 30% and 40% Iodixanol solutions was collected into a new Eppendorf tube and washed

twice with ice-cold 1X PBS. 20% of the purified nuclei were used to isolate single nuclei using fluorescence-activated cell sorting

(FACS) for single-cell DNA methylation analysis, while the remaining 80% of the nuclei were subjected to ChIP-seq analysis.

Western Blot
Cells or tumor tissues were lysed in Laemmli buffer (Sigma) and cleared. Protein concentration was determined using DC protein

assay (Bio-rad). Proteins (25 mg) were separated on precast NuPAGE 4–12% Bis-Tris protein gels (ThermoFisher), and transferred

onto nitrocellulose membranes (Bio-Rad). After blocking with 5% BSA buffer for 1 hour at room temperature, membranes were

incubated with primary antibodies overnight at the recommended concentrations. HRP conjugated secondary antibodies

(1:10,000; Bio-rad; Cat#5196–2504) were applied, and ultra-sensitive autoradiography film (Amersham) was used to detect the

chemiluminescence signal. Primary antibodies used are H3K27me3 (1:1,000, Invitrogen Cat#MA5-11198) and H3 total (1:1,000,

Abcam Cat#1791).

5-Azacytidine treatment, bisulfite sequencing and staining of chromatin marks
The human prostate epithelial cell line BPH-1 was cultured in the presence of 5 mM 5-azacitidine (Selleck, #S1782). At serial time

points (days 0, 1, 4 and 5), cells were collected for DNA extraction, confocal microscopy, or flow cytometric analysis. DMSO-treated

cells were used as control at each time point. To quantify 5-azacitidine-induced demethylation at the genomewide level, we used the

whole genome bisulfite sequencing (WGBS). Briefly, DNAws extracted fromBPH-1 cells upon 5-azacitidine treatment, 1 mg genomic

DNA was used to sonicate into 300-500 bp fragments, DNA was end-polished, A-tailed and ligated with pre-methylated adaters

before bisulfite conversion using EZ DNA methylation kit (Zymo, #D5001), bisulfite-converted DNA was amplified and sample index

was introduced during amplification. To quantify 5-azacytidine-induced demethylation at theCD1A-IFI16 locus, DNA extracted from

BPH-1 cells treated with 5-azacitidine was subjected to bisulfite conversion using EZ DNA methylation kit (Zymo, #D5001), and

bisulfite-converted DNA was used for PCR amplification, applying bisulfite-specific PCR primers covering the human CD1A-IFI16

locus (see Table S3). PCR products were purified by 1% agarose gel and cloned using the Zero blunt PCR cloning kit

(ThermoFisher, #K270020). 10 individual bacterial clones were randomly picked for Sanger sequencing. Sequencing data were

analyzed and shown using online tool QUMA (http://quma.cdb.riken.jp/).62 Nuclear accumulation of H3K27me3 was stained with

H3K27me3 antibody (1:1000 dilution; CST#9733), in 5-azacytidine-treated cells. Images were acquired using a Zeiss LSM710

Lase Scanning Confocal and were quantified by quantitative image analysis of cells (ImageJ). Flow cytometry was also performed

at serial time points on BD LSRFortessa machine to assess CD1d expression using human CD1d-APC antibody (1:100 dilution;

BioLegend#350308, clone: 51.1).

EZH2 inhibitor treatment
Human prostate cancer cell lines (22Rv1, LNCaP and VCaP) were cultured in the presence of the small molecule EZH2 inhibitor

GSK126 (Selleckchem, #S7061) at the indicated concentration (0, 5 or 10mM). After 6 days of treatment, protein and RNA were har-

vested, for quantitation of H3K27me3 and total H3, using Western blotting and expression of individual genes within the CD1A-IFI16

locus by real time qPCR.

Paired single-cell DNA methylation and RNA-seq
For these experiments, we used either single CTCs or WBCs individually picked from fresh blood specimens after CTC enrichment,

and single cells from cultured prostate cell lines (either picked or FACS-sorted). These were subjected to paired single-cell DNA

methylation and RNA-seq analysis to obtain the transcriptomes and DNA methylomes from the same single cells.33,81 Briefly, single

cells were first lysed in 5 ml DNA/RNA lysis buffer; 0.5 ml Magnetic MyOne Carboxylic Acid Beads (Invitrogen, Cat#65011) were then

added to each single cell lysate to facilitate segregation of nucleus versus cytoplasm. After centrifugation and magnetic separation,

the supernatant (containing cytoplasmic RNA) was transferred into a new tube for single-cell RNA-seq amplification using the

SMART-seq2 protocol,82 while the pellet (aggregated beadswith the intact nucleus) was resuspended in DNAmethylation lysis buffer

and subjected to single-cell whole genome methylation sequencing using the scBS-seq protocol.83 Single nuclei sorted from the

frozen primary prostate tumor sections were also subjected to the scBS-seq procedure.

MNase native ChIP-seq
Purified nuclei from frozen tissue sections were subjected to MNase native ChIP-seq following the ULI NChIP procedure, as pub-

lished elsewhere.84 Briefly, nuclei were suspended in Nuclear Isolation Buffer (Sigma) supplemented with 1% TritonX 100, 1% De-

oxycholate and 1X complete protease inhibitor. Chromatin was digested by MNase enzyme (NEB, 1:10 diluted) at 21�C for 7.5 min,

and further diluted in Complete Immunoprecipitation Buffer, with 1X complete protease inhibitor. 2 ml ChIP-grade H3K27me3 (Active

motif, Cat#39155) or H3K9me3 (Abcam, Cat#ab8898) antibody was incubated with the digested chromatin overnight at 4�C. DNA
was then purified using protease K digestion followed by phenol-chloroform extraction. ChIP-seq sequencing libraries were prepared

using NEBNext Ultra II DNA Library Prep Kit (NEB, Cat#E7645L).
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Cut and Run Assay
H3K27me3 and H3K9me3 Cut and Run assays were performed with cultured prostate cell lines (LNCaP, 22Rv1, BPH-1, HPrEC and

Myc-CaP), using the CUT&RUNAssay kit (CST, Cat#86652S). Briefly, 100,000 freshly cultured prostate cells were collected and incu-

bated with concanavalin A Magnetic Beads. 2 ml ChIP-grade H3K27me3 (Active motif, Cat#39155) or H3K9me3 (Abcam,

Cat#ab8898) or IgG (CST, Cat#66362S) antibody was added to the cell: bead suspension and incubated overnight at 4�C. 1.5 ml

pAG-MNase enzyme was then added to the tube, which was rotated for 1 h at 4�C, followed by activation of pAG-MNase

using 3 ml cold Calcium Chloride. The activation reaction was stopped and DNA was further diluted and collected for phenol-chlo-

roform extraction. Cut and Run sequencing libraries were constructed using NEBNext Ultra II DNA Library Prep Kit (NEB,

Cat#E7645L).

Next generation sequencing
All the single-cell RNA-seq, single-cell DNA methylation, MNase ChIP-seq, Cut and Run samples and WGBS samples were molec-

ularly barcoded, pooled together and sequenced on a HiSeq X sequencer to obtain 150 bp pair-ended reads (Novogene).

RNA extraction, reverse transcription and quantitative PCR (qPCR)
RNA extracted from cultured prostate cells was prepared using the RNeasy Mini kit (QIAGEN) with DNase I digestion on the column.

To extract RNA from mouse tumor tissues, these were first dissected to remove connective tissue and fat, and washed extensively

with 1X PBS to remove excessive blood or necrotic tissues. Tumors were then homogenized in RLT RNA lysis buffer using a Dounce

homogenizer, and passed through aQIAshredder column (QIAGEN). RNA from normal prostate of FVBmice were prepared following

a similar method. RNA from tissue homogenate was extracted using the RNeasy Mini kit (QIAGEN) with DNase I digestion on the

column. cDNA was synthesized from 50-200 ng RNA using SuperScript III One-Step qRT-PCR kit (Invitrogen). qPCR was performed

using the primers listed in Table S3.

CD1d expression measurement by flow cytometry
Cell surface protein expression of CD1d in human and mouse prostate cells was assessed by flow cytometry. Cells were first trypsi-

nized, and 500,000 cells were used for staining with antibody against CD1d at 4�C for 20 min, followed by washing and quantitation

using a BD LSRFortessamachine, and data were analyzed using FlowJo software (v10.4; https://www.flowjo.com/). Antibodies used

were as follows: for human prostate cell lines, APC conjugated anti-human CD1d (BD#563505, clone: CD1d42) and APC-conjugated

isotype control (BD#555751); for Myc-CaP cells, anti-mouse CD1d (Bio X Cell #BE0179, clone 20H2) and the isotype control (Bio X

Cell #BE0088), and secondary antibody anti-rat IgG conjugated with APC (Invitrogen #A10540).

Plasmid construction
A lentiviral murineCd1d1 expression construct (pLenti-Cd1d1-mGFP, Cat#MR226027L4) and its matched control construct (pLenti-

C-mGFP, Cat#PS100093) were obtained from Origene. Murine Ifi204 expression vector (pLenti-Ifi204-Myc-DDK-Puro,

Cat#MR222527L3), together with its control vector (pLenti-C-Myc-DDK-Puro, Cat#PS100092) were also purchased from Origene,

and the puromycin selection cassette of these two Origene plasmids were replaced by blasticidin from lentiCRISPRv2-blast plasmid

(Addgene#98293) using NEBuilder HiFi DNA Assembly Cloning kit (NEB, Cat#E5520S). For the LLC-1 experiment, the murine Cd1d1

was cloned into the receiving vector N174-MCS (Addgene#81061) with the restriction enzymes EcoR1 and Mlu1, using the

FastDigest protocol of Thermo Scientific. All final construct sequences were confirmed by Sanger sequencing. Plasmids generated

in this study are available upon written request.

Lentiviral transduction
Early passage 293T cells were transfected with Cd1d1 or Ifi204 lentiviral constructs, together with pMD2.G (Addgene#12259) and

psPAX2 (Addgene#12260) packaging plasmids using Lipofectamine 2000 reagent (Invitrogen). 48-72 h after transfection, cultureme-

dium (containing lentiviral particles) was collected, filtered and concentrated using LentiX concentrator (Clontech). Concentrated vi-

rus was added to the Myc-CaP cells in presence of polybrene (Santa Cruz, 8 mg/ml as final concentration) overnight. FACS was used

to select GFP positive cells as marker of Cd1d1 construct transduction in the Myc-CaP cells. The LLC-1 cells transduced with the

Cd1d1 cloned in the the N174-MCS vector were selected using G418 (Sigma Aldrich #G8168) at 400 mg/mL for 4-6 days. To obtain

stable Ifi204 overexpression, 10 mg/ml blasticidin (InvivoGen) was added to the medium for 5-7 days selection.

Tumor immune infiltration assayed by flow cytometry
Mouse tumors generated by intraprostatic injection of control or Cd1d1-expressing Myc-CaP cells were dissected and washed to

remove blood, fat and connective tissues. Tumor tissues were further mashed and digested in 5 ml digestion buffer (RPMI1640,

2.5 mg/ml collagenase D, 0.1 mg/ml DNase I) at 37�C for 30 min. Tissue digestion was stopped by adding another 5 ml

RPMI1640 with 2% FBS, and then filtered through 70 mm strainers. The tissue cell suspension was obtained in the same way for tu-

mors generated by subcutaneous injection of control or Ifi204 expressing Myc-CaP cells. To stain for NKT cell infiltration in

prostate tumors with control or Cd1d1 expression, the single-cell suspension was first blocked with rat anti-mouse CD16/CD32

blocking reagent (BD#553142, Clone: 2.4G2) at 4�C for 30 min, followed by mouse NKT surface antibody cocktail staining at 4�C
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for another 30 min. The mouse NKT surface antibodies used in this study were: BV510-viability dye (BD#564406), APC-a-GalCer-

mCD1d Tetramer (TetramerShop#MCD1d-001), BV711-CD69 (BioLegend#104537, clone: H1.2F3), PerCP-Cy5.5-TCRb (Bio-

Legend#109228, clone: H57-597), BV605-CD3e (BioLegend#100351, clone: 145-2C11) and BUV395-NK1.1 (BD#564144, clone:

PK136). Cells obtained frommouse tumors with control or Ifi204 expression were split into two fractions, with the first fraction stained

using a panel of mouse T cell surface antibody cocktails: BV510-viability dye (BD#564406), PerCP-Cy5.5-TCRb (Biolegend#109228,

clone: H57-597), BV711-CD8 (Biolegend#100759, clone: 53-6.7), BV650-CD4 (Biolegend#100546, clone: RM4-5), FITC-CD44

(Biolegend#103006, clone: IM7), PE-Cy7-PD-1 (Biolegend#109110, clone: RMP1-30), BV421-TIM3 (BD#747626, clone: 5D12),

APC-TIGIT (Biolegend#156106, clone: 4D4/mTIGIT) and BV785-LAG3 (Biolegend#125219, clone:C9B7W). The second fraction

was used to stain for surface and intracellular cytokines by first activating cells with Cell Stimulation Cocktail (eBioscience#00-

4970-93) together with Protein Transport Inhibitor Cocktail (eBioscience#00-4980) in 37�C cell culture incubator for 4 h. The cells

were then stained for surface antigens before fixation, and subsequently processed for intracellular cytokine staining using BD

Fixation/Permeabilization Solution Kit (BD#554714). Antibody cocktails used for surface and intracellular cytokine staining

were: BV510-viability dye (BD#564406), PerCP-Cy5.5-TCRb (Biolegend#109228, clone: H57-597), FITC-CD44 (Biolegend#103006,

clone: IM7), PE-TNFa (Biolegend#506306, clone: MP6-XT22), BV650-CD4 (Biolegend#100546, clone: RM4-5), BV711-CD8

(Biolegend#100759, clone: 53-6.7) and BV605-IFNg (Biolegend#505840, clone: XMG1.2). All flow cytometry was done on the BD

LSRFortessa machine, and data were analyzed using FlowJo software (v10.4; https://www.flowjo.com/).

Multiplex Oxford Nanopore native sequencing
Blood samples from either healthy donors or patients with localized or metastatic prostate cancer were subjected to CTC-ichip

enrichment (104-fold leukocyte depletion).26,27 The enriched CTCs (ranging from 0.1% to 1% purity, admixed with residual leuko-

cytes) were subjected to high molecule weight (HMW) DNA extraction using the HMW DNA extraction kit (QIAGEN), and then pre-

pared for Oxford Nanopore sequencing using the rapid barcoding kit (Nanopore#SQK-RBK004). For each sequencing run, 11 blood

samples (either from healthy donors or cancer patients), together with 1 lambdaDNA (unmethylated control), were uniquely barcoded

and pooled together. Sequencing was performed using a Nanopore MinION device with R9.4 flowcell for 48 h, per manufacturer

instructions.

Single-cell and bulk RNA-seq data analysis
Raw fastq reads generated from HiSeq X sequencer were first cleaned using TrimGalore (v0.4.3) (https://github.com/FelixKrueger/

TrimGalore) to remove the adapter-polluted reads and reads with low sequencing quality. Cleaned reads were aligned to the human

(hg19) ormouse (mm9) genome using Tophat (v2.1.1).63 PCR duplicateswere further removed using samtools (v1.3.1),64 gene counts

were computed using HTseq (v0.6.1),65 gene expression level (FPKM) was further calculated using cufflinks (v2.1.1).63 Gene expres-

sion matrix was subjected to R (v3.1.2) or Prism9 for graphics.

Single-cell and bulk DNA methylation sequencing data analysis
Raw fastq reads from both the single-cell and bulk DNAmethylation sequencing were first trimmed using TrimGalore (v0.4.3) (https://

github.com/FelixKrueger/TrimGalore), and cleaned reads were aligned to the human hg19 or mouse mm9 genome (in silico bisulfite

converted) using Bismark tool (v0.17.0).67 Samtools (v1.3.1)64 was used to remove PCR duplicates, and CpG methylation calls were

extracted using the Bismarkmethylation extractor.67 0.1% lambda DNAwas spiked in, prior to bisulfite treatment, for each sample to

assess the bisulfite conversion efficiency. Only samples with more than 4 million unique CpG sites covered at least once and with a

bisulfite conversion rate > 98% were used in this study.

TCGA methylation array data reanalysis
Prostate DNA methylation datasets from TCGA analyzed by Illumina Infinium Human Methylation 450 K BeadChip were

downloaded from the National Cancer Institute’s GDC Data Portal (https://portal.gdc.cancer.gov) for 502 tumor samples

and 50 normal samples. CpG site-level methylation files (beta value, txt format) were first converted to hg19 coordinates us-

ing UCSC lift-over tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver) for the downstream analysis. The data were binned to a

fixed set of 10 kb nonoverlapping genomic windows by computing the average fraction methylation within each bin in each

sample. Bins were excluded if they lacked coverage (i.e., had no probes on the Illumina Infinium Human Methylation 450 K

BeadChip array) or had a mean normal-tissue methylation level, averaged across all the normal samples, of <70%. For each

sample, the global methylation level was calculated as the fraction of bins having methylation >50%. The methylation level at

the CD1A-IFI16 locus for each sample was calculated as the fraction of bins in the range chr1:158,130,000-158,340,000

(hg19) having methylation >50%. The gene expression data and clinical information of TCGA PRAD samples, including Glea-

son score, tumor stage and others, were all downloaded from cbioportal (https://www.cbioportal.org/). Tumor purity was

calculated using ABSOLUTE algorithm.69 DNA Methylation 450 K BeadChip datasets for other cancer types were also down-

loaded from the National Cancer Institute’s GDC Data Portal (https://portal.gdc.cancer.gov) and CpG site-level methylation

files (beta value, txt format) were also converted to hg19 coordinates using UCSC lift-over tool (https://genome.ucsc.edu/

cgi-bin/hgLiftOver) for the downstream analysis.
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Genomic element enrichment analysis
For analytical purposes, a promoter region was defined based on the relative position to a transcription start site (TSS): 1,500 bp up-

stream and 500 bp downstream. The annotations of TSS, exon, intron, intragenic regions, CpG islands (CGIs), repetitive elements

and UCSC gap regions were all downloaded from UCSC genome table browser (https://genome.ucsc.edu/cgi-bin/hgTables).61

Enrichment analysis on different genomic elements was calculated using the Bioconductor package regioneR (v1.18.1) with overlap-

PermTest function.72

DNA copy number analysis inferred by single-cell DNA methylation sequencing data
Single-cell DNA methylation sequencing reads were first aligned to the genome using Bismark. Uniquely aligned reads were ex-

tracted into a bed file and subsequently submitted to Ginkgo online tool,73 http://qb.cshl.edu/ginkgo) to infer the DNA copy number,

using 5 Mb as the bin size. The processed integer copy number data from the Ginkgo website (SegCopy.tsv) was used to calculate

the DNA Copy Number Variation (CNV) score. Given an assignment of a copy number to all the locations in a diploid genome, we

define a CNV score for any given single cells as follows. Let ci be the copy number at the ith location of the genome. CNV score

is then defined to be the average over all i in the genome of the absolute value of (ci-2).

DNA copy number analysis inferred by single-cell RNA-seq data
Single-cell RNA-seq reads were aligned to human genome using TopHat, and large-scale chromosomal copy number alterations

were determined by InferCNV (https://github.com/broadinstitute/infercnv).

MNase ChIP-seq and Cut and Run data analysis
ChIP-seq and Cut and Run reads were first trimmed by Trim Galore (v0.4.3) (https://github.com/FelixKrueger/TrimGalore) and then

mapped to the human or mouse genome using BWA men.75 Duplicated reads were marked by sambamba76 and further removed

using samtools.64 MACS2 (v2.0.10)77 was used to call the peaks and deepTools78 were used to compute the ChIP-seq or Cut

and Run signal around prostate PMDs.

Determination of Partially Methylated Domains (PMDs)
The human genome was first binned into 100 kb windows placed at 200 bp offsets. Windows that intersected CGIs or UCSC gap

regions were discarded. For each source (i.e., single CTCs from patients with prostate cancer, single WBCs from healthy donors,

single cells from normal prostate or prostate cancer cell lines or normal prostate tissues,42 the per-source methylation level of

each window was calculated by taking the average over all cells from that source of the methylation level of the CpG sites within

the given window. For each source the distribution of the per-source methylation level of the 100 kb windows was plotted. Normal

cells showed a unimodal distribution, while prostate cancer cells showed a bimodal distribution. A threshold for hypomethylation

determination was set at the lowest point of the valley in the histogram of the bimodal distribution for each prostate cancer patient

or prostate cell line; if the distribution was unimodal, the threshold was set to 60%. The windows with methylation level lower than

threshold were defined as hypomethylation windows and overlapping hypomethylation windows were merged into per-source

PMDs. The 250 kbminimal length thresholdwas then applied to the per-source PMDs. The union of the per-source PMDs for all single

CTCs from four prostate cancer patients (GU114, GU216, GURa15 and GU181) and for all single cells from four prostate cancer cell

lines (LNCaP, VCaP, 22Rv1 and PC3) was defined as the total prostate PMDs (1,496 in total). Chromatin mark and genome element

enrichment analyses were performed on these PMDs. To identify the genes that reside in the most consistently hypomethylated

PMDs across all prostate cancer specimens analyzed (i.e., intersection), we quantile-normalized the DNA methylation levels for all

PMDs among all CTCs from four prostate cancer patients (GU114, GU216, GURa15 andGU181) and all single cells from four prostate

cancer cell lines (LNCaP, VCaP, 22Rv1 and PC3) and only used the PMDs (annotated as core prostate PMDs) with their averaged

quantile-normalized DNA methylation level less than 25% across these 8 sources to extract the genes.

Determination of Preserved Methylation Islands (PMIs)
After identification of PMDs for each of the eight sample sources [CTCs from four prostate cancer patients (GU114, GU216, GURa15

and GU181) and single cells from four prostate cancer cell lines (LNCaP, VCaP, 22Rv1 and PC3)], we defined small interspersed

islands (‘‘gaps’’) with preserved methylation (sample source PMIs) using the following criteria: (1) every PMI is flanked by defined

PMDs in each given source; (2) length of each PMI should be >30 kb and <3Mb. Total prostate PMIs were defined by taking the union

of sample source PMIs across 8 sources (1,412 in total), while core prostate PMIs (44 in total) were defined by requiring the uniformity

across sample sources: the genomic location of given PMI is overlapped in all 8 sample sources.

Differential gene expression and hypergeometric gene set enrichment analysis (hGSEA)
Differential gene expression between TCGA prostate normal tissue and primary tumors was determined as follows: We started by

considering the genes that reside in the most hypomethylated PMDs [as described in the section titled ‘‘Determination of partially

methylated domains (PMDs)’’]. Of those, genes with 95th percentile of normalized FPKM values less than 1 were discarded. A

two-tailed variance-equal t-test was performed on each of the remaining genes. The p-values from those t-tests were used to

generate a false-discovery rate (FDR) estimate for each gene by the Benjamini-Hochberg method. We considered genes for which
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the FDR estimate was less than 0.1 to be differentially expressed between normal prostate and prostate tumor samples. hGSEA was

performed to determine the gene set and pathway enrichment using the phyper R function as reported elsewhere.26 All gene sets and

pathways evaluated in this studywere obtained fromMSigDB (v7.2) from theBroad Institute. Differential gene expression and hGSEA

for genes in PMIs was performed in the same way.

Heterogeneity assessment
Consistent with a previous publication,26 means of correlation coefficients and jackknife estimates were used to assess the hetero-

geneity within and between subsets of samples.

Nanopore data analysis
Nanopore sequencing reads (format: fast5) generated by Nanopore MinION device were first converted into fastq files using ONT

Albacore software (v2.3.1) (https://nanoporetech.com/community). Demultiplexing was also performed during fast5 to fastq conver-

sion. DNA methylation information was extracted from both fast5 and fastq files using Nanopolish software (v0.10.2) (https://github.

com/nanoporetech/nanopolish). Nanopolish output files (albacore_output.sorted.bam and methylation_calls.tsv) were used for

downstream analysis. Every nanopore run was spiked in with lambda DNA, which was used as the negative control to assess the

fidelity of Nanopore sequencing. To estimate CTC-derived hypomethylation signal in each Nanopore sequencing sample, stringent

criteria were applied: (1) each Nanopore read should be long enough to harbor at least 30 CpG sites with confident methylation calls

after Nanopolish; (2) the number of Nanopore reads aligned to prostate PMDs (pre-determined among CTCs isolated from 4 prostate

cancer patients and 4 prostate cancer cell lines using single-cell whole genome bisulfite sequencing) should be no fewer than 300 for

metastatic patients or no fewer than 400 for localized patients; (3) methylation level of spike-in lambda DNA in each run should be

<1%. Following application of these criteria, microfluidic processed (leukocyte-depleted) blood samples from seven patients with

metastatic prostate cancer, six patients with localized prostate cancer. Since we required different number of Nanopore reads in

the prostate PMDs for metastatic patients and localized patients, 23 age-matched healthy donors were validated for analysis in

the metastatic cohort, and 21 were validated for localized cohort.

In-silico mathematical modeling of Nanopore sequencing in detecting rare signal
To assess the ability to detect large hypomethylated domains in rare circulating tumor cells, we performed an analysis using Nano-

pore reads from a normally methylated non-cancer cell line (HUES64) with 1% in-silico spiked-in reads from a cancer cell line

(HCT116).We assessed the ability to determine the correct cell line of origin for reads that aligned to predefinedHCT116 PMDs based

on their average methylation level by quantifying the precision and sensitivity of read classification using the PRROC.80 Methylation

was averaged across each read, considering only CpG sites that fall within PMDs and excluding those within CpG islands.

Illustration
Illustrations were created with BioRender.com.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses for all experiments are described in the figure legends and the method details. Statistical analyses were per-

formed using R (version 3.1.2) and GraphPad Prism 9.0.
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Figure S1. Single-cell transcriptome and DNA copy-number analysis of prostate CTCs, related to Figure 1

(A and B) Boxplots showing sequencing quality parameters of single-cell DNA methylation samples (A) and single-cell RNA-seq samples (B).

(C) Heatmap showing marker gene expression of the single cells sequenced in this study. CTCs have high expression of epithelial and prostate lineage markers

and absent expression of leukocyte (WBC) markers. Single WBCs that persisted after processing through themicrofluidic device are shown as negative controls,

and single cells from prostate cancer cell lines are used as positive controls. Asterisks denote a small number of CTCs with potential contamination by WBCs,

which were excluded from analysis.

(D) Heatmap showing unsupervised hierarchical clustering of single-cell RNA-seq. Three major clusters are defined (upper dendrogram): WBC, normal prostate

cell line cells (HPrEC and BPH-1), and prostate CTCs together with four prostate cancer cell lines (PC3, LNCaP, VCaP, and 22Rv1).

(E and F) Heatmaps showing matched DNA copy number of CTCs inferred from single-cell DNA methylation sequencing data (E) and from single-cell RNA-seq

data (F).
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Figure S2. DNA methylation analysis of single prostate CTCs, related to Figure 1

(A) PCA analysis of promoter methylation in single prostate CTCs, and single cells from prostate cancer cell lines (22Rv1, LNCaP, PC3, and VCaP), non-

transformed prostate epithelial cell lines (HPrEC and BPH-1), residual WBCs following microfluidic processing, and normal prostate tissues. All prostate tumor

cells cluster separately from both non-transformed prostate cells and from normal leukocytes.

(B) Histograms showing the distribution of methylation level within each 100 kb window, with the coverage of at least 10 CpGs at 200 bp offsets across the

genome, representing averages from single-cell data for patient-derived CTCs (grouped by patient: GU114, GU181, GU216, and GURa15), prostate cancer cell

(legend continued on next page)
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lines (LNCaP, VCaP, PC3, and 22Rv1), normal prostate tissue, non-transformed prostate epithelial cell lines (HPrEC and BPH-1), whole blood (representing all

hematopoietic lineages), and leukocytes (WBC). The blue vertical line in each cancer-related specimen is the threshold set to score hypomethylation in that cell

type (i.e., every 100 kb window with methylation levels below that threshold is defined as hypomethylated).

(C) Bar graph showing the fraction of the genome that is hypomethylated in patient-derived CTCs, prostate cancer cell lines, and normal cell lines or tissues. All

tumor samples have 20%–40% of their genome classified as hypomethylated, whereas the normal samples have <2.5%. N.P., normal prostate.

(D) Flowchart depicting the key steps of the definition of prostate PMDs and PMIs (see STAR Methods).
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Figure S3. Chromatin silencing marks and size of core PMDs and core PMIs, related to Figure 2

(A) Line plots showing differential enrichment for H3K27me3 marks at PMDs in prostate cancer cells (22Rv1, red) compared with non-transformed prostate

epithelial cell lines (BPH-1, green and HPrEC, blue) (left). In contrast, there is no significant difference in the abundance of H3K9me3 at PMDs between cancer

cells and normal cells (right).

(B) Boxplot quantifying the enrichment for H3K27me3 at all prostate PMDs in 22Rv1 prostate cancer cells, compared with normal prostate HPrEC and BPH-1

cells. No enrichment is observed for H3K9me3. p value assessed by one-tailed Student’s t test.

(C) IGV screenshot (hg19) of the CD1A-IFI16 locus at chromosome 1, showing DNA hypomethylation (shade yellow) in 22Rv1 prostate cancer cells (red),

compared with HPrEC and BPH-1 prostate epithelial cells (blue and green). The CD1A-IFI16 locus also shows enrichment for H3K27me3 chromatin silencing

marks in prostate cancer cells, compared with normal prostate cells, but no such differential abundance for H3K9me3 silencing marks.

(D) Inter- and intra-patient heterogeneity analysis of PMIs among prostate CTCs and single cells from prostate cancer cell lines. Mean Jaccard index is used to

indicate the heterogeneity, with higher mean Jaccard index score indicating less heterogeneity among samples assayed. Error bar indicates mean with 95% CI.

(E and F) IGV representation (hg19) of total PMIs and core PMIs at a chromosome 1 locus, across 8 sample sources (4 prostate patients and 4 prostate cancer cell

lines). Total PMIs (blue) are the union of all PMIs defined in each sample source, whereas core PMIs (black) are those shared across all 8 sample sources (E); the

representation of PMIs from the single-cell components of an individual sample source (22 CTCs from patient GU181) showing a core PMI (black) shared across

all sample sources and neighboring non-core PMIs (red) that are shared by >85% of CTCs in this patient, but not across different sample sources (F).

(G) Bar graph showing significantly reduced mean CpG density at core PMDs, compared with other PMDs. Blue line indicates the mean CpG density of 40 core

PMDs. Histogram represents the mean CpG densities of 10,000 random samplings of 40 non-core PMDs. p value is the fraction of the random samplings of non-

core PMDs for which the mean CpG density is less than the mean CpG density of the 40 core PMDs.

(H) Boxplots showing the average length of total PMDs, total PMIs, core PMDs, and core PMIs across the prostate cancer genome.
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Figure S4. Demethylation of the CD1A-IFI16 locus at the early stage of prostate tumorigenesis, related to Figure 4

(A) Heatmap showing DNA copy-number variation (CNV) within single cells retrieved from adjacent normal tissues, low-grade localized prostate cancer (GS6),

high-grade localized prostate cancer (GS8), and metastatic prostate cancer (CTCs). Single-cell DNA methylation sequencing data were used to infer CNVs. Box

marked by dashed red line denotes the chromosomal deletion of the chr8p locus, which appears as the earliest and most consistently observed CNV in early

prostate cancer.

(B) Boxplots showing the concordance of hypomethylation and chr8p deletion within single cancer cells at the one of the earliest stage of prostate tumorigenesis

(GS6), across the genome, at all PMDs, and at the CD1A-IFI16 locus. The correlation is lost at more advanced stages of prostate cancer (GS8 and CTCs), when

CNV and hypomethylation are pronounced and distributed across the genome. p value, all assessed by Wilcoxon test.

(C and D) Heterogeneity of promoter methylation (C) and PMD methylation (D) within individual cells from localized prostate cancer (GS6 and GS8), metastatic

prostate cancer (CTCs), and prostate cancer cell lines, measured by mean correlation coefficient and showing the relative uniformity of PMD hypomethylation in

prostate cancer, compared with promoter hypermethylation. Error bar denotes mean with 95% CI.

(E) Bar plots showing the gradual increase in methylation at CpG islands (CGIs) during prostate cancer progression. Error bar denotes mean with SD. p value was

assessed by two-tailed Student’s t test.

(F) Quantitation of DNA copy-number alterations during prostate tumorigenesis, with normal prostate showing no CNV and gradual increase in CNV from GS6 to

GS8 to CTCs. Error bar indicates geometric mean with 95% CI.

(G) Scatter plot showing correlation between DNA copy-number alterations and DNA methylation changes in GS6 and GS8 tumors and in prostate CTCs. Each

dot indicates one core PMD. x axis indicates the relationship (rho) between DNA copy-number alterations and DNA methylation changes at the corresponding

regions (negative correlation at left, and positive correlation at right), and y axis indicates the FDR, with the dashed line showing FDR of 0.1.

(H) Quantitation of progressive demethylation at core PMDs (red) versus non-core PMDs (magenta) as a function of evolution from normal prostate tissues (n = 4),

primary prostate tumors (n = 5) (derived fromYu et al.42), andmetastatic prostate tumors (n = 100) (derived from Zhao et al.34), showing themore rapid loss of DNA

methylation at core PMDs. In contrast, core PMIs (blue), which are interspersed between core PMDs, show the preservation of DNA methylation during cancer

progression. Methylation level was calculated by reanalyzing the two published datasets. Error bar denotes mean with SEM. Statistical analysis of DNA

methylation curves using longitudinal linear mixed effects model, by which tumor progression (normal tissue, primary prostate tumor, and metastatic prostate

tumor) 3 methylation domains was tested.

(I) Boxplots showingmean expression level in normal prostate and prostate tumors (TCGA) of E2F target pathways andDNA repair pathways, whose genes reside

within core PMIs. p value assessed by Wilcoxon test.

(J) Heatmap representation of genes residing within PMIs and belonging to the E2F targets and DNA repair pathways, showing preserved expression in primary

prostate cancers, compared with normal prostate tissue (TCGA).
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Figure S5. DNA methylation analysis at the CD1A-IFI16 locus in prostate and other cancers, related to Figure 4

(A–C) DNA methylation changes as a function of Gleason score in microdissected single nuclei from surgically resected specimens of localized prostate cancer

(A), in samples derived from two independent public datasets of prostate tumors (normal prostate tissue and primary prostate tumors derived fromYu et al.,42 and

metastatic prostate tumors derived from Zhao et al.34) (B), and from Gleason-annotated TCGA prostate tumor specimens (C). Line plots show a marked loss of

DNAmethylation at theCD1A-IFI16 locus (green line), in contrast to genomewide DNAmethylation (orange line). Of note, (A) and (B) data derived fromWGBS, and

(C) data from Infinium Human Methylation 450K BeadChip. Error bar denotes mean with SEM. Statistical analysis of DNA methylation curves using longitudinal

linear mixed effects model, by which tumor progression (or Gleason score) 3 methylation domains was tested.

(D) Boxplots showing the absence of significant methylation changes across single cells (normal, GS6, GS8, and CTCs) representing different grades of prostate

cancer as a function of DNA copy-number variation at the CD1A-IFI16 locus. ns, not significant; *p < 0.05, assessed by Wilcoxon test.

(E) Line graphs showing earlier demethylation at the CD1A-IFI16 locus, compared with other core PMDs, during colon cancer and thyroid cancer progression.

Error bar denotes mean with SD. p value, assessed by two-tailed Student’s t test.

(F) IGV screenshot (hg19) showing DNAmethylation at a region of chromosome 1 encompassing theCD1A-IFI16 locus, across 33 different cancer types (TCGA).

23 (denoted in red) show hypomethylation (<80%) of the CD1A-IFI16 locus. Abbreviations for cancer types: ACC, adrenocortical carcinoma; BLCA, bladder

urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, chol-

angiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme;

HNSC, head neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma;

LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous

cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and

paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach

adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometroid carcinoma; UCS, uterine

carcinosarcoma; UVM, uveal melanoma.

(G) Plot showing methylation levels across 33 different cancer types at the CD1A-IFI16 locus (right), compared with genome-wide methylation (left). The 23

cancers with hypomethylation (<80%) at the CD1A-IFI16 locus are colored in red. Abbreviations defined in (F).

(H) Scatter plots showing correlation between DNA hypomethylation at the CD1A-IFI16 locus and reduced expression of resident genes across 33 different

cancer types (TCGA). Statistically significant (FDR < 0.1) correlations between hypomethylation and reduced RNA expression are shownwith green line (19 tumor

types); anti-correlations shown with red line (4 tumor types); tumor types that do not reach statistical significance shown with yellow line (10 tumor types).

Abbreviations defined in (F).
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Figure S6. Chromatin silencing marks and transcriptional changes at the CD1A-IFI16 locus, related to Figure 4

(A) Boxplots quantifying increased H3K27me3 marks, but unchanged H3K9me3, in prostate cancer cells compared with normal cells, at the CD1A-IFI16 locus,

usingCut and Run assays. Two prostate cancer cell lines (LNCaP and 22Rv1) are comparedwith the two non-transformed prostate epithelial cell lines (HPrEC and

BPH-1). p value is assessed by one-tailed Student’s t test.

(legend continued on next page)
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(B) Plots showing reduced expression (quantitative real-time PCR) of interferon-inducible genes at the CD1A-IFI16 locus (IFI16, PYHIN1, and AIM2) in two

prostate cancer cell lines (LNCaP and 22Rv1), compared with two non-transformed epithelial prostate cell lines (HPrEC and BPH-1). Error bar denotes mean with

SD. p value assessed by two-tailed Student’s t test.

(C) Flow cytometric quantitative analysis of CD1d expression in two prostate epithelial cell lines (BPH-1 and HPrEC), compared with two prostate cancer cell lines

(LNCaP and 22Rv1), showing reduced CD1d expression in the tumor cells. Cells were incubated with the APC-conjugated anti-human CD1d or with the APC-

conjugated isotype control IgG (shown in gray).

(D) IGV screenshot (hg19) showing enrichment for H3K27me3 ChIP-seq signal at the CD1A-IFI16 locus, as early as GS6 during early prostate tumorigenesis.

H3K27me3 ChIP-seq is shown for two normal prostate tissues (gray tracks), two GS6 tumor tissues (red tracks), and four GS8 tumor tissues (green tracks).

(E and F) Boxplots showing quantitative enrichment for the chromatin silencing mark H3K27me3 during progression from normal prostate epithelium to stages of

localized prostate cancer (GS6, GS8). Increased H3K27me3 is evident as early as GS6 (E; representative IGV track [hg19] shown in D), whereas all PMDs do not

show statistically significant increased deposition of H3K27me3 until GS8 (F). p value all assessed by one-tailed Student’s t test.

(G) Plots showing reduced expression of all members of the CD1A-E lipid antigen presentation gene family and three out of four interferon-inducible genes, all

colocalized at the CD1A-IFI16 locus, within primary prostate tumors versus normal prostate (TCGA prostate data with tumor purity >0.5 inferred by ABSOLUTE

algorithm). Error bar denotes mean with SEM. p value assessed by two-tailed Student’s t test.
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Figure S7. Functional recapitulation of hypomethylation-associated silencing at CD1A-IFI16 locus, related to Figure 4

(A) IGV screenshot (hg19) of bulk DNA methylation profile at the CD1A-IFI16 locus (delineated by hashed red box) showing DNA demethylation in the human

prostate epithelial cells BPH-1 after 4–5 days of treatment with 5-azacytidine, compared with DMSO controls and day 1 after treatment.

(B) Lollipop graph showing region within theCD1A-IFI16 locus (12 CpG sites over 395 bp), using bisulfite PCR coupled with Sanger sequencing from BPH-1 cells

at serial time points after treatment with 5-azacytadine. Methylated CpGs (black circles), unmethylated CpGs (open circles), with mean DNAmethylation fraction

indicated below each panel.

(C) Representative confocal microscopic images of BPH-1 cells showing increased nuclear abundance of the H3K27me3 chromatin silencing mark, after 5 days

of treatment with 5-azacytidine (versus DMSO control). DNA content is labeled with DAPI (blue). Red fluorescence indicated H3K27me3. One magnified

representative nucleus is shown in the lower left corner. Scale bars, 50 mM.

(D) Representative confocal microscopic images of BPH-1 cells showing increased nuclear abundance of the H3K9me3 chromatin silencing mark, following

5 days of treatment with 5-azacytidine (versus DMSO control). DNA content is labeled with DAPI (blue). Red fluorescence indicated H3K9me3. One magnified

representative nucleus is shown in the lower left corner. Scale bars 50 mM.

(E) Quantitation of confocal microscopic imaging of mean H3K9me3-related fluorescence intensity within single-cell nuclei (quantitation using ImageJ software,

see STAR Methods). Error bar denotes mean with SEM. p value assessed by two-tailed Student’s t test.

(F and G) Induction of genes residing at the CD1A-IFI16 locus in three human prostate cancer cell lines (22Rv1, LNCaP, and VCaP), which harbor PMD hypo-

methylation and H3K27me3 deposition, after their treatment of with the EZH2 inhibitor GSK126 for 6 days (5 and 10 mM doses). GSK126 exposure leads to

profound reduction in H3K27 trimethylation (western blots, F) along with increased expression of all genes within the CD1-IFI16 gene cluster (quantitative real-

time PCR, G). No change is observed in the expression of non-PMD-resident control genes (PP1A, HPRT, and b-actin). p value assessed by Tukey’s multiple

comparison tests, where GSK126 treatment conditions were compared with their control (blue bar). ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001.
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Figure S8. Re-expression of the lipid antigen presentation gene Cd1d1 or the interferon-inducible gene Ifi204 suppresses tumorigenesis in

immune-competent murine prostate cancer models, related to Figure 5

(A and B) IGV screenshots (mm9) showing DNA hypomethylation (shaded yellow) and occupancy of the repressive histone marks H3K27me3 and H3K9me3 in

mouse Myc-CaP prostate cancer cells, at the two murine loci that are orthologous to human CD1A-IFI16: Cd1d1 and Cd1d2 genes are clustered on mouse

chromosome 3 (A), and interferon-inducible genes Ifi204, Aim 2, Pyhin1, and Mnda are clustered on mouse chromosome 1 (B). H3K9me3, H3K27me3, and IgG

(control) are shown with two biological replicates. DNA methylation derived from single-cell whole-genome bisulfite sequencing of 12 single Myc-CaP cells.

(C) Flow cytometric analysis of lentivirally mediated ectopic Cd1d1 overexpression (OE) in Myc-CaP cells, showing cell surface localization of the encoded

protein, compared with empty vector transfected control and IgG staining control.

(D) Confocal microscopic image showing cell surface localization of CD1d after ectopic expression in Myc-CaP cells. Green florescence indicates CD1d

expression (white arrows), Myc-CaP cells are labeled with mCherry. Scale bars, 20 mM.

(E) In vivo intraprostatic orthotopic tumorigenesis assay, showing the relatively rapid clearance of Myc-CaP cancer cells with ectopic Cd1d1 expression,

compared with parental control. Representative mouse images at day 9 are shown. Error bar denotes mean with SEM. p value, assessed by two-tailed Student’s

t test.

(F) Plot showing quantitative (quantitative real-time PCR) gene expression difference of NKT cell-specific RNA markers (Cd40lg and Icos) and pan-leucocyte

marker (Ptprc andCD45) between tumors generated byMyc-CaP cells with restored Cd1d1 expression (OE) andmock-transfected controls. p value is assessed

by two-tailed Student’s t test.

(G) Quantitative real-time PCR quantitation showing expression of Cd1d1 expression in LLC-1 cells after lentiviral transduction. The magnitude of differential

expression (140-fold) reflects the virtually complete absence of Cd1d1 RNA expression in parental LLC-1 cells. p value assessed by Student’s t test.

(H) Flow cytometric quantitative analysis of Cd1d protein expression in LLC-1 cells, after lentivirally mediated ectopic expression, compared with mock-

transduced control and IgG staining control. Cell surface expression of Cd1d1 is comparable with that in transduced Myc-CaP cells (C).

(I) In vitro cell proliferation assay showing no difference between LLC-1 cells with overexpression (OE) of Cd1d1, compared with parental controls. Error bar

denotes mean with SD; ns, not significant, assessed by two-tailed Student’s t test.

(J) Quantitation of tumor formation in isogenic C57BL/6 mice, following subcutaneous inoculation of luciferase-tagged LLC-1 cells with overexpression ofCd1d1

or mock-transduced controls, using bioluminescence IVIS imaging. p value assessed by Student’s t test. Two subcutenous tumors inoculated per mouse (n = 8 in

each group).
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Figure S9. Flow cytometric analysis of immune infiltration in subcutaneous Myc-CaP-derived tumors, related to Figure 5

(A) Flow cytometric analysis showing no significant difference in tumor infiltration by CD3e+NK1.1+ double positive cells (total NKT cells, not CD1d-restricted) in

tumors derived in immune-competent isogenic mice by Myc-CaP cells with Cd1d1 overexpression (OE) or mock-transduced controls. Quantitative analysis in

right. ns, not significant; p value is assessed by two-tailed Student’s t test.

(B and C) Flow cytometric analysis showing enrichment of CD1d-restricted NKT cells (marked by a-GalCer CD1d tetramer; B) and activated NKT cells (marked by

CD69 expression; C) in tumors derived fromMyc-CaP cells with Cd1d1 overexpression (OE), compared with mock-transduced controls. Quantitation of positive

cells (percent) shown in upper right.

(D) Gating strategy for scoring of different cell surface markers of infiltrated T cells in one representative tumor sample.

(E) No difference in percent of CD44 expressing CD4+ or CD8+ T cells in parental control versus Ifi204 expressing tumors. ns, not significant, assessed by two-

tailed Student’s t test.

(F and G) FACS plots showing downregulation of PD-1 cell surface expression (F) and upregulation of TNF-a (G) in CD8+ T cells recovered fromMyc-CaP-derived

tumor with overexpression (OE) of Ifi204, compared with mock-transduced controls.

(H–K) No difference in LAG3 (H), TIGIT (I), TIM3 (J), and IFNg (K) expression in CD8+ T cells in control versus Ifi204 expressing tumors. Error bar denotesmeanwith

SD. ns, not significant, assessed by two-tailed Student’s t test.
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