Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Towards a Multi-Objective Optimization of Subgroups for the Discovery of Materials with Exceptional Performance

MPG-Autoren
/persons/resource/persons251787

Foppa,  Lucas
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias       
NOMAD, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2311.10381.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Foppa, L., & Scheffler, M. (in preparation). Towards a Multi-Objective Optimization of Subgroups for the Discovery of Materials with Exceptional Performance.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-39DD-A
Zusammenfassung
Artificial intelligence (AI) can accelerate the design of materials by identifying correlations and complex patterns in data. However, AI methods commonly attempt to describe the entire, immense materials space with a single model, while it is typical that different mechanisms govern the materials behaviors across the materials space. The subgroup-discovery (SGD) approach identifies local rules describing exceptional subsets of data with respect to a given target. Thus, SGD can focus on mechanisms leading to exceptional performance. However, the identification of appropriate SG rules requires a careful consideration of the generality-exceptionality tradeoff. Here, we discuss challenges to advance the SGD approach in materials science and analyse the tradeoff between exceptionality and generality based on a Pareto front of SGD solutions.