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Abstract 20 

During daily communication, visual cues such as gestures accompany the speech signal and 21 

facilitate semantic processing. However, how gestures impact lexical retrieval and semantic 22 

prediction, especially in a naturalistic setting, remains unclear. Here, participants watched a 23 

naturalistic multimodal narrative, where an actor narrated a story and spontaneously produced 24 

co-speech gestures. For all content words, word frequency and lexical surprisal were 25 

regressed against the EEG using temporal response functions (TFRs), which were fitted 26 

separately, additively, and interactively for words accompanied and not accompanied by 27 

gestures. Results from our analyses suggest a robust modulation effect of gesture on the 28 

frequency-dependent regression N400. Besides, we also observed some evidence of 29 

modulative effect of gesture on the surprisal-N400 effect based on the single-predictor model. 30 

Our finding thus suggests that, on a neural level, the presence of co-speech gestures facilitates 31 

lexical retrieval and potentially semantic prediction during the processing of naturalistic 32 

multimodal stimuli. 33 

 34 

Keywords: multimodality, co-speech gestures, surprisal, word frequency, regression ERP, 35 

lexical retrieval, semantic prediction, N400 36 
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Introduction 39 

Most human communication is essentially multimodal—besides speech, we use a range of 40 

visual signals such as eye-gaze, body orientation, and hand gestures, to convey meaning and 41 

social communicative intent. Multimodality has been proposed to facilitate information 42 

transmission (Holler & Levinson, 2019; McNeill, 2008). Amongst the modalities, hand 43 

gestures (hereafter referred to as gestures) stand out as particularly unique and effective 44 

means of expressing complex meaning together with accompanied speech (He et al., 2015; 45 

Kelly et al., 2010; Özyürek, 2014; Özyürek et al., 2007). More importantly, they are reported 46 

to have a positive impact on speech perception and auditory sentence comprehension, by 47 

facilitating speech processing at various levels (Alibali & Kita, 2010; Bosker & Peeters, 48 

2021; Cuevas et al., 2019; Drijvers & Özyürek, 2017; Holle et al., 2012; Kelly et al., 2010; Y. 49 

Zhang et al., 2021). 50 

Recent electrophysiological studies suggest that gestures modulate amplitudes of 51 

evoked activities for both speech perception and sentence processing. At lower perceptual 52 

levels, co-speech gestures modulate the early N1–P2 components when single words are 53 

being processed (Kelly et al., 2004; Sun et al., 2021). At the semantic level, humans 54 

automatically integrate gesture and speech semantics during online processing, as reflected in 55 

the N400 component (Fabbri-Destro et al., 2015; Kelly et al., 2004; Özyürek et al., 2007; 56 

Willems et al., 2007; Wu & Coulson, 2005). Thus, increasing evidence suggests that gestures 57 

modulate N400 amplitude when word or sentence semantics are being processed (He et al., 58 

2020; Holle & Gunter, 2007; Morett et al., 2020; Wang & Chu, 2013; Y. Zhang et al., 2021).  59 

However notably, these previous studies have predominantly made use of factorial 60 

designs where the brain response to single words and sentences is investigated under 61 

carefully controlled conditions. Although such designs have long been the basis for our 62 
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understanding of speech processing and sentence comprehension, questions have been raised 63 

about whether observed effects actually hold during ecologically valid communication 64 

scenarios (Hamilton & Huth, 2020; Kandylaki & Bornkessel-Schlesewsky, 2019; Meyer et 65 

al., 2020; Willems et al., 2020). More recent studies on auditory language processing have 66 

therefore investigated how different lexical and contextual features modulate the N400 by 67 

using experimental paradigms that employ naturalistic speech stimuli such as long auditory 68 

narratives (Alday et al., 2017; Broderick et al., 2018; Goldstein et al., 2022; Sassenhagen, 69 

2019; Yan & Jaeger, 2020). In line with the classic sentence processing literature using 70 

factorial experiments (Kutas & Federmeier, 2011; Van Petten & Kutas, 1990), these studies 71 

suggest that the N400 is modulated by either the lexical frequency of words that reflects an 72 

automatic, bottom-up retrieval mechanism (Sassenhagen, 2019), or by metrics that measure 73 

more context-dependent predictive mechanisms, such as semantic similarity and lexical 74 

surprisal (Broderick et al., 2018; Goldstein et al., 2022).  75 

In the EEG literature on the semantic processing of co-speech gestures, in contrast, 76 

despite heterogeneity in design, most studies either directly compared the N400 amplitude of 77 

single words as accompanied by different types of gestures (e.g., Wang & Chu, 2013), or 78 

measured the semantic N400 effect in response to match/mismatch between speech and 79 

gestures (e.g., He et al., 2020; Özyürek et al., 2007). In this regard, these studies provide us 80 

with insights into either semantic processing in general (as reflected in the N400 amplitude), 81 

or rather the interplay between semantic prediction and integration as reflected in the N400 82 

effect arisen from semantic mismatch (Lau et al., 2008; Nieuwland et al., 2020). As a result, 83 

it remains unclear how different sub-stages of semantic processes such as lexical retrieval or 84 

semantic prediction is influenced by gestures. Also importantly, the naturalistic approach as 85 

implemented in the auditory speech processing literature has not yet been adapted to shed 86 

light on these issues.  87 
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Here, we conducted an EEG study employing a naturalistic paradigm to investigate 88 

whether and how co-speech gestures modulate the N400 as reflecting word-by-word lexical 89 

retrieval and semantic prediction. To this end, we obtained measures of frequency (which 90 

quantifies lexical retrieval) and surprisal (which quantifies a word’s unpredictability as a 91 

measure of semantic prediction) for each word in a multimodal narrative. We then isolated 92 

brain responses to individual content words while controlling for overlapping responses to 93 

neighboring lexical items using multivariate time-resolved regression (Crosse et al., 2016; 94 

Ehinger & Dimigen, 2019; Sassenhagen, 2019). For lexical retrieval, it has been shown that 95 

words that occur more frequently in daily communication generally elicit less pronounced 96 

N400s than rare words (Sassenhagen, 2019; Van Petten & Kutas, 1990). Word 97 

unpredictability, which can be measured using human ratings (i.e., cloze probability) or 98 

computational measures of conditional probability derived from Probabilistic Language 99 

Models (PLMs), has in turn been also extensively used as a predictor of cognitive load during 100 

semantic processing (Frank et al., 2015; Huizeling et al., 2022; Kutas & Federmeier, 2011; 101 

Kutas & Hillyard, 1980; Monsalve et al., 2012; Rayner & Duffy, 1986). Here, we quantified 102 

words’ unpredictability with lexical surprisal, an information-theoretic measure derived from 103 

a deep neural network (GPT-2), as a measure of lexicosemantic pre-activation during 104 

naturalistic language processing. GPT-2 is a pre-trained transformer-based model that can 105 

estimate the unexpectedness of a lexical item considering its previous context, based on a 106 

large training database of written text. GPT-2 outperforms other types of language models in 107 

generating upcoming words (i.e., lexical-semantic prediction), including simple embedding 108 

and recurrent-neural network models. It was also found that metabolic activity during 109 

language processing is fit well by GPT-2’s lexical-semantic predictions (Schrimpf et al., 110 

2021).  111 
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Lexical surprisal is defined as the negative conditional log-probability of a word given 112 

its preceding context. It quantifies the cognitive demand associated with the construction of 113 

semantic representations on the basis of incremental probabilistic disambiguation (Hale, 114 

2001; Levy, 2008). Lexical surprisal values predict reaction times during self-paced reading 115 

of single sentences (Monsalve et al., 2012) and gaze duration during natural reading 116 

(Goodkind & Bicknell, 2018). Neurobiologically, the N400—as a marker of cognitive effort 117 

during lexical-semantic prediction—increases in amplitude with higher lexical surprisal 118 

(Frank et al., 2015; Frank & Willems, 2017; Yan & Jaeger, 2020). More recently, GPT-2-119 

derived measures of surprisal have also been shown to be associated with an N400-like 120 

regression effect during natural language comprehension (Goldstein et al., 2022; Heilbron et 121 

al., 2022). 122 

While it is well-established that both lexical frequency and surprisal correlate with the 123 

amplitude of N400 component, whether and how multimodal cues can also modulate this 124 

electrophysiological response during naturalistic speech processing is less clear. In a recent 125 

study (Y. Zhang et al., 2021), by investigating the processing of isolated multimodal 126 

sentences, the authors showed that the regression-based N400 associated with surprisal may 127 

be modulated by co-speech gestures, among other multimodal cues (e.g., prosody). Taking a 128 

step further, we aimed at extending this work from several novel perspectives: (1) We tested 129 

if the facilitative effect of co-speech gestures can be observed in more ecologically valid 130 

narratives (Willems et al., 2020). (2) We employed a time-resolved regression technique 131 

(multivariate Temporal Response Functions, mTRFs) instead of conventional ERPs, which is 132 

tailored to analyze EEG recordings from the processing of continuous speech (Crosse et al., 133 

2016). (3) We examined the potential facilitative effects of gestures on both lexical retrieval 134 

(word frequency) and semantic prediction (GPT2-surprisal). Notably, although both measures 135 

have been linked to the N400, they are usually highly correlated and may interact under 136 
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certain contexts (Halgren et al., 2002; Huizeling et al., 2022; Kretzschmar et al., 2015). 137 

Consequently, to what extent the frequency–derived or surprisal-derived N400s may be 138 

affected by gestures remains unknown.  139 

We hypothesized that, during the processing of a naturalistic multimodal narrative, the 140 

presence of gestures would result in a decreased amplitude of the N400 response to both 141 

frequency and surprisal, analogous to the dampening of the N400 in the presence of co-142 

speech gestures in factorial experiments. Twenty participants were presented with 143 

audiovisual clips in which an actor narrated a story presented in German using co-speech 144 

gestures spontaneously (figure 1b). Content words in the speech stimuli were coded 145 

according to whether their meanings were either repeated, emphasized, or complemented by 146 

accompanying co-speech gestures (Gesture present) or not (Gesture absent), for all types of 147 

gestures that are produced by the actor (see methods). Word frequency was included as the 148 

corpus rank bin count from the Projekt Deutscher Wortschatz (Goldhahn et al., 2012), with 149 

higher ranks (1–24) indicating less frequent words. Words not found in the corpus were 150 

coded as 2 + the highest rank (Sassenhagen, 2019). The GPT-2 transformer model was used 151 

to estimate surprisal values. Responses associated with lexical retrieval and semantic 152 

predictions were obtained through mTRFs for frequency and surprisal. We estimated model 153 

fit for two single-predictor models (one for surprisal and the other one for frequency), as well 154 

as for an additive model (frequency + surprisal) and an interaction model (frequency + 155 

surprisal + frequency * surprisal), with and without gestures as a categorical predictor. We 156 

found that adding gesture information improved model fit regardless of model type, but the 157 

additive model showed the best fit to the data. Then, by hypothesis, we set up separate 158 

models for frequency and surprisal for gesture and no-gesture words to investigate how the 159 

EEG correlates of retrieval and semantic prediction error scale with the presence of co-speech 160 

gestures. Individual mTRF responses were modelled as the sum of the product of unknown 161 
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beta coefficients with individual values of frequency or surprisal per word (see figure 1a for a 162 

visual summary of our analytical protocol). Results are in line with our hypotheses: words 163 

that were not accompanied by gestures during a naturalistic narrative showed both 164 

frequency– and surprisal-related N400 responses, which were reduced for words that were 165 

accompanied by gestures. Further analysis including both frequency and surprisal as 166 

regressors in the same additive model only revealed significant modulation effect of gestures 167 

on frequency-dependent N400 responses. To summarize, our findings provide—for the first 168 

time—clear evidence that co-speech gestures are associated with modulated frequency-169 

dependent N400 effects, thus indicating a potentially facilitative role of gesture on bottom-up 170 

lexical retrieval. For surprisal, results from our surprisal-only model agree with prior 171 

observations showing the facilitative effect of gesture on probabilistic disambiguation during 172 

lexical-semantic prediction. However, to what extent this effect can be dissociated from 173 

lexical retrieval requires further examination.  174 

(Figure 1 here) 175 

  176 
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Materials and methods 177 

Participants 178 

Participants (n = 20, mean age = 24.1 years, range = 19-34 years, 14 females) were native 179 

German speakers recruited from the Marburg-Giessen area, Germany. Participants were 180 

right-handed, had normal hearing and normal or corrected to normal vision. None of them 181 

reported any medical or neuropsychiatric condition. Participants read and signed an informed 182 

consent before participating in the study. They were compensated with seven euros per hour 183 

for participation. The research protocol and procedures were approved by the Ethics 184 

Committee at Phillips University Marburg and were conducted in accordance with the 185 

Declaration of Helsinki. 186 

 187 

Stimuli 188 

Participants watched 16 video clips (individual clips lasting between 1:02 and 3:31 min; story 189 

duration = 32:12 minutes) of a professional male actor narrating an adapted version of the 190 

story Der Kuli Kimgun as naturally as possible. Consent was obtained from the actor to use 191 

his image for research and publication purposes. Foreign words in the original story were 192 

replaced by German synonyms. We analyzed EEG responses to all content words in the story. 193 

Firstly, content words whose semantic representations that were either associated, 194 

emphasized, or complemented by gestures were coded as Gesture present; all other content 195 

words were coded as Gesture absent. For example, in figure 1, the screenshots depict two 196 

consecutive beat gestures that were used by the actor to emphasize the two “three” in “Samir 197 

stayed three days and three nights on the hills”). In this case, even if the gesture onsets from 198 

“stay” and offsets around “on”, we only coded the two “three”s as words in the Gesture 199 
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present condition, and all other words were coded as Gesture absent. This coding applies 200 

analogously for non-referential beat gestures. For iconic, metaphoric, and emblems, it is then 201 

their lexical affiliates that were coded as gesture present. The coding of the Gesture 202 

present/absent conditions were double-checked by two independent expert coders. From the 203 

total number of content words in the story (n = 3582), 466 were coded as Gesture present. 204 

The actor was free to decide when and how to make use of gestures. Throughout the story, a 205 

total of 493 hand gestures were conducted by the actor. Table 1 reports the frequency of each 206 

type of gestures. For a sample description (screenshot and transcript) of the multimodal story, 207 

please refer to Cuevas et al., 2019. In supplementary figure s1, we also illustrate a few 208 

additional examples of the hand gestures and the corresponding Gesture present words. 209 

Notably, despite prior research showing mixed effect of beat gestures on semantic processing 210 

and potentially differential effect of iconic gestures and other gestures (Hintz et al., 2022; 211 

Morett et al., 2020; Wang & Chu, 2013; Y. Zhang et al., 2021), for the purpose of testing the 212 

facilitative role of gestures in general on semantic processing, we collapsed across all gesture 213 

types for all analyses for the main analysis (see Cuevas et al., 2019 for an fMRI study using 214 

the same stimuli). We nevertheless reported specific effects of both iconic and beat gestures 215 

in the supplement.   216 

(Table 1 about here) 217 

Word frequency was included as the corpus rank bin count from the Projekt 218 

Deutscher Wortschatz (Goldhahn et al., 2012), with higher ranks (1–24) indicating less 219 

frequent words. Words not found in the corpus were coded as 2 + the highest rank. To model 220 

word-by-word lexical-semantic processing demands, we employed a deep neural network 221 

transformer-based model (GPT-2). Whereas earlier language models (e.g., n-gram models, 222 

recurrent neural networks) derive surprisal from serial cumulative calculations on prior word 223 
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sequences of varying length (e.g., two words, all words from sentence onset), transformers 224 

incorporate an analogue of attention to those parts of the context that do maximize word 225 

prediction performance (e.g., Radford et al., 2019; Ryu & Lewis, 2021; Schrimpf et al., 226 

2021). While attention can be bidirectional, GPT-2 is a unidirectional forward-attention 227 

transformer, consistent with the contingency of human speech. Note also that instead of using 228 

raw text, GPT-2 performs next-word prediction based on word embeddings. We here 229 

employed the German DBMZ GPT-2 model provided via Huggingface at 230 

https://huggingface.co/dbmdz/german-gpt2. Surprisal was calculated from GPT-2’s word 231 

probabilities using the standard formula. The base of the logarithm was 2.  232 

Summary statistics are provided in table 2. We compared the difference for both 233 

frequency and surprisal between the Gesture present and Gesture absent conditions with a 234 

Wilcoxon rank sum test. A significant difference was observed for both surprisal (z = -2.50, 235 

rank sum = 1.43e+06, p = 0.012) and frequency (z = -3.726, rank sum = 1.42e+06, p = 1.94e-236 

04). 237 

(Table 2 about here) 238 

 239 

Procedure 240 

Participants sat in a sound attenuated room at 70 centimetres from a monitor and were 241 

instructed to watch a professional actor telling the story. Auditory stimuli were delivered 242 

using a pair of loudspeakers with volume being constant for all participants. 243 

 244 

Data acquisition 245 
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Electrophysiological data was acquired using a Brain Products 32-channel EEG system 246 

(Brain Products GmbH, Gilching, Germany). Electrodes were positioned according to the 10-247 

20 international standard. EEG data was collected at sampling rate of 250Hz without any on-248 

line filters, referenced to FCz. The EEG dataset has been reported by Sassenhagen (2019) for 249 

a different research question.  250 

 251 

Data analysis 252 

EEG data preprocessing 253 

Data were preprocessed using a modified version of the Harvard Automated Preprocessing 254 

Pipeline (Gabard-Durnam et al., 2018) together with the EEGlab toolbox (Delorme & 255 

Makeig, 2004). EEG data were re-referenced to the average of electrodes TP9/10 (mastoids). 256 

Bad channels were removed for later interpolation based on joint probability (Delorme & 257 

Makeig, 2004). Line noise was removed with ZapLine (de Cheveigné, 2019), and data were 258 

lowpass-filtered using an 10-Hz one-pass Hamming sinc FIR filter. For artifact detection and 259 

rejection, data underwent Independent Component Analysis (Delorme et al., 2007). 260 

Components underwent frequency-domain thresholding (Castellanos & Makarov, 2006). 261 

Artifact components were then selected automatically by ICLABEL (Pion-Tonachini et al., 262 

2019), MARA (p < 0.05; Winkler et al., 2011) and ADJUST (Mognon et al., 2011). On 263 

average across participants, 2.85 components (SD = 1.89) were rejected. Bad channels 264 

identified initially were interpolated. Linear detrending was applied. Any remaining data 265 

exceeding 50 μV with a moving window of 2 seconds were excluded from statistical analysis. 266 

On average, across participants, this resulted in 3.59 % of words (SD = 5.08) being excluded. 267 

We defined a group of representative centro-parietal electrodes (electrodes Cz, Pz, C3, C4, 268 

P3, P4, CP1, CP2) as our region of interest (ROI), and a 300-500 ms time window as our time 269 
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window of interest. This is consistent with the topographical features and latency of the N400 270 

response previously reported elsewhere in the literature. 271 

 272 

Multivariate time-resolved regression 273 

For multivariate time-resolved regression analyses, we used the mTRF toolbox 274 

(Crosse et al., 2016). This method models brain responses using ridge-regression by fitting a 275 

multivariate temporal response function (mTRF) to brain signals, which allows mapping 276 

between stimulus features and neural activity. For this reason, multivariate time-resolved 277 

regression is particularly well-suited to investigate brain responses to continuous, naturalistic 278 

stimuli. Another important advantage of ridge-regression is that it is robust against 279 

collinearity. This is particularly important because lexical surprisal and lexical frequency 280 

values are highly correlated (r = 0.64, p < 0.001).   281 

Brain responses were modelled for each subject as the sum of the product of unknown 282 

beta coefficients with individual values per content word for word onset, lexical frequency, 283 

GPT2-derived surprisal, and the interaction between frequency and surprisal, estimated as the 284 

product between these two predictors. We analyzed content words only, as function words do 285 

not induce much word-by-word N400 (Frank et al., 2015). All predictors except word onset 286 

were z normalized before mTRF estimation. We implemented four separate encoding models, 287 

one for surprisal using the formula y ~ word onset + surprisal, another one for frequency 288 

using the formula y ~ word onset + frequency, one additive model for the combined effect of 289 

surprisal and frequency (y ~ word onset + surprisal + frequency) and one last model for the 290 

interaction between surprisal and frequency (y ~ word onset + surprisal + frequency + 291 

surprisal*frequency). Here, importantly, the first two single-predictor models evaluate the 292 

effects of frequency and surprisal separately, and how these effects were modulated by 293 
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gestures (see below). The latter two models consider additionally the situations where both 294 

the effect of frequency and surprisal maybe dependent on, and interact with each other 295 

(Dambacher et al., 2006; Huizeling et al., 2022; Payne et al., 2015; Van Petten & Kutas, 296 

1990). For model fit evaluation, the four mTRF models were obtained from all content words 297 

collapsed regardless of whether they were accompanied by gestures or not. Next, the model’s 298 

prediction accuracy was evaluated via cross-validation (see next section). Then, the four 299 

models were estimated and evaluated again after adding a categorical predictor indicating the 300 

presence or absence of gestures. A linear mixed effect model was used to test the effect of 301 

model type and gesture information as an additional regressor on model fit.  302 

 303 

Model optimization and evaluation 304 

Model optimization and model evaluation were conducted via a leave-one-out 10-fold 305 

cross-validation procedure using the mTRF toolbox (Crosse et al., 2016). For single predictor 306 

models, the lambda (i.e., ridge) parameter was consistently set to zero. For all the other 307 

models, optimal lambda parameters were identified by evaluating model fit for a logarithmic 308 

space of 31 ridge values between 0.01 and 10 and between 100-600ms after word onset. This 309 

resulted in a partition-by-lambda-by-sensor matrix of correlation coefficients. The optimal 310 

lambda parameter was programmatically set as the mean spearman r value across the 311 

electrodes within the pre-defined ROI that maximized model fit (supplementary table s1). For 312 

model evaluation, the predictive power of the trained data after cross-validation was tested 313 

against the test data partition, which returns a set of 27 correlation coefficients, one for each 314 

channel. The mean spearman r value was then obtained for the set of electrodes within our 315 

predefined ROI (supplementary table s2). 316 

 317 
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Pair-wise comparison between gesture absent and gesture present conditions 318 

In a next step, we separately obtained mTRFs for gesture absent and gesture present 319 

content words based on the four models above. This set of analyses, in addition to the model 320 

fit comparisons, provides additionally information on if the presence of gesture enhances or 321 

modulates the frequency– or surprisal-dependent N400s. For statistical analyses, we 322 

separately obtained each subject’s median beta values for gesture present and gesture absent 323 

mTRF models in the group of representative centro-parietal electrodes within our ROI, and 324 

within a predefined time-window of 300-500ms. This is consistent with the topographical 325 

features and latency of the N400 response previously reported elsewhere in the literature. 326 

Within each model, we compared the extracted frequency– and surprisal-N400 beta 327 

amplitudes by means of a Wilcoxon signed-rank test. We used median values and a non-328 

parametric test because Kolmogorov-Smirnov normality tests indicated that not all 329 

distributions were normal (e.g., surprisal-dependent N400s in the gesture absent, p = 0.02). 330 

Given our strong hypothesis for a decreased N400 amplitude in the presence of a co-speech 331 

gesture for both frequency and surprisal, we opted for one-tailed testing, which increases 332 

statistical power (Cho & Abe, 2013).  333 

 334 

  335 
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Results 336 

To investigate the overall effect of gestures on mTRFs, we modelled brain responses to all 337 

content words. We computed four different models: two single-predictor models using lexical 338 

frequency and surprisal separately, one additive model for the combined effect of frequency 339 

and surprisal, and a model testing the interaction of the two regressors. We then repeated this 340 

procedure after adding to all models an additional categorical predictor indicating the 341 

presence or absence of gestures. Because model fit varies numerically from one run to 342 

another, we implemented these analyses 10 times and averaged model fit values across runs. 343 

We report the model fit averaged across all subjects in table 3. Results show that model fit 344 

improves when gestures are included as an additional regressor, regardless of model type. 345 

Among the four models that include gestures as a categorical predictor, the additive model 346 

shows the best fit. For statistical comparison between model fits, we conducted a linear 347 

mixed effect model for model type and gesture information, controlling for the within-subject 348 

nature of the design by including random effects for subject and the interaction of subject 349 

with model type and subject with gesture information. Results revealed a statistically 350 

significant main effect of gesture information (F = 33.718, p = 1.36e-05) and model type (F = 351 

9.68, p = 2.94e-05) in predicting a better model fit. No statistically significant effect was 352 

found for the model type by gesture interaction. For the main effect of model type, post hoc 353 

Tukey contrasts revealed significant better model fit for the additive model in comparison to 354 

the frequency-only (z = 2.97, p = 0.015) and the surprisal-only (z = 3.17, p = 8.25e-03) 355 

models, with no difference between the additive and the interaction models (z = 0.425 p = 356 

0.974).   357 

(Table 3 here) 358 

 359 



17 

Having established the importance of gesture information in model fit, we next 360 

investigated the frequency-dependent and the surprisal-dependent mTRF responses for words 361 

accompanied by gestures and for words not accompanied by gestures separately. Regarding 362 

the effect of frequency, figure 2a shows the mTRF for Gesture absent and Gesture present 363 

words, averaged across a group of representative centroparietal electrodes (see methods). 364 

Beta values for Gesture absent words are more negative than beta values for Gesture present 365 

words within a time-window that is consistent with the latency of the classic N400 responses 366 

(300–500 ms). We then visually inspected the topographical distribution of the mean mTRF 367 

responses between 300 and 500 ms after word onset. Unlike Gesture present words, Gesture 368 

absent words showed a centro-parietal negativity that is also reminiscent of the classical 369 

N400 effect (figure 2b). Finally, we extracted the median beta values between 300–500 ms 370 

for this group of electrodes (figure 2c). Given our directional hypothesis, we expected the 371 

beta values for the Gesture absent words to be more negative than those for Gesture present 372 

words in a time window consistent with the N400. A non-parametric Wilcoxon signed-rank 373 

test (z = –3.49, signed rank = 11, p = 2.40e-04, one-tailed) showed that the median beta 374 

values for Gesture absent words (n = 20, median = –5.37, SD = 3.96) was significantly more 375 

negative than the median beta values for Gesture present words (n = 20, median = 3.07, SD = 376 

9.01), with a large effect size (r = 0.78). Besides the mTRF results, we also reported the 377 

conventional ERP effects for high– vs. low-frequency words (with median split), both 378 

collapsed across both conditions and within the Gesture present and Gesture absent 379 

conditions in supplementary figure s2.   380 

(Figure 2 here) 381 

 382 
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The mTRF results for GPT-2-surprisal are illustrated in figure 3. Similar to the 383 

frequency-dependent results, beta values for Gesture absent words are more negative than 384 

beta values for Gesture present words within a time-window that is consistent with the 385 

latency and the topography of the classic N400 responses. Again, we extracted the median 386 

mTRF beta values between 300–500 ms for the same a priori defined centro-parietal 387 

electrodes. Given our directional hypothesis, we expected the mTRF response for the Gesture 388 

absent words to be more negative than mTRF for Gesture present words in a time window 389 

consistent with the N400. A Wilcoxon signed-rank test (z = –2.07, signed rank = 49, p = 390 

0.019, one-tailed) showed that the median beta values between 300 and 500 ms for Gesture 391 

absent words (n = 20, median = -2.43, SD = 3.96) were significantly more negative than the 392 

median beta values for Gesture present words (n = 20, median = 0.085, SD = 10.15), with a 393 

moderate effect size (r = 0.46). Similar to lexical frequency, conventional ERP effects for 394 

high– vs. low-surprisal words (with median split), both collapsed across and within the 395 

Gesture present and Gesture absent conditions, are reported in the supplementary figure s3.  396 

(Figure 3 here) 397 

 398 

Notably, within the same time window and for identical electrodes, the modulation 399 

effects for the Gesture absent and Gesture present comparisons are statistically significant for 400 

both frequency and GPT-2 surprisal, although the beta coefficients appear to be larger for the 401 

frequency-dependent effect by visual inspection. Thus, we compared if gestures elicit a 402 

stronger modulatory effect for the regression-based N400 for lexical frequency than for 403 

surprisal. To this end, we conducted a Wilcoxon signed-rank test to directly compare the 404 

median difference between Gesture present and Gesture absent responses for frequency 405 

(median = 9.54, SD = 9.77) and surprisal (median = 5.77, SD = 9.19). We found that this 406 
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difference is indeed significant (z = 2.20, signed rank = 164, p = 0.028, two-tailed). Thus, it 407 

appears that gesture modulates the frequency-derived N400 more strongly than the surprisal-408 

derived N400.  409 

In a further step, based on the fact that the additive model outperforms the single 410 

predictor models, we additionally compared the regression coefficient between the Gesture 411 

present and absent conditions for both frequency and surprisal, when they were both entered 412 

as regressors in the additive model. Results of this analysis are illustrated in figure 4. Here, 413 

beta values differ significantly between Gesture present and Gesture absent conditions for 414 

lexical frequency (z = –2.967, signed rank = 25, p = 0.0015) with a moderate effect size (r = 415 

0.66), whereas no significant difference was observed for surprisal (z = 0.952, signed rank = 416 

130, p = 0.829, r = 0.21). This analysis corroborates the effect of gesture on frequency-417 

dependent N400s. Here, however, in comparison to the single predictor effects, the scalp 418 

distribution of the frequency effect appears to be more anterior. This pattern seems to be 419 

reminiscent to the report on the effect of gesture on speech processing being more anterior 420 

(Kandana Arachchige et al., 2021). Therefore, based on the additive model together with the 421 

gesture information (with gesture) binary regressor, we additionally compared the model fit 422 

between our N400 parietal ROI and a set of frontal electrodes (F1/2/3/4/z, FC1/2). A t-test for 423 

the difference between beta values extracted from the parietal and frontal ROIs showed that 424 

this difference was not statistically significant (t = 2.06, p = 0.053). 425 

(Figure 4 here) 426 

 427 

Further, even though the model fit did not differ between the additive and the 428 

interaction models, we nevertheless conducted a control analysis to investigate the effect of 429 

gesture on a potential interaction between frequency and lexical frequency (figure s4, 430 
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supplementary materials). Results of the mTRF analysis for the interaction model suggest an 431 

effect of frequency (z = -2.86, signed rank = 28, p = 0.002) for a moderate effect size (r = 432 

0.64), where words not accompanied by gestures (z = -3.863, SD = 7.25) are associated to 433 

more negative beta coefficients than words accompanied by gestures (z = 7.70, SD = 17.11). 434 

However, the gesture effect on the interaction term in this model was not statistically 435 

significant (z = 1.47, signed rank = 144, p = 0.93, r = 0.33, figure s3).  436 

We also explored if iconic and beat gestures may have differential impacts of either 437 

frequency-dependent or surprisal-dependent N400. This comparison, however, needs to be 438 

treated with caution given the much lower numbers of data points for each gesture type. We 439 

evaluated both gesture type’s potential impacts also in two steps. Firstly, for model 440 

comparison, for both frequency-only and surprisal-only models separately, we included a 441 

binary regressor regarding the presence of either an iconic or a beat gesture, and evaluated if 442 

the inclusion of iconic/beat gesture regressor improves the model fit, and if they differ from 443 

each other. For the frequency model, results showed that including coding for both types of 444 

gestures generally improves model fit (iconic: t = 3.79, p = 0.02, beat: t = 2.29, p = 0.024). 445 

However, no difference between both types of gestures were observed (t = 1.57, p = 0.137). 446 

For surprisal, including coding for both types of gestures also improved model fit (iconic: t = 447 

2.29, p = 0.038, beat: t = 1.74, p = 0.015). We also observed no difference between both 448 

types of gestures (t = 1.75, p = 0.096). 449 

To investigate the effect of gesture types on frequency-derived N400s, we estimated 450 

two separate models for frequency, based on words that were marked as gesture present with 451 

iconic gestures and beat gestures respectively. We then analyzed their corresponding mTRFs 452 

to gesture present and gesture absent content words for each gesture type. Results (figure s5, 453 

supplementary materials) indicated that N400s are similarly modulated by both gesture types, 454 
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as both iconic gesture absent words (median = -5.37, SD = 3.96) and beat gesture absent 455 

words (median = -5.37, SD = 3.96) are associated with more negative beta coefficients than 456 

their gesture present counterparts (iconic: median = 7.03, SD = 13.33; beat: median = -0.12, 457 

SD = 15.30). Both effects were statistically significant (iconic: z = -2.93, signed rank = 26, p 458 

= 0.002, r = 0.66; beat: z = -2.40, signed rank = 40, p value = 0.008, r = 0.54, figure s4). We 459 

repeated this analysis for surprisal derived N400s. For surprisal (figure s6, supplementary 460 

materials), only beat gestures show a statistical effect (z = -2.632, signed rank = 34, r = 461 

0.589) where gesture absent words (median = -2.43, SD = 3.96) are statistically more 462 

negative than gesture present words (median = 4.50, SD = 13.24). In contrast, iconic gestures 463 

do not have a statistically significant effect on the surprisal derived N400 amplitude (z = -464 

0.690, signed rank = 86, p = 0.245, r = 0.154). 465 

  466 
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Discussion 467 

We investigated whether the presence of gestures modulates the cognitive demands 468 

associated with lexical retrieval and semantic prediction during the processing of naturalistic 469 

multimodal stimuli. With a set of mTRF analyses, we found that providing the gesture coding 470 

significantly improves the mTFR model fit. Most importantly, extending a prior study 471 

(Sassenhagen, 2019), across all models, we observed robust evidence that co-speech gestures 472 

reduced the amplitude of the frequency-dependent N400, thus suggesting a facilitative role of 473 

gestures on lexical retrieval. This finding significantly elaborates the semantic processing 474 

literature of multimodal language: prior studies typically employ classic semantic violation 475 

paradigms (He et al., 2020; Morett et al., 2020; Wang & Chu, 2013), or disambiguation 476 

paradigms (Holle & Gunter, 2007) to derive the N400 effect. Consequently, although results 477 

from these studies speak strongly for a facilitative role of gesture, it is, more specifically, 478 

semantic integration that benefits from the visual modality. Here, building on the well-479 

established link between lexical frequency and the N400, we showed that bottom-up lexical 480 

retrieval, as indexed by the N400, benefits from a complementary visual modality, just as 481 

how it interacts with sentence context (Van Petten & Kutas, 1990). Our results also align with 482 

an extensive line of literature on the facilitative effect of gesture on lexical retrieval during 483 

production  (Hadar et al., 1998; Hadar & Butterworth, 1997; Lanyon & Rose, 2009).  To our 484 

knowledge, this is the first time that an interaction between frequency and co-speech gestures 485 

was observed, although directly from a naturalistic paradigm. 486 

Regarding semantic prediction, GPT-2 surprisal indeed models an apparent N400 487 

during the processing of a naturalistic multimodal narrative. This is in line with studies 488 

showing a surprisal N400 effect using auditory-only stimuli (Frank et al., 2015; Frank & 489 

Willems, 2017; Yan & Jaeger, 2020) and corroborate a similar effect of surprisal during the 490 
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processing of multimodal stimuli (Y. Zhang et al., 2021). We extended these findings by 491 

using speech stimuli from a long and continuous multimodal narrative rather than single 492 

sentences, thus establishing the modulatory effect of co-speech gestures on the N400 during 493 

naturalistic comprehension. Similar to more recent studies, we also implemented a time-494 

resolved version of regression-based ERPs, namely multivariate Temporal Response 495 

Functions, which allowed us to unmix the ERP responses to words of interest from that to 496 

preceding and succeeding words in the continuous EEG signal (Crosse et al., 2016). With this 497 

in mind, our findings imply that surprisal can quantify a word’s unpredictability not only at 498 

the level of single lexical items or sentences (Hale, 2001; Levy, 2008), but also during word-499 

by-word processing of naturalistic narratives that are multimodal in nature. 500 

However notably, our analyses in the additive and interactive models only showed a 501 

significant effect of gesture on frequency-dependent N400, but not on the surprisal-dependent 502 

N400. This finding may be considered evidence of the modulation effect of gestures on 503 

surprisal being potentially dependent on frequency. In the literature on unimodal (visual or 504 

auditory) naturalistic language processing, word frequency is commonly, but not always 505 

input as a covariate when modelling the effect of context-dependent measures such as 506 

surprisal or semantic similarity (Armeni et al., 2019; Weissbart et al., 2019; Willems et al., 507 

2016, but see Broderick et al., 2018). In the multimodal language processing literature, to 508 

date, the effect of gestures on semantic prediction (as indexed by surprisal) has been 509 

investigated in only one recent study (Y. Zhang et al., 2021), but there the potential effect of 510 

word frequency was not controlled for. In our study, the null effect for surprisal in the 511 

frequency + surprisal model does not necessarily imply no effect of gestures on semantic 512 

prediction: for example, the absence of a significant effect of surprisal in the additive model 513 

may be alternatively explained by the fact that frequency captures the shared variance 514 

between frequency and surprisal; and after all, in the single-predictor model, we still 515 
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observed significant effect of gesture on the surprisal-N400. Thus, although our results are in 516 

accordance with prior studies in suggesting a modulatory effect of gestures on the N400s 517 

(which may reflect semantic processing in general), they would need further validation, 518 

especially regarding how lexical retrieval, semantic prediction, and semantic integration are 519 

interactively affected by gestures.  520 

An important contribution of the current study is that the effect of gestures on the 521 

frequency- and/or surprisal-dependent N400 is observed in a multimodal narrative (Willems 522 

et al., 2020). This extends previous results from factorial studies (Fabbri-Destro et al., 2015; 523 

Kelly et al., 2004; Özyürek et al., 2007; Willems et al., 2007; Wu & Coulson, 2005) to the 524 

processing of more naturalistic stimuli. A possible reason for this facilitative effect is that 525 

gesture onset in the current experiment preceded the onset of critical words, preactivating 526 

semantic representations or facilitating lexical retrieval, and thus alleviating the cognitive 527 

demand associated to the decoding of meaning (He et al., 2020; Maess et al., 2016; Szewczyk 528 

& Schriefers, 2018; ter Bekke et al., 2020; Y. Zhang et al., 2021) . This effect could be 529 

especially highlighted in a more naturalistic setting where the actor of the video was able to 530 

freely produce the spontaneous gestures during recording. Thus, it could be that there is a 531 

bias to use gestures for words that are contextually more salient (Pouw et al., 2021; Trujillo et 532 

al., 2021), or that gestures co-occur with enhanced articulation, or even with a slow-down of 533 

the speaking rate, both of which could potentially facilitate semantic processing (e.g. 534 

Broderick et al., 2018). Consequently, when perceived by the comprehender, the onset of a 535 

gesture would automatically signal the ease of processing of the upcoming key word and 536 

would jointly reduce the effort of lexical retrieval and/or semantic prediction together with 537 

more enhanced articulation. However, as we did not control for these factors (e.g., artificially 538 

cover the actor’s mouth) for the purpose of maintaining maximal naturalness of the stimuli, 539 

these potential confounds would need to be further assessed in more controlled conditions. 540 
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Alternatively, from a neurobiological perspective, it has been suggested that a left-lateralized, 541 

modality-independent system exists in anterior and posterior temporal regions that maps 542 

semantic information into common conceptual representations (Andric et al., 2013; Straube et 543 

al., 2012, 2013; Xu et al., 2009, but see Jouravlev et al., 2019 for an alternative view). 544 

Therefore, it could also be possible that the facilitative effect of gestures during 545 

lexicosemantic retrieval/prediction indexed by the attenuation of the frequency and surprisal 546 

N400 responses reflects the integration of matching acoustic and visual symbolic 547 

representations encoded by multisensory neuronal populations in this supramodal semantic 548 

system. This would be similar to what has been documented for low-level perceptual features 549 

during audiovisual speech perception (Park et al., 2018) and to additive and supra-additive 550 

effects during multisensory integration (Stein & Stanford, 2008). Both scenarios, however, 551 

highlight the relevance of speech gestures in human communication and raise interesting 552 

questions about the evolutionary origins and relevance of their facilitative effect. 553 

Our study has a number of limitations. First, for practical considerations, we did not 554 

set up an auditory-only condition that could potentially serve as unimodal baseline. Although 555 

this approach is used by a number of recent naturalistic language processing studies (S. 556 

Zhang et al., 2022), it is nevertheless vulnerable to the lack of control of stimulus-related 557 

features between the Gesture present and Gesture absent conditions. Secondly, in the current 558 

study, even if we have compared iconic and beat gestures on their effects on frequency and 559 

surprisal, and have found potentially differential effects on the surprisal-dependent N400s 560 

(see figure s5, supplement), the interpretation of this set of analysis should be cautious 561 

because of the low number of datapoints available in the current study. Here, we found that 562 

both iconic and beat gestures consistently modulate the frequency-dependent N400; but for 563 

surprisal, although the mTRF model fit generally improved when both iconic and beat gesture 564 

coding were additionally included as regressors, the pairwise comparison between gesture 565 
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present and gesture absent words only showed a significant modulation effect of beat gesture 566 

on the surprisal-dependent N400. Other recent literature has provided evidence of dissociable 567 

effects of gesture types on electrophysiological responses using both naturalistic and factorial 568 

approaches, with iconic (i.e., meaningful) gestures being associated to a reduction in the 569 

amplitude of the N400 and beat gestures being associated to increased N400 effects as 570 

derived from semantic violation or surprisal (Hintz et al., 2022; Y. Zhang et al., 2021). On the 571 

other hand, there is another line of literature showing that the N400 amplitude of single words 572 

in a sentence may still be modulated by the presence of beat gestures, suggesting a potentially 573 

facilitative effect of beat gestures (Morett et al., 2020; Wang & Chu, 2013). Clearly, given 574 

the mixture of current literature, future experiments are necessary to shed light on this issue. 575 

Moreover, in this study we used GPT-2 for analyzing surprisal. While it was informative, 576 

subsequent large language models may outperform GPT-2 due to their expanded training 577 

datasets and refined architectures, and may provide better fit to the EEG data (Digutsch & 578 

Kosinski, 2023; Mahowald et al., 2023; Michaelov et al., 2023). Further, in the current study 579 

we interpolated bad electrodes based on a relatively sparse 32-channel system, this potential 580 

distortion may be best handled with a conceptual replication with an independent dataset. 581 

Lastly, like many other studies that investigate semantic processing using narratives, we did 582 

not employ any behavioral tasks during the experiential procedure (e.g., Broderick et al., 583 

2018; Goldstein et al., 2022; Willems et al., 2016). As a result, the interpretation of any 584 

degree of facilitation, either of lexical retrieval or semantic prediction, can be interpreted on a 585 

neural level at best. For this reason, a naturalistic paradigm that most optimally combines 586 

behavior and its neural substrates becomes imperative for further research (Gratton et al., 587 

2022).  588 

  589 
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Table 1. Summary of gesture occurrences 902 

Gesture Type Occurrence % 

Iconic 181 36.71 

Metaphoric 85 17.24 

Emblematic 19 3.85 

Beat 148 30.02 

Deictic 60 12.17 

Total 493 100 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 
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Table 2. Summary of word statistics 914 

 N° of 
Words 

Word duration  GPT-2 Surprisal   Word frequency 

  Mean Median SD Range  Mean Median SD Range   Mean Median SD Range 

Gesture 
Present 

466 0.545 0.510 0.199 1.080  13.714 12.679 7.331 47.010   12.695 11 5.628 27 

Gesture 
Absent 

1491 0.491 0.460 0.195 2.810  13.056 11.538 7.932 53.972   11.674 11 5.586 27 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

 926 

 927 
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Table 3. Model fit comparison 928 

Model  Fit (spearman r) 

 
Without gesture 

as regressor 
With gesture 
as regressor 

 Mean SD Mean SD 
     

Surprisal 0.058 0.013 0.069 0.016 
Frequency 0.056 0.015 0.069 0.013 
Additive 0.066 0.017 0.076 0.015 

Interaction 0.065 0.015 0.075 0.016 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 
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Figures  942 

Figure 1 943 

 944 

 945 

 946 

 947 

 948 

 949 
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Figure 2 950 

 951 

 952 

 953 

 954 

 955 

 956 
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Figure 3 957 

 958 

 959 

 960 

 961 

 962 

 963 
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Figure 4 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 
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Figure captions 976 

• Figure 1. Schematic representation of experimental and analytic protocol. a. EEG 977 

data was acquired while participants were exposed to multimodal naturalistic speech 978 

stimuli. Besides lexical frequency, word-by-word surprisal was obtained using the 979 

GPT-2 model. Multimodal stimuli were annotated for the presence of absence of 980 

gestures. EEG data were then modelled using the mTRF toolbox to obtain regression-981 

based ERPs (i.e., mTRFs) for gesture present and gesture absent data separately. b. 982 

Sample frames from the multimodal video stimuli (top) along with corresponding 983 

word-by-word frequency and GPT-2-derived surprisal values (middle) and the 984 

average EEG signal for a group of centro-parietal electrodes (bottom). Words marked 985 

as Gesture present are marked with red background. 986 

• Figure 2. Results of TRF analyses for lexical frequency. a. Mean mTRF to Gesture 987 

absent (blue) and Gesture present (orange) words obtained from the average of our 988 

electrodes of interest. Coloured shades show the 95% bootstrapped confidence 989 

intervals. Dotted lines represent our time-window of interest for statistical analyses 990 

(300–500 ms). b. Topographical distributions of mean mTRF responses between 300–991 

500 ms. c. Individual and group median mTRF beta values between 300–500 ms. The 992 

line and asterisks represent a statistically significant effect (p < 0.001, one-tailed). 993 

• Figure 3. Results of TRF analyses for GPT-2 surprisal. a. Mean mTRF to Gesture 994 

absent (blue) and Gesture present (orange) words obtained from the average of a 995 

group of centro-parietal electrodes. Coloured shades show the 95% bootstrapped 996 

confidence intervals. Dotted lines represent our time-window of interest for statistical 997 

analyses (300–500 ms). b. Topographical distributions of mean mTRF responses 998 

between 300–500 ms. c. Individual and group median mTRF beta values between 999 
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300–500 ms. The line and asterisk represent a statistically significant effect (p < 0.05, 1000 

one-tailed). 1001 

• Figure 4. Results of TRF analyses for the additive model a. Effect of GPT-2 1002 

surprisal. b. Effect of lexical frequency. For both panels, mTRF for Gesture absent 1003 

(blue) and Gesture present (orange) words obtained as the average of an a priori 1004 

defined group of centro-parietal electrodes. Coloured shades show the 95% 1005 

bootstrapped confidence intervals. Dotted lines represent our time-window of interest 1006 

for statistical analyses (300–500 ms). Topographical distributions are based on the 1007 

mean mTRF responses between 300–500 ms. Point and line-plots show Individual 1008 

and group median mTRF beta values between 300–500 ms. The line and asterisks 1009 

represent a statistically significant effect (p < 0.01, one-tailed). 1010 
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Table s1. Optimal Lamba values for additive and interaction models after cross-validation  

Subject Additive Interaction 
 Gesture absent Gesture present Gesture absent Gesture present 
     
1 0.631 0.040 0.794 0.200 
2 0.794 10.000 1.995 10.000 
3 0.010 0.794 0.158 0.010 
4 0.010 0.200 0.316 0.251 
5 0.010 0.010 1.585 0.631 
6 0.398 2.512 1.000 0.010 
7 1.000 1.995 1.259 0.794 
8 6.310 1.259 5.012 0.794 
9 0.010 0.501 1.000 0.501 

10 0.501 0.010 0.794 0.010 
11 0.794 0.631 0.398 0.200 
12 0.010 10.000 0.010 1.000 
13 0.010 1.259 0.010 0.010 
14 7.943 0.032 2.512 0.079 
15 2.512 0.010 0.010 0.251 
16 0.010 0.398 0.251 0.200 
17 0.010 1.995 0.631 0.010 
18 0.200 0.010 0.794 0.020 
19 1.000 0.010 1.259 0.032 
20 0.010 10.000 0.794 10.000 

 

 

 

 

 

 

 

 

 

 

 



Table s2. Model fit values (spearman r) for the four models 

Subject Surprisal Frequency Additive Interaction 

  
Gesture 
absent 

Gesture 
present 

Gesture 
absent 

Gesture 
present 

Gesture 
absent 

Gesture 
present 

Gesture 
absent 

Gesture 
present 

1 0,088 -0,013 0,103 0,042 0,030 0,048 0,108 0,037 
2 0,037 0,007 0,051 0,031 0,044 0,041 0,039 0,056 
3 0,032 0,047 0,028 0,048 0,089 0,039 0,103 0,046 
4 0,073 0,053 0,059 0,061 0,082 0,053 0,033 0,048 
5 0,024 0,042 0,047 0,020 0,026 0,051 0,037 0,053 
6 0,078 0,054 0,116 0,033 0,042 0,083 0,084 0,062 
7 0,045 0,040 0,034 0,036 0,066 0,044 0,053 0,010 
8 0,055 0,099 0,086 0,043 0,026 0,072 0,028 0,035 
9 0,047 0,039 0,092 0,055 0,042 0,074 0,066 0,056 
10 0,066 0,039 0,028 0,037 0,042 0,023 0,026 0,070 
11 0,050 0,010 0,070 0,059 0,036 0,087 0,050 0,003 
12 0,049 0,020 0,078 0,035 0,033 0,021 0,029 0,036 
13 0,046 -0,008 0,064 0,054 0,036 0,004 0,093 0,048 
14 0,046 0,064 0,068 0,045 0,100 0,070 0,100 0,069 
15 0,057 0,019 0,039 0,050 0,075 0,028 0,065 0,102 
16 0,123 0,092 0,090 0,100 0,089 0,078 0,084 0,082 
17 0,041 0,032 0,033 0,045 0,135 0,039 0,110 0,067 
18 0,067 0,035 0,021 0,054 0,086 0,046 0,046 0,045 
19 0,022 0,052 0,072 0,060 0,039 0,075 0,074 0,066 
20 0,075 0,028 0,043 0,004 0,080 0,021 0,050 0,033 

 

 

 

 

 

 

 

 

 

 



 

 

Figure s1. Example of the gestures as produced in the multimodal narrative (left panel). 

The middle panel shows the corresponding original German sentence and the Gesture 

present words (underlined). The right panel shows the English translation of the sentences 

and the Gesture present words.  

 

 

 

 

 

 

 

 

 



Conventional ERP effects for high- vs. low-frequency words 

 

We conducted a median-split analysis based on lexical frequency for all content words and 

compared the conventional ERP effects between high– and low-frequency words for (1) all 

words and (2) words within the Gesture present and the Gesture absent conditions. ERPs 

were all baseline-corrected based on the -200-0 ms time-locked to the onset of each word. 

We plot the ERP waveforms in figure s1. Analogous to the mTRF results, we directly 

extracted the ERP amplitudes between 300–500ms for centro-parietal electrodes and entered 

these values into a 2 x 2 parametric repeated-measures ANOVA with the factors 

FREQUENCY (high vs. low) and GESTURE (present vs. absent), as interaction is unable to 

be tested via non-parametric tests. ANOVA revealed a main effect of GESTURE (F(1,19)= 

41.90, p < 0.00003) and no main effect of frequency  (F(1,19) = 1.04, p = 0.32). The interaction 

between the two factors was significant (F(1,19)= 5.92, p < 0.00003). We then conducted 

Wilcoxon signed-rank tests for the effect of frequency within Gesture present and Gesture 

absent. No effect of frequency was observed in the Gesture absent condition (z = 2.25, signed 

rank = 165, p = 0.99), but low-frequency content words (above median) showed more 

positive N400 amplitudes in comparison to high-frequency words (z = –2.14, signed rank = 

47, p = 0.015) in the Gesture present condition. This effect, besides being significant, is not 

in accordance with the hypothesized pattern that low-frequency words should be more 

negative in the N400 window. Overall, the hypothesized effect of frequency was not reliably 

observed in the ERP results.  



 

Figure s2. Results of the ERP analyses (median split) for lexical frequency for a. All words 

collapsed across Gesture absent and Gesture present conditions. b. Words in the Gesture 

absent condition. and c. Words in the Gesture present condition. For all panels, waveforms 

of low-frequency words (Above median) are depicted in red, and high-frequency words 

(Below median) are depicted in blue. ERPs were obtained from the average of all electrodes. 

Coloured shades show the 95% bootstrapped confidence intervals. Dotted lines represent our 

time-window of interest for statistical analyses (300-500 ms). Topographical distributions 

show ERP responses between 300-500 ms. Point- and line-plots show individual and group 

median ERP amplitudes between 300-500 ms. The line and asterisk represent a statistically 

significant effect (p < 0.05, one-tailed). 



Conventional ERP effects for high- vs. low-surprisal words 

 

For surprisal, we also conducted a median-split ERP analysis based on GPT-2 surprisal for 

all content words and compared the conventional ERP effects between high- and low-

surprisal words for 1) all words and 2) words within the Gesture present and the Gesture 

absent conditions. ERPs were all baseline-corrected based on the -200-0 ms time-locked to 

the onset of each word. We plot the ERP waveforms in Figure s2. Analogous to the mTRF 

results, we directly extracted the ERP amplitudes between 300-500ms for centro-parietal 

electrodes and entered these values into a 2 x 2 parametric repeated-measures ANOVA with 

the factors SURPRISAL (high vs. low) and GESTURE (present vs. absent). ANOVA 

revealed a main effect of GESTURE (F(1,19) = 52.212, p = 7.34e-07), but no main effect of 

SURPRISAL (F(1,19) = 0.078, p = 0.79). The interaction between the factors was also non-

significant (F(1,19) = 0.861, p = .365). Non-parametric Wilcoxon signed-rank tests also 

showed no effect of SURPRISAL within the Gesture absent (z = 1.4, signed rank = 142, p = 

0.919), and the Gesture present conditions (z = -0.35, signed rank = 95, p = 0.361). Similar 

to lexical frequency, ERPs on high vs. low surprisal did not exhibit interpretable patterns.  

 



 

Figure s3: Results of the ERP analyses for GPT-2 surprisal for a. All words collapsed across 

Gesture absent and Gesture present conditions. b. Words in the Gesture absent condition. 

and c. Words in the Gesture present condition. For all panels, waveforms of high-surprisal 

words (Above median) are depicted in red, and low-surprisal words (Below median) are 

depicted in blue. ERPs were obtained from the average of all electrodes. Coloured shades 

show the 95% bootstrapped confidence intervals. Dotted lines represent our time-window of 

interest for statistical analyses (300–500 ms). Topographical distributions show ERP 

responses between 300–500 ms. Point- and line-plots show individual and group median ERP 

amplitudes between 300–500 ms. 

 



Discussion on the median-split ERPs 

 

Our conventional median-split ERP analyses revealed no systematic and interpretable effects 

for either frequency or surprisal. Our findings, at first glance, might be at odds with prior 

publications showing either an N400 effect of high vs. low surprisal using unimodal language 

stimuli e.g., visually presented sentences (Frank et al., 2015). Notably, in this study, the 

stimuli were presented in an RSVP manner, and only one critical word within one sentence 

were analysed for the ERPs. Regarding frequency, despite a long list of literature employing 

factorial ERP design (e.g., Van Petten and Kutas, 1990), no prior literature has used even 

unimodal but naturalistic stimuli with median-split to examine how the N400 ERPs vary as 

a function of word frequency. On the other hand, in the multimodal language processing 

literature, a number of studies have reported and N400 effect using conventional ERP 

methods (Kelly et al., 2004; Morett et al., 2020; Wang and Chu, 2013; Wu and Coulson, 

2005). Similar to the study from Frank and colleagues (2015), the gesture-speech N400 

studies also focused on a single critical word within sentences, so that there is no overlap of 

EEG time-windows between words. As a result, conventional ERP analysis focusing on the 

N400 window has led to reliable and interpretable data pattern. This is, however, not the case 

for the current study, as shown from our results. Here, the validity, and the comparability to 

prior studies when using conventional ERP methods is undermined by two important 

confounds: the temporal segments of words being analysed overlap with each other; and all 

these words were multimodal in nature (with facial expressions, lip movements, and where 

applicable, hand gestures). Thus, we argue that the conventional ERP analysis (here using 

the median-split approach) has limitations to answer our research questions; and the effect of 



surprisal and word frequency, and their interaction with co-speech gestures is best examined 

via the temporally-resolved regression approach, as we reported in the main text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure s4. Results of mTRF analyses for surprisal (a), frequency (b) and their interaction (c). 

Mean mTRF to Gesture absent (blue) and Gesture present (orange) words obtained from the 

average of a group of centro-parietal electrodes with their 95% bootstrapped confidence 

intervals. Topographical distributions are based on the mean mTRF responses between 300–



500 ms. Point and line-plots show Individual and group median mTRF beta values between 

300–500 ms. The line and asterisk represent a statistically significant effect (p < 0.05, one-

tailed). 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure s5. Results of mTRF analyses for frequency using iconic gestures (a) and beat 

gestures (b) only. Mean mTRF to Gesture absent (blue) and Gesture present (orange) words 

obtained from the average of a group of centro-parietal electrodes with their 95% 

bootstrapped confidence intervals. Topographical distributions are based on the mean mTRF 

responses between 300–500 ms. Point and line-plots show Individual and group median 

mTRF beta values between 300–500 ms. The line and asterisks represent a statistically 

significant effect (p < 0.01, one-tailed). 

 

 

 

 

  



 

 

Figure s6. Results of mTRF analyses for surprisal using iconic gestures (a) and beat gestures 

(b) only. Mean mTRF to Gesture absent (blue) and Gesture present (orange) words obtained 

from the average of a group of centro-parietal electrodes with their 95% bootstrapped 

confidence intervals. Topographical distributions are based on the mean mTRF responses 

between 300–500 ms. Point and line-plots show Individual and group median mTRF beta 

values between 300–500 ms. The line and asterisks represent a statistically significant effect 

(p < 0.01, one-tailed). 

 

 

 

 

 

 


