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Status	
Artificial-intelligence	(AI)	approaches	in	materials	science	usually	attempt	a	description	of	all	possible	
scenarios	with	a	single,	global	model.	However,	the	materials	that	are	useful	for	a	given	application,	
which	requires	a	special	and	high	performance,	are	often	statistically	exceptional.	For	instance,	one	
might	be	 interested	 in	 identifying	exceedingly	hard	materials,	or	materials	with	band	gap	within	a	
narrow	range	of	values.	Global	models	of	materials’	properties	and	functions	are	designed	to	perform	
well	in	average	for	the	majority	of	(uninteresting)	compounds.	Thus,	AI	might	well	overlook	the	useful	
materials.	 In	 contrast,	 subgroup	discovery	 (SGD)	 [1,2]	 identifies	 local	 descriptions	of	 the	materials	
space,	 accepting	 that	 a	 global	 model	 might	 be	 inaccurate	 or	 inappropriate	 to	 capture	 the	 useful	
materials	subspace.	Indeed,	different	mechanisms	may	govern	the	materials’	performance	across	the	
immense	 materials	 space	 and	 SGD	 can	 focus	 on	 the	 mechanism(s)	 that	 result	 in	 exceptional	
performance.		
	
The	SGD	analysis	is	based	on	a	dataset	𝑃,	which	contains	a	known	set	of	materials.		𝑃	is	part	of	a	larger	
space	of	possible	materials,	the	full,	typically	infinite	population	𝑃.	For	the	materials	in	𝑃,	we	know	a	
target	of	interest	𝑌	(metric	or	categorical),	such	as	a	materials’	property,	as	well	as	many	candidate	
descriptive	parameters	𝜑	possibly	correlated	with	the	underlying	phenomena	governing	𝑌	 (Fig.	1).	
From	this	dataset,	SGD	generates	propositions	𝜋	about	the	descriptive	parameters,	e.g.,	inequalities	
constraining	their	values,	and	then	 identifies	selectors	𝜎,	conjunctions	of	𝜋,	 that	result	 in	SGs	that	
maximize	a	quality	function	𝑄:	
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In	Eq.	1,	the	ratio	𝑠67 𝑠8	is	called	the	coverage,	where	𝑠67 	and		𝑠8	are	the	number	of	data	points	in	
the	SG	and	 in	𝑃,	 respectively.	The	utility	 function	𝑢(𝑆𝐺, 𝑃)	measures	how	exceptional	 the	SGs	are	
compared	to	𝑃	based	on	the	distributions	of	𝑌	 values	 in	 the	SG	and	 in	𝑃.	𝑄	establishes	a	 tradeoff	
between	the	coverage	(generality)	and	the	utility	(exceptionality),	which	can	be	tuned	by	a	tradeoff	
parameter	𝛾.	Typically,	the	identified	selectors	only	depend	on	few	of	the	initially	offered	candidate	
descriptive	parameters.	The	identified	SG	selectors	(or	rules)	describe	the	local	behaviour	in	the	SG	
and	they	can	be	exploited	for	the	identification	of	new	materials	in	𝑃.		



	
Figure	1.	Subgroup	discovery	(SGD)	identifies	descriptions	of	exceptional	subselections	of	the	

dataset.	These	descriptions	(rules)	are	selectors	𝜎	constructed	as	conjunctions	of	propositions	𝜋	
about	the	data.	The	symbol	∧	denotes	the	“AND”	operator.	

	
Current	and	Future	Challenges	
The	potential	of	SGD	to	uncover	 local	patterns	 in	materials	science	has	been	demonstrated	by	the	
identification	 of	 structure-property	 relationships,	 [3]	 and	 by	 the	 discovery	 of	 materials	 for	
heterogeneous	 catalysis.	 [4]	 Additionally,	 using	 (prediction)	 errors	 as	 target	 in	 SGD,	we	 identified	
descriptions	of	the	regions	of	the	materials	space	in	which	(machine-learning)	models	have	low	[5]	or	
high	errors.	[6]	Thus,	the	domain	of	applicability	(DoA)	of	the	models	could	be	established.	Despite	
these	 encouraging	 results,	 the	 advancement	 of	 the	 SGD	 approach	 in	 materials	 science	 requires	
addressing	key	challenges:	
§ The	 quality	 function	 introduces	 one	 generality-exceptionality	 tradeoff,	 among	 a	 multitude	 of	

possible	 tradeoffs	 that	 can	 be	 relevant	 for	 a	 given	 application	 and	 that	 can	 be	 obtained	with	
different	𝛾.	For	 instance,	the	required	hardness	of	a	material	depends	on	the	type	of	device	in	
which	 it	will	 be	 used	 and	 the	DoA	 of	 a	model	 depends	 on	 the	 accuracy	 that	 is	 acceptable	 to	
describe	a	certain	property	or	phenomenon.	However,	choosing	the	appropriate	𝛾	and	assessing	
the	similarity	 -	or	redundancy	-	among	the	multiple	rules	obtained	with	different	tradeoffs	are	
challenging	tasks.	

§ Widely	used	utility	functions	assess	the	exceptionality	of	SGs	by	comparing	the	data	distribution	
of	the	SG	and	that	of	𝑃	via	a	single	summary-statistics	value.	For	example,	the	positive-mean-shift	
utility	function	for	metric	target	favors	the	identification	of	SGs	with	high	𝑌	values	only	based	on	
the	 means	 of	 the	 two	 distributions.	 Thus,	 it	 is	 often	 assumed	 that	 the	 distributions	 are	 well	
characterized	 by	 the	 chosen	 summary-statistics	 value	 and	 that	𝑃	 is	 representative	 of	 the	 full	
population	𝑃.	However,	distributions	in	materials	science	are	typically	non-normal	and	𝑃	might	
not	reflect	the	infinitely	larger,	unknown	𝑃.	This	calls	for	the	consideration	of	utility	functions	that	
circumvent	the	mentioned	assumptions.		

§ The	 mechanisms	 governing	 materials	 can	 be	 highly	 intricate	 and	 the	 relevant	 descriptive	
parameters	to	describe	a	certain	materials’	property	are	often	unknown.	Thus,	one	would	like	to	
offer	many	possibly	relevant	candidate	parameters	and	let	the	SGD	analysis	identify	the	key	ones.	
However,	optimizing	the	quality	function	is	a	combinatorial	problem	with	respect	to	the	number	
of	descriptive	parameters	and	efficient	search	algorithms	are	therefore	crucial.	[7]	
	

Advances	in	Science	and	Technology	to	Meet	Challenges		
In	 order	 to	 address	 some	 of	 these	 open	 questions,	 we	 approach	 the	 SGD	 as	 a	 multi-objective-
optimization	problem	for	the	systematic	identification	of	SG	rules	that	correspond	to	a	multitude	of	
generality-exceptionality	tradeoffs.	Coherent	collections	of	SG	rules	are	obtained	by	considering	the	
Pareto	front	of	optimal	SGD	solutions	with	respect	to	the	objectives	coverage	and	utility	function,	as	
illustrated	for	the	example	of	identification	of	perovskites	with	high	bulk	moduli	in	Fig.	2.	Once	the	
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coherent	collections	of	SG	rules	are	identified,	the	overlap	between	SG	elements	can	be	used	to	assess	
their	similarity.	A	high	similarity	between	SG	rules	might	indicate	that	the	rules	are	redundant.	Thus,	
the	 similarity	 analysis	 can	 be	 used	 to	 choose	 the	 SG	 rules	 that	 should	 be	 considered	 for	 further	
investigation	or	exploitation.		
	

	
Figure	 2.	 Left	 panel:	 A	 coherent	 collection	 of	 SG	 rules	 describing	ABO3	 perovskites	with	 high	 bulk	
modulus	(𝐵>)	is	identified	at	the	Pareto	front	of	SGD	solutions	with	respect	to	the	objectives	coverage	
and	 the	 utility	 function	 cumulative	 Jensen-Shannon	 divergence.	 Right	 panel:	 The	 identified	 rules	
constrain	the	values	of	the	radiii	of	the	s	orbitals	of	isolated	A,	B	and	B+1	species	(𝑟+,@,	𝑟+,A	and	𝑟+,ABCD,	
respectively),	 the	 electron	 affinity	 and	 ionization	 potential	 of	 isolated	 B	 species	 (𝐸𝐴A	 and	 𝐼𝑃A,	
respectively),	 the	expected	oxidation	state	of	A	 (𝑛@),	 the	equilibrium	 lattice	constant	 (𝑎>),	and	the	
cohesive	energy	(𝐸>).		
	
Noteworthy,	 the	cumulative	 Jensen-Shannon	divergence	 (𝐷K6)	 [8]	between	 the	distribution	of	bulk	
moduli	 in	the	SG	and	 in	the	entire	dataset	 is	used	as	quality	 function	 in	the	example	of	Fig.	2.	𝐷K6	
assumes	small	values	for	similar	distributions	and	increases	as	the	distribution	of	target	values	in	the	
SG	is,	e.g.,	shifted	or	narrower	with	respect	to	the	distribution	of	the	entire	dataset.	Crucially,	𝐷K6	does	
not	assume	that	one	single	summary-statistics	value	represents	the	distributions.	Divergence-based	
utility	functions	addressing,	e.g.,	high	or	low	target	values,	will	thus	be	an	important	advance.	We	note	
that	the	utility	function	might	also	incorporate	information	on	multiple	targets	or	physical	constraints	
that	are	specific	to	the	scientific	question	being	addressed.	[9]	However,	in	order	to	ensure	that	the	
training	data	is	representative	of	the	relevant	materials	space	one	would	like	to	cover,	the	iterative	
incorporation	of	 new	data	points	 and	 training	of	 SGD	 rules	 in	 an	 active-learning	 fashion	might	 be	
required.		
	
Concluding	Remarks	
SGD	can	accelerate	the	 identification	of	exceptional	materials	that	may	be	overlooked	by	global	AI	
models	because	it	focuses	on	local	descriptions.	However,	further	developments	are	required	in	order	
to	translate	the	SGD	concept	to	the	typical	scenario	of	materials	science,	where	datasets	might	be	
unbalanced,	or	not	be	representative	of	the	whole	materials	space	and	the	most	important	descriptive	
parameters	are	unknown.	The	multi-objective	perspective	introduced	in	this	contribution	provides	an	
efficient	framework	for	dealing	with	the	compromise	between	generality	and	exceptionality	in	SGD.		
The	 combination	 of	 this	 strategy	 with	 efficient	 algorithms	 for	 SG	 search	 and	 with	 a	 systematic	



incorporation	of	new	data	points	to	better	cover	the	materials	space	will	further	advance	the	AI-driven	
discovery	of	materials.		
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