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Abstract

The state-of-the-art “Strongly Constrained and Appropriately Normed” (SCAN)
functional pertains to the family of meta-generalized-gradient approximation (meta-
GGA) exchange-correlation functionals. Compared to lower-order approximations
or other meta-GGA functionals, it provides a remarkable accuracy in reproducing
and predicting a manifold of chemical and physical properties, both for molecules
and solid materials. Nonetheless, also SCAN suffers from some well-documented
deficiencies. From a practical point of view, SCAN calculations often require a
huge number of iterations to reach self-consistency due to considerable numerical
instabilities in the evaluation of the functional itself. From a more fundamental
point of view, SCAN suffers from the notorious self-interaction error (SIE) known
from semi-local exchange-correlation functionals, which limits its accuracy in sev-
eral cases, e.g., for the description of charge transfer and for the assessment of
electronic band gaps.

In the first part of this thesis, I revisited the known numerical instability prob-
lems of the SCAN functional in the context of the numerical, real-space integra-
tion framework used in the FHI-aims code. This analysis revealed that applying
standard density-mixing algorithms to the kinetic energy density attenuates and
largely cures these numerical issues. By this means, SCAN calculations converge
towards the self-consistent solution as fast and as efficiently as lower-order GGA
calculations.

In the second part of the thesis, I investigated strategies to alleviate the SIE in
SCAN calculations by using the self-interaction correction algorithm proposed by
Perdew and Zunger (PZ-SIC). Besides implementing and benchmarking the PZ-
SIC algorithm in FHI-aims, fundamental advancements with promising features
are proposed for the PZ-SIC algorithm itself. Typically, the PZ-SIC method suffers
under the fact that the associated equations allow for multiple solutions (several lo-
cal minima in addition to the wanted lowest-energy global minimum). In practice,
this results into a pronounced starting-point dependence, i.e., the outcome of the
correction varies considerably with the choice of orbitals viz. states used to initial-
ize the description of the localized representation. For instance, the uncertainty of
the SIC orbitals can differ the cohesive energy of the molecule H-F by about 1 eV
and change the band-gap of the LiH crystal by more than 4 eV. Inspired by the
original arguments in PZ-SIC and other localized methods, I introduced a math-
ematical constraint, i.e., the orbital density constraint, that forces the orbitals to
retain their localization throughout the self-consistency cycle. In turn, this alle-
viates the multiple-solutions problem and facilitates the convergence towards the
correct, lowest-energy solution both for complex and real SIC orbitals. This is
demonstrated by exploring the performance of SIC-SCAN calculations for a wide
range of chemical and physical properties for molecules and solids, including reac-
tion barriers, ionization potentials, cohesive energies, and fundamental band-gaps
for different kinds of materials.

The developments and investigations performed in this thesis pave the road towards
a more wide-spread use of SIC-SCAN calculations in the future, allowing more
accurate predictions within only moderate increases of computational cost.



Zusammenfassung

Das “Strongly Constrained and Appropriately Normed” (SCAN) Austausch-Korre-
lations-Funktional gehört zur Familie der meta-GGA (generalized gradient appro-
ximation) Funktionale. Im Vergleich zu anderen Funktionalen dieser Klasse besitzt
SCAN eine bemerkenswerte Genauigkeit bei der Beschreibung vieler chemischen
und physikalischen Eigenschaften von Molekülen und Festkörpern. Es gibt aber
auch Nachteile Zum einen leiden SCAN Rechnungen oft unter numerischen Insta-
bilitäten, wodurch sehr viele Iteration zum Erreichen von Selbst-Konsistenz benö-
tigt werden. Zum anderen leidet SCAN unter dem von GGA Methoden bekannten
Selbstwechselwirkung-Fehler.

Im ersten Teil der Arbeit habe ich die numerischen Stabilitätsprobleme in SCAN
Rechnungen im Rahmen der numerischen Realraum-Integrationsroutinen im Code
FHI-aims untersucht. Diese Analyse zeigt, dass die genannte Probleme durch An-
wendung von standardisierten Dichte-Mischalgorithmen für die kinetische Energie-
dichte abgemildert werden können. Dadurch wird auch in SCAN-Rechnungen eine
schnelle und stabile Konvergenz zur selbstkonsistenten Lösung ermöglicht.

Im zweiten Teil der Arbeit habe ich untersucht, in welchem Rahmen sich der
Selbstwechselwirkung-Fehler in SCAN mittels des von Perdew und Zunger vorge-
schlagenen Selbstinteraktionskorrekturalgorithmus (PZ-SIC) verringern lässt. Da-
zu wurde zum einen der PZ-SIC-Algorithmus in FHI-aims implementiert. Es wur-
den aber auch Optimierungen für die PZ-SIC Methode entwickelt. Bekannterwei-
se leidet die PZ-SIC Methode unter einer Anfangswertabhängigkeit, dass heißt
die Resultate der Methode können eine deutliche Abhängigkeit davon zeigen, wel-
che Orbitale anfangs zur Initialisierung der lokalisierten Zustände gewählt werden.
Beispielsweise kann die Unsicherheit der SIC-Orbitale die Atomisierungsenergie
des Moleküls H-F um etwa 1 eV verändern und die Bandlücke des LiH-Kristalls
um mehr als 4 eV. Inspiriert von den ursprünglichen Argumenten in der PZ-SIC-
Methode und anderen lokalisierten Methoden, wird in dieser Arbeit eine neuartige
Randbedingung (orbital density constraint) vorgeschlagen, die sicherstellt, dass
die PZ-SIC Orbitale während des Selbstkonsistenzzyklus lokalisiert bleiben. Dies
mildert die Anfangswertabhängigkeit deutlich ab und hilft dabei, in die korrek-
te selbst-konsistente Lösung mit minimaler Energie zu konvergieren, unabhängig
davon ob reelle oder komplexe SIC Orbitale verwendet werden. Dies ist in dieser
Arbeit an Hand einer breiten Palette chemischer und physikalischer Eigenschaf-
ten von Molekülen und Festkörpern gezeigt, einschließlich der Reaktionsbarrieren,
Ionisierungspotentiale, Kohäsionsenergien und der fundamentalen Bandlücke für
verschiedene Arten von Materialien.

Die in dieser Arbeit getägtigen Entwicklungen und Untersuchungen sind Wegbe-
reiter dafür, in Zukunft mit SIC-SCAN Rechnungen deutlich genauere ab initio
Rechnungen mit nur gering höherem Rechenaufwand durchführen zu können.
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Abbreviation

AE absolute error.

BH76 benchmark database of barrier heights for heavy
atom transfer, nucleophilic substitution, association,
and unimolecular reactions.

CC conventional cell.
CCSD(T) single, double, and perturbative triple excitations.

DFA density-functional approximation.
DFT density-functional theory.

EA electron affinity.
ELPA eigenvalue solvers for petaflop application.
ERKALE a flexible program package for X-ray properties of

atoms and molecules.

FA Fermi and Amaldi.
FHI-aims Fritz Haber Institute ab initio molecular simulations.
FLO Fermi orbital with Löwdin orthogonalization (Fermi-

Löwdin orbital).

G2-1 Gaussian‐2 theoretical procedure, based on ab initio
molecular orbital theory, for calculation of molecu-
lar energies of compounds containing first‐ and sec-
ond‐row atoms.

Gaussian computational chemistry software package initially
released by John Pople and his research group at
Carnegie Mellon University and named as Gaussian.

GE2 second-order gradient correction (part in density
functional) approximation.

GE4 gradient expansion (of the exchange part in density
functional approximation) up to the fourth-order.

GGA generalized gradient approximation.
gKS generalized Kohn-Sham.
GPAW DFT and beyond within the projector-augmented

wave method.
GSC global scaling correction.
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GTO Gaussian-type orbital.

HD hexagonal diamond.
HF Hartree-Fork.
HHL Heaton, Harrison, and Lin.
HK Hohenberg and Kohn.
HOMO highest occupied (molecular) orbital.

IP ionization potential.

KS Kohn-Sham.

LDA local-density approximation.
LOSC local orbital scaling correction.
LUMO lowest unoccupied (molecular) orbital.

MAE mean absolute error.
MAPE mean absolute percentage error.
ME mean error.
MLWO maximally localized Wannier orbital.

NAO numeric atom-centered orbital.
NRLMOL naval research laboratory molecular orbital library.

PBC periodic boundary condition.
PBE Perdew-Burke-Ernzerhof.
PPLB Perdew, Parr, Levy, and Balduz.
PyFLOSIC python-based Fermi-Löwdin orbital self-interaction

correction soft.
PZ-SIC self-interaction correlation algorithm proposed by

Perdew and Zunger.

SCAN strongly constrained and appropriately normed.
SCF self-consistent field.
sd-SIC scaled-down self-interaction correlation.
SIC self-interaction correction.
SIC-SCAN(real) SIC-SCAN using real SIC orbitals.
SIC-SCAN(complex) SIC-SCAN using complex SIC orbitals.
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SIE self-interaction error.
slSIC self-consistently localized self-interaction correlation.
SSH Su-Schrieffer-Heeger.

TPA crystalline trans-polyacetylene.
TPSS Tao-Perdew-Staroverov-Scuseria.

VASP Vienna ab initio software package.
vdW van der Waals.

W1 Weizmann-1.
WFLO Wannier function-derived Fermi orbital with Löwdin

orthogonalization (Wannier Fermi-Löwdin orbital).

XC exchange-correlation.
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1 Introduction

1 Introduction

Kohn-Sham (KS) density-functional theory (DFT) is currently the only practi-
cal method of choice for studying the electronic structure of complex materials
[1–3]. This fact is due to the good balance between computational efficiency and
accuracy provided by the existing semi-local density-functional approximations
(DFAs) on the exchange-correlation energy Exc[n]. The non-empirical general-
ized gradient approximation (GGA) of Perdew, Burke, and Ernzerhof, namely
PBE [4], has been the most widely used semi-local DFA with great success
in computational materials science for many decades. However, subjecting to
the limitation of the GGA formula, the PBE functional is often not sufficiently
accurate to describe some important physical and chemical properties [5, 6].

In 2015, Perdew and co-workers proposed a new non-empirical semi-local DFA
in the context of the meta-GGA framework, which is Strongly Constrained by
obeying 17 known exact constraints and Appropriately Normed to the accu-
rate exchange-correlation energies of the rare-gas atoms and the binding-energy
curves of the Ar2 dimer [7] (SCAN). The resulting SCAN functional provides
a notable and consistent improvement over the PBE functional for various
kinds of chemical interactions for both molecules and solids [8–10]. Despite
being a promising candidate to supplant the PBE functional, there are growing
shreds of evidence showing that the SCAN functional inherits the notorious self-
interaction error (SIE) from PBE [6, 11, 12], meanwhile suffers from a heavier
numerical instability than PBE, which undermines to some extent the potential
of the SCAN functional to be the next-generation working horse in computa-
tional materials science.

The numerical instability problem of the SCAN functional can be partly traced
back to the use of the kinetic energy density in the meta-GGA functional con-
struction. It was first reported by Johnson and co-workers in 2004 [13]. Com-
pared with the standard semi-local DFAs that depend on the density and density
gradient only, a much denser integration grid is often needed to converge the
total energy of dispersion-driven systems for the meta-GGAs of TPSS, VSXC,
and BB95 [14], which later turned out to be a common problem of meta-GGAs,
including the Minnesota family of empirical meta-GGAs [15, 16].

Unfortunately, the aforementioned numerical instability problem is more serious
for the SCAN functional and often leads to the failure of SCF convergence [17,
18]. Increasing the integration grid only cannot solve this problem completely.
It was found that the use of a new kind of dimensionless kinetic energy variable
α gives rise to ill-behaved exchange-correlation potential values with heavy nu-
merical noise in certain potential regions [17, 19]. In consequence, recent efforts
resort to revising the functional formula. The resulting SCAN variants notably
enhance the numerical robustness and steady the SCF convergence, which, how-
ever, is paid for by some changes in the performance.

Sheng Bi, Self-interaction corrected SCAN functional for molecules and
solids in the numeric atom-center orbital framework, 2022 1



1 Introduction

My project was carried out with the Fritz Haber Institute ab initio molecular
simulations (FHI-aims) code, which is an all-electron full-potential electronic-
structure code in the numerical integration framework [20]. Taking advantage
of the locality of the numeric atom-centered orbitals (NAOs), the formal scaling
of the numerical integration implemented in FHI-aims is nearly linear for large
systems. It thus allows us to employ very dense grids at an affordable cost
for routine use. In the first part of my project, I revisited the grid sensitivity
of semi-local DFAs and confirmed that the SCAN functional tends to produce
much rougher XC potentials than those of PBE. On the one hand, I found that
the tight grid setting in FHI-aims is sufficient to capture the SCAN XC poten-
tial. On the other hand, such an ill-behaved potential induces larger changes
(or oscillation) in the electron density and kinetic energy density during the iter-
ation. It thus makes the SCF procedure much harder to get converged. In this
consideration, I generalized the standard electron density mixing algorithm to
the kinetic energy density variant. Further investigations confirm that including
the kinetic energy density in the mixing algorithm is the key to achieving a fast
and stable convergence towards the standard SCAN self-consistent solution.

In addition to the numerical instability problem, the SCAN functional suffers
from the SIE. The self-interaction originates from the Hartree approximation
and, in principle, should be completely canceled out by the XC functional. Un-
fortunately, all existing semi-local DFAs, including SCAN, cannot meet the
challenge. SIE takes the blame for the poor performance of semi-local DFAs on
the fractional-charge molecular systems, the charge-transfer driven properties,
and the band-gaps of insulators/semiconductors [6, 21–23]. For one-electron
systems, the SIE to the semi-local DFAs is well defined, which has motivated
the self-interaction correction (SIC) strategy proposed by Perdew and Zunger
in the early 1980s (PZ-SIC) [24]. The PZ-SIC strategy, despite the one-electron
nature, is able to accurately correct the one-/two-electron SIE and has shown
to be an effectual remedy against the many-electron SIE [25, 26].

Although the concept of the PZ-SIC strategy is simple, the PZ-SIC equations
are challenging to solve, hard to converge, and often yield multiple solutions
(several local minima in addition to the wanted lowest-energy global minimum).
Without further constraints, it is difficult to pick out the correct localized so-
lution, which, according to the original PZ-SIC definition, should produce the
lowest SIC total energy for a given semi-local DFA. This multiple-solution prob-
lem was observed initially in molecules and, subsequently, much more severely
for solids. For example, by applying the PZ-SIC correction to the local-density
approximation (LDA), Heaton, Harrison and Lin reported the band-gap of the
Ar crystal as 13.9 eV, which is about 0.7 eV different from the value of Stengel
and Spaldin [27, 28].

The past decade has witnessed a revival of the PZ-SIC strategy. A fundamental
technical advance enables the solution of the PZ-SIC equations in the complex
domain. For finite molecules, it appeared that the complex SIC orbitals often
provide lower SIC energies than those of real SIC orbitals [12, 29, 30]. For solids,

2 Sheng Bi, Self-interaction corrected SCAN functional for molecules and
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1 Introduction

to solve the PZ-SIC equations in the complex domain should lead to the complex
Wannier SIC orbitals, which is expected to deliver lower SIC total energies for
solids as well. However, no relevant research has yet been carried out under
periodic boundary conditions.

The second part of my project realized the PZ-SIC implementation in the FHI-
aims package. My SIC implementation solves the PZ-SIC equations in the
complex domain and enables the treatment of both molecule and solids on an
equal footing. In the spirit of Edmiston-Ruedenberg localized orbitals [31], I
proposed a new SIC constraint, namely orbital density constraint, which can
be used for all semi-local DFAs, including LDA, PBE, and SCAN. This new
constraint tends to minimize the SIC total energy and maximize the spatial
localization of the SIC orbitals simultaneously. I proved that this orbital density
constraint does not break the already known SIC constraints and is useful for
pinpointing the correct SIC orbitals for both molecules and solids. Moreover,
my research demonstrates the necessity of constructing the SIC orbitals in the
complex domain. It provides consistent and notable lower PZ-SIC total energies
than the real SIC orbitals, which is valid for both molecules and solids.

This thesis is organized as follows: Chapter 2 presents an overview of density-
functional theory, including the density-functional approximations, self-interaction
errors and self-interaction corrections. In Chapter 3, we demonstrate that the
calculation of SCAN functional implemented in FHI-aims achieves a fast and
stable convergence, using the tight grid setting at an affordable cost and in-
cluding the kinetic energy density in the mixing algorithm. The self-consistent
PZ-SIC method, containing the orbital density constraint proposed by us, is
presented in detail in Chapter 4. The importance of using complex SIC or-
bitals for both molecules and solids is discussed in this chapter. Moreover, this
chapter shows the performance of our PZ-SIC method using the calculations of
formation energies, the highest occupied orbital (HOMO) energies, band-gaps,
reactions barriers and symmetry prediction of a group of typical molecules and
solids. Finally, a brief summary concludes the whole work in Chapter 5.

Sheng Bi, Self-interaction corrected SCAN functional for molecules and
solids in the numeric atom-center orbital framework, 2022 3



2 Density-Functional Theory

2 Density-Functional Theory

2.1 Kohn-Sham Framework

For the many-body systems with Nnuc nuclei and Ne electrons, the quantum-
mechanical behavior obeys the many-particle Schrödinger’s equation. However,
this equation can only be solved for a limited number of simple systems, such
as hydrogen atoms, hydrogen-like ions, and so forth. When the motion of elec-
trons and nuclei is uncoupled by the Born-Oppenheimer approximation [32],
the ground-state energy can be written as the sum of the nuclei-nuclei Coulomb
energy Vn and the observation value of the electron Hamiltonian operator Ĥe
on the ground-state electron wave-function Ψgs(r1, r2, · · · , rNe):

Egs = Vn + ⟨Ψgs|Ĥe|Ψgs⟩, (2.1)

where Vn comes from the nuclei-nuclei Coulomb interaction:

Vn = 1
2

Nnuc∑
I=1

Nnuc∑
J=1
J ̸=I

ZIZJ

|RI − RJ |
. (2.2)

Ĥe includes the electron kinetic operator T̂e, the nuclei-electron Coulomb in-
teraction operator V̂ne, and the electron-electron Coulomb interaction operator
V̂ee:

Ĥe = T̂e + V̂ne + V̂ee

T̂e =
Ne∑
i

−1
2
∇2

i

V̂ne = −
Ne∑
i

Nnuc∑
J

ZJ

|ri − RJ |

V̂ee =
1
2

Ne∑
i=1

Ne∑
j=1
j ̸=i

1
|ri − rj|

.

(2.3)

Under the Born-Oppenheimer approximation, the nuclei coordinates {RI} and
their charges {ZI} are treated as parameters in the Hamiltonian. The aforemen-
tioned multi-dimensional problem is reduced to 3Ne degrees of freedom, which,
however, is still too complicated to be tractable in practice.

Alternatively, the ground-state electron density n(r) is much easier to handle
since it has only 3 degrees of freedom instead of 3Ne as the ground-state wave-
function mentioned above. The ground-state density can be evaluated from the
wave function by

n(r) = Ne

∫
d3r2 · · · d3rNe |Ψgs(r, r2, · · · , rNe)|2 . (2.4)

4 Sheng Bi, Self-interaction corrected SCAN functional for molecules and
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2 Density-Functional Theory

The attempt of using the ground-state electron density as the basic input can
be traced back to the 1920s [33, 34]. Modern density-functional theory (DFT)
was established in the 1960s started from the important works of Hohenberg
and Kohn (HK) [35], which provide rigorous proof of two theorems:

• HK Existence Theorem: The external potential v̂ext(r), and hence the ground-
state total energy E, is a unique functional of the electron density n(r).

• HK Variational Theorem: The trial density that minimizes the ground-state
total energy is the exact ground-state density.

To be specific, the HK existence theorem suggests the existence of the density
functional of the ground-state energy EHK[n(r)]:

EHK[n(r)] = Eext[n(r)] + F [n(r)] , (2.5)

which can be further divided into two terms. The first term Eext[n(r)] is an
explicit density functional, which is system-dependent, containing the energy
contributions from the nuclei-nuclei/electron Coulomb interaction v̂nuc(r) and
any other external field v̂other.

Eext =
∫
d3rv̂ext(r)n(r)

v̂ext(r) = v̂nuc(r) + v̂other(r)

v̂nuc(r) =
1
Ne
Vn −

Nnuc∑
J

ZJ

|r − RJ |
.

(2.6)

The second term F [n] is called the universal functional, which comprises the ki-
netic and the electron-electron interaction energies ⟨Ψgs|T̂ + V̂ee|Ψgs⟩. Although
the HK existence theorem suggests F [n] as a functional of the ground-state den-
sity, the explicit formula is still challenging to derive and remains unknown [1].
The Kohn-Sham (KS) framework proposed in 1965 smartly invents an artificial
non-interacting system to conquer this problem. The KS non-interacting system
shares the same ground-state density as the fully interacting real system [36].
However, it is easier to solve, and its wave function is nothing but a single Slater
determinant, i.e., an expression of the multiple-electron system represented by
a combination of the lowest Ne occupied single-electron orbitals {ψi(r)}.

Ψnon
gs ≡ |ψ1ψ2 · · ·ψNe⟩ ≡

1√
Ne!

det ||ψi(rn)||

= 1√
Ne!

∣∣∣∣∣∣∣∣∣
ψ1(r1) · · · ψ1(rNe)

... . . . ...
ψNe(r1) · · · ψNe(rNe)

∣∣∣∣∣∣∣∣∣
(2.7)

The ground state density n(r) of the KS non-interacting system is evaluated via

n(r) = Ne

∫
dr2 · · · drNe |Ψnon

gs (r, r2, · · · , rNe)|2 . (2.8)

Sheng Bi, Self-interaction corrected SCAN functional for molecules and
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2 Density-Functional Theory

The density at position (r ≡ r1) is the sum of occupied orbital electron densities
{|ψi(r)|2} as obtained from Eq. (2.7) :

n(r) = Ne
1
Ne!

∫
d3r2 · · · d3rNe

Ne!∑
n=1

(−1)n−1
Ne∏
i=1

ψ∗
i (rPn(i))

×
 Ne!∑

m=1
(−1)m−1

N∏
j=1

ψj(rPm(j))


= 1

(Ne − 1)!

∫
d3r2 · · · d3rNe

Ne!∑
n=1

Ne∏
i=1

|ψi(rPn(i))|2

= 1
(Ne − 1)!

Ne!∑
n=1

|ψP−1
n (1)(r)|2 =

1
(Ne − 1)!

Ne!∑
i

|ψi(r)|2

=
Ne∑
i

|ψi(r)|2 .

(2.9)

Here Pn(i) is the permutation operator labeling a different ordered set of num-
bers ranged from 1 to Ne on each index n out of Ne! indexes.

In the KS framework, the ground-state density functional of the real system can
be reformulated as

EKS[n] = Ts[n] + Ees[n] + Exc[n] + Eext[n] , (2.10)

where Ts[n] is the kinetic energy of the KS non-interacting system and captures
most part of the kinetic energy of the real system.

Ts[n] = ⟨Ψnon
gs |T̂ |Ψnon

gs ⟩ = −1
2

Ne∑
i

⟨ψi|∇2
i |ψi⟩ . (2.11)

For the same reason, the Hartree energy Ees[n] is introduced to cover the most
part of the electron-electron Coulomb interaction

Ees =
1
2

Ne∑
i=1

Ne∑
j=1

⟨ψi(r)ψj(r′)||r − r′|−1|ψj(r′)ψi(r)⟩

= 1
2

∫ ∫ n(r)n(r′)
|r − r′| d

3rd3r′ .

(2.12)

The remaining unknown contributions are combined and define the so-called
exchange-correlation (XC) energy in KS-DFT. It is usually split into the ex-
change Ex[n] and correlation Ec[n] functionals defined as

Exc = Ex + Ec

Ex = ⟨Ψnon
gs |V̂ee|Ψnon

gs ⟩ − Ees

Ec = ⟨Ψgs|T̂e + V̂ee|Ψgs⟩ − ⟨Ψnon
gs |T̂e + V̂ee|Ψnon

gs ⟩ .

(2.13)

6 Sheng Bi, Self-interaction corrected SCAN functional for molecules and
solids in the numeric atom-center orbital framework, 2022



2 Density-Functional Theory

The XC energy can also be defined in terms of the Fermi-Coulomb XC hole
nxc(λ, r, r′) with the adiabatic connection parameter λ:

Exc[n] =
∫ 1

0
dλ(

∫
d3rn(r)(0.5

∫ nxc(λ, r, r′)
|r − r′| d3r)) , (2.14)

where the XC hole defines the difference between the pair-correlation density
g(λ, r, r′) and the ground-state density:

nxc(λ, r, r′) = g(λ, r, r′)/n(r)− n(r′)

g(λ, r, r′) = Ne(Ne − 1)
∫
d3r3 · · · d3rNe |Ψλ

gs(r, r′, r3, · · · , rNe)|2 .
(2.15)

More details about the XC energy derivation can be found in Ref. [37].

According to the HK variational theorem, the true ground-state density min-
imizes the total energy EKS[n]. Enforcing the conservation of total electrons
number Ne and the orthonormalization of the orbitals {ψi(r)} results in the KS
Euler equations

δ

EKS − µ(
∫
n(r)d3r −Ne)−

Ne∑
ij

γij(⟨ψi|ψj⟩ − δij)

 = 0 , (2.16)

with the Lagrange parameter γij and µ. The variation introduces the well-known
KS one-electron equations

ĥKSψl = ϵlψl , (2.17)

with the eigenvalues ϵl. The KS one-electron Hamiltonian ĥKS includes the
kinetic energy operator t̂s, the external potential v̂ext (defined in Eq. (2.6)), the
Hartree potential v̂es, and the XC potential v̂xc.

ĥKS = t̂s + v̂ext + v̂es + v̂xc

t̂s =
δTs

δn
= −1

2
∇2 , v̂xc =

δExc

δn

v̂es =
δEes

δn
=
∫ n(r′)

|r − r′|d
3r′

v̂ext =
δEext

δn
= v̂nuc + v̂other = −

Nnuc∑
J

ZJ

|r − RJ |
+ v̂other

(2.18)

If the XC energy Exc and its potential v̂xc are known, the system can be solved
in a self-consistent manner. The calculation flow is shown in the following:

1 Guess an initial density or a set of KS orbitals {ψl};

2 Solve the KS one-electron Eq. (2.17) and produce a new set of the KS orbitals
{ψ′

l};

3 Update the density in Eq. (2.9) and the total energy;
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2 Density-Functional Theory

4 If the density and the total energy are not converged according to a preset
threshold, go back to Step 2. Otherwise, stop the self-consistent cycle and
print out the required electronic-structure information, like the total energy,
the coefficient matrix for the KS orbitals, the ground-state density, and so
forth.

2.2 Density-Functional Approximations
Under the KS framework of density-functional theory (KS-DFT), the remaining
unknown functional is associated with the XC energy only. The central task of
KS-DFT is to find more and more accurate approximations of the XC functional.
In fact, the huge success of DFT achieved in the past decades owns much to
the existence of many excellent density-functional approximations (DFAs) for
Exc[n(r)]. For a given DFA, the approximated one-electron equations in the KS
framework are written as

ĥDFAψl = ϵlψl , (2.19)
with the approximated one-electron Hamiltonian

ĥDFA = t̂s + v̂ext + v̂es + v̂DFA
xc . (2.20)

According to the complexity of variables used in the DFA construction, Perdew
proposed the famous Jacob’s Ladder in DFT to classify different levels of DFAs
(See Fig. 2.1) [38].

Figure 2.1: The Jacob’s Ladder in DFT to classify different levels of DFAs [38].

2.2.1 Local-Density Approximation

The first rung of Jacob’s Ladder is the local-density approximation (LDA):

ELDA
xc [n(n↑, n↓)] ≡ ELDA

xc [n↑, n↓] =
∫
d3rn(r)ϵunif

xc [n↑, n↓] , (2.21)

where ϵunif
xc [n↑, n↓] is the XC energy density of the uniform electron gas for spin

distinct densities n↑ and n↓ [39–41]. LDA satisfies many important physical
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2 Density-Functional Theory

constraints that an exact XC functional must fulfill. For example, the exchange
energy is less than zero, and the correlation energy is less than or equal to zero.
Moreover, LDA is size-consistent, which means that for a set of well-separated
systems with the densities of {n1, · · · , nN}, the LDA total energy ELDA[ntot]
by taking the whole density ntot = ∑N

i ni into account equals the sum of the
separated energy of each [42]

ELDA
xc [ntot] = ELDA

xc [n1] + · · ·+ ELDA
xc [nN ] . (2.22)

Furthermore, LDA satisfies the following DFA constraints:

• the exact spin-scaling relation

Ex[n↑, n↓] =
1
2
Ex[n↑, n↑] +

1
2
Ex[n↓, n↓] ; (2.23)

• the exact uniform-density-scaling relation with scaling factor γ

nγ(r) = γ3n(γr)
Ex[nγ(r)] = γEx[n(r)]
lim
γ→0

Ec[nγ(r)] = γEc[n(r)] ;
(2.24)

• the Lieb-Oxford lower bound relation with the exchange energy for the uni-
form electron gas ϵunif

x

Ex ≥ Exc ≥ 1.679
∫
d3rn(r)ϵunif

x [n] ; (2.25)

• a good description of the linear response of the density of a uniform electron
gas to a weak static perturbation potential.

Because of these promising qualities, LDA performs well for slowly varying den-
sities, metallic surfaces, and the predictions of lattice constants [43]. However,
due to the intrinsic limitation of the approximation, LDA is not accurate enough
for many cases, i.e., atomic energies are predicted too low [24]; the transfer en-
ergies between s and p/d orbitals are poorly described [44]; the bandwidths
of alkali metals are noticeably overestimated in comparison to photoemission
measurements [45].

2.2.2 Generalized Gradient Approximation

The second rung of Jacob’s Ladder is the generalized gradient approximation
(GGA), which introduces, in addition to the density itself, the density gradient
∇n in the XC energy functional [5]:

EGGA
xc [n↑, n↓] =

∫
d3rn(r)ϵGGA

xc [n↑, n↓,∇n↑,∇n↓] . (2.26)
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2 Density-Functional Theory

The first approximation attempting to include the information of the density
gradient is the second-order gradient correction approximation (GE2) [35, 36]

EGE2
x [n] =

∫
d3r[nϵunif

x [n] + Cx
|∇n|2

n4/3 ]

EGE2
c [n↑, n↓] =

∫
d3r[nϵunif

x + Cc[n]((1 + ζ)2/3 + (1− ζ)2/3) |∇n|
2

2n4/3 ] ,

(2.27)

where Cc[n] is a weak function of the density tending to Cc[∞] ≈ 4.235×10−3 (in
Hartree atomic units) in the high-density limit, ζ is defined as ζ = (n↑ − n↓)/n,
and Cx, as a negative constant, can be obtained by fitting against the known
exact constraints. However, the GE2 approximation was demonstrated to be
not successful since it leads to a divergence in the expansion of the XC hole.
The GGAs were proposed to overcome this deficiency [5, 46]. Moreover, the
high-density limit for uniform scaling is satisfied in the GGA framework:

lim
γ→∞

EGGA
c [γ3n(γr)] = constant . (2.28)

Furthermore, the non-uniform density scaling is also satisfied for GGAs

lim
s→∞

ϵx[s] = ϵunif
x O(s−1/2)

s[n] = |∇n|/[2(3π2)]1/3n4/3 ,
(2.29)

where s is a dimensionless density gradient, and O(s−1/2) describes the behavior
of a function acting as s−1/2 when s tends towards infinity.

The most popular GGA functional in computational materials science is the
non-empirical Perdew-Burke-Ernzerhof (PBE) functional. PBE exhibits a no-
table and consistent improvement over LDA for the description of many differ-
ent chemical and/or physical properties [4]. However, PBE is not satisfactory
enough for accuracy. For example, PBE tends to overestimate lattice param-
eters but significantly underestimate reaction barrier heights by more than 7
kcal/mol [5, 6].

2.2.3 Meta Generalized Gradient Approximation

The third rung of Jacob’s Ladder is the meta generalized gradient approximation
(meta-GGA). Compared to LDA and GGA, the new ingredient introduced in
the meta-GGA functional construction is the kinetic energy density:

τσ = 1
2

occ∑
i

|∇ψiσ|2 . (2.30)

The meta-GGA XC energy functional is written as [47–49]

EmGGA
xc [n↑, n↓] =

∫
d3rn(r)ϵmGGA

xc [n↑, n↓,∇n↑,∇n↓, τ↑, τ↓] . (2.31)
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2 Density-Functional Theory

The development of the exchange part of meta-GGA starts from the gradient
expansion up to the fourth-order (GE4)

EGE4
x [n] =

∫
d3r[nϵunif

x (n) + Cx
|∇n|2

n4/3 + αx
|∇2n|
n2 + βx

|∇n|2∇2n

n3 + γx
|∇n|4

n4 ],
(2.32)

where Cx = −2.382 × 10−3, αx = −3.633 × 10−5, βx = 9.083 × 10−5 in Hartree
atomic units. The unknown coefficient γx introduces extra freedom to the meta-
GGA construction. The meta-GGA provides much larger flexibility than the
GGA for the functional constructions. It is possible to satisfy more exact con-
straints, for example, the zero correlation condition for any one-electron spin-
polarized density:

EmGGA
c [n, 0] = 0,∫
d3rn(r) = 1 .

(2.33)

To solve the KS one-electron equations (See Eqs. (2.18) and (2.20)), we need
the XC potential of a given meta-GGA. The XC potential of meta-GGAs has
the form of

vmGGA
xc (r) = δEmGGA

xc
δn(r) = vGGA

xc (r) + vτ -dep
xc (r) , (2.34)

where the GGA-like part and the τ -dependent part are defined as:

vGGA
xc (r) = ∂ϵmGGA

xc
∂n

(r)−∇ · [∂ϵ
mGGA
xc
∂∇n

(r)] ,

vτ -dep
xc (r) =

∫
d3r′∂ϵ

mGGA
xc
∂τ(r′)

δτ(r′)
δn(r) ,

(2.35)

respectively. Unlike the GGA-like part, the τ -dependent part is an implicit func-
tional of density. Therefore, the so-called optimized effective potential technique
is needed to calculate the density functional potential in the standard KS frame-
work [50]. In practice, this requires going beyond the standard KS scheme and
establishing the potential in the generalized Kohn-Sham (gKS) framework [51],
which is defined as follows,

vτ -dep
xc (r)ψi(r) = v̂mGGA

xc
δn(r)
δψ∗

i (r′)
= −1

2
∇ · [∂ϵ

mGGA
xc
∂τ

(r)∇ψi(r)] . (2.36)

In consequence, the meta-GGA potential operator in the gKS framework [52,
53] is written as

v̂mGGA
xc ψi(r) = vGGA

xc (r)ψi(r) + vτ -dep
xc (r)ψi(r) . (2.37)

Here, the orbital-dependent effective potential defined in Eq. (2.35) is treated
as a semi-local potential of the reference systems.
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The nonempirical Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA was con-
structed under the aforementioned exact constraints and normed by the exchange-
correlation energy of the H atom [54]. The exchange energy in TPSS is defined
as the exchange energy for the uniform electron gas ϵunif

x multiplied by an en-
hancement factor FTPSS

x [p, z]

ETPSS
x [n] =

∫
d3rnϵunif

x [n]FTPSS
x [p, z] . (2.38)

Here p = s2 is the square of the dimensionless density gradient s defined in
Eq. (2.29), and z = τW/τ is an inhomogeneity parameter related to the kinetic
energy density τ and the Weizsäcker kinetic energy density τW = |∇n|2/8n.
TPSS shows an improvement over PBE for atomization energies of molecules,
lattice constants of solids, and surface energies [55]. However, a limit anomaly
exists for TPSS in the single-bond orbital area and makes it less accurate than
PBE for structural phase transitions under the pressure of solids, such as Si,
SiO2, and Zr crystals [55]. This has been partly traced back to the inhomo-
geneity parameter z, which can be either 1 or 0 when approaching the limit
from different directions p → 0, especially in systems containing single-bond
orbital [56]. A dimensionless kinetic energy variable introduced by Perdew et
al. overcomes the order-of-limits problem [57]

α = (τ − τW)/τunif , (2.39)

where τunif is the kinetic-energy density of the uniform electron gas. For instance,
the two different limits of the very slowly varying densities (α ∼ 1) and single-
bond orbitals (α ∼ 0) show no anomalies [58, 59]. The so-called “strongly
constrained and appropriately normed” (SCAN) non-empirical meta-GGA was
then proposed in 2015. It satisfies all the 17 known exact constraints mentioned
above [7]. For convenience, I summarize the names of the 17 known exact
constraints in Appendix 7.1.

Similar to the TPSS method, the exchange energy in SCAN has the form of

ESCAN
x [n] =

∫
d3rnϵunif

x [n]F SCAN
x [s, α] . (2.40)

But the enhancement factor in SCAN (F SCAN
x ) depends on the dimensionless

density gradient s and the dimensionless kinetic energy variable α. In the limit of
α ≈ 1, the SCAN functional energy reduces to a PBE-like expression, capturing
the correct behavior for slowly varying densities. It is worth noticing that a
correct description of one-/two-electron systems cannot be achieved in PBE and
other GGAs [5]. Perdew and co-workers argued that this problem is associated
with the limit α = 0 and demonstrated that the SCAN exchange functional
solves this issue. The SCAN behavior in the limit of α = ∞ is extrapolated
from the limits of α ≈ 1 and α = 0. Moreover, SCAN satisfies the lower
Lieb-Oxford bound. In particular, for two-electron densities, we have:

ESCAN
x [n] ≥ 1.174

∫
d3rn(r)ϵunif

x [n] , (2.41)
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a condition not satisfied in the GGA PBE and even the meta-GGA TPSS [7].
SCAN has been demonstrated to yield consistent and notable improvements
in describing many other chemical and physical properties of both molecules
and solids compared to earlier semi-local DFAs, including LDAs, GGAs, and
even meta-GGAs. Examples include the descriptions of ferroelectric materials,
structural properties, electronic polarizability [8], and intermediate-range van
der Waals (vdW) interaction [9].

2.3 Self-interaction Error (SIE)
As discussed above, the Hartree energy Ees (See Eq. (2.12)) introduced in the
KS scheme captures most part of the electron-electron Coulomb contribution⟨
Ψgs

∣∣∣V̂ee
∣∣∣Ψgs

⟩
. The remaining part of the electron-electron Coulomb contribu-

tion, i.e.,
⟨
Ψgs

∣∣∣V̂ee
∣∣∣Ψgs

⟩
− Ees, is expected to be relatively small in most cases.

Generally, this is true, for which the strongest evidence is the success of KS-
DFT in the past decades. However, this formulation also introduces a notorious
error, namely the self-interaction error (SIE), to the KS-DFT [24, 60]. SIE is
easy to understand in one-electron systems, where there is no electron-electron
Coulomb interaction. However, in the Hartree approximation (Eq. (2.12)), Ees
is nonzero in such a one-electron system due to the spurious Coulomb interac-
tion of the single electron with itself. Because of this error, LDA, PBE, and
SCAN underestimate the (single-particle) highest occupied orbital (HOMO) en-
ergy for hydrogen atoms by about 30% - 40% [11, 29]. In the exact KS XC
functional, the SIE would cancel out exactly with the exchange functional, as
it appears in HF theory (See Eq. (2.13)). Unfortunately, none of the existing
semi-local exchange DFAs can meet this requirement, therefore they fail in the
description of one-electron systems, like the dissociation of H-H+ [25, 26, 61].

For many-electron systems, it has been found that the SIE associates several
worrisome failures of semi-local DFAs, including LDA, PBE, and SCAN. Exam-
ples are the overestimation of the magnetic coupling [62, 63], wrong description
of charge-transfer systems [64, 65], and poor performance for band-gaps [27, 61,
66]. The accuracy of predicting band-gap is crucial because it is highly relevant
to the simulation accuracy of many properties of chemical and/or physical inter-
est, like optical properties [67–69]. In the KS-DFT scheme where the XC energy
is an explicit functional of electron density, the negative of the (single-particle)
HOMO energy is equal to the ionization potential (IP), and the negative of the
(single-particle) lowest unoccupied orbital (LUMO) energy is expected to the
electron affinity (EA) [61, 65]:

IP = −ϵHOMO

AE = −ϵLUMO .
(2.42)

The eigenenergy ϵLUMO/HOMO is spontaneously obtained after self-consistently
solving the KS equations (Eq. (2.17)). The IP and EA can be obtained from
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photoemission and inverse photoemission spectroscopy, respectively [69]. Conse-
quently, the KS-DFT predicted band-gap between LUMO and HOMO should be
equal to the difference between IP and EA, which is experimentally observable
and is defined as the fundamental band-gap [70, 71]. Unfortunately, the optical
processes, such as photon absorption, need also be modeled in the band-gap
calculations [72, 73]. Moreover, due to the deficiencies of widely used semi-local
DFAs, particularly the notorious SIEs, the KS-DFT band-gaps calculated by
these DFAs are often smaller than the exact values [36, 61]. Here the KS-DFT
band-gap is defined as

KS gap = ϵLUMO − ϵHOMO . (2.43)

Furthermore, only slight improvements in the band-gap performances have been
found in the calculations of meta-GGAs under the gKS scheme compared with
GGAs under the KS scheme [17]. This is because that gKS regards the orbital
contribution as part of the reference systems rather than being part of the local
effective potential. As a result, the band-gap errors about DFAs in the KS
scheme carry over to the meta-GGAs in the gKS scheme. For instance, the
band-gap for the diamond-C is about 5.48 eV observed by the experiment [74]
but is about 4.17 eV and 4.57 eV calculated by PBE and SCAN, respectively.
Furthermore, it was argued that the SIE is responsible for the failure of semi-
local DFAs in the description of the transition-metal d bands and oxygen p bands
in Mott insulators, like MnO, CoO, FeO, and NiO [24]. It has been indicated
that using exact-exchange DFT can help to describe the d-electron hybridization
compared to the semi-local DFAs [69]. Consequently, it is worth detecting the
impact of SIEs and correcting the errors for DFAs in many-electron systems,
especially the meta-GGAs like SCAN functional.

However, the SIE for many-electron systems is much harder to quantify than
for one-electron systems [24]. In 1982, Perdew, Parr, Levy, and Balduz (PPLB)
proved that, for a system with a fractional electron Ne = Ne0 + q [75], where
Ne0 is an integer and 0 ≤ q ≤ 1, the total energy must obey

E(Ne) = (1− q)E(Ne0) + qE(Ne0 + 1) . (2.44)

It linearly connects the total energies of integer-charge systems [75]. This ob-
servation imposes a fundamental condition of piecewise linearity with respect
to electron number for the total energy. As the electrons under semi-local
DFAs always feel self-interaction and have lower energy than fact, the many-
electron SIE has been linked to the wrong convex behavior of the total energy
of fractional-charge systems calculated with semi-local DFAs [76]:

EDFA(Ne0 + q) < (1− q)E(Ne0) + qE(Ne0 + 1) . (2.45)

Figure 2.2 shows the energy ∆E for several semi-local DFAs in the fractionally
charged Carbon atom. We can see that the SIE leads to a nonphysical stabiliza-
tion of fractional-charge states, resulting in a wrong convex curve. Therefore,
the SIE in semi-local DFAs is also called delocalization error [66].
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Figure 2.2: Total energy (∆E) of the C atom as a function of the electron num-
ber (Ne = 6 + ∆Ne) calculated by Hartree-Fork (HF), LDA, PBE,
and SCAN in FHI-aims using tier-1 NAO basis sets. The energy axis
is set as zero at Ne = 6. The red dash line is plotted by straightly
connecting the point (0, 0) with the points (1,−EEA) and (−1, EIP),
where EIP and EEA are the experimental ionization potential (IP)
and the electron affinity (EA), respectively [77]. (insert) The calcu-
lated negative HOMO (−ϵHOMO) and LUMO (−ϵLUMO) energies of
C atom (Ne = 6) compared with experimental IP and EA.

In the following, I introduce several model systems for which the SIE plays a
major role. These model systems compose two well-separated subsystems and
can be categorized into two types. Let us begin with the first type. Here, we
investigate two equal neutral subsystems with an integer number of electrons
Ne. For each subsystem, we use E and EDFA to denote the exact energy and the
approximated energy calculated by a given DFA, respectively. Assuming one
electron is removed from the whole system, both subsystems become fractionally
charged with the number of electrons Ne − q and Ne − 1 + q, respectively. Here
(q, 1 − q) with 0 ≤ q ≤ 1 denotes this fractional-charge state. According to
the PPLB condition (Eq. (2.44)), the total energy of the systems with different
charge distributions obeys the relationship of

E(Ne − q) + E(Ne − 1 + q)
= (1− (1− q))E(Ne − 1)− (1− q)E(Ne)
+ (1− q)E(Ne − 1) + qE(Ne)
= E(Ne − 1) + E(Ne).

(2.46)

which means that any fractional-charge states (q, 1−q) should lead to the same
energy as that of the integer-charge state (1, 0) or (0, 1). Unfortunately, as
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shown in Eq. (2.45) and Fig. 2.2, the SIE (or the delocalization error) in semi-
local DFAs breaks the PPLB condition and has a partiality for the fractional-
charge states

EDFA(Ne − 0.5) + EDFA(Ne − 0.5)
≤ EDFA(Ne − q) + EDFA(Ne − 1 + q)
< EDFA(Ne − 1) + EDFA(Ne),

(2.47)

resulting in the symmetrically distributed state (0.5, 0.5) as the most stable
state for any semi-local DFAs.

The dissociation of one-electron system H-H+ is the simplest model system
belonging to this type of problem. As discussed above, the electron-electron
Coulomb interaction should be zero for any one-electron system. In KS-DFT,
it means that

Ees = −Exc. (2.48)

However, it cannot be satisfied by any semi-local DFAs, indicating a strong
one-electron SIE in the approximation. Fig. 2.3-top shows the performance of
different semi-local DFAs on the H-H+ dissociation curve. The well-separated
integer-charge state (1, 0) is taken as the reference. In the equilibrium region,
all the semi-local DFAs perform well and result in an error smaller than 0.1 eV.
However, in the dissociation limit, the two hydrogen atoms are well separated
with one electron removed. It is not surprising that in the dissociation limit, all
semi-local DFAs, including LDA, PBE, and SCAN, predict the well-separated
fractional-charge state (0.5, 0.5) to be the most stable one, yielding dissociation
energy too low with an error larger than 1.5 eV.

It is worth noting that the condition of Eq. (2.48) is not satisfied by the semi-
local DFAs for the whole dissociation curve. Therefore, from the absolute en-
ergy point of view, the semi-local DFAs suffer from the heavy one-electron SIE,
whether in the equilibrium region or the dissociation limit. The good perfor-
mance in the equilibrium region is due to the fact that the SIE in this region is on
par with the SIE in the reference state, i.e., the well-separated integer-charged
state (1, 0). However, this error cancellation breaks in the dissociation limit.
The violation of the PPLB condition (Eqs. (2.44) and (2.45)) suggests that the
one-electron SIE in the fractional-charge state is much larger and reaches its
maximum value at the symmetrically distributed state (0.5, 0.5).

Another first-type model system investigated here is the Ne-Ne+ dissociation
curve. Fig. 2.3-bottom shows the performance of different semi-local DFAs on
this system. Same as for the H-H+ dissociation, the well-separated integer-
charge state (1, 0) is taken as the reference. For comparison, the single, double,
and perturbative triple excitations (CCSD(T)) curve is provided in Fig. 2.3-
bottom as well. CCSD(T) is a high-level wave-function method that is often
considered the “gold standard” in quantum chemistry [78–80]. CCSD(T) can
degenerate to the Hartree-Fork (HF) method in one-electron systems.
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Figure 2.3: Dissociation curves of H-H+ (top) and Ne-Ne+ (bottom) with the
zero energy level set to the total energy of isolated atoms/ions. The
Mulliken charge analyses in the dissociation H-H+ and Ne-Ne+ are
studied, for which the charge transfer to the H atom and the Ne atom
are provided. Hartree-Fork (HF), LDA, PBE, SCAN are calculated
in FHI-aims using tight basis sets. CCSD(T) is calculated in FHI-
aims using cc-pVTZ Gaussian-type basis sets. The HF method is
exact for one-electron systems and therefore is treated as a reference
in the curve of H-H+.

Sheng Bi, Self-interaction corrected SCAN functional for molecules and
solids in the numeric atom-center orbital framework, 2022 17



2 Density-Functional Theory

For many-electron systems, the electron-electron Coulomb interaction is non-
zero. In consequence, the condition of Eq. (2.48) does not hold anymore and
cannot be used to diagnose the many-electron SIE in the semi-local DFAs. For-
tunately, the PPLB condition is still valid. The dissociation curves of LDA and
PBE deviate significantly from the CCSD(T) values. The maximum deviation
(larger than 3.0 eV) appears in the dissociation limit. It originates from the
many-electron SIE of semi-local DFAs, which mistakenly stables the fractional-
charge states. The SCAN dissociation curve displays a notable improvement
over LDA and PBE, but it is not yet satisfactory.

The second type of model system comprises two different well-separated sub-
systems, denoted Sa and Sb. This type of system is relative to novel interface
materials, like luminescence diodes [81–83]. Due to the loss of the mirror sym-
metry, the charge transfer between Sa and Sb is allowed, reflecting the different
electron affinity of the subsystems. The discussion above reveals that the SIE
of semi-local DFA tends to overemphasize the fractional-charge (or delocalized)
state and can lead to a non-physical charge transfer. While the first-type model
system uncovers the influence of the SIE on the total (or relative) energy, the
second-type model system can be used to directly study the influence of SIE
on the density and even the electronic structure. The dissociation of the H-F
molecule is a typical example. Fig. 2.4 shows the performance of SCAN on this

Figure 2.4: Dissociation curves of H-F with the zero energy level set to the total
energy of isolated atoms/ions. The Mulliken charge analysis in this
dissociation is studied, for which the charge transfer to the H atom
is provided. SCAN and CCSD(T) are calculated in FHI-aims using
tight basis sets and cc-pVTZ Gaussian-type basis sets respectively.
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system, and a CCSD(T) curve is provided as a reference. Near the equilibrium
region (0.8-1.2 Å), SCAN reproduces the CCSD(T) and results in an energy
error smaller than 0.2 eV. However, in the dissociation limit, the H and F atoms
are well separated and do not have any charge transfer with each other. SCAN,
as a semi-local functional, predicts a fractional-charge (or delocalized) state,
having about 0.26e charge transfer from the F to the H atom. The maximum
deviation (larger than 1.5 eV) appears in the dissociation limit.

2.4 Self-interaction Correction (SIC)
Because the notorious SIEs impeded the development of DFT when it was born,
the attempt of correcting SIEs was acknowledged a long time ago in the 1930s
[60]. With a long period of development, the modern self-interaction correction
(SIC) methods for directly removing SIEs in semi-local DFAs are classified into
two popular options: the scaling correction method [61] and the Perdew-Zunger
SIC method [24].

2.4.1 Scaling Correction

Imposing the PPLB condition (Eq. (2.44)) on any given fractional-charge system
gives the global scaling corrected (GSC) DFA method developed by Xiao et al.
in 2011 [61]. The GSC energy of a system with fractional charges Ne + q is
calculated by interpolating the energy of the system with integer charges Ne
and Ne + 1:

EGSC(Ne + q) = (1− q)EDFA(Ne) + qEDFA(Ne + 1)− EDFA(Ne + q) .
(2.49)

It has been discussed that the GSC spontaneously restores the energy linearity
behavior at any fractional charge q for the LDAs and GGAs [61]. However, GSC
does not offer any contribution to the integer charged systems according to its
definition, which implies that the GSC-DFAs are not size-consistent between
the calculations for the integer and fractional-charge systems [84].

Since 2015, a series of local orbital scaling corrections (LOSCs) [84–86] on DFAs
have been proposed to enforce the PPLB condition and process integer/neutral-
charged systems. These LOSCs are developed from an inner perspective of the
fractional-charge orbital densities instead of the total density (namely LOSC
orbital densities). As the extrapolation of the GSC-DFA, the LOSC-DFA retains
the ability to describe the PPLB condition (Eq. (2.44)). Furthermore, it has
been demonstrated that the LOSC-DFA effectively discards the SIEs in the
integer/neutral charged systems. For example, LOSC-DFA can well describe
the dissociation limits of molecules (like ionic species, single bonds, and multiple
bonds) [86]. Although LOSC-DFA has led to significant improvement in the
HOMO/LUMO energy prediction for molecules (like polyacene and pentacene)
[84], the screening of feasible LOSC orbitals is intense. The post-self-consistent
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field approach (post-LOSC) has been well investigated at the beginning of the
development, in which the converged electron density from the parent DFA is
directly used to evaluate the energy correction of LOSC [87, 88]. The Boys
localization procedure is used to define the LOSC orbitals [89]:

min
∑
i

[⟨ϕi|r2|ϕi⟩ − ⟨ϕi|r|ϕi⟩2] . (2.50)

Using the Boys localization, the spectrum of LOSC orbitals is identical to the
spectrum of auxiliary canonical orbitals and therefore gives effective correction
to the HOMO/LUMO energy for molecules [84]. However, applying post-LOSC
in these cases is insufficient because it improves only the energy for the parent
DFA but leaves the significant error in electron density unchanged. In 2020, a
reliable self-consistent field LOSC (SCF-LOSC) method for molecular systems
has been proposed [90]. The electron density is updated and iterated by solv-
ing the LOSC-DFA Hamiltonian until a converged electron density is obtained.
The SCF-LOSC method is demonstrated to correctly describe the electron den-
sities, total energies, and energy-level alignments for the molecular dissociation
process, like Li-H, Li-F, and benzenediamine-tetracyanoethylene. LOSC is now
a promising method for studying problems for correct electron densities and
energy-level alignments in molecular systems [90, 91].

2.4.2 Perdew-Zunger SIC

Another SIC option generalizes the correction for one-electron systems to the
correction for many-electron systems. As the Hartree energy introduces the
SIEs, a prototypical version of the SIC method aims to remove the Hartree
energy in one-electron systems, as Fermi and Amaldi (FA) proposed in the 1930s
[60]. In FA-SIC, the Hartree energy is directly shifted to zero for one-electron
systems:

EFA-SIC
es = Ees[n]−NeEes[

n

Ne
] . (2.51)

Although the FA-SIC Hartree energy vanishes in one-electron systems, the FA-
SIC method can not cancel the remaining DFA XC energy. While the FA-
SIC method is not a particularly good model for the DFA XC energy, the FA-
SIC-DFA calculations can result in spectra of alkali metals semi-quantitatively
matching the experiment [92].

As there is no electron-electron interaction by definition for one-electron systems,
the SIE in one-electron systems can be consequently evaluated by Eq. (2.48)
exactly. This analysis has motivated the celebrated self-interaction correction
strategy for the semi-local XC DFAs proposed by Perdew and Zunger in the
early 1980s (PZ-SIC) [24]:

EPZ-SIC[{ni}] = −
Ne∑
i

(
EDFA

xc [ni] + Ees[ni]
)

. (2.52)
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Here {ni(r) = |ϕi(r)|2} are the densities of the Ne single-electron orbitals.
{ϕi(r)} are called SIC orbitals in the following. Accordingly, EDFA

xc [ni] is the
self-exchange-correlation energy evaluated for the orbital density ni(r) for a
given DFA, while Ees[ni] is the self-electrostatic energy of ni(r), evaluated via
the Hartree equation (2.12). The SIC orbitals must fulfill the total density con-
straint, i.e., the SIC orbitals must be unitary transformations of occupied KS
orbitals (See Section 4.1 for details). Different from the LOSC method [84],
the correction EPZ-SIC is exact for one-electron systems, in which the only KS
orbital defines the SIC orbitals uniquely [26]. For many-electron systems, the
total-density constraint is, however, not sufficient to uniquely define the SIC
orbitals. This has significantly hindered the routine use of PZ-SIC approaches
since it has been demonstrated that PZ-SIC is only capable of correcting for
large portions of the SIE if an appropriate choice of SIC orbitals is employed
[27, 76].

In aid of filtering out the solutions of the PZ-SIC equations so to get the lowest
total energy of the ground state of SIC-DFAs, Lin et al. introduced an orbital
potential constraint to the SIC orbitals [93], in which the SIC orbitals make
the variation of the total energy of SIC-DFAs equal to zero. (A detailed de-
scription of the orbital potential constraint is given in Sec. 4.1.) In 1988, the
orbital potential constraint was used in SIC-LDA calculations for atomic sys-
tems, resulting in the experimental ionization potential even better than HF
results [94]. However, in the case of benzene, erroneous geometry with alter-
nating bond lengths [30] was observed. Moreover, many localization methods,
including the Boys localization used in LOSC, were tested to determine that
different localization procedures can violently impact the SIC performance [30].
This was traced back to the fact that the orbital potential constraint is insuffi-
cient to determine the correct SIC orbitals. In 2014, Pederson and co-workers
suggested that the problem can be circumvented by using the Fermi orbitals
with Löwdin orthogonalization (FLOs) to construct the SIC orbitals under SIC
potential constraint [95, 96]. Although the FLO-SIC method requires a careful
self-consistency check [97], the resulting FLO-SIC scheme makes it easier to find
the correct SIC solutions than the standard PZ-SIC equations, particularly for
molecules with π bonds [98].

In fact, the problem of multiple solutions is even more serious for solids. Due
to the localized nature of the SIC orbitals, Heaton, Harrison, and Lin (HHL)
suggested that it is more convenient to expand the SIC orbitals by using Wannier
orbitals [27] instead of expanding the SIC orbitals in k-space. In early 2021,
Shinde et al. proposed a tentative implementation of Wannier function-derived
FLOs (WFLOs) for correcting the SIE in periodic systems [99]. Calculations
on several (17 in total) prototypical molecular solids, semiconductors, and wide-
band-gap materials show that the WFLO-SIC approach gives better band-gaps
and bulk moduli compared to the semi-local PBE functional, largely due to the
partial removal of SIEs. Although the Wannier orbitals {Ψl,L(r)} are localized
molecular orbitals in solids, the same problem of solids as molecules is that the
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orbital potential constraint does not ensure a unique set of SIC orbitals. The
uncertainty of SIC orbitals passes to the SIC-DFA Hamiltonian and eventually
impacts the orbital energies. For example, the SIC-LDA band-gap of the Ar
crystal reported by HHL is different from that of Stengel and Spaldin by a
deviation of 0.7 eV [27, 28]. The SIC orbitals in those results were both filtered
by the orbital potential constraint but used different localized representations
for the Wannier orbitals.

Another challenge for the original PZ-SIC method is that the corrections on
GGAs or meta-GGAs are not accurate enough, especially for describing the
equilibrium properties, like atomization energies, enthalpies, and equilibrium
bond lengths [100, 101]. The accuracies are not improved by its application
on GGAs or meta-GGAs compared with its application on LDAs, while the
accuracy is improved by the nonempirical semi-local functional climbing the
DFT Jacob’s ladder (e.g., from LDA to GGA PBE and meta-GGA TPSS). For
example, degressive deviations from the experiment of formation energies for
the G2-1 test set [102, 103] are expected to be -36.0, -6.6, and -3.6 (a.u.) for
LDA, PBE, and TPSS, but SIC-LDA, SIC-PBE and SIC-TPSS show deviations
valued as -21.5, 10.0 and 15.0 (a.u.) [101]. One explanation is that the physical
constraints or/and experimental data are reproduced by the DFA functionals
with self-interaction terms included [101]. A way to systematically improve the
PZ-SIC for (meta-)GGAs is to introduce the complex SIC orbitals to systems. It
has been found that complex SIC orbitals generate lower total energies of atoms
H to Ar and make the HOMO energies closer to experimental ionization energies
[29]. In 2019, Shahi et al. [12] documented that the complex SIC orbitals can
help SIC-PBE and SIC-SCAN to predict more accurate reaction barriers than
the real SIC orbitals for a small representative BH6 set [104]. Unfortunately,
only the real Wannier SIC orbitals were used in the WFLO-SIC work of Shinde
et al. and other early SIC works for solids. To my best knowledge, the effect of
complex SIC Wannier orbitals for solids is not invested and presented.
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3 SCAN in FHI-aims

The meta-GGA SCAN method provides a consistent improvement over PBE
for different kinds of chemical and physical properties, holding the promise
to be the next-generation working horse in computational materials science.
However, it suffers from a heavy numerical instability problem. It was found
that meta-GGAs are more sensitive than the GGAs to the grids used in the
numerical integration for finite and periodic systems, such as Ge atom [105] and
bulk Si [17]. By employing the standard grid setting that is dense enough to
converge the GGA calculations, the meta-GGA calculations often show spurious
oscillations in the dissociation curve of the argon dimer [13, 14], and give rise
to a numerical error of more than 6 kcal/mol in the reaction energies [15, 16].
These problems are partly due to including a more complicated ingredient in
the functional construction, i.e., the kinetic energy density τ .

In addition to the grid sensitivity, several studies suggested that the meta-
GGAs converge much slower than the standard GGAs or even diverge during
the self-consistent field (SCF) procedure [14, 17, 106, 107]. It is documented
that the τ -dependent dimensionless variable α (See Eq. (2.39)) defined in those
meta-GGAs may cause numerical instability to the XC potential [108]. Specif-
ically, ill-conditioned oscillations may arise in the XC potential when the α
approaches 1 (i.e., in an area having slowly varying densities). This observa-
tion has motivated proposing several α variants to the SCAN functional, i.e.,
rSCAN [19] and r2SCAN [105], both of which efficaciously reduce the grid sen-
sitivity and accelerate the SCF convergence by smoothing/damping the sharp
oscillations in the XC potential. However, rSCAN and r2SCAN no longer fulfill
all the 17 exact constraints as the standard SCAN, thus showing less accuracy
for closed-shell complexes and lattice constant prediction [109]. (The detailed
cross-comparison for the constraints satisfied by SCAN, rSCAN, and r2SCAN
is presented in Appendix 7.1.)

The research in this chapter was carried out with the FHI-aims package, which
seeks to examine and circumvent the aforementioned instability problem of
SCAN in the fully numerical integration framework using numeric atom-center
orbitals.

3.1 Basis Set: Numeric Atom-Centered Orbitals

The Fritz Haber Institute ab initio molecular simulations (FHI-aims) code is an
all-electron, full-potential electronic-structure package in the numerical integra-
tion framework [20, 110]. The numeric atom-centered orbitals (NAOs) used in
FHI-aims have the form

φi(r) =
ui(r)
r

Y l
m(Ω) , (3.1)
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where {Y l
m} are the spherical harmonics with the implicitly i-dependent index

functions l(i) and m(i). The radial shape ui(r) typically is the numerical solu-
tions of the Schrödinger-like radial equation:

[−1
2
d2

dr2
+ l(l + 1)

r2
+ vi(r) + vcut]ui(r) = ϵiui(r). (3.2)

The cut-off potential vcut is a steeply increasing confining potential, which en-
sures a smooth decay of each radial function to zero outside a limit radius. The
potential vi(r) mainly controls the shape of the radial function. The NAO basis
sets in FHI-aims take the self-consistent free-atom radial potential to generate
the radial functions {ui(r)} used on the minimal basis. In order to approach
the complete basis-set limit, the so-called tier-n basis sets (with n = 1, 2, 3, · · · )
introduce more NAO basis functions on top of the minimal basis tier by tier.
Compared with Dunning’s cc-pVnZ Gaussian-type basis sets, the tier-1 basis
set has a similar size as the cc-pVDZ, tier-2 as cc-pVTZ, and tier-3 as cc-pVQZ
[110].

The KS orbitals are expanded using a given set of basis functions, {φi(r)},

ψl =
Nb∑
i=1

cilφi(r) , (3.3)

and the electron density using basis functions is represented as:

n(r) =
∑
ijl

φ∗
i (r)φj(r)c∗ilcjl . (3.4)

The gradient density and kinetic energy density are written as

∇n(r) =
∑
ijl

(φj(r)∇φ∗
i (r) + φ∗

i (r)∇φj(r))c∗ilcjl

τ(r) = 1
2
∑
ijl

(∇φ∗
i (r) · ∇φj(r))c∗ilcjl ,

(3.5)

which require the gradient basis functions ∇φi(r) in (meta-)GGAs. It is favor-
able to update the gradient density and kinetic energy density based on the
basis functions because the gradient of the basis functions can be prepared once
and stored in the program instead of calculating the gradient of updated KS
orbitals in each SCF iteration.

The corresponding DFA one-electron KS equations (Eq. (2.19)) can then be
written as ∑

j

hDFA
ij cjl = ϵl

∑
j

sijcjl . (3.6)

Here the Hamilton and overlap matrix elements are obtained by the numerical
integration

hDFA
ij =

∫
d3r[φ∗

i (r)ĥDFAφj(r)]

sij =
∫
d3r[φ∗

i (r)φj(r)] .
(3.7)
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Figure 3.1: 1)-2) The convergence of the cohesive energy ∆H and 3) the time
cost per iteration for the calculations of molecule CO in LDA, PBE
and SCAN as a function of basis size. The black dash lines, marked
with min and tier-1,2,3, denote the predefined minimal and tier-
1,2,3 basis sets, respectively. The red lines present the experimental
cohesive energies of CO [77].

Figure 3.2: 1)-2) The convergence of the cohesive energy ∆H and 3) the time
cost per iteration for the calculations of molecule HF in LDA, PBE
and SCAN as a function of basis size. The black dash lines, marked
with min and tier-1,2,3, denote the predefined minimal and tier-
1,2,3 basis sets, respectively. The red lines present the experimental
cohesive energies of HF [77].

Fig. 3.1 and 3.2 present the basis-set convergence of the SCAN functional in
the calculations of cohesive energies. The small molecules CO and HF are
considered. Our results support evidence from the previous work that tier-1 is
good enough for LDAs and GGAs [3, 20]. Fig. 3.1 and 3.2 also suggests that the
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SCAN functional shares the same basis-set convergence as LDA and PBE. The
SCAN cohesive energies at the basis-set level of tier-1 have been well converged
on the condition of speedy computations.

In the case of solids, the periodic boundary conditions (PBCs) are used in
practical numerical calculations [20, 111]. The PBCs arise a translationally
invariant area, which is characterized by the lattice vectors of unit cell (a1, a2, a3).
Under the PBCs, the KS orbitals {ψl,k(r)} depend on k-points and are the
eigenstates of the translation operations T̂ ,

T̂ †(RL)ψl,k(r) = ψl,k(r + RL) = eik·RLψl,k(r) . (3.8)

Here RL = ∑
i Liai are the lattice vectors, with the subscript L = [L1, L2, L3]

being the index of a given lattice vector. Because the eigenvalues are valued
as phases |eik·RL | = 1, KS orbitals have the invariant value in each cell |ψl,k(r +
RL)| = |ψl,k(r)|. Consequently, the total density is translationally invariant in
the PBC area

n(r) =
∑
l,k

|ψl,k(r)|2

T̂ †(RL)n(r) = n(r + RL) = n(r) .

(3.9)

For simulating the extended systems under the PBCs, a set of Bloch-like basis
functions χi,k(r) for different k-points in the first Brillouin zone have to be
prepared from the real-space NAO basis functions φi(r)

χi,k(r) =
∑

L
eik·RL · φi(r − RL). (3.10)

The KS orbitals in a given k-point are expanded using the Bloch-like basis
functions at that k-point

ψl,k =
Nb∑
i=1

cil,kχi,k(r). (3.11)

In consequence, the corresponding KS equations become∑
j

hDFA
ij,k cjl,k = ϵl,k

∑
j

sij,kcjl,k , (3.12)

which can be solved independently for each k point. The corresponding Hamil-
ton and overlap matrix elements are defined as

hDFA
ij,k = ⟨χi,k|ĥDFA|χj,k⟩ =

∑
I,J
eik·[RI−RJ]⟨φi,I|ĥDFA|φi,J⟩

sij,k = ⟨χi,k|χj,k⟩ =
∑
I,J
eik·[RI−RJ]⟨φi,I|φi,J⟩ .

(3.13)

Fig. 3.3 presents the basis-set convergence of LDA, PBE, and SCAN to calcu-
late band-gaps and cohesive energies of the fcc Si crystal. Same as the case for
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Figure 3.3: The convergence of the band-gap energy and the cohesive energy
∆H of fcc Si as a function of basis set size. LDA, PBE and SCAN are
calculated in FHI-aims using 10×10×10 k-grids and tight numerical
settings. The red line presents the experimental band-gap (top) and
cohesive energy (bottom) [112]. The black dash lines, marked with
min and tier-1,2, denote the predefined minimal and tier-1,2 basis
sets, respectively.

molecules mentioned above, SCAN has the same basis-set convergence as LDA
and PBE for solids. The tier-1 has been good enough to reach the complete
basis-set limit for calculating both band-gaps and cohesive energies. Fig. 3.4
shows that the time costs per iteration of LDA, PBE, and SCAN in the peri-
odic systems have the same scaling factor O(N2.29

b ). The scaling factor in the
periodic systems is different from the linear scaling behavior in the finite systems
because the Hartree potential is caused by summing over all unit cells in peri-
odic boundaries. However, it has been determined that the computational cost
of solving the KS one-electron equations scales as O(N3

b) for finite and periodic
systems, which stands out among other calculation steps to be the major cost
for large systems (i.e., containing more than 1000 atoms) [113, 114]. It has been
proven that this heavy computational step can be speeded up to very large core
counts [115] by the Eigenvalue Solvers for Petaflop Application (ELPA) [114].
So far, ELPA has been used in many electronic structure communities, including
FHI-aims.
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Figure 3.4: The time cost per iteration for the LDA, PBE and SCAN calcula-
tions for fcc Si as a function of basis size in unit cell. LDA, PBE
and SCAN are calculated in FHI-aims using 10×10×10 k-grids and
tight basis sets. The black dash lines, marked with min and tier-1,2,
denote the predefined minimal and tier-1,2 basis sets, respectively.
The time scales as O(N2.29

b ) for LDA, PBE and SCAN calculations
in a similar manner.

3.2 Integration Grid

In practice, FHI-aims numerically solves the integrations in Eqs. (3.7) and (3.11)
on partitioned grids. It has been proved that the numerical integration imple-
mentation achieves a nearly linear-scaling performance for large systems [20].
This advantage can be traced to the Stratmann atom-center partition algorithm
[116] for LDA and GGAs realized in FHI-aims for the sparse grid operation [117,
118]. Moreover, it was demonstrated that this partition algorithm needs fewer
grid points for the NAO basis sets than analytical Gaussian-type orbital (GTO)
basis sets to converge electronic total-energy calculations in FHI-aims. One
explanation is that NAOs do better than GTOs describe the area very close to
the nucleus [110]. Therefore I employed the Stratmann grid scheme and NAO
basis keeping the same treatment used for LDA and GGAs to study the grid
sensitivity of the SCAN functional in FHI-aims.

The standard basis-set pool of FHI-aims provides a hierarchy of predefined set-
tings for integration grids, namely, light, tight, and really-tight. The accuracy of
basis sets is simultaneously increased by the following aspects in the program
[20]: 1) number of shells along radial direction; 2) position of the outermost
shell; 3) Hartree potential expansion; and 4) the divisions in one shell used for
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three-dimensional integrations. (The control technics behind these aspects are
described in Ref. [20].) It has been reported that the SCAN calculation for Ge

Figure 3.5: (top) The numerical convergence of the total energies of the Ge
atom with respect to the predefined grid settings of light, tight and
really-tight. (bottom) The performances of LDA, PBE, and SCAN
methods are studied, for which the corresponding time costs per
iteration are also provided. ∆E represents the total energy difference
with the energy using “dense” grid settings, which denotes a grid
setting 25 times denser than the standard tight setting.

atom is very sensitive to the choice of grids [108]. Fig. 3.5 presents the total
energies of the Ge atom self-consistently calculated by LDA, PBE, and SCAN
to study the numerical convergence with respect to different predefined grid
settings. We can see that the tight predefined grid setting is enough to con-
verge the Ge total energy for all three semi-local DFAs. However, the SCAN
functional suffers from a notable slower convergence than LDA and PBE. Specif-
ically, the error of SCAN is larger than 0.6 eV by using the light grid setting.
For comparison, it is about 0.03 eV for LDA and PBE.

To trace the origin of the slow convergence behavior, I plotted the XC poten-
tials along the radius distance on Fig. 3.6, which were evaluated based on the
self-consistent KS orbitals of PBE and SCAN themselves, respectively. It is
apparent from this figure that the GGA PBE method possesses a smooth XC
potential, which can be properly described by using the light grids. For compar-
ison, the SCAN XC potential is much more rugged, and a denser grid setting
is required to sample this behavior so to converge the numerical integration
over the potential. Although the grid sensitivity of SCAN can be ascribed to
its rugged XC potential, closer inspection of Fig. 3.6 suggests that the SCAN
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Figure 3.6: The XC potential along the radius distance evaluated based on
self-consistent PBE and SCAN KS orbitals. “dense” denotes a grid
setting 25 times denser than the standard tight setting.

XC potential calculated in my investigation is much less rugged than those re-
ported in the previous research by Furness and Sun in 2019 [108]. In the next
section, I presented the differences and proposed a meta-GGA-specific mixing
algorithm, which was demonstrated to be efficacious to get the XC potential for
the standard SCAN functional.

3.3 Kinetic Energy Density Mixing Algorithm
For deeply figuring out the problem detected in the last section, the SCAN XC
potential of the Ge atom was re-calculated based on the self-consistent PBE
orbitals (denoted as “SCAN@PBE”). It was plotted in Fig. 3.7 together with
the SCAN and PBE potentials using their own self-consistent KS orbitals. The
dimensionless kinetic energy α (defined in Eq. (2.39)) and density were also
plotted in Fig. 3.8 and Fig. 3.9, respectively. α(SCAN@PBE) or α(SCAN)
represents the α based on the self-consistent PBE or SCAN orbitals in the
following.

As shown in Fig. 3.7, the SCAN@PBE XC potential brings about sharp oscilla-
tions, identical to the report of Furness and Sun [108]. The ill-behaved points
on the SCAN@PBE XC potential curve are observed near the approximated
orbital radius defined in the Bohr model. However, taking Fig. 3.8 and Fig. 3.7
together, we can find that the ill-behaved points exactly match the region of
α(SCAN@PBE) approaching 1. Furthermore, the region of α(SCAN) ≈ 1 also
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Figure 3.7: XC potentials of PBE and SCAN along the radius distance for the
Ge atom. “dense” denotes a grid setting 25 times denser than the
standard tight setting. The SCAN potential evaluated by the PBE
self-consistent KS orbitals is labeled as “SCAN@PBE”. The vertical
dashed lines indicate the approximated orbital radius defined in the
Bohr model (ri = 0.53

32 i
2). The vertical dot-dashed lines indicate the

positions where the dimensionless kinetic energy α of SCAN@PBE
is equal to 1.

raises weak ruggedness in the SCAN XC potential based on the self-consistent
SCAN orbitals, which explains the failure of SCAN in describing the energy
using light basis in the case of the Ge atom (shown in Fig 3.5). The area of
α ≈ 1 describes the asymptotic regions of the non-covalent density [57]. The
recent work of Furness et al. in 2021 has documented that α(r) can have di-
verged scaling behaviors of r when α(r) closes 1. The improper scaling behavior
destroys the overall smoothness of the functional and introduces oscillations
into the XC potential. A series of works have been proposed to reform α [19,
105, 109, 119]. In this work, we argued that the self-consistent calculations of
SCAN itself finely adjust α and can result in a less rugged XC potential. From
Fig. 3.9 to Fig. 3.7, we see that the almost overlapping (kinetic energy) densities
of PBE and SCAN can lead to the α(SCAN) and α(SCAN@PBE) with slight
differences. The differences are further enlarged by the SCAN XC potential and
are expressed in Fig. 3.7. Likewise, for any given set of trial KS orbitals, the
use of τ -dependent dimensionless parameter α in the SCAN functional poses a
high risk of yielding an ill-behaved and nonphysical XC potential. It was worth
trying a meta-GGA-specific mixing algorithm to find the self-consistent SCAN
orbitals and further converge the SCF iteration fast and stable for the standard
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Figure 3.8: Dimensionless kinetic energy α (defined in Eq. (2.39)) of
SCAN@PBE and SCAN along the radius distance for the Ge atom.
“dense” denotes a grid setting 25 times denser than the standard tight
setting. The α evaluated by the PBE self-consistent KS orbitals is
labeled as “SCAN@PBE”. Each marker on the curve of α is plot-
ted every 1000 grid points along the radius distance. The vertical
dashed lines indicate the approximated orbital radius defined in the
Bohr model (ri = 0.53

32 i
2). The vertical dot-dashed lines indicate the

positions where the dimensionless kinetic energy α of SCAN@PBE
is equal to 1.

SCAN functionals.

In FHI-aims, the fast and stable SCF convergence of the LDA and PBE calcula-
tions is achieved using Pulay’s direct inversion of the iterative subspace scheme
for the (gradient) density mixing [20, 120]. The example of the Ge atom has
determined that inconspicuous changes in the kinetic energy density can lead
the oscillations in the SCAN XC potential. In consequence, only counting (gra-
dient) density in the mixing algorithm might not be enough to stabilize the
SCF convergence for the SCAN functional. In order to make the kinetic energy
density τ to be self-consistent with the τ -dependent meta-GGA XC function-
als, I developed a new mixing algorithm of τ(r) in FHI-aims and applied it
together with the standard density mixing algorithm during the SCF procedure
for meta-GGAs.

Assuming that the kinetic energy density in the µth SCF iteration step is τµin, the
Hamiltonian matrix can be established based on it together with the electron
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Figure 3.9: Density n(r) and kinetic energy density τ(r) of the self-consistent
PBE and SCAN orbitals along the radius distance for the Ge atom.
“dense” denotes a grid setting 25 times denser than the standard
tight setting. Each marker on the curve of (kinetic energy) density
is plotted every 1000 grid points along the radius distance.

density and orbitals in the same iteration step (See Eqs. (2.19), (2.20), (2.37),
and (3.7)). By solving the KS equations, we obtained the updated kinetic energy
density τµout (See Eqs. (2.30) and (3.5)). The residual functional between the
input and output kinetic energy density is defined as

R[τµin] = τµout[τµin]− τµin . (3.14)

The residual functional is zero, if input kinetic energy density τµin has been con-
verged in SCF procedures. Pulay mixing scheme uses the converged condition
[120], in which the residual functional depends linearly on a series of historical
input kinetic energy densities

R[
∑
µ

αµτ
µ
in] =

∑
µ

αµR[τµin] , (3.15)

where {αµ} minimize the norm of the residual functional ⟨R[∑µ αµτ
µ
in]|R[

∑
µ αµτ

µ
in]⟩

under the normalization constraint of ∑µ αµ = 1. Such kind of minimization
determines {αµ} to be with the form of

αµ =
∑

v⟨R[τ vin]|R[τ
µ
in]⟩−1∑

vw⟨R[τ vin]|R[τwin ]⟩−1 . (3.16)

The resulting optimal kinetic energy density τµopt =
∑

µ αµτ
µ
in was then utilized

to generate the input kinetic energy density in the (µ + 1)-iteration via the
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equation of
τµ+1

in = τµopt + Ĝ1R[τµopt] . (3.17)

Here, the operator Ĝ1 is a special preconditioning matrix, e.g., the non-local
matrix proposed by Kerker in 1981 [121].

Figure 3.10: The density residual of Ge atom SCAN with and without kinetic
energy density mixing as a function of the iteration steps in SCF
calculations. The density residual is calculated by integrating the
difference of the densities in the µth and (µ − 1)th SCF iteration
step: ∆n =

∫
d3r(nµ(r)− nµ−1(r)). The SCF procedure is stopped

when the density residual drops to 10−6. The results of LDA and
PBE are given as references. The SCAN total energy with τ -mixing
differs from the energy without τ -mixing less than 10−7 eV.

I have implemented the aforementioned mixing algorithm for the kinetic energy
density in FHI-aims. To better understand the outcome of mixing τ(r) in FHI-
aims, I firstly invested the SCF convergence behavior of LDA, PBE, and SCAN
for Ge atom and also plotted the SCAN calculations with/without mixing τ(r)
in Fig. 3.10. In this case, the SCAN calculations without mixing τ converged
over 130 iterations, but LDA and PBE converged fast within 20 steps. The
mixing algorithm of τ(r) speeds up the SCAN convergence (within 20 steps),
with the same behavior as LDA and PBE. This result confirms that updating
the kinetic energy density directly during SCF iterations indeed undermines the
convergence behavior for SCAN calculations, and the mixing algorithm of τ(r)
can obviously weaken this impact in this simple case.

Besides atoms, the calculations for the solid fcc Si has been reported to have
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Figure 3.11: The density residual of the non-spin fcc Si (top) and hexagonal
ZnO (bottom) unit cells using SCAN with and without kinetic
energy density mixing as a function of the iteration steps in SCF
calculations. The density residual is calculated by integrating the
difference of the densities in the µth and (µ − 1)th SCF iteration
step: ∆n =

∫
d3r(nµ(r)− nµ−1(r)). The SCF procedure is stopped

when the density residual drops to 10−6. The results of LDA and
PBE are given as references. The 3× 3× 3 k-grids and tight tier-1
NAO basis sets are used for all the calculations.

a convergence problem in the early SCAN implementation [17]. In further in-
vestigations of solids, I found the SCAN functional encounters a widely serious
SCF convergence problem. To better illustrate the SCF convergence problem,
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Figure 3.12: The density residual of the magnetic bcc Fe (top) and fcc Fe
(bottom) unit cells using SCAN with and without kinetic energy
density mixing as a function of the iteration steps in SCF calcula-
tions. The density residual is calculated by integrating the differ-
ence of the densities in the µth and (µ − 1)th SCF iteration step:
∆n =

∫
d3r(nµ(r)− nµ−1(r)). The SCF procedure is stopped when

the density residual drops to 10−6. The results of LDA and PBE
are given as references. The spin-polarized, 3 × 3 × 3 k-grids and
tight tier-1 NAO basis sets are used for all the calculations.

Figs. 3.11 and 3.12 present the SCF convergence behavior of LDA, PBE, and
SCAN for the crystals of fcc Si, hexagonal ZnO, bcc Fe, and fcc Fe.
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For all the four cases, the SCAN calculations without mixing τ cannot converge
within 100 iterations. For comparison, 20 iterations are enough to converge the
LDA and PBE calculations for the non-magnetic systems (fcc Si and hexagonal
ZnO), as shown in Fig. 3.11. More than 50 iterations are needed to converge in
LDA and PBE calculations for the magnetic systems (bcc Fe and fcc Fe). We can
see that the SCAN functional with mixing τ now exhibits the same convergence
behavior as LDA and PBE for all the cases, including the non-magnetic fcc Si
and hexagonal ZnO, and the magnetic bcc Fe and fcc Fe.

Figure 3.13: The evolution of kinetic energy density τ on tight grids in the
SCAN SCF procedure for fcc Si. 1) The value of τ in the 1st SCF
iteration, which is same for the procedures with and without mixing
τ . 2) The value of τ evolved without mixing itself in the 40th SCF
iteration. The value of τ evolved with mixing itself in the 3) 3rd
and 4) 16th SCF iteration. All density maps are limited in the unit
cell and are viewed from the z-axis. The blue circles present the
positions of Si atoms. The calculation is already converged in the
16th SCF iteration with mixing τ (See Fig. 3.11). The 3 × 3 × 3
k-grids and tier-1 NAO basis sets are used for all the calculations.

To trace the convergence failure for solids, I plotted the τ evolution in the SCAN
SCF procedure of fcc Si in Fig. 3.13. Specifically, Fig. 3.13-2) determines that
the value of τ in the 40th step still oscillates around the value in the first step
if only the (gradient) density is mixed in the SCAN calculation. Figure 3.13-
3) displays that the positive effect of mixing τ can emerge from the 3rd step,
because the value of τ at this step has approached the final converged value plot-
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ted in Figure 3.13-4). These results confirm that the SCF convergence problem
reported in the previous work [108] is not inherent to the SCAN functional. I
demonstrated that the SCAN implementation in FHI-aims can converge as fast
and stable as LDA and PBE. Now the SCAN calculation for solids (like fcc Si,
hexagonal ZnO, bcc Fe and fcc Fe) is expected as 1.26 times the total cost of
PBE in FHI-aims, but was reported in 2020 as 4.94 times of the PBE cost in
other implementations [122].

In the next section, I benchmarked my SCAN implementation in FHI-aims with
mixing τ(r) by using 1) 24 HOMO energies of the atoms from H to Ar, 2) 76
reaction barriers from the BH76 test set [123, 124], and 3) 10 fundamental
band-gaps from a subset of the reference [6] and reference [125]. The following
calculations of LDA, PBE and SCAN in FHI-aims use the tight basis-sets with
tier-1, which are analysed in the Sec. 3.1 and Sec. 3.2 to have well convergence.

3.4 Benchmark SCAN in FHI-aims
Since the birth of the SCAN functional in 2015, the SCAN functional has been
used and analysed in many works [6–10]. Now SCAN functional is the promising
meta-GGA functional for both molecules and solids. However, the SCAN can
not be widely applied because of the convergence problem, especially for solids
(See Sec. 3.3). I pick up three confirmed subsets, including HOMO energies of
the atoms, reactions barriers and band-gaps. In this section, these subsets are
used to determine the correctness of the SCAN implementation in FHI-aims
rather than discuss the performance of SCAN functional.

We compare the LDA, PBE and SCAN HOMO energies of atoms from H to
Ar against the experimental IPs [77] in Fig. 3.14. The figure shows that the
calculated points of SCAN are closer than LDA and PBE to perfect line. But
all calculations of DFAs (including LDA, PBE and SCAN) have large distance
to the perfect line and hence heavily underestimate the IPs. Table 3.1 shows
that the MAEs (e.g., mean absolute errors) of the orbital eigenvalues are 4.92,
4.90, and 4.51 eV for LDA, PBE, and SCAN, respectively. The corresponding
results, taken from Ref. [11] and calculated by the naval research laboratory
molecular orbital library (NRLMOL) [126–128], are also included in Table 3.1
for comparison. The NRLMOL results are obtained by the default NRLMOL
basis sets, and a finer grid dense, typically containing 25000 grid points per
atom. The MAEs between FHI-aims and NRLMOL for LDA, PBE, and SCAN
calculations are all within a 0.03 eV difference.

In Fig. 3.15, we compare the barrier heights of BH76 for LDA, PBE, and SCAN
calculations against the Weizmann-1 (W1) calculations. Here the BH76 test
set comprises 76 barrier heights for chemical reactions [123, 124], and W1 is
high-accuracy computational thermochemistry designed to extrapolate to the
complete basis limit of a CCSD(T) [129, 130]. SCAN and PBE have signifi-
cant improvements over LDA for the predicted barrier heights of the BH76 test
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Figure 3.14: Comparison of IPs and the calculated −ϵHOMO energies by LDA,
PBE, and SCAN of H to Ar atoms. The relative errors of −ϵHOMO
energies to IPs of H to Ar atoms are given using LDA, PBE, and
SCAN. The tight tier-1 NAO basis sets are used for all calculations.
The black line presents the experimental IPs [77].

[eV] FHI-aims NRLMOL
ME MAE ME MAE

LDA -4.92 4.92 -4.89 4.89
PBE -4.90 4.90 -4.88 4.88

SCAN -4.51 4.51 -4.54 4.54

Table 3.1: Deviations of −ϵHOMO from the corresponding experimental ioniza-
tion potentials for H to Ar atoms calculated by LDA, PBE and SCAN
in FHI-aims. Mean errors (MEs) and mean absolute errors (MAEs)
are given in eV. The FHI-aims results use the tight basis-sets with
tier-1. The NRLMOL results are given as a comparison and taken
from Ref. [11], The default NRLMOL basis set and a finer grid dense,
typically containing 25000 grid points per atom, are used in Ref. [11].

set. At the same time, the differences in the prediction accuracy for PBE and
SCAN are less noticeable. In Table 3.2, the MAEs of LDA, PBE, and SCAN
calculations are given as 0.66, 0.40 and 0.33 eV (15.2, 9.3, and 7.8 kcal/mol), re-
spectively, which match the MAEs shown in the original SCAN work [7] within
0.005 eV (0.1 kcal/mol). The results shown in the original SCAN work are
calculated using Gaussian code [131] with 6-311++G (3df, 3pd) basis set.

Figure 3.16 compares the computed band-gaps against the experimental values
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Figure 3.15: Comparison of the calculated results by LDA, PBE and SCAN and
results by the Weizmann-1 (W1) method [129, 130] for the reactions
included in BH76 [123, 124]. The black diagonal line corresponds
to the calculated line of perfect agreement. Tight tier-1 NAO basis
sets are used for LDA, PBE and SCAN calculations in FHI-aims.
(1 kcal/mol = 0.0434 eV)
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[eV] FHI-aims Gaussian
ME MAE ME MAE

LDA -0.655 0.660 -0.660 0.668
PBE -0.399 0.404 -0.395 0.399

SCAN -0.334 0.339 -0.334 0.334

Table 3.2: Mean error (ME) and mean absolute error (MAE) of the calculated
chemical barrier heights given in eV for the BH76 test set [123, 124]
calculated by LDA, PBE and SCAN in FHI-aims. The FHI-aims
results use the tight basis-sets with tier-1. The Gaussian results with
the 6-311++G (3df, 3pd) basis sets are given as a comparison and
taken from Ref. [7]. (1 kcal/mol = 0.0434 eV)

of a test set with 10 fundamental solids. It is worth noting that the electron-
phonon interaction can impact band-gaps at absolute zero temperature due to
the zero-point vibrations [71], but the exact effect is difficult to access from
experiments [132]; thus, we ignore it when calculating band-gaps in this thesis.
More theoretical studies for this effect on band-gaps can be found in Ref. [133,
134]. The test set includes covalent crystals (such as Si, C), ionic crystals (such
as NaCl, LiF), and also Mott insulators composed of transition-metal oxides
(MnO). Nearly, all the calculated points by DFAs (including LDA, PBE and
SCAN) lie below the dashed line of the perfect agreement. The band-gaps
of SCAN calculations have a small MAE (2.29 eV), compared with the MAE
of LDA (3.24 eV ) and PBE (3.04 eV). These results echo the work of Isaacs
and Wolverton, in which SCAN has moderate improvements (more than 20%
decrease in MAE) compared to PBE [6]. For LiF (with a very large experimental
gap of 14.20 eV) as an example, the SCAN band-gap is 0.98 eV larger than that
of PBE using FHI-aims, and the enhancement of SCAN for PBE is 1.10 eV
in the Isaacs and Wolverton work using the Vienna ab initio software package
(VASP) [135–138] with a 600-eV plane-wave cutoff.

In this chapter, I verified that my implementation in FHI-aims with mixing τ(r)
had overcome the worrisome numerical instability in SCAN functional and can
correctly give calculated results. However, in the three benchmark cases, only
slight improvements of SCAN exist from PBE comparing with the experimental
or reference values. These extensive derivations of the HOMO energies, reaction
barriers, and band-gaps for the semi-local DFAs, including SCAN, are caused
by the notorious SIEs. In the next chapter, I developed and implemented a
self-consistent SIC method in FHI-aims for solving this problem.
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Figure 3.16: Comparison of calculated and experimental experimental band-
gaps for LDA, PBE, SCAN and GW0@PBE. The black diagonal
line corresponds to the calculated line of the perfect agreement.
The k-grids 4 × 4 × 4 and tight tier-1 NAO basis sets are used
for the calculations of LDA, PBE and SCAN in FHI-aims. GW0
and experiment results are from [125] and references within. The
effect of the zero-point vibrations is not considered in this thesis.
The theoretical studies for this effect on band-gaps can be found
in Ref. [71, 133, 134].

42 Sheng Bi, Self-interaction corrected SCAN functional for molecules and
solids in the numeric atom-center orbital framework, 2022



4 Self-interaction Correction in FHI-aims

4 Self-interaction Correction in FHI-aims
In the first part of my project, I have implemented the standard SCAN func-
tional in FHI-aims, which features a fast and stable SCF convergence for both
molecules and solids. In agreement with the previous works [6, 11], our results
confirm the systematic tendency of the SCAN functional to underestimate the
IPs, the reaction barrier heights, and the band-gaps. These common weakness
has been closely linked to the notorious self-interaction error (SIE) of all semi-
local DFAs, including LDA, PBE, and SCAN.

In Sec. 2.4.2, several prototype model systems have been used to illustrate
the heavy SIE in the SCAN functional. As introduced in Sec. 2.4.2, the self-
interaction correction (SIC) algorithm proposed by Perdew and Zunger (PZ-SIC)
precisely corrects the SIE of any semi-local DFAs for one-electron systems and
has shown to be an effectual remedy against the many-electron SIE in semi-
local DFAs [24]. In the second part of my project, I implemented an efficient
and numerically stable self-consistent PZ-SIC method in FHI-aims for both
molecules and solids.

As mentioned in Sec. 2.4.2, the PZ-SIC strategy aims at removing all the one-
electron SIEs in a given DFA [24]:

ESIC[{ni}] = −
Ne∑
i

(
EDFA

xc [ni] + Ees[ni]
)

, (4.1)

where the self-electrostatic functional Ees[ni] and the self-XC functional EDFA
xc [ni]

have the same formula of the standard Hartree term and the exchange-correlation
functional, respectively, but depend on the density ni of occupied orbitals rather
than the total density n. The total energy then becomes as [24]

ESIC-DFA[n, {ni}] = EDFA[n] + ESIC[{ni}] . (4.2)

Here EDFA[n] is the total energy of a given DFA in the standard KS framework
[36]

EDFA[n] = Ts[n] + Eext[n] + Ees[n] + EDFA
xc [n] , (4.3)

with Ts being the kinetic energy of the KS non-interacting system (defined
in Eq. (2.11)). Eext[n] and Ees[n] are the external potential energy and the
electrostatic energy (the Hartree energy), respectively (defined in Eqs. (2.6) and
(2.12)), both of which are an explicit functional of the total density n. EDFA

xc [n]
is the exchange-correlation energy of the given DFA (defined in Eq. (2.13)).

As usual, the variational minimization of the SIC-DFA energy ESIC-DFA (Eq. (4.2))
should be subject to the conservation of the electron number Ne [24], which is
equivalent to imposing an orthonormalization constraint on the canonical KS
orbitals {ψl} in the KS non-interacting systems (See Sec. 2.1):

δ

ESIC-DFA −
Ne∑
ij

ϵij (⟨ψi|ψj⟩ − δij)

 = 0 . (4.4)
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However, the SIC total energy is no longer invariant under unitary transforma-
tions of the occupied orbitals. The dependence of ESIC[{ni}] in Eq. (4.2) on
the SIC orbital densities is problematic. In other words, the SIC orbitals {ϕi},
to produce the lowest SIC-DFA energy, are not exactly necessary {ψl} but a
transformation of it [100]. The minimization of ESIC-DFA (Eq. (4.2)) is subject
to another orthonormalization constraint on the SIC orbitals [30, 94], which
results in the SIC Euler equation of

δ

ESIC-DFA −
Ne∑
ij

ϵij (⟨ψi|ψj⟩ − δij)−
Ne∑
ab

λab (⟨ϕa|ϕb⟩ − δab)

 = 0 . (4.5)

It has long been a problem to solve the SIC Euler equation and to find the
feasible SIC orbital densities {ni} [24, 30, 100]. The following section introduced
three constraints with clear physical meanings to guarantee the corresponding
variation procedure locating the correct set of {ni}.

4.1 Constraints in PZ-SIC
The first constraint discussed here is the total density constraint, i.e., the sum
over all occupied SIC orbital densities ni(r) = |ϕi(r)|2 must recover the total
electron density.

Constraint 1. Total Density Constraint :

Ne∑
i

|ϕi(r)|2 = n(r) , (4.6)

in which Ne denotes the total number of electrons in the system. As the deriva-
tion in Eq. (2.9), the ground-state density is also determined by the occupied
KS orbitals

Ne∑
l

|ψl(r)|2 = n(r) =
Ne∑
i

|ϕi(r)|2 , (4.7)

which becomes a bridge to the SIC orbital densities and KS orbital densities.
Because of the orthonormalization conditions of SIC orbitals and KS orbitals

δij = ⟨ϕi|ϕj⟩ ,

δml = ⟨ψm|ψl⟩ ,
(4.8)

the first constraint further restricts the occupied SIC orbitals to correspond to
a unitary transformation of the occupied KS orbitals,

ϕi =
Ne∑
l

Tilψl ,

δml =
Ne∑
i

T ∗
imTil .

(4.9)
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This constraint can confirm the exact SIC orbital for one-electron systems, where
the SIC orbital is exactly the occupied KS orbital with an arbitrary phase
ϕ1 = ψ1e

iθ [26]. For example, the hydrogen atom has one occupied orbital 1s and
a lot of unoccupied orbitals such as 2s, 2p and so on. The total density constraint
restricts the SIC orbital of the hydrogen atom to be the 1s orbital ϕ1 = 1s · eiθ,
which yields the same density of the system n = |1s|2 = |ϕ1|2. Unfortunately,
constraint 1 is incapable of confirming SIC orbitals for many-electron systems.
Taking a model system with two occupied orbitals as an example, the canonical
KS orbitals are {ψ1, ψ2}. By applying a unitary transformation operation on
them, we can obtain another set of orbitals {ϕ1, ϕ2}:

ϕ1 =
1√
2
(ψ1 + ψ2);ϕ2 =

1√
2
(ψ1 − ψ2) . (4.10)

which satisfy the total density constraint and thus produce the exact same total
energy for the DFA EDFA[n], i.e., for the first part of Eq. (4.2)). By inserting
these orbitals into the SIC energy (the second part of Eq. (4.2), and defined in
Eq. (4.1)), one obtains

ESIC[{ϕ1, ϕ2}] ̸= ESIC[{ψ1, ψ2}]. (4.11)

Because of this uncertainty in constraint 1, Pederson et al. introduced the
orbital potential constraint to facilitate the search for the SIC orbitals in 1988
[93].

Constraint 2. Orbital Potential Constraint :

⟨ϕm|v̂1eSIC
m |ϕn⟩ = ⟨ϕm|v̂1eSIC

n |ϕn⟩ . (4.12)

Here the one-electron SIC potential {v̂1eSIC
i } comes from the variation of the self-

electrostatic energy and self-exchange-correlation energy in gKS scheme and is
the sum of the single-particle Hartree potential v̂es[ni] and the single-particle
XC potential v̂xc[ni]:

v̂1eSIC
i = −

(
EDFA

xc [ni] + Ees[ni]
)

δni

= −(v̂es[ni] + v̂xc[ni]) . (4.13)

A detailed derivation of the given SIC potential is given in Appx. 7.2. Constraint
2 is derived from the full Euler equation of minimizing the SIC-DFA total energy
(Eq. (4.5)) with fixing the total density.

Including Constraint 2, the SIC Euler equation is decoupled into two mutual
parts in practice: 1) The first part solves the KS orbitals based on a given set of
SIC orbitals {ϕi}. 2) The second part in Eq. (4.12) then focuses on the solution
of SIC orbitals {ϕi} with given KS orbitals. In the first part with a given set of
SIC orbitals {ϕi}, the Euler equation can be solved with respect to the electron
density n and the KS orbitals {ψl} only. It yields the SIC one-electron equations
for the KS non-interacting systems

ĥSIC-DFA[n, {ψl}, {ϕi}]ψl = ϵSIC-DFA
l ψl . (4.14)
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Here ĥSIC-DFA is the KS non-interacting Hamiltonian of the SIC-DFA

ĥSIC-DFA = ĥDFA + v̂SIC . (4.15)

ĥDFA, defined in Eq. (2.20), is the KS one-electron Hamiltonian and includes the
kinetic energy operator t̂s, the external potential v̂ext, the Hartree potential v̂es,
and the XC potential v̂xc. Obviously, the only addition to the standard KS non-
interacting Hamiltonian is the SIC potential operator v̂SIC, which is determined
by the given set of SIC orbitals {ϕi}

v̂SIC = δESIC[{ni}]
δn

=
Ne∑
i

v̂1eSIC
i |ϕi⟩⟨ϕi| . (4.16)

By fixing the total density n, the Euler equation Eq. (4.5) simplifies to

δ

[
ESIC-DFA −

Ne∑
ab

λab (⟨ϕa|ϕb⟩ − δab)
]
= 0. (4.17)

Since the KS orbitals and density are fixed, the minimization of the total
SIC-DFA energy (Eq. 4.2) equals to the minimization of the SIC energy itself
(Eq. 4.1), resulting in the Euler equation of

v̂1eSIC
i ϕi =

∑
a

λaiϕa . (4.18)

By imposing the Hermitian property of the Lagrange multiplier λmn = λ∗nm, we
can obtain the orbital potential constraint

⟨ϕm|v̂1eSIC
m − v̂1eSIC

n |ϕn⟩ = λ∗nm − λmn = 0. (4.19)

Mathematically speaking, the full minimization of the SIC-DFA energy (Eq. (4.2))
implies solving the Euler equation with restrictions on both KS orbitals and SIC
orbitals (Eq. (4.5)). This is, however, difficult to numerically find the KS or-
bitals and SIC orbitals simultaneously. Fortunately, this problem can be recast
rigorously to the PZ-SIC one-electron equations (Eq. (4.14)) under Constraints
1 and 2 (Eqs. (4.6) and (4.12)), which can be implemented in the SCF manner
of (g)KS framework.

An additional hurdle in solving SIC Euler equations (Eq. (4.5)) consists in find-
ing the global minimization. Multiple sets of SIC orbitals has been documented
to satisfy Constraint 1 and 2 even for atoms and simple diatomic molecules
[93, 94]. In a vast amount of early SIC works [94], it has been determined
that the SIC total energy for a many-electron system often tends to be lower
when the SIC orbital densities are localized. This drives to search the right SIC
orbitals from the vicinity of an initially given set of localized orbitals. Note
that many localization methods have been proposed to generate the localized
orbitals, such as Pipek-Mezey [139], Edmiston-Ruedenderb [31], von Niessen
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[140], Foster-Boys [89], the fourth moment method [141], and so forth. Lehtola,
Head-Gordon and Jónsson found that by using the SIC orbitals from different
localization procedures, the SIC-PBE calculations for the total energy of Acrylic
Acid differ from each other by more than 0.054 eV. Based on a comprehensive
investigation for a set of molecules, they concluded that it is difficult to avoid
the multiple-solution problem in the PZ-SIC calculations [30]. It is because
there are too many local minima due to the unitary transformations between
the KS orbitals and the SIC orbitals.

Instead of seeking for better localization procedure, Pederson, Ruzsinskzy and
Perdew [95, 142] suggested generating the SIC orbitals by using Fermi-Löwdin
orbitals (FLO) [143, 144] that are self-consistently localized in the space spanned
by the KS orbitals. In FLO-SIC method, the transformation matrix in Eq. (4.9)
is approximated by the single-particle density matrix T F

il :

Til ≈ T F
il = 1

n(r = ai)
· ψ∗

l (r = ai) (4.20)

with a set of Fermi orbital descriptors {ai} obtained from the solution of Con-
straint 2 [96]. In this way, the SIC orbitals can keep localized and center on
the descriptors [143, 145]. The transformation matrix Til is obtained from T F

il

by the Löwdin orthonormalization. In the Löwdin orthonormalization, the self-
consistent FLO-SIC method asks a careful rotation of Til to avoid damage to
Constraint 2 [97]. Pederson’s constraint prevents consideration of all unitary
transformations and thus simplifies the self-consistent solution of SIC orbitals.
Despite not strictly solving the aforementioned multiple-solution problem, the
FLO-based SIC orbitals have been demonstrated to be a good choice to evaluate
the SIC-DFA energies, in particular, for the molecules with π bonds [98, 146].

Inspired by Pederson’s FLO constraint, I proposed in this work to self-consistently
restrict the unitary transformation of the SIC orbitals based on the Edmiston
and Ruedenberg (E-R) localization method. Edmiston and Ruedenberg [31]
first proposed the E-R method for localizing orbitals and maximizing the sum
of self-electrostatic energies (max∑iEes[ni]). It was documented that the or-
bitals localized by E-R method (named E-R orbitals) can maximize the integral
of all squared orbital densities [140]

max
∫
d3r

∑
i

n2
i (r) ⇔ min

∫
d3r

∑
i ̸=j

ni(r)nj(r) , (4.21)

which is equivalent to explicitly minimize the overlap of different E-R orbital
densities. The E-R restriction in a matrix representation can be obtained by the
variational maximization of the integral of all squared orbital densities subject to
an orthonormalization constraint on the E-R orbitals with Lagrange multipliers
ηab:

δ

[∑
i

⟨ϕi|ni|ϕi⟩ −
∑
ab

ηab (⟨ϕa|ϕb⟩ − δab)
]
= 0

⇒ ⟨ϕm|nm|ϕn⟩ = ⟨ϕm|nn|ϕn⟩
(4.22)
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(Appx. 7.4 for detailed derivations). In the original PZ-SIC paper, Perdew and
Zunger argued that E-R orbitals should be the most appropriate orbitals to
define the SIC energy, which was confirmed in the latter work of Pederson and
Lin [94]. The E-R localization method has been used to filter the multiple
solutions of the standard PZ-SIC equation (Eq. (4.14)) under Constraints 1 and
2 (Eqs. (4.6) and (4.12)) [30]. Although taking the E-R method, like other
localization methods, does not guarantee the resulting localized orbitals satisfy
Constraint 2, the E-R restriction can be written in a similar form to Constraint 2
(Eqs. (4.12) and (4.22)). In this consideration, I generalized the aforementioned
standard PZ-SIC equations (Eqs. (4.14), (4.9) and (4.12)) to include a new
constraint.

Constraint 3. Orbital Density Constraint :

⟨ϕm|nmv̂
1eSIC
n |ϕn⟩ = ⟨ϕm|v̂1eSIC

m nn|ϕn⟩ . (4.23)

In order to transform the E-R restriction (Eq. (4.22)) as Constraint 3 into the
self-consistent PZ-SIC framework, I learned from the derivation of Constraint 2
and proposed the self-consistently localized SIC (slSIC) Euler equation

δ

[∫
d3r

∑
i

n2
i (r)− η(δESIC-DFA)

]
= 0 . (4.24)

In analogy to the derivation of Constraint 2, for a given set of KS orbitals fixed,
this slSIC Euler equation can be rewritten under Constraint 2

δ

∑
i

∫
d3rn2

i (r)−
∑
mn

ηmn

⟨ϕm|v̂1eSIC†
i |ϕn⟩ −

∑
j

λjn⟨ϕm|ϕj⟩


 = 0 ,

(4.25)
which leads to the one-electron equations

2niϕi =
δ(v̂1eSIC

i ni)
δni

∑
n

ηinϕn −
∑
n

∑
a

ηiaλnaϕn (4.26)

resulting in a set of localization equations as the third SIC constraint Eq. (4.23)
(See Appx. 7.5 for more detailed derivations). Because this constraint is derived
by the E-R method under Constraint 2, the SIC orbitals can be self-consistently
localized and content to Constraint 2 simultaneously. To my best knowledge,
no similar concept and algorithm has been reported in the previous works.

In the case of solids, the periodic boundary conditions (PBCs) require the KS
orbitals {ψl,k(r)} to depend on k-points (See Eq. (3.8)). Because KS orbitals
have the invariant value in each cell |ψl,k(r+RL)| = |ψl,k(r)|, the repeated values
let ψl,k to be considered as delocalized orbitals [42]. Due to the localized nature
of the SIC orbitals, Heaton, Harrison, and Lin (HHL) suggested that it is more
convenient to expand the SIC orbitals by using Wannier orbitals [27] in real
space instead of expanding the SIC orbitals in reciprocal space. Wannier orbitals
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{Ψl,L(r)} are the localized molecular orbitals of solids, which are generated via
the Fourier transformation of the KS orbitals {ψl,k(r)}

Ψl,L(r) = Ψl(r − RL)

= 1√
NL

NL∑
k
e−ik·RLψl,k(r) .

(4.27)

Here NL is the unit cell number (also the k-point number) for the supercell. Note
that the arbitrary phase eiθl,k to the k-dependent KS orbitals can not impact
the orbital densities

|eiθl,kψl,k(r)|2 = |ψl,k(r)|2 , (4.28)
but the Wannier orbital densities can change |Ψl,L(r)|2 ̸= |Ψ′

l,L(r)|2 for

Ψ′
l,L(r) =

1√
NL

NL∑
k
e−ik·RLeiθl,kψl,k(r) . (4.29)

This is the reason that the multiple-solution problem for solids was reported to
be more severe than that for molecules in the previous works [27, 28, 147–149].

In the early exploration of SIC in solids, it is observed that the SIC orbitals
are analogous to the maximally localized Wannier orbitals (MLWOs) [150] (i.e.,
the SIC orbitals in Ar crystal [28]). So that one can ignore the orbital poten-
tial constraint and approximately use MLWOs as SIC orbitals to alleviate the
multiple-solution issue. The MLWOs are determined by minimizing the Boy’s
localization functional [89]

Ω =
∑
l

[⟨Ψl,0|r2|Ψl,0⟩ − ⟨Ψl,0|r|Ψl,0⟩2] , (4.30)

which measures the sum of the quadratic spreads of Wannier orbitals in the
unit cell. In many molecular systems, Boy’s and E-R methods lead to similar
localized orbitals, which agree with the viewpoint of bonding [150, 151]. The
Boy’s and E-R orbitals can be quite different in some molecule cases like CO2
[152], in which the bonding can be represented as two distinct resonant struc-
tures. The E-R orbitals generally correspond to one of the possible structures,
while the Boy’s orbitals correspond to a mixing structure. However, Miyake
and Aryasetiawan in 2008 [153] determined that the self-electrostatic energy
Ees(|Ψl,0|2) in extensively periodic cases is maximized by MLWOs, which are
essentially identical to the E-R orbitals.

It has been determined that SIC-LDA, using the MLWOs as the SIC orbitals,
can give well agreement band-gaps with experimental measurements for bulk
BeO, MgO, CaO, SrO, and BaO [154]. Moreover, it has been demonstrated
that the PZ-SIC calculations with MLWOs improve the LDA performance for
the lattice constants of cubic/hexagonal SiC polytypes [154]. To be specific,
the standard LDA method underestimates the lattice constants up to 1.4%,
which can be reduced to only 0.3% if using the SIC-LDA method with MLWO-
type SIC orbitals. Although MLWOs conform to the localization nature of the
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SIC orbitals, they only can be used as the input of solving Constraint 2. The
resulting SIC orbitals are not necessary to be MLWOs.

In my project, I followed HHL’s suggestions and represented the SIC orbitals
as Wannier orbitals Φi,I(r), which are indexed by i and mainly centered in the
Ith unit cell. In such a Wannier representation, Constraint 1 asks that the sum
over all occupied Wannier SIC orbital densities ni,I = |ϕi,I(r)|2 must recover the
total electron density. This reads

NeNL∑
iI

|ϕi,I(r)|2 = n(r) =
NeNL∑
l,k

|ψl,k(r)|2 , (4.31)

where Ne is the electron number in a unit cell, and NL is the unit cell number
for the supercell. Accordingly to the orthonormalization conditions of Wannier
orbitals, the Wannier SIC orbitals can be a unitary transformation of the orbitals
{Ψl,L(r)}, like the form in Eq. (4.9) for finite systems [27]

ϕi,I(r) =
Ne∑
l

NL∑
L
TiI,lLΨl,L(r) . (4.32)

The PZ-SIC total energy is evaluated as removing all the SIEs produced by the
occupied Wannier SIC orbital densities in the DFA total energy:

ESIC-DFA[n, {ni,I}] = EDFA[n] + ESIC[{ni,I}] ,

ESIC[{ni,I}] = −
NeNL∑

iI

(
EDFA

xc [ni,I] + Ees[ni,I]
)

.
(4.33)

Again Ees[ni,I] (EDFA
xc [ni,I]) is the self-electrostatic (self-XC) functional, but de-

pends on the Wannier orbital density ni,I. The PZ-SIC one-electron equations
have to be solved for different k-points in the first Brillouin zone, respectively

ĥSIC-DFA[n, {ψl,k}, {ϕi,I}]ψl,k = ϵSIC-DFA
l,k ψl,k . (4.34)

The SIC potential operator v̂SIC in the Hamiltonian of the SIC-DFA ĥSIC-DFA =
ĥDFA + v̂SIC depends on the cell sites

v̂SIC = δESIC[{ϕi,I}]
δn

=
NeNL∑

iI
v̂1eSIC
i,I |ϕi,I⟩⟨ϕi,I| , (4.35)

with v̂1eSIC
i,I = δESIC[{ni,I}]/δni,I being the one-electron SIC potential under the

PBCs. Correspondingly, Constraints 2 and 3 have the form of

⟨ϕm,M|v̂1eSIC
m,M |ϕn,N⟩ = ⟨ϕm,M|v̂1eSIC

n,N |ϕn,N⟩ (4.36)

and
⟨ϕm,M|nm,Mv̂

1eSIC
n,N |ϕn,N⟩ = ⟨ϕm,M|v̂1eSIC

m,M nn,N|ϕn,N⟩ . (4.37)
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Different from the constraints in finite systems (Eqs. (4.12) and (4.23)), Con-
straint 2 and 3 in Wannier representation consider the cell sites, which make
the dimension of the SIC constraint matrix in Eqs. (4.36) and (4.37) to increase
fast with the cell counts NL. Moreover, the serious multiple-solution problem
in periodic systems can be traced to the introduced cell site in Constraint 2,
like the hcp Helium crystal and the polyethylene chain (discussed in Sec. 4.3).
Before discussing the SIC multiple-solution problem, a SIC solver is proposed to
solve the PZ-SIC constraints of finite and periodic systems in the next section.

4.2 Generalized SIC Solver
In order to get the lowest total energy of SIC-DFAs (Eq. (4.2)), both KS orbitals
and SIC orbitals need to be determined, which are entangled with each other
by the SIC one-electron equations (Eq. (4.14)) and SIC constraints (Eqs. (4.6),
(4.12) and (4.23)).

To be specific, a Lagrange multiplier solver was established to solve the SIC
one-electron equations (Eqs. (4.14) and (4.34)). For a given set of density n,
KS orbitals {ψl} and SIC orbitals {ϕm}, the updated KS orbitals ψ′

l and the
density n′ can be obtained by

ĥSIC-DFA[n, {ψl}, {ϕm}] ψ′
l = ϵSIC-DFA′

l ψ′
l

n′ =
∑
l

|ψ′
l|2 . (4.38)

The updated KS orbitals {ψ′
l} are then taken as the input to the SIC orbital

solver for the updated SIC orbitals {ϕ′
m}. Under the PBCs, the updated k-

dependent KS orbitals ψ′
l,k and the density n′ can be obtained by

ĥSIC-DFA[n, {ψl}, {ϕm,M}] ψ′
l,k = ϵSIC-DFA′

l,k ψ′
l,k

n′ =
NeNL∑
l,k

|ψ′
l,k(r)|2

(4.39)

with a given set of density n, KS orbitals {ψl,k} and Wannier SIC orbitals {ϕm,M}.
Unlike the standard PZ-SIC implementation in previous works, the SIC orbital
solver in my implementation results in a set of SIC orbitals that satisfy not only
Constraints 1 and 2, but also Constraint 3 guaranteeing the resulting updated
SIC orbitals to be localized. These updated SIC orbitals are then used as the
input to the aforementioned Lagrange multiplier solver to start a new round
calculation until the total density and SIC orbital densities are converged. The
flowchart of our self-consistency algorithm is shown in Fig. 4.1.

The SIC orbital solver used in previous works [96, 101] solved Constraints 1
and 2 utilizing the gradient of the SIC potential, like ∂v̂1eSIC

m /∂ϕm. Because
the Constraint 3 (Eqs. 4.23 and (4.37)) is supplemented into the standard PZ-
SIC method, those solvers need the gradient of the product of the SIC orbital
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1). initialize
orbitals {ψl, ϕn}
and total density n

2). SIC orbital solver :
solve SIC Constraints 1-3 with Eq. (4.45) or (4.48)

3). Lagrange multiplier solver :
solve SIC one-electron equations Eq. (4.38) or (4.39)

4). density
converged ?

5). calculate total energy

6). end

reset :
ψ = ψ′

n = n′

ϕ = ϕ′

updated SIC orbitals ϕ′

updated
KS orbitals ψ′

and density n′

No

Yes

Figure 4.1: Flowchart of the self-consistent SIC calculations in FHI-aims.

density and potential (like ∂(nnv̂
1eSIC
m )/∂ϕm), which isn’t easy to obtain and

thus cannot be implemented together with those SIC solvers in my project. In
this consideration, I developed a generalized SIC orbital solver. Any equation,
formed as Constraints 2 or 3, can be turned into an identical eigenvalue problem
and thus can be treated on an equal footing.

Finite system. Constraints 2 and 3 can be essentially written as a general-
ized constraint, in which an orbital-dependent operator ô[{ϕi}] is solved to be

52 Sheng Bi, Self-interaction corrected SCAN functional for molecules and
solids in the numeric atom-center orbital framework, 2022



hermitian conjugate
ô†[{ϕi}]− ô[{ϕi}] → 0 . (4.40)

Here ô in Constraint 2 is the SIC potential operator

ôv = v̂SIC =
Ne∑
i

(v̂1eSIC
i |ϕi⟩⟨ϕi|) , (4.41)

and it in Constraint 3 is the multiplication of the SIC potential operator and
the orbital densities

ôd = (v̂SIC)†
Ne∑
i

(ni|ϕi⟩⟨ϕi|) . (4.42)

The generalized constraint can be further written as an eigenvalue problem like

(ô†[{ϕi}]− ô[{ϕi}])ϕ′
n = 0 · ϕ′

n , (4.43)

in which (ô† − ô) owns a set of eigenvectors ϕ′
n with zeroed eigenvalues. The

equally zeroed eigenvalues cause a singular problem because any unitary trans-
form Cjs of ϕ′

i satisfies Eq. (4.43)

(ô†[{ϕi}]− ô[{ϕi}])ϕ′′
s = 0 · ϕ′′

s

ϕ′′
s =

∑
i

Cisϕ
′
i∑

s

C∗
isCjs = δij .

(4.44)

To avoid this problem, I decorated the aforementioned equations (Eq. (4.43))
with a set of ordering weights with wn :

(ô†[{ϕi}]− ô[{ϕi}] +
∑
i

(wi|ϕi⟩⟨ϕi|))ϕ′
n = w′

n · ϕ′
n . (4.45)

So that the corresponding eigenvalues in Eq. (4.45) become non-zero {w′
n}.

These equations do not have the zeroed singular problem if |wi+1| > |wi| ≫
|⟨ϕi|(ô†[{ϕi}] − ô[{ϕi}]|ϕi⟩| ≥ 0. Moreover, a hermitian conjugate ô makes
Eq. (4.45) to degenerate into Eq. (4.43) with {w′

n} = {wi} and {ϕ′
n} = {ϕi}. In

this work, we numerically set wi = i/(|⟨ϕi|(ô†[{ϕi}]− ô[{ϕi}]|ϕi⟩|+ ηe)0.5. Here
ηe = 10−13 is a compensating value in case of ⟨ϕi|(ô†[{ϕi}]− ô[{ϕi}]|ϕi⟩ = 0 for
the double-precision floating-point.

Note that a matrix representation of the eigenvalue problem in Eq. (4.45) is
used in practical calculation∑

j

OijCjn = Cinw
′
n , (4.46)

where Oij = ⟨ϕi|ô† − ô|ϕj⟩ + δijwi and Cin is the unitary transform matrix for
the SIC orbitals ϕ′

n = ∑
iCinϕi. In this way, the updated SIC orbitals are a
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unitary transformation of the occupied KS orbitals ψl

ϕ′
n =

Ne∑
l

T ′
nlψl

T ′
nl =

∑
i

CinTil .
(4.47)

Consequently, the updated SIC orbitals keep satisfying Constraint 1 during
solving Constraints 2 and 3. A self-consistent calculation is used to solve the
equation (Eq. (4.45)) until the error of Constraints 2 and 3 is less than the
requested energy accuracy, i.e., 10−4 eV in this work. The resulting SIC orbitals
{ϕ′

n} satisfy all three constraints and deliver lower SIC-DFA total energy for a
given set of KS orbitals. Fig. 4.2 shows the flowchart of the procedure in the
SIC orbital solver, which is a sub-self-consistent calculation in the second step
of the whole SIC self-consistent procedure in Fig. 4.1.

Periodic system. Concerning the SIC solver in the periodic systems, Constraints
2 and 3 (Eqs. (4.36) and (4.36)) can be described using a generalized eigenvalue
problem with the operator ô[{ϕi,I}] and weights wi,I

(ô†[{ϕi,I}]− ô[{ϕi,I}] +
∑
i

(wi,I|ϕi,I⟩⟨ϕi,I|))ϕ′
n,N = w′

n,N · ϕ′
n,N , (4.48)

which follows the same derivations in Eq. (4.45) for the finite systems but is
in Wannier representation. Consequently, the weight order is set as wi,I =
i/(|⟨ϕi,I|(ô†[{ϕi,I}]−ô[{ϕi,I}]|ϕi,I⟩|+ηe)0.5 with ηe = 10−13 for the double-precision
floating-point in practical calculations. The generalized operator ô in Constraint
2 is the SIC potential operator using Wannier SIC orbitals

ôv = v̂SIC =
NeNL∑

iI
v̂1eSIC
i,I |ϕi,I⟩⟨ϕi,I| , (4.49)

and it in Constraint 3 reads

ôd = (v̂SIC)†
NeNL∑

iI
(ni,I|ϕi,I⟩⟨ϕi,I|) . (4.50)

The matrix representation of the eigenvalue problem in Eq. (4.48) follows the
one for finite systems (Eq. (4.46)) and can be written as∑

jJ

Oij,IJCjn,JN = Cin,INw
′
n,N , (4.51)

where Oij,IJ = ⟨ϕi,I|ô† − ô|ϕj,J⟩ + δijδIJwi,I and Cin,IN is the unitary transform
matrix for the Wannier SIC orbitals ϕ′

n,N = ∑
i,I Cin,INϕi,I.

As shown in Eq. (4.51), the Wannier SIC orbitals have two index i an I, indi-
cating that the number of SIC orbitals increase linearly with respect to the unit
cell number NL. In consequence, the dimension of the matrices Oij,IJ and Cjn,JN
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1). input orbitals {ϕn}

2). solve SIC Constraint 2 in Eq. (4.46) or (4.56)
with the specified ô operator in Eq. (4.41) or (4.49)

3). solve SIC Constraint 3 in Eq. (4.46) or (4.56)
with the specified ô operator in Eq. (4.42) or (4.50)

4).
Constraints 2 and 3

satisfied ?

6). output orbitals {ϕ′′n}

reset :
ϕ = ϕ′′

updated SIC orbitals ϕ′

updated SIC orbitals ϕ′′

No

Yes

Figure 4.2: Flowchart of the self-consistent SIC orbital solver in FHI-aims. This
is a sub-self-consistent calculation in the second step of the whole
SIC self-consistent procedure shown in Fig. 4.1.

in Eq. (4.51) increases quadratically with respect to the unit cell number NL
(scaling with NL ×NL). In other words, the use of Wannier functions dramati-
cally increases the complexity. Although each Wannier SIC orbital is localized
in a single cell and is not a periodic function |ϕi,I+L| ̸= |ϕi,I|, the effective SIC
potential, summing all SIC orbital potential overall cells, has the translation
invariance, unlike the case for finite molecules

∑
M
v̂1eSIC
m,M+L =

∑
M
v̂1eSIC
m,M . (4.52)
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This translation invariance under the PBCs reduces the size of Constraint 2
equations

⟨ϕm,M|v̂1eSIC
m,M − v̂1eSIC

n,N |ϕn,N⟩

=
∫
d3rϕm,M(r)(v̂1eSIC[|ϕm,M(r)|2]− v̂1eSIC[|ϕn,N(r)|2])ϕn,N(r)

=
∫
d3(r + RN)ϕm,M+N(r)(v̂1eSIC[|ϕm,M+N(r)|2]− v̂1eSIC[|ϕn,0(r)|2])ϕn,0(r)

=
∫
d3rϕm,M+N(r)(v̂1eSIC[|ϕm,M+N(r)|2]− v̂1eSIC[|ϕn,0(r)|2])ϕn,0(r)

= ⟨ϕm,M+N|v̂1eSIC
m,M+N − v̂1eSIC

n,0 |ϕn,0⟩ .
(4.53)

Because the total density is translation invariant (n(r+RL) = n(r) introduced in
Eq. (3.9)), summing all the Wannier SIC orbital densities also has the translation
invariance under Constraint 1 (Eq. (4.31)) and PBCs:

n(r + RL) =
∑
M
nm,M+L =

∑
M
nm,M = n(r) , (4.54)

which can reduce the size of Constraint 3 equations to

⟨ϕm,M|v̂1eSIC
n,N nm,M − v̂1eSIC

m,M nn,N|ϕn,N⟩
= ⟨ϕm,M+N|nm,M+Nv̂

1eSIC
n,0 − v̂1eSIC

m,M+Nnn,0|ϕn,0⟩ .
(4.55)

As the vectors RM + RN point to the same NL sets of the lattice vectors {RP}
under the PBCs, the matrix representation of the eigenvalue problem Eq. (4.48)
can be simplified as ∑

s

Oms,P0Cns,P0 = Cmn,P0w
′
n,P0 . (4.56)

Such that the complexity of the problem is reduced from NL×NL (in Eq. (4.51))
to NL (in Eq. (4.56)). The updated Wannier SIC orbitals are then obtained by

ϕ′
n,N = 1

NL

∑
sPS

Cns,P0e
iP·(RN−RS)ϕs,S , (4.57)

where the translation multiplier eiP·(RN−RS) transmits the orbital ϕ′
n,0 in the unit

cell 0 to the orbital ϕ′
n,N in any given unit cell N. The unitary transform

matrix Tnl,NL from KS to SIC orbitals in the Wannier representation (shown as
Eq. (4.32)) will be then updated by the unitary transformation matrix Cns,P0

T ′
sl,SL = 1

NL

∑
nPN

Cns,P0e
iP·(RN−RS)Tnl,NL . (4.58)

The flowchart for periodic systems is shown in Fig. 4.2, which is the same for
the finite systems.

Here, I took the rocksalt LiH to investigate the computational cost of my PZ-SIC
implementation under the periodic boundary conditions. As shown in Fig. 4.3,
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4 Self-interaction Correction in FHI-aims

my SIC-SCAN implementation, despite being more expensive than the standard
SCAN method, scales linearly with respect to the k-point size (or the cell size),
and thus avoids the unfavorable quadratic scaling of NL × NL. Having this
efficient solver allows me to detect the importance of the SIC Constraint 3 and
investigate the performance of the SIC method in detail.

Figure 4.3: Time cost per SCF iteration for the SCAN and SIC-SCAN calcula-
tions with respect to the size of k-points (Nk) for the rocksalt LiH.
The number of k-points Nk equals to that of cells NL. The corre-
sponding k-grids are listed on the top of the x-axis. Geometries
are shown in the sub-graph. All the calculations were performed in
FHI-aims using the tier-1 basis sets and the tight grid setting. The
time costs are linearly scaling as 0.05Nk and 0.16Nk for SCAN and
SIC-SCAN calculations, respectively.

4.3 Importance of Constraint 3

To illustrate the importance of Constraint 3 for a fast and stable PZ-SIC
self-consistent calculation, I used three prototype finite systems (i.e., the He2
molecule, and two atoms of B and C) as well as three periodic systems (i.e., the
hcp Helium crystal, the CH2 chain, and the rocksalt LiH).

I started with the closed-shell dihelium He2 molecule with a bond length of 1.1
Å, where 1σg and 1σu are the occupied KS orbitals with two electrons in each
of them. As shown in Fig. 4.4(a), these occupied KS orbitals delocalize over the
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Figure 4.4: Illustration on the KS orbital densities (a) and the SIC ones (b) of
the He2 molecule, and the KS orbital densities (c) and the SIC ones
(d) of the C atom. The KS orbitals and SIC orbitals are evaluated
by the (SIC-)SCAN calculations in FHI-aims with tight basis sets.

Figure 4.5: (top) SIC energy using SCAN XC for dihelium He2 and (bottom) ab-
solute error of Constraint 2 (Eq. (4.12)) and Constraint 3 (Eq. (4.23))
in a linear combination of the 1σg and 1σu orbitals (Eq. (4.59)). SIC
and SCAN are calculated by FHI-aims using tight basis sets.

system with mirror symmetry. Consequently, all possible SIC orbitals {ϕθ
1, ϕ

θ
2}

58 Sheng Bi, Self-interaction corrected SCAN functional for molecules and
solids in the numeric atom-center orbital framework, 2022



4 Self-interaction Correction in FHI-aims

can be obtained by a unitary transformation of the KS orbitals ϕθ
1

ϕθ
2

 =

 cos θ − sin θ
sin θ cos θ

 1σg
1σu

 . (4.59)

Here θ ∈ [0, π/2] controls the rotation angle of the transformation, and θ = 0
maps {ϕθ

1;2} = {ϕg;u}. Since the rotation angle θ is the only variable for the
unitary transformation, I plotted the SIC energy with respect to this variable
on the top panel of Fig. 4.5. As we can see clearly from this figure, the SIC
orbitals that minimize the SIC total energy are associated with the unitary
transformation of θ = 0.25π. With this certain unitary transformation (θ =
0.25π), orbitals {ϕθ

1, ϕ
θ
2} become to

ϕA;B = 1√
2
[1σg ± 1σu] . (4.60)

Fig. 4.4(b) shows that the orbitals ϕA;B are localized at each atom (A and B).
It is easy to prove that all possible orbitals {ϕθ

1, ϕ
θ
2} (including ϕA;B) satisfy

Constraint 1 (Eq. (4.6))

2|ϕθ
1(r)|2 + 2|ϕθ

2(r)|2

= 2(cos2 θ + sin2 θ)(|1σg(r)|2 + |1σu(r)|2)
= 2|1σg(r)|2 + 2|1σu(r)|2

= n(r) .

(4.61)

I then plotted the absolute errors of Constraint 2 and 3 with respect to this
rotation angle θ on the bottom panel of Fig. 4.5. It clearly shows that Constraint
2 itself cannot ultimately filter out the right SIC orbitals ϕA;B that produce the
lowest SIC energy as mentioned above. To be specific, both sets of orbitals
{ϕA;B} and {1σg;u} satisfy Constraint 2 (Eq. (4.12))

⟨1σg|v̂1eSIC
g |1σu⟩ = ⟨1σg|v̂1eSIC

u |1σu⟩ ,

⟨ϕA|v̂1eSIC
A |ϕB⟩ = ⟨ϕA|v̂1eSIC

B |ϕB⟩ ,
(4.62)

resulting in two solutions for the SIC orbitals. In this case, I would like to point
out that Constraint 3 can be a useful and often necessary complementary to the
PZ-SIC theory:

⟨1σg|ngv̂
1eSIC
u |1σu⟩ ̸= ⟨1σg|v̂1eSIC

g nu|1σu⟩ ,

⟨ϕA|nAv̂
1eSIC
B |ϕB⟩ = ⟨ϕA|v̂1eSIC

A nB|ϕB⟩ .
(4.63)

It picks {ϕA;B} as a better choice for the SIC orbitals, which indeed yields the
SIC-SCAN total energy about 5.29 eV lower than that of {1σg;u}. Besides the
solution of {ϕA;B}, there is another solution nearby θ ≈ 0.4π for Constraint
3. This solution is understandable. We know that Constraint 3 (Eq. (4.25))
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was imposed to minimize the overlap orbital densities under the variational of
Constraint 2:

δ

(∑
i

∫
d3rn2

i (r)
)
− δ (Constraint 2) = 0 . (4.64)

Constraint 3 intends to produce the SIC orbitals where Constraint 2 has the
local maximal (or minimum) errors. To take the two sub-panels in Fig. 4.5 into
account together, I concluded that Constraints 2 and 3 must work together in
order to find the correct SIC orbitals.

The second model system I would like to introduce is the Boron atom. Same
as in the first model system of He2, the list of all possible SIC orbitals can be
exhaustive associated with the electronic configuration of 1s2s(2p)1 in its ground
state. The only one SIC orbital for the spin-down channel is the atomic orbital
2s. In order to satisfy Constraint 1, the spin-up SIC orbitals in the second shell
correspond to a unitary transformation from the occupied KS orbitals 2s; 2p ϕθ

1

ϕθ
2

 =

 cos θ − sin θ
sin θ cos θ

 2s
2p

 , (4.65)

where θ ∈ [0, π/2] controls the rotation angle of the transformation. Also,
same as in the model system of He2, the SIC energy for SCAN (ESIC) and the
absolute errors of Constraint 2 and 3 were plotted with respect to the angle
θ in the top panel and bottom panel of Figure 4.6, respectively. From this
figure, we can obtain the same conclusion made in the first case: Constraints 2
and 3 must both be fulfilled to find the right SIC orbitals and the correct SIC
energy. To be specific, Constraint 2 itself yields two solutions with the angles
of θ = 0, π/4. Only one solution (θ = π/4) remains if I simultaneously consider
both Constraints 2 and 3. Moreover, Figure 4.6-top confirms that the common
solution of Constraints 2 and 3 (θ = π/4) yields the lowest SIC energy. This
energy is about 0.36 eV lower than the SIC energy of the SIC orbitals at θ = 0,
which only satisfies Constraint 2.

Similar observations are found in the SIC-SCAN calculations of the Carbon
atom. In this case, the SIC orbitals were chiefly generated by mixing s and p
orbitals associated with the electronic configuration of 1s2s(2p)2 in its ground
state. The atomic orbitals {1s, 2s, 2px, 2py} [94] shown in Fig. 4.4(c) satisfy
Constraints 1 and 2, but not 3. I notice that the three constraints can be
simultaneously satisfied by a set of occupied orbitals after a certain real unitary
transformation from the atomic orbitals:

ϕ1 = 1s

ϕ20 =
1√
3
2s−

√
2√
3
2px

ϕ21 =
1√
3
2s+ 1√

6
2px +

1√
2
2py

ϕ22 =
1√
3
2s+ 1√

6
2px −

1√
2
2py ,

(4.66)
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Figure 4.6: (top) SIC energy using SCAN XC for B atom and (bottom) absolute
error of Constraint 2 (Eq. (4.12)) and Constraint 3 (Eq. (4.23)) in a
linear combination of the 2s and 2p orbitals (Eq. (4.65)). SIC and
SCAN are calculated by FHI-aims using tight basis sets.

which were visualized in Fig. 4.4(d). These SIC orbitals can be considered as
a kind of sp hybridization with themselves. My calculation demonstrated that
these SIC orbitals produce the SIC-SCAN total energy, which is about 0.86
eV lower than the atomic orbitals mentioned above. Again, the SIC-SCAN
calculations for the Carbon atom lead to the same conclusion I obtained for He2
and B, highlighting the importance and robustness of introducing Constraint 3
self-consistently for the PZ-SIC theory.

It was argued that the SIC multiple-solution problem is more serious for solids
[27, 28, 147–149]. Here, I use a simple He crystal to study this problem by
increasing the cell size NL under periodic boundary conditions. As there are
two He atoms in each unit cell (See Fig. 4.7), the occupied KS orbitals in
the Wannier representation can be marked as 1Σg,I and 1Σu,I, which have the
same shapes as the occupied molecular orbitals in the closed-shell dihelium He2
molecule (See Fig. 4.4-a)).

As in the case of the He2 molecule, all possible SIC orbitals {(Φ1,I,Φ2,I)} that
satisfy Constraint 1 can be generalized via unitary transformations from the
Wannier KS orbitals (1Σg,I, 1Σu,I) using two rotation angles θI ∈ [0, 0.5π], I =
1, 2.

Φj,J =
∑

I=1,2

(
aj,Jg,I(θ1, θ2)1Σg,J + aj,Ju,I(θ1, θ2)1Σu,J

)
,

j = 1, 2; J = 1, 2 .

(4.67)
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Figure 4.7: (left) The unit cell of the hcp Helium crystal with a geometry taken
from Ref. [155]. (right) The schematic view of two unit cells with
periodic boundary conditions. There are two Helium atoms located
in the unit cell.

Here aj,Jg,I(θ1, θ2) is a set of rotation functions of angles θ1, θ2,

aj,Jg,I(θ1, θ2) =
1
2
(cos θ1 − (−1)j sin θ1) +

(−1)I+J

2
√
2

(cos θ2 − (−1)j sin θ2) ,

aj,Ju,I(θ1, θ2) =
(−1)I+J

2
√
2

(cos θ2 + (−1)j sin θ2) ,

j = 1, 2; I = 1, 2; J = 1, 2 .
(4.68)

Fig. 4.8 shows the SIC energy for the SCAN functional using these orbitals. It
suggests that the minimum value is 0.32 eV produced by the SIC orbitals with
(θ1 = 0.25π, θ2 = 0.50π). For these angles, the SIC orbitals have similar shapes
as in the case of the closed-shell He2 molecules (See Fig. 4.4-b)), and are thus
named as (ΦA,I,ΦB,I)

ΦA;B,I =
1√
2
[1Σg,I ± 1Σu,I] . (4.69)

I then applied the orbitals into the SIC constraints under the PBCs (See Eqs. (4.36)
and (4.36)). The relevant absolute errors of Constraints 2 or 3 quantify the de-
viation of possible orbitals from the right ones. Focusing on Constraint 2, the
top panel of Fig. 4.9 shows the absolute error of Constraints 2 on a logarithmic
scale; while the bottom panel of Fig. 4.9 shows the deviation from Constraint
3.

Fig. 4.9-top proves that the correct SIC orbitals that minimize the SIE energy
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Figure 4.8: The SIC energy ESIC using SCAN XC for the 1 × 1 × 2 Helium
cell in a linear combination of the 1Σg,I, 1Σu,I orbitals (Eq. (4.67)).
Periodic boundary conditions and tight basis sets are used for the
SCAN and SIC-SCAN calculations in FHI-aims.

(See Fig. 4.8) satisfy Constraint 2. However, I found another set of orbitals at
(θ1 = 0, θ2 = 0.25π) that also satisfy Constraint 2, but are associated to a saddle
point on the SIC energy surface (See Fig. 4.8)

(Φ1,1,Φ2,1) = (1Σg,I, 1Σu,I)
(Φ1,2,Φ2,2) = (ΦA,I,ΦB,I) .

(4.70)

As clearly demonstrated in Fig. 4.9-bottom, this solution can be automatically
filtered out if both Constraints 2 and 3 are taken into account simultaneously,
highlighting again the importance of introducing Constraint 3 during the PZ-
SIC self-interaction procedure to avoid the multiple-solution problem.

The next prototypical system is the polyethylene chain, (C2H4)n, for which the
geometry was provided Fig. 4.10. Unlike the aforementioned model systems,
the SIC orbitals cannot be explored exhaustively. In order to uncover the im-
portance of Constraint 3, I generated a set of initial guesses for the SIC orbitals.
I constructed the initial guesses for the SIC orbitals by mixing the atom or-
bitals φi centered at the atom position Rac

i and the Wannier orbitals ΨSCAN
i,L
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Figure 4.9: The absolute error of SIC Constraint 2 (Eq. (4.36)) (top) and Con-
straint 3 (Eq. (4.37)) (bottom) for the 1×1×2 Helium unit cell in a
linear combination of the 1Σg,I, 1Σu,I orbitals (Eq. (4.67)). Periodic
boundary conditions and tight basis sets are used for the SCAN and
SIC-SCAN calculations in FHI-aims.
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Figure 4.10: (left) The unit cell of periodic polyethylene chain, −(C2H4)− with
a geometry taken from Ref. [111], and (right) the schematic view
of the periodic polyethylene chain with 1× 1× 2 unit cell.

Figure 4.11: The SIC energy (using SCAN functional) with respect to the mix-
ing factor a and the tunable phase eiθ defined in Eq. (4.71) for
the polyethylene chain. Two unit cells and periodic boundary con-
ditions are used for the SIC and SCAN calculations in FHI-aims
with tight basis sets.

transformed from the KS orbitals ψSCAN
i,k after the standard SCAN calculations,

ϕinit
i,I = 1

Ai

[ eiθaφi(r − Rac
i − RI)

+ (1− a)ΨSCAN
i (r − RI) ] ,

(4.71)
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with Ai being the normalization factor, the tunable phase eiθ, and the mixing
factor a ranging from 0 to 1. The atom orbital, surrounding the atom center
Rac

i + RI, is relatively more localized than the DFA molecular orbitals of solids
ΨSCAN

i,L , which distributes in the area of the unit cell L [149]. With turning
up a from 0 to 1, the initial guess ϕinit

i,I varies from the localized orbital φi to
the relatively delocalized orbital ΨSCAN

i,L . Searching the solution of Constraint 2
from the vicinity of the different initial guesses can lead to thus different SIC
orbitals. As shown in Fig. 4.11, various SIC energies can be obtained for varying
initial guesses if only Constraint 2 is taken into account, indicating a serious
multiple-solution problem. The discrepancy of the offered SIC energies with
each other is about 0.3 eV at most. The tunable phases eiθ on θ = 0, 0.1 also
lead to different converged energies with only Constraint 2 used. The phase
brings a new localization uncertainty to the SIC orbitals, which is discussed in
the next section (Sec. 4.4). However, this case shows that the SIC solver with
Constraint 3 can get rid of the impacts of phase and lead to the same SIC energy.
Again, we can see that Constraint 3 guarantees to find the lowest SIC energy
regardless of what initial guess was used.

Besides the SIC energy, the trace of the SIC potential Tr( ˆvSIC) is also important

Tr( ˆvSIC) =
∑
i

⟨ϕi|v1eSIC
i |ϕi⟩ . (4.72)

This is because its accuracy determines the accuracy of the corrected KS eigen-
values ∑

l

ϵSIC-DFA
l =

∑
l

ϵDFA
l + Tr( ˆvSIC) . (4.73)

Accordingly, it is closely relevant to the numerical convergence of many physical
properties of interest, like IPs, EAs, and fundamental band-gaps. To investigate
the influence of different initial guesses on the final convergence, three sets of
initial guesses were selected, which were constructed according to Eq. (4.71)
with the parameters θ = 0 and a = 0., 1, 0.2, respectively (denoted as “initial 1”,
“initial 2” and “initial 3”). They respectively stand for the molecular orbitals
of solids ΨSCAN

i,L , the localized atomic orbitals φi, and a set of localized atomic
orbitals but with slight perturbation from the molecular orbitals. Fig. 4.12
plotted the trace of the SIC potential during the self-consistent procedure. The
SIC self-consistent iteration stopped when the maximum constraint error is
below 10−4 eV. The top panel of Fig. 4.12 plots the convergence of Tr( ˆvSIC) with
Constraint 2 only. The guesses of Initial 1 and 2 stop at wrong solutions within
about 250 iterations. With a very slow convergence behavior, initial 3 guess
reaches the lowest energy compared with those of initial 1 and initial 2. Fig. 4.12-
bottom shows the SIC convergence of Tr( ˆvSIC) starting from the aforementioned
three initial guesses but using Constraint 3. Within 150 iteration steps, all of
them have been converged to the desired threshold, resulting in the same values
of Tr( ˆvSIC), completely overcoming the multiple-solution problem observed when
only Constraint 2 is used.
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Figure 4.12: The trace of the SIC potential per electron and the max error
of SIC constraints with iterations for polyethylene chain using dif-
ferent initial guesses of SIC orbitals. Three sets of initial guesses
were selected, which were constructed according to Eq. (4.71) with
the parameters θ = 0 and a = 0, 1, 0.2, respectively. (top) Self-
consistently solving Constraint 2 (Eq. (4.36)) only and (bottom)
self-consistently solving Constraint 2 and 3 (Eqs. (4.36) and (4.37))
together are given, respectively. Two unit cells and periodic bound-
ary conditions are used for the SIC and SCAN calculations in FHI-
aims with tight basis sets.

The last example in this section is a more realistic system, i.e., the rocksalt
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Figure 4.13: (left) The primitive unit cell and (right) the conventional cell of
the rocksalt LiH crystal with geometries taken from Ref. [112].

LiH crystal. Fig. 4.13 shows geometries in the primitive unit cell (left) and
the conventional cell (right). Instead of SIC energies or SIC potential, the
fundamental band-gap was investigated here. In 2021, Shende et al. reported
that the band-gap calculated by SIC-PBE using Wannier Fermi-Löwdin orbitals
is about 3.9 eV for LiH crystal, which is better than the one by PBE [99]. I
plotted the numerical convergence of calculated band-gaps with respect to the
k-grid number in Fig. 4.14. The primitive unit cell was used, and all the relevant
calculations were performed using tier-1 basis sets and the tight integration grid
setting. The band-gap of rocksalt LiH calculated by PBE converges to 2.76 eV
with k-grids 4×4×4, which is about 2.23 eV lower than the experimental value
of 4.99 eV. The initial guess of SIC orbitals is constructed by mixing the KS
orbitals and atomic orbitals according to Eq. (4.71) with the parameters θ = 0.1
and a = 0.2. However, the SIC-PBE method results in a set of very different
band-gaps with different k-grid settings without Constraint 3 for the SIC solver.
This ill-behaved k-grid convergence should be ascribed to the multiple-solution
problems. I proved again here that introducing Constraint 3 indeed addresses
the aforementioned problem completely. The SIC-PBE method produces a set
of fundamental band-gaps, which converge fast and consistently with respect to
the k-grid number.

I also investigated the basis-set convergence of the calculated band-gaps, as well
as the influence of the unit cell (i.e., primitive cell v.s. conventional cell). A
k-grid of 4 × 4 × 4 was used. The relevant results were plotted in Fig. 4.15.
We can see that the tier-1 basis set is good enough to produce numerically well-
converged fundamental band-gaps for all the methods, including PBE, SIC-PBE,
SCAN, and SIC-SCAN. It is worth noting that the band-gaps calculated with
conventional cell (CC) are identical to those in the primitive cell. This observa-
tion validates my SIC implementation under the periodic boundary conditions
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Figure 4.14: The band-gap convergence for rocksalt LiH using PBE and SIC-
PBE in primitive unit cell with respect to the k points. The corre-
sponding k-grids are listed on the top of the x-axis. The SIC-PBE
(erratic) represents that the SIC calculations ignore solving the SIC
Constraint 3. The PBE and SIC-PBE calculations in FHI-aims use
the tight basis sets. The red line presents the experimental band-
gap at T = 4.2 K taken from Ref. [156]. Note that the electron-
phonon interaction can impact band-gaps at absolute zero temper-
ature due to the zero-point vibrations [71], but the exact effect is
difficult to access from experiments [132]; thus, we ignore it when
calculating band-gaps in this thesis. More theoretical studies for
this effect on band-gaps can be found in Ref. [133, 134].

and highlights the numerical robustness of my implementation, including size
extensively.

To further validate my SIC implementation for solids, I plotted the calculated
band-gaps with different k-grids in Fig. 4.16. The basis set of tier-1 with the
tight grid setting was used. At first, we can see a good k-grid convergence
for the calculated band-gap, no matter which DFA (PBE or SCAN) was used.
It is also true for SIC-DFAs, including SIC-PBE and SIC-SCAN. Because the
size of conventional cell (CC) is larger than the size of the primitive cell, the
calculated band-gaps based on conventional cell show an obviously faster k-grid
convergence than those of primitive cell. However, the calculated band-gaps for
a large enough k-grid need to converge to a single value, which is independent
of the selected cell. In this example, the difference between the band-gaps on
conventional and primitive cells gradually reduced when the k-grid numbers
increased to 2 × 2 × 2. Note that this well-behaved numerical convergence is
guaranteed by the periodic boundary conditions, which should be satisfied by
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Figure 4.15: Band-gap convergence for rocksalt LiH respectively to basis size
( varying from minimal, tier-1 to tier-2). The PBE, SCAN, SIC-
PBE, and SIC-SCAN are calculated in primitive cell and conven-
tional cell (marked as (CC)), respectively. The k-grids 4 × 4 × 4
are used for all calculations. The red line presents the experimental
band-gap at T = 4.2 K taken from Ref. [156], and the zero-point
vibration is ignored.

any electronic-structure methods properly implemented. It is good to see that
the SIC-PBE and SIC-SCAN results based on my SIC implementation repeat
all the aforementioned convergence.

4.4 Complex v.s. Real SIC Orbitals
In the original PZ-SIC paper, the SIC orbitals were assumed to be a real unitary
transformation of the KS orbitals [24]. This is because, in molecule systems, the
phase of the KS orbitals does not impact the total density and hence does not
impact the total energy of semi-local DFAs. However, the same total density
can give different SIC orbitals when a complex unitary transformation of the
KS orbitals (Eq. (4.9) is used. The SIC orbitals using real/complex unitary
transformation is named as real/complex SIC orbitals in this thesis. It has been
issued that the complex SIC orbitals can yield a lower or equal total energy
than real ones [29]. In the recent work (2019), Shahi et al. [12] showed that the
real SIC orbitals have more nodes in the orbital density than the complex SIC
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Figure 4.16: Convergence of rocksalt LiH band-gap with the k points (corre-
sponding k-grids are on the top of the x-axis), which are calculated
by PBE, SCAN, SIC-PBE and SIC-SCAN in primitive cell and con-
ventional cell (marked as (CC)). The tight tier-1 NAO basis sets
are used for all calculations. The red line presents the experimental
band-gap at T = 4.2 K taken from Ref. [156], and the zero-point
vibration is ignored.

orbitals and that the complex SIC orbital densities can thus be more localized
than the real one. In the following, the G2-1 test set [102] was investigated
under SIC Constraints 1-3 using real and complex SIC orbitals to detect the
validity of my SIC implementation. Sequentially, the Wannier SIC orbitals with
the complex unitary transformation matrix (defined in Eq. (4.32) and named as
complex Wannier SIC orbitals in this thesis) were proposed and discussed by us
in this section.

Fig. 4.17 shows the SIC-SCAN total energy of 55 molecules in the G2-1 test
set [102] using tight tier-1 NAO basis sets. We found that the SIC-SCAN
total energy employing real SIC orbitals is always higher than the SCAN total
energy and that SIC using complex SIC orbitals seems always to reduce the
SCAN total energy. In Figure 4.18, a cross-check including 9 molecules was
done for our results compared with the SIC results from other published works,
including the works of Jussi et al. [157] (marked as ERKALE) and Sebastian
et al. [158] (marked as PyFLOSIC). The FLO-SIC method is firstly developed
in the PyFLOSIC package, and the complex SIC orbitals are well implemented
in ERKALE. Although all calculated results in my and other works are slightly
different, my results using real SIC orbitals lie between the values in ERKALE
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Figure 4.17: The SIC energies for the 55 molecules in the G2-1 test set [102].
SCAN and SIC-SCAN are calculated in FHI-aims using the tight
basis sets. Detailed values of SCAN, SIC-SCAN are listed in Appx.
7.6. The molecules are indexed by 1. LiH 2. BeH 3. CH 4.
CH2(1A1) 5. CH2 (3B1) 6. CH3 7. CH4 8. NH 9. NH2 10.
NH3 11. OH 12. H2O 13. HF 14. SiH2 (1A1) 15. SiH2(3B1) 16.
SiH3 17. SiH4 18. PH2 19. PH3 20. SH2 21. HCl 22. Li2 23. LiF
24. C2H2 25. C2H4 26. C2H6 27. CN 28. HCN 29. CO 30. HCO
31. H2CO 32. CH3OH 33. N2 34. N2H4 35. NO 36. O2 37. H2O2
38. F2 39. CO2 40. Na2 41. Si2 42. P2 43. S2 44. Cl2 45. NaCl
46. SiO 47. CS 48. SO 49. ClO 50. ClF 51. Si2H6 52. CH3Cl 53.
CH3SH 54. HOCl 55. SO2.
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and PyFLOSIC. In other words, the trend of the energy cross molecules is the
same as others for both real and complex SIC orbitals.

Figure 4.18: A crossing check for SIC-SCAN calculations using cc-pVTZ basis
sets in FHI-aims and other packages. The ERKALE results taken
from Ref. [157] use the cc-pVQZ basis sets, and the PyFLOSIC
results taken from Ref. [158] use the DFO16 basis sets. The geome-
tries of these molecules are taken from G2-1 test set [102].

A more in-depth view of the relative SIC energy with respect to the SCAN
energy ESIC/|ESCAN| can be found in Fig. 4.19. In this figure, it is clear to
see that most SIC-SCAN energy points using complex SIC orbitals are located
under the neutral line, which presents the SCAN total energy. Note that the
points of LiH, BeH, and Li2 using complex SIC orbitals sit above the neutral
line because only real SIC orbitals in these molecules are found to satisfy all
SIC Constraints 1-3 (Eqs.(4.6), (4.12) and (4.23)). From the view of finding the
minimal SIC total energy, it is definitely better to choose complex SIC orbitals
instead of the real SIC orbitals. Furthermore, the SIC-SCAN using complex
SIC orbitals can give smaller deviations of the formation energy for the G2-1
test set, as shown in Figure 4.20. The ME (e.g., mean error) of the SIC-SCAN
deviations is 0.21 eV for using complex SIC orbitals (SIC-SCAN(complex)) and
0.53 eV for using real SIC orbitals (SIC-SCAN(real)), but the ME of the SCAN
deviations is only −0.04 eV. The MAEs (e.g., mean absolute errors) of the
formation energy for the G2-1 test set are 0.15 eV, 0.54 eV, and 0.29 eV for the
calculations of SCAN, SIC-SCAN(real), and SIC-SCAN(complex), respectively.
The decline in performance is much smaller when if the complex SIC orbitals
rather than the the real ones are used. However, SIC indeed worsens the SCAN
prediction for both real and complex SIC orbitals, which has been observed
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Figure 4.19: Relative SIC energy to the SCAN energies ESIC/|ESCAN| of SIC-
SCAN using complex SIC orbitals and using real SIC orbitals for
the 55 molecules from the G2-1 test set [102]. SCAN and SIC-
SCAN are calculated in FHI-aims using the tight basis sets.

earlier [12]. As we showed the SCAN calculations of the Ne-Ne+ dissociation
in Sec. 2.3, the accuracy of DFT methods relies on a lucky counterbalance
between different kinds of errors in the approximations for cohesive energy of
normal systems. Simply removing SIEs from SCAN calculations may break the
artful counterbalance and result in poor performance.

Now we know the (Wannier) SIC orbitals must satisfy the SIC constraints in-
stead of being maximally localized (See Sec. 4.3). But the maximally local-
ized Wannier orbitals (MLWOs) are good approximations of the Wannier SIC
orbitals and were often used in the early works of developing SIC for solids
(See Sec. 4.1). In the past decades, many studies about Wannier orbitals have
shown that the MLWOs are always real, apart from a trivial overall phase
transformation [159, 160]. In 2004, Martin proved that the MLWOs are real
in one-dimensional crystals [70]. However, we realize that the Wannier SIC or-
bitals can be complex for solids. In the case of solids, the periodic boundary
conditions (PBCs) require that the calculation for a molecule sitting in a very
large primitive cell must match the calculation for an isolated molecule. Conse-
quently, the impact of applying complex SIC orbitals (shown in Fig. 4.18) can
be passed from molecules to the periodic systems because the transformation
matrix in a very large primitive cell (Eq. (4.32)) is degenerated to Eq. (4.9). In
other words, the unitary transformation matrix defined in Eq. (4.32) can have a
complex domain. Here we calculated the HOMO energy for 8 molecules sitting
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Figure 4.20: Formation energy deviation of the 55 molecules from the G2-1 test
set [102], by SCAN, SIC-SCAN using real SIC orbitals (marked
as SIC-SCAN(real)), and SIC-SCAN using complex SIC orbitals
(marked as SIC-SCAN(complex)). The index of the molecules is
the same as Fig. 4.17. SCAN and SIC-SCAN are calculated in FHI-
aims using the tight basis sets. The mean errors (MEs) of SCAN,
SIC-SCAN(real) and SIC-SCAN(complex) are listed on the right
side and plotted as the dash lines. Detailed values can be checked
in Appx. 7.6.
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in a large unit cell ( 50Å × 50Å × 50Å) and compared with the results putting
the molecules in unlimited space, as shown in Figure 4.21. The difference of
the HOMO energy in these artificial periodic boundary systems can be achieved
more than 0.5 eV for C2H2 between using real or complex Wannier SIC orbitals.
These results directly show that the complex Wannier SIC orbitals indeed exist
and may lead to lower SIC energy in periodic systems (Simultaneously see the
results in Fig. 4.19).

Figure 4.21: The difference between IP and negative HOMO energy calculated
by SIC-PBE using real and complex SIC orbitals for 8 molecules
(N2, CO, CO2, H2O, C2H2, H2, CH4 and NH3) sitting in a large unit
cell ( 50Å×50Å×50Å) and in unlimited space. The calculations in
FHI-aims use the cc-pVTZ basis sets, and the results of the package
GPAW, taken from Ref. [99], use the DFT and beyond within the
projector-augmented wave method. The FHI-aims results with real
SIC orbitals are well-matched with the GPAW results published by
Shinde et al. in 2021 [99].

We further calculated 5 crystals (diamond Si, diamond C, rocksalt LiH, fcc Ne,
and zincblende AlP ) to figure out the impact of SIC energy using real and
complex Wannier SIC orbitals. As shown in Figure 4.22, the SIC energy can
have as large as 8 eV difference between using complex SIC orbitals and real SIC
orbitals. But the SIC energy using complex Wannier SIC orbitals are always
lower than or equal to the SIC energy using real ones, as in the case of molecules.
We found that the SIC energy using real is equal with the one using complex
Wannier SIC orbitals in some systems (like rocksalt LiH). This is because no
complex Wannier SIC orbitals are found to satisfy all SIC constraints in these
systems. From the view of achieving minimal SIC energy, the complex Wannier
SIC orbitals must be employed for periodic systems. In the following section, the
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Figure 4.22: SIC energies of SIC-SCAN calculations using complex Wannier
SIC orbitals and using real Wannier SIC orbitals for diamond Si,
diamond C, rocksalt LiH, fcc Ne and zincblende AlP. The k-grids
2× 2× 2 and tight tier-1 NAO basis sets are used for these calcu-
lations in FHI-aims.

performance of SIC on more crystal properties, like energies curve with volume,
lattice constant, were investigated for the given crystal set used in Fig. 4.21.

4.5 SIC Performance for Crystal Properties

Figure 4.23 shows the varying energy curve with the volume of diamond C and
fcc Ne for SCAN and SIC-SCAN(complex). In these calculations, the initial
guess of SIC orbitals was constructed by mixing KS orbitals and atomic orbitals
according to Eq. (4.71) with the parameters θ = 0.1 and a = 0.2. I found that
the neighboring points in the energy curve (like the diamond C volume equal to
= 11.3 or 11.9 Å3 ) have closing KS orbitals, and the different KS orbitals lead
to imperceptibly different initial guesses for the SIC orbitals. However, without
Constraint 3 (Eq. (4.37)), the SIC solver can output substantial erroneous energy
differences for the neighboring points. For example, Fig. 4.24 shows the SIC-
SCAN energies curve only under SIC Constraint 1 and 2. SIC-SCAN energy
without Constraint 3 (Fig. 4.24) at volume 11.3 Å3 is 1.2 eV higher than the
energy at volume 11.9 Å3, while less than 0.2 eV is found for the difference of
the SIC-SCAN energy with Constraint 3 (Fig. 4.23-2)) at volume 11.3 Å3 and
volume 11.9 Å3. It should be noted that a smooth fitted energy curve (shown
in Figure 4.23-2) and -4)) can be treated as a severe test for finding the unique
set of SIC orbitals. The smooth energy curves of diamond C and fcc Ne in
Fig. 4.23 further confirm the necessity of Constraint 3 and the correctness of
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the SIC implementation in FHI-aims.

Figure 4.23: The fitted energy curve (per unit cell) of SCAN and SIC-SCAN
with respect to volume for diamond C and fcc Ne . 1) and 3) are
the structures of diamond C and fcc Ne. The (SIC-)SCAN energies
for diamond C and fcc Ne are shown in 2) and 4). The zero energy
level is set to the SCAN energy at the optimized volume. The red
marker presents the position where the lowest energy exists at the
optimized volume. The complex Wannier SIC orbitals are used in
the SIC-SCAN calculations. The k-grids 4× 4× 4 and tight tier-1
NAO basis sets are used for SCAN and SIC-SCAN calculations.

In practical calculations, varying the energy nearby the equilibrium volume can
obtain the properties of the lattice constant, cohesive energy, and bulk modulus
correspond to the total energy of the systems:

• The cohesive energy is calculated by the difference of isolated atom energies
and the lowest energy in the varying curve, also known as the equilibrium
energy;

• The position of the equilibrium energy also indicates the lattice constant of
the crystal;

• The bulk modulus is defined as the ratio of the infinitesimal pressure increase
to the resulting relative decrease of the volume, which can be calculated by
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Figure 4.24: The calculated and fitted energy curve (per unit cell) of SCAN,
SIC-SCAN and erratic SIC-SCAN calculations with respect to vol-
ume for diamond C. The erratic SIC-SCAN calculations are ob-
tained with complex Wannier SIC orbitals but ignore solving the
SIC Constraint 3. The SIC-SCAN calculations are obtained with
complex Wannier SIC orbitals and solve all SIC Constraints 1, 2
and 3 (Eqs. (4.6), (4.12) and (4.23)). The red marker presents the
position where the lowest energy exists at the optimized volume in
the fitted curve. The zero energy level is set to the SCAN energy at
the optimized volume. The k-grids 4× 4× 4 and tight tier-1 NAO
basis sets are used for SCAN and (erratic) SIC-SCAN calculations.
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computing the second derivative of the fitted energy curve with respect to
volume.

These three mechanical properties are important in designing and selecting mate-
rials [161, 162] and are often used as the benchmarks for new electronic structure
methods [112, 161, 163]. Note that the interaction of electrons and phonons can
slightly impact these properties at absolute zero temperature due to the zero-
point vibrations [71]. The experimental reference values showed in Table 4.1
are corrected from thermal and zero-point vibrational effects. More theoretical
studies for the zero-point vibrations can be found in Ref. [71, 132, 133, 164].
In this thesis, the SIC performance for the lattice constant, cohesive energy,
and bulk modulus of the 5 crystals (e.g., diamond Si, diamond C, rocksalt LiH,
fcc Ne, and zincblende AlP ) were investigated using the complex Wannier SIC
orbitals.

The calculated results of the lattice constant, bulk modulus, and cohesive energy
for the test set are listed in Table 4.1. The absolute errors (AEs) are plotted
in Figure 4.25 for convenience. SIC slightly worsens all the SCAN calculations
for the lattice constant of diamond Si, diamond C, rocksalt LiH, fcc Ne, and
zincblende AlP. Specifically, the prediction of SCAN has a considerably large
deviation from the experimental lattice constant at 4.455 Å. It has been deter-
mined that the error for the fcc Ne is not caused by the SIEs but caused by
the difficult description of the weakly bound systems in meta-GGAs, including
SCAN [6, 166]. Accordingly, the SIC-SCAN calculation further enlarges the
error, giving a prediction of the lattice constant at 4.02 Å (Table 4.1). On the
aspect of bulk modulus, SIC breaks the performance of SCAN in diamond Si,
diamond C, and rocksalt LiH, while the relative absolute errors of SIC-SCAN
keep less than 15% for these cases (4.5%, 5.9%, and 14.8% for each, respec-
tively). Moreover, SIC-SCAN gets slightly better results than SCAN for fcc Ne
and zincblende AlP with respect to the experiments. I observed that the SIC
method only marginally changes the KS orbitals from the SCAN calculations for
diamond Si, diamond C, rocksalt LiH, fcc Ne, and zincblende AlP. As a result,
SIC does not worsen the good performance of SCAN in describing the bonding
characters for solids, including the covalent bonding and ionic bonding charac-
ters [6, 98, 165]. However, our calculations show that the SIC heavily worsens
the cohesive energy for the SCAN calculations in our test set besides fcc Ne.
The results indicate that simply removing SIEs from SCAN calculations may
break the lucky energy counterbalance between different kinds of errors in the
approximations of SCAN for solid systems. This conclusion is in line with the
previous study, which was also observed not only in solids but in finite molecules
like the Ne-Ne+ dissociation in Sec. 2.3 and the G2-1 test set in Sec. 4.4.

As we realized the SIC-SCAN energy curve calculation for solids, the ability
of SIC-SCAN to describe the phase transformation in solids is further invested
in this work. The phase of Si is chosen as our prototype. It has been studied
in many experimental and theoretical works [167–173] apart from the SIC ap-
plication. In addition to the well-known diamond phase, a hexagonal diamond
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Lattice Constant (Å)
SCAN SIC-SCAN Expt.

Si 5.45 5.47 5.43
C 3.55 3.51 3.56
LiH 4.01 4.00 4.08
Ne 4.08 4.02 4.45
AlP 5.48 5.49 5.47

Bulk modulus (GPa)
SCAN SIC-SCAN Expt.

Si 98.89 94.30 98.80
C 454.49 468.22 442.00
LiH 35.85 37.08 32.30
Ne 4.25 3.91 1.20
AlP 90.33 87.54 86.50

Cohesive Energy (eV)
SCAN SIC-SCAN Expt.

Si 4.68 4.75 4.68
C 7.54 8.00 7.27
LiH 2.47 2.45 2.49
Ne 0.06 0.03 0.03
AlP 4.34 3.83 4.32

Table 4.1: Lattice constants at equilibrium (Å), bulk modulus (GPa) and cohe-
sive energy (eV) of the diamond Si, diamond C, rocksalt LiH, fcc Ne
and zincblende AlP for SCAN and SIC-SCAN calculations against the
experimental results. The calculations are done in FHI-aims using
tight tier-1 NAO basis set and using k-grids 4 × 4 × 4. The exper-
imental reference values are collected from the main-group test set
[112, 165] and are corrected from thermal and zero-point vibrational
effects.
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Figure 4.25: Absolute errors of lattice constant (Å), bulk modulus (GPa) and
cohesive energy (eV) of SCAN and SIC-SCAN with respect to ex-
periments for the diamond Si, diamond C, rocksalt LiH, fcc Ne and
zincblende AlP. The complex Wannier SIC orbitals are used in the
SIC-SCAN calculations. The k-grids 4×4×4 and tight tier-1 NAO
basis sets are used for SCAN and SIC-SCAN calculations.
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Figure 4.26: The negative cohesive energy (per unit cell) curve of SCAN and
SIC-SCAN with respect to volume for diamond Si and hexagonal
diamond (HD) Si. The complex Wannier SIC orbitals are used in
the SIC-SCAN calculations. The red marker presents the position
where the lowest energy exists at the optimized volume. The k-
grids 8× 8× 8 and tight tier-1 NAO basis sets are used for SCAN
and SIC-SCAN calculations.
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(HD) structure has been found to be metastable at room temperature and atmo-
spheric pressure after going through high-pressure and high-temperature treat-
ments [168]. The HD structure of Si has been indicated to be a semi-conductive
phase as same as the diamond phase [167–170]. The cohesive energy curves
with respect to volumes are calculated by (SIC-)SCAN and plotted in Fig. 4.26
for the diamond and HD phases. From the phase energies calculated by the
(SIC-)SCAN method, it is apparent that the diamond phase has a lower opti-
mized energy and is more stable than the HD phase. SCAN gives an energy
difference between the diamond phase and HD phase at 12.8 meV, which is
compatible with the experimental observations and previous results at about
12 meV[167, 174]. However, the SIC method over-enlarges the energy differ-
ence to 27.37 meV. It is worth noting that the experiment result indicated that
the HD phase for Si has a band-gap at about 1.15 eV [167]. However, only
a narrow indirect band-gap at 0.66 eV is given in the SCAN calculation due
to the self-interaction error (SIE). The underestimation of the band-gap agrees
well with the previous DFA (like LDA, PBE, and PBEsol) calculations [170,
175]. The SIC-SCAN predicts the band-gap at 1.21 eV, which is in agreement
with the experiment result. In the next section, a wide of systems, including
atoms, molecules, and solids, were further invested in the performance of the
SIC method in predicting band gaps.

4.6 HOMO Energy and Band-Gap

As introduced in Sec. 2.3, the many-electron SIE breaks the linear behavior of
the total energy of fractional-charge systems (known as the PPLB condition
and defined in Eq. (2.44)) and leads to lower total energy calculated with semi-
local DFAs. This lower total energy is further linked to the poor performance
of the HOMO energy in predicting the ionization potential (IP) [65]. The IP
measures the capability of an element to enter into chemical reactions requiring
ion formation or donation of electrons. It is also generally related to the nature of
the chemical bonding in the compounds formed by the elements. The prediction
of IP with the negative HOMO energy can be used as a metric for benchmarking
electronic methods [176].

The performance of HOMO energies for the atoms H to Ar using LDA, PBE,
SCAN and SIC-SCAN functionals are shown in Fig. 4.27, in which the exper-
imental values [77] are compared as the reference. As the SIE exists in the
commonly used LDA and PBE functionals [177] (discussed in Sec. 2.3), the
eigenvalues by LDA and PBE can not well-estimate the IPs. Although the
gKS framework is used for the meta-GGA SCAN calculations, the performance
of SCAN is only slightly better than LDA and PBE according to the mean
absolute percentage error (MAPE) as 42.03% for LDA, 41.75% for PBE, and
38.5% for SCAN. SCAN still suffers serious SIEs. As shown in Fig. 4.27-top,
the SIC-SCAN calculation gives better estimations with all points under 20%
errors and primarily within 10% errors, whether using real or complex SIC or-
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bitals. The MAPE is 5.02% (3.95%) for using real (complex) SIC orbitals, much
lower than SCAN. Moreover, the HOMO energies for the SIC-SCAN(complex)
calculations are better than the SIC-SCAN(real) calculations, which agrees with
the SIC-PBE(complex) conclusion from the work of Simon et al. [29].

Figure 4.27: Comparison of IPs and the calculated −ϵHOMO energies by LDA,
PBE, SCAN and SIC-SCAN of H to Ar atoms. The SIC-SCAN
calculations using real and complex SIC orbitals are marked as
SIC-SCAN(real) and SIC-SCAN(complex), respectively. (top) The
relative errors of −ϵHOMO energies to IPs and (bottom) the values
of −ϵHOMO energies are given. The tight tier-1 NAO basis sets are
used for all calculations. The black line presents the experimental
IPs [77].

Besides atoms, the negative HOMO energies (−ϵHOMO) of 24 molecules calcu-
lated by LDA, PBE, SCAN, and SIC-SCAN are shown in Figure 4.28. The
SCAN calculations heavily underestimate the −ϵHOMO energies against the IPs,
while our SIC approach can offer a stable improvement to the HOMO energies
by SCAN. All the percentage errors of SIC-SCAN(complex) for the test set are
under 23%, and the MAPE of SIC-SCAN(complex) is 11.74%, much less than
the SCAN error (34.5%) compared with the experimental IP. G0W0@PBE, as
reported in Ref. [176], supports reliable predictions for the IPs with 3% MAPE.
However, SIC slightly over-corrects the SCAN calculations for the molecule test
set, and leads the −ϵHOMO energies are always higher than the experimental IPs.
(The cross-comparison for the calculated HOMO energies of SCAN, SIC-SCAN,
and G0W0@PBE are listed in Appendix Table 7.6.)
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Figure 4.28: Comparison of the calculated eigenvalues of the highest occupied
orbital (HOMO) energy ϵHOMO by LDA, PBE, SCAN, SIC-SCAN
and G0W0@PBE of 24 molecules with the experimental IP [77].
The LDA, PBE, SCAN, SIC-SCAN are calculated using tight tier-
1 NAO basis sets in FHI-aims. The results of G0W0@PBE, taken
from Ref. [176], are calculated using def2-QZVP basis sets in FHI-
aims.
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Figure 4.29: Comparison of calculated and experimental band-gaps for LDA,
PBE, SCAN, SIC-SCAN, and GW0@PBE. The black diagonal line
corresponds to the calculated line of perfect agreement. The k-grids
5×5×5 and tight tier-1 NAO basis sets are used for the calculations
of LDA, PBE, SCAN, SIC-SCAN in FHI-aims. The complex SIC
orbitals are used for SIC-SCAN. The experimental geometries are
used for the LDA, PBE, SCAN and, SIC-SCAN calculations. GW0
and experiment results are from Ref. [125] and references within.

As the worse performance of the HOMO energy will bring inaccurate descrip-
tions of the band-gaps for semi-local DFAs, including SCAN (discussed and
shown in Fig. 3.16), we consider the performance of SIC using complex SIC
orbitals on calculating electronic band-gaps of the same set validated by SCAN.
It is worth noting again that the electron-phonon interaction can impact band-
gaps at absolute zero temperature due to the zero-point vibrations [71], but the
exact effect is difficult to access from experiments [132]; thus, we ignore it when
calculating band-gaps in this thesis. The theoretical studies for this effect on
band-gaps can be found in Ref. [133, 134]. Figure 4.29 compares experimental
band-gaps with computed values obtained by pure DFAs, SIC-SCAN and GW0.
Specifically, GW0@PBE results have a small MAPE (e.g., mean absolute per-
centage error) of 3.22 %. LDA and PBE, which use the KS scheme, predict
band-gaps for the test set lie much below the line of perfect agreement shown in
Fig. 4.29. LDA and PBE have the MAPEs as 54.96 % and 44.71 %, respectively.
SCAN underestimates the band-gaps with a MAPE of 32.82 %, which indicates
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Figure 4.30: Mean absolute percentage error (MAPE) with respect to experi-
mental band-gaps determined from SIC-SCAN by FHI-aims and
references. The references list as Ref.a [27]; Ref.b [147]; Ref.c [148];
Ref.d [149] and Ref.e [28]. The SIC-LDA calculations are used in
these references. In FHI-aims calculations, the complex SIC or-
bitals are used for SIC-SCAN. The k-grids 5×5×5 and tight tier-1
NAO basis sets are used for LDA, PBE, SCAN, and SIC-SCAN.
The calculations use the experimental geometries from Ref. [125]
and references within.

that SCAN still heavily suffers from SIEs like PBE and LDA. SIC-SCAN pre-
dicts better band-gaps than pure SCAN calculations, as shown in Fig. 4.29. All
the points of SIC-SCAN stand on or over the line of perfect agreement with re-
spect to experimental values, and the MAPE of SIC-SCAN is 18.5 %. Although
LDA, PBE, and SCAN calculations underestimate the band-gaps, they still can
correctly predict the insulating properties for the covalent crystals (such as Si,
C) and ionic crystals (such as NaCl, LiF). For example, the SCAN calculations
agree with the experimental results, in which Si belongs to semiconductor and
C (NaCl and LiF) is an insulator. Particularly, SCAN (also LDA and PBE)
gives a gap of 0.60eV for MnO, far below the experiment data 3.70 eV. SCAN
erroneously predicts MnO as a semiconductor rather than an insulator. This
is because MnO, as a Mott insulator, is a strongly correlated material with
strong electron repulsions for different spin channels [178, 179]. It is a challenge
for semi-local DFAs to describe the strong electron repulsion consequently pre-
dict the electric properties of Mott insulators [180]. It has been proposed that
DFT+U is a workable but straightforward correction method for this issue, in
which an empirical electron repulsion “U” is introduced [181, 182]. For example,
the band-gap of MnO calculated by GGA+U varies from 0.9 eV to 2.3 eV using
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the electron repulsion “U” value from 0 eV to 7 eV [183, 184]. In comparison,
GGA+U gives a band-gap around 4 eV using the “U” (5.25 eV) approximated
by the linear-response approach [185]; the self-consistent GW0 approach based
on the LDA+U wave functions shows a band-gap of 3.32 eV [186]. Moreover,
a systematical investigation by Yue-Chao Wang et al. in 2016 has shown that
the results of DFT+U also depend on the choice of orbitals applying the “U”
correction. Specifically, the band-gap of MnO can have more than 0.3 eV dif-
ferences when using different implementations of PBE+U [184]. However, the
SIC-SCAN approach without any empirical factor successfully predicts MnO to
be an insulator with a gap of 3.73 eV, in agreement with experimental data of
3.70 eV. One explanation is that SIC can restore the electron repulsions, which
are erased mainly by the semi-local approximations [24, 180].

Furthermore, we compared our results with other SIC works for Si, MnO, MgO,
NaCl, and LiCl, as shown in Fig 4.30. At variance with our calculation and
other references, Ref.a [27] does not use the orbital potential constraint, which
gives the highest MAPE startlingly over 45%. SIC calculations in Ref.b [147]
and Ref.c [148], which self-consistently solve the potential orbital constraint,
give a more accurate prediction of the MnO band-gap with the MAPE less than
10%, while our results are almost in perfect agreement.

Although we have shown that SIC can improve SCAN calculations in many
cases, PZ-SIC also over-corrects (meta-)GGA functionals. For example, the
SIC-SCAN results in this research show that an obvious overcorrection exists
for band-gap predictions (shown in Fig. 4.29). One can alleviate this issue by
using the scaled-down PZ-SIC (sd-SIC) method

EsdSIC-DFA = EDFA + EsdSIC

EsdSIC[{ni}] = −
Ne∑
i

Xα
i

(
EDFA

xc [ni] + Ees[ni]
)

.
(4.74)

The dimensionless scaling factor 0 ≤ Xα
i ≤ 1 is evaluated for each SIC orbital

ϕi(r) via

Xα
i =

∫
d3r(τ

W

τ
)α|ϕi|2 (4.75)

with the kinetic energy density τ = 1
2
∑

i |∇ϕi|2 and von Weizsäcker kinetic
energy density τW = |∇n|2

8n . The sd-SIC was proposed in 2006 [187] to originally
ensure that the SIC term vanishes for the uniform density, in which τW = 0 leads
Xα

i = 0. This vanished SIC term can protect the design of nonempirical XC
functionals (such as LDA, PBE, and SCAN) from satisfying the uniform density
constraint [188], which is one of the DFA constraints (introduced in Sec. 2.2).
It was determined that the scaled-down factor Xα

i ≤ 1 can help SIC weaken
the overcorrection. For example, the errors in total SIC energies of the atoms
from Li to Ar are positively reduced by employing sd-SIC in LDA and PBE
calculations [187]. Moreover, the sd-SIC-SCAN can provide a good description
of the HOMO energies of the atoms from Li to Kr [189].
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In 2020, the constant scaled-down factor Xα
i ≡ 2/3 was suggested as an approx-

imation to the orbital-dependent factor Xα
i . The constant sd-SIC can improve

the prediction of the total energies of atoms, as well as enhance the accuracy of
energies for molecules [190]. Inspired by using the constant sd-SIC for periodic
systems in the work of Shinde et al. [99], we further investigated the band-gaps
calculated by the constant sd-SIC using SCAN functional. The results were
plotted in Figure 4.31. The sd-SIC-SCAN (giving the MAPE of 13.2 %) is
closer to the line of perfect agreement than the SIC-SCAN (MAPE: 18.5 %),
while it still lags behind the GW0@PBE method (MAPE: 3.22 %).

Although the sd-SIC method reduces the over-correction problem, the behavior
of Xα

i ≤ 1 results in that it can not exactly go back to the standard PZ-SIC
method and thus is not an exact method for one-electron systems. Moreover, it
has been indicated that the SIEs remain in fractional-charge systems, and the
PPLB condition (defined in Eq. (2.44)) is broken once again using sd-SIC for
semi-local DFAs (such as PBE and TPSS) [64].

4.7 Charge Transfer and Reaction Barrier
As discussed in Sec. 2.3, semi-local DFAs suffering from SIEs prefer a delocalized
ground state and predict fractionally charged fragments in the dissociation limit
of the neutral heteroatom molecules. In the example of dissociating the molecule
H-F (Fig. 4.32 ), SCAN incorrectly predicts a positive fractional charge on the H
atom, hence giving too high energies in the dissociation limit, which agrees with
the analysis in Sec. 2.3. SIC successfully cancels the nonphysical charge trans-
fer presented by SCAN and keeps the atoms electro-neutral in the dissociation
limit. In this case, the energy curve of SIC-SCAN(complex) matches the curve
calculated by CCSD(T) at the minimal energy point (r ≈ 0.8 Å) and the dis-
sociation limit (r > 0.8 Å). In comparison, the energy curve of SIC-SCAN(real)
apparently deviates from the one of CCSD(T) in the equilibrium region (r ≈ 0.7
eV). The incorrect dissociation curve predicted by SCAN also happens in the
open-shell case Ne+2 , as shown in Fig. 4.32, and can be offset by SIC with both
real or complex SIC orbitals to approach the CCSD(T) calculations. Also, SIC
does not break the mirror symmetry of the two ions Ne0.5 · · ·Ne0.5 during the
whole dissociation, which gives the same charge transfer as SCAN. Note that
the energies in Fig. 4.32-top are zeroed out at the sum of the energies of Ne+0
and Ne+1 . The well-behaved energy curve of SIC-SCAN indicates that SIC suc-
cessfully cancels most part of the many-electron SIEs in Ne+2 , and SIC-SCAN
nearly reproduces the degeneracy between Ne+ · · ·Ne and Ne0.5 · · ·Ne0.5 (with
less than 0.3 eV difference for both real and complex SIC orbitals).

Besides the dissociation curves of H-F and Ne-Ne+, the SIE also impacts other
charge transfer problems, like chemical reactions [191]. Specifically, an early
investigation of the F + H2 −−→ HF + H hydrogen transfer by Scuseria found
that SIEs bring about 0.23 eV deviation in the reaction energy calculated by
the GGA functional (BLYP) [192]. Moreover, Andersson and Grüning, in 2004,
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Figure 4.31: Comparison of calculated and experimental band-gaps for LDA,
PBE, SCAN, (sd-)SIC-SCAN and GW0@PBE. The black diagonal
line corresponds to the calculated line of perfect agreement. The
k-grids 5 × 5 × 5 and tight tier-1 NAO basis sets are used for the
calculations of LDA, PBE, SCAN, (sd-)SIC-SCAN in FHI-aims.
The complex SIC orbitals are used for (sd-)SIC-SCAN. The scaled-
down factor Xα ≡ 2/3 is used in the sd-SIC-SCAN calculations.
The experimental geometries are used for the LDA, PBE, SCAN,
and SIC-SCAN calculations. GW0 and experiment results are from
Ref. [125] and references within. The effect of the zero-point vibra-
tions is not considered in this thesis. The theoretical studies for
this effect on band-gaps can be found in Ref. [71, 133, 134].

found that the hybrid density functional, which employs parts of Hartree-Fock
exchange, performs better than other semi-local DFA functionals (including
LDAs, GGAs, and meta-GGAs) for calculating hydrogen involved gas-phase re-
actions [193]. In 2012, Paier et al. showed that eliminating the one-electron SIE
contained in advanced methods (i.e., the random-phase approximation) is ap-
parently beneficial for observing hydrogen transfer reaction energies. An early
investigation for 11 “difficult” reactions (including hydrogen transfer, proton
transfer, and so on) indicated that SIC using real SIC orbitals [194] can signifi-
cantly improve the reaction barriers calculated by semi-local DFAs (i.e., PBE).
Consequently, I examined all of the hydrogen-transfer reactions included in the
BH76 [123, 124, 195] test set using SCAN and our SIC-SCAN(complex). Fig-
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Figure 4.32: Dissociation curves of Ne-Ne+ (top) and H-F (bottom) with the
zero-energy level set to the total energy of isolated atoms/ions. The
Mulliken charge analyses in the dissociation Ne-Ne+ and H-F are
studied, for which the charge transfer to the Ne atom and the H
atom are provided. SCAN and SIC-SCAN with real SIC orbitals
and complex SIC orbitals are calculated in FHI-aims using tight
basis sets. CCSD(T) is calculated in FHI-aims using cc-pVTZ
Gaussian-type basis sets.
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ure 4.33 shows the calculated reaction barriers by (SIC-)SCAN with the ones
calculated by the Weizmann-1 (W1) method, high-accuracy computational ther-
mochemistry designed to extrapolate to the complete basis limit of a CCSD(T)
[129, 130]. (The reactions and calculated reaction barriers with reference values
are listed in Appx. 7.8.) SCAN underestimates the barrier heights with a large

Figure 4.33: Comparison of the calculated results by (SIC-)SCAN and results
by the Weizmann-1 (W1) method [129, 130] for the hydrogen-
transfer reactions (16 reactions in total) included in BH76 [123,
124]. The black diagonal line corresponds to the calculated line
of perfect agreement. Tight tier-1 NAO basis sets are used for
(SIC-)SCAN calculations in FHI-aims. The SIC-SCAN calculation
employs the complex SIC orbitals. (1 kcal/mol = 0.0434 eV)

MAE (0.365 eV (8.42 kcal/mol)) because of using the semi-local approximation.
It is impressive to note that SIC-SCAN provides barrier heights with the MAE
of 0.184 eV (4.25 kcal/mol) accuracy, while CCSD(T) is able to have an ac-
curate measure with the MAE of 0.056 eV (1.3 kcal/mol) [196]. The positive
performance of SIC-SCAN on the reaction barriers indicates that removing self-
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interaction is important to the meta-GGAs, exceptionally the SCAN functional,
in reorganizing the ground state of transition states.

The insert of Fig. 4.33 shows a deep-in view of the calculations to check the
grey area, where SCAN and SIC-SCAN predict the improper reaction directions.
There are 8 calculated points of SCAN sitting in the grey area, but the improper
predictions have been reduced by SIC down to 3 reactions (e.g., the forward
reactions in (H + F2 → HF + F) , (H + CO → HCO) and (H + C2H4 → C2H5) ).
The reaction (H + F2 → HF + F) is the only one where SIC-SCAN predicts the

Reaction Barrier [eV]
Reaction Ref. PBE SIC-PBE SCAN SIC-SCAN

H + F2 → HF + F 1.5 -0.408 0.170 0.487 -0.214

Table 4.2: Comparison of the forward barrier heights (in eV) of the hydrogen-
transfer reactions for (H + F2 → HF + F). W1 results [129, 130]
are used as references and marked as “Ref.” in the table. Tight tier-1
NAO basis sets are used for (SIC-)PBE and (SIC-)SCAN calculations.
The SIC-PBE and SIC-SCAN calculations employ the complex SIC
orbitals. (1 kcal/mol = 0.0434 eV)

transition state (HF2H) having lower energy (about -4.93 eV; -113.59 kcal/mol)
than the sum energy of reactants (H and F2), different from the right prediction
of the relationship in SCAN calculation. However, SIC reduces the enormous
absolute difference of the barrier by SCAN (0.487 eV; 11.23 kcal/mol) and the
W1 result (0.065 eV; 1.50 kcal/mol). The results for the reaction barrier (H + F2
→ HF2H) of the PBE, SCAN, SIC-PBE, and SIC-SCAN calculations are listed
in table 4.2. The PBE calculation predicts lower energy of HF2H than the sum
energy of H and F2, but SIC successfully turns the PBE calculation right with
a positive barrier (0.170 eV; 3.92 kcal/mol). Although SIC can systematically
improve SCAN performance of reaction barriers, the reaction (H + F2 → HF
+ F) indicates that SCAN as a semi-local DFA functional still has other kinds
of errors besides SIEs, which echos the analysis when calculating the formation
energy for the G2-1 test set in Sec. 4.4. For the reaction (H2+ Cl → HCl +
H), SCAN leads to the total energy of the transition structures being slightly
less than the energy of the separated reagents −0.000 eV (−0.00 kcal/mol).
This result suggests a barrier-less process, contrary to the results of the W1
calculation, which indicates a barrier of 0.347 eV (8.0 kcal/mol). Standard
hybrid functionals also predict small or even negative activation barriers for this
reaction [197]. In contrast, it was reported that the barriers of SIC-revPBE(real)
are too high, overestimating about 0.174 eV (4 kcal/mol) [194]. In this work, SIC
recovers the barrier calculated by SCAN to 0.276 eV (6.36 kcal/mol), resulting
in an almost quantitative agreement with the W1 value. Another example is
the reaction of (H + PH3 → H2+ PH2). SCAN predicts the supposed transition
state has −0.135 eV (−3.10 kcal/mol) than the total energy of (H + PH3), while
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Reaction Barrier [eV]
Reaction Ref. SCAN SIC-SCAN

H2+ Cl → HCl + H 0.347 -0.000 0.276
H + PH3 → H2+ PH2 0.126 -0.135 0.071

Table 4.3: Comparison of the forward barrier heights (in eV) of the hydrogen-
transfer reactions for (H2+ Cl → HCl + H) and (H + PH3 → H2+
PH2). W1 results [129, 130] are used as references and marked
as “Ref.” in the table. Tight tier-1 NAO basis sets are used for
(SIC-)SCAN calculations. The SIC-SCAN calculations employ the
complex SIC orbitals. (1 kcal/mol = 0.0434 eV)

the W1 calculated value is as large as 0.126 eV (2.9 kcal/mol). SIC-SCAN can
rectify the behavior by giving a reaction barrier as 0.071 eV (1.64 kcal/mol) is
close to the W1 value.
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4.8 trans-Polyacetylene

We further investigate a challenging problem for periodic systems, the broken
symmetry in crystalline polyacetylene (CH)x. It has been shown that the poly-
acetylene chain, as the simplest linear conjugated polymer, has two configu-
rations, named cis and trans [198]. In 1957, Ooshika confirmed that the trans
configuration is a stable configuration for the long-chain polyacetylene [199, 200],
in which an alternation between single and double carbon bonds is formed along
the chain sketched out in Fig. 4.34-(4). The dimerization ∆z is used to describe
the length difference of the two kinds of bonds along the chain direction zs and
zd:

∆z = zs − zd , (4.76)

where zs and zd are the vertical distances from the center Carbon atom on
both Carbon-atom sides. The X-ray studies show that each of the two carbon
chains in the crystalline trans-polyacetylene (TPA) has a broken symmetry like
the 1D long-chain polyacetylene, shown in Fig. 4.34-(1). For crystalline TPA,
experiments have measured the dimerization of ∆z ≈ 0.05 Å. This dimerized
realization has been described by the celebrated 1D Su-Schrieffer-Heeger (SSH)
model [202], in which the electrons are treated in the tight-binding approxima-
tion. From the view of phonon/electron-phonon interaction, the SSH model
has successfully explained the formation of the alternate bonds and the charge
transfer mechanism between carbons [202]. So far, the SSH model has been
one of the most basic and most important models describing band topology
in condensed matter physics [198, 203]. However, early investigations in the
1990s indicated that the electron-electron interactions in crystalline TPA can
also lead to dimerization [204]. From a view of the electron-electron interaction,
the hybrid functional in DFT calculations can predict a dimerization in agree-
ment with the experimental studies [204]. But the semi-local DFT calculations
(i.e., LDA and BLYP functionals) have problems reproducing the correct ground
state of (CH)x [205] because of suffering serious self-interaction errors [206].

This thesis inspected the SCAN and SIC-SCAN performance for the crystalline
TPA from the view of the electron-electron interactions. We construct the unit
cell based on the experiment measurement [201] with the lattice vectors a = 4.18
Å, b = 7.34 Å and c = 2.46 Å. The angle β between the lattice vectors a and
b are set as 90◦. The angle between any carbon chain and the lattice vector
b is set as ϕ = 55◦. We keep the length of zs + zd equal to the lattice vector
length |c| and set 0.70 Å as the vertical height h (the middle carbon atom to the
connection of the other two carbon atoms). Figure 4.35 shows the crystalline
TPA energy of SCAN, SIC-SCAN, PBE0, and RPA@PBE with respect to the
dimerization ∆z. The lowest energy position on each curve points out the
optimized dimerization for its calculation method. Here “RPA@PBE” presents
the results calculated by the random phase approximation using PBE density
[208]. The RPA@PBE curve forms two wells in Fig. 4.35, which means that
the pattern of single and double bonds is more stable than the one of bonds
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Figure 4.34: (1) Unit cell of TPA structure on the experiment measurement
[201]. Carbon atoms are gray, hydrogen atoms are white. (2) The
right side view and (3) the bottom side view of the unit cell of TPA.
(4) Schematic view of a single (CH)x chain with the dimerization
∆z, which measures the difference between the distance of single-
bond and double-bond carbon atoms along the chain direction zs
and zd.

with equal length. The SCAN calculations show that the optimized structure
has the dimerization of ∆z = 0.026 Å, but an inconspicuous well exists in
the range of the dimerizations from ∆z = 0 Å to ∆z = 0.026 Å. The hybrid
functional PBE0 [209], which employs a degree α of Hartree-Fock exchange
admixture in PBE exchange, partly cancels the SIE and reproduces the broken
symmetry. An obvious non-zero dimerization is given for both PBE0 employing
α = 0.25 and employing α = 0.50. Specifically, PBE0 with α = 0.25 gives the
dimerization at 0.050 Å, which is relatively close to the RPA@PBE calculation
[208] valued at 0.045 Å. But the optimized dimerization is sensitively shifted to
0.061 Å calculated by PBE0 (α = 0.50 ). The SIC-SCAN using complex Wannier
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Figure 4.35: The total energy of crystalline trans-polyacetylene calculated by
SCAN, (sd-)SIC-SCAN, PBE0, and RPA@PBE in FHI-aims with
respect to the dimerization ∆z. Red dashed lines present the exper-
imental dimerization (∆z ≈ 0.05 Å) [207]. The zero-energy level is
set to the total energies of ∆z = 0. The marker presents the posi-
tion where the lowest energy exists at the optimized dimerization.
The scaled-down factor Xα

i ≡ 2/3 is used in the sd-SIC-SCAN cal-
culations. The k-grids 14× 12× 16 and tight tier-1 NAO basis sets
are used for these calculations.
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SIC orbitals successfully forms the well in Fig. 4.35 and gives the optimized
dimerization at about 0.036 Å, which is the same as the dimerization predicted
by the sd-SIC-SCAN with Xα ≡ 2/3 (defined in Eq. (4.75)). Compared with the
SCAN calculations, the well calculated by the SIC-SCAN is much broader and
deeper. This conclusion is in line with the previous study [206], which indicates
that the SIEs can impact the optimized geometry in this trans-Polyacetylene
example.

Method Expt. LDA PBE SCAN
Indirect Band-Gap [eV] 1.1 0.03 0.05 0.12

Table 4.4: The calculated indirect band-gap of LDA, PBE, and SCAN com-
pared with the experiment values. The k-grids 14× 12× 16 and tight
tier-1 NAO basis sets are used in the calculations. Experimental
values are taken from Ref. [207].

Figure 4.36: Band-gap of crystalline trans-polyacetylene at optimized dimmer
calculated by SCAN, PBE0 and (sd-)SIC-SCAN in FHI-aims. The
experimental geometry [207] is used in the calculations. The scaled-
down factor Xα ≡ 2/3 is used in the sd-SIC-SCAN calculations.
The k-grids 14× 12× 16 and tight tier-1 NAO basis sets are used.
The blue dash line and orange line present the direct and indirect
experimental band-gaps, which are from Ref. [207].

Finally, we investigate and characterize the band-gap of crystalline TPA using
the experimental geometry [207]. An indirect optical absorption gap of 1.1 eV
and a direct gap of 1.4 eV were reported by Fincher et al. [207]. However,
semi-local DFAs, including LDA, PBE, and SCAN, show that (CH)x has a very
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small band-gap and is a metal or a negligible-gap semiconductor (The calculated
indirect band-gaps are shown in Table 4.4). Figure 4.36 shows that PBE0 with
α = 0.25 gives a slightly underestimated indirect band-gap (0.95 eV), but PBE0
with α = 0.50 overestimates the band-gap. SCAN suffering serious SIEs not
only gives an evidently narrowed gap as 0.12 eV but also confuses the direct
and indirect band-gap of the same value, as shown in Fig. 4.36. SIC-SCAN
excessively opens the indirect band-gap to 4.50 eV, rectifying the degeneration of
direct and indirect band-gap. Although the scaled-down factor Xα can alleviate
the overcorrection of SIC, the sd-SIC-SCAN still predicts a larger band-gap
compared with the experimental result.

As introduced at the beginning of this section, crystalline TPA is a challenging
periodic system. It has been determined that many aspects (such as the lattice
constants [210]) can impact its calculated properties. As shown in Fig. 4.35 and
Fig. 4.36, the calculations have large differences in energy or band-gap among
varied calculated methods. The calculation of SIC-SCAN in this work only
implies that reducing the SIE can be one but not the only important aspect of
inspecting crystalline TPA from density functional theory.
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5 Summary

The state-of-the-art, non-empirical meta-GGA (meta-generalized gradient ap-
proximation) SCAN functional provides a notable and consistent improvement
over the non-empirical GGA PBE for various kinds of chemical interactions for
both molecules and solids. However, it has been well-documented that it suf-
fers from a heavier numerical instability than PBE and inherits the notorious
self-interaction error from PBE. In the first part of this work, an efficient and
stable prescription for accurate full-potential meta-GGA calculations (includ-
ing SCAN) of periodic and finite systems has been implemented in FHI-aims.
I revisited the numerical instability problem of the SCAN functional in the nu-
merical integration framework, FHI-aims. From the example of the Ge atom, it
is apparent that the SCAN exchange-correlation (XC) potential is much more
rugged than PBE, and a denser grid setting is required to converge the numerical
integration over the potential. However, I found that the SCAN XC potential
is sufficiently captured via the tight grid setting in FHI-aims, which drove me
to generalize the standard electron density mixing algorithm to the kinetic en-
ergy density variant. The implementation of the kinetic energy density in the
mixing algorithm in FHI-aims enables a fast and stable convergence towards
a standard SCAN self-consistent solution for fundamental systems, like fcc Si,
hexagonal ZnO, bcc Fe, and fcc Fe.

The second part of my work considered the self-interaction correction algorithm,
proposed by Perdew and Zunger (PZ-SIC), to alleviate the self-interaction error
in the SCAN functional. I have implemented the PZ-SIC algorithm in FHI-aims
with many promising features. 1) The orbital density constraint, building up
together with the total density constraint and the orbital potential constraint,
is proposed by us for self-consistently localizing the SIC orbitals and eventu-
ally achieving minimal PZ-SIC energy. We have shown that the orbital density
constraint can restrict multiple possible SIC orbitals to a single choice, 1.1) by
exhaustively checking all candidate SIC orbitals in the systems of B, C, He2
and hcp-Helium, 1.2) and by verifying the independency of the initial SIC or-
bitals for the CH-chain and rocksalt LiH. 2) My PZ-SIC implementation enables
searching for the SIC orbitals in both real and complex domains. My work for
molecules and solids demonstrates the importance of constructing the (Wannier)
SIC orbitals in the complex domain. I confirmed that the complex SIC orbitals
always lead to lower SIC energy than real ones in the systems of 55 molecules
in the G2-1 test set [102] and solids (including diamond Si, diamond C, rocksalt
LiH, fcc Ne, and zincblende AlP). 3) The lowest PZ-SIC energy achievement
allows me to explore in my thesis the performance of the SIC-SCAN functional
for a wide range of properties with chemical and physical interest. 3.1) Our PZ-
SIC approach significantly improves the SCAN performance, as demonstrated
for the highest occupied orbital (HOMO) energies ϵHOMO of H-Ar atoms and
24 molecules. 3.2) Moreover, verifying our PZ-SIC approach in 10 fundamental
solids shows that SIC-SCAN is systemically much better than SCAN in pre-
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5 Summary

dicting the band-gaps. 3.3) Good energy curves and corrected charge transfers
compared with CCSD(T) are obtained by our PZ-SIC approach in the dissocia-
tions of H-F and Ne-Ne+. 3.4) The corrected results in the dissociations drove us
to calculate the hydrogen-transfer reaction barriers, which are demonstrated as
the SIE disaster area [191, 193, 194]. SIC can effectively rectify the inaccurate
estimations of SCAN for the hydrogen-transfer reaction barriers in the BH76
test set[123, 124]. 3.5) In my thesis, I further investigated the ground state of
crystalline polyacetylene, which is a famous problem for periodic systems and
can not be reproduced by the semi-local DFT calculations (i.e., LDA and BLYP
functionals) [205, 206]. The broken symmetry in the crystalline polyacetylene
can be captured by our PZ-SIC approach from the view of electron-electron
interactions.
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7 Appendix

7 Appendix

7.1 Exact Constraints for meta-GGAs
As the SCAN potential is sensitive to the kinetic energy density, updated SCAN
functionals are proposed frequently. There are two non-empirical versions of the
variant SCAN (named rSCAN and r2SCAN) widely accepted. The rSCAN func-
tional is a regularized form of the SCAN functional, in which the dimensionless
kinetic energy variable (defined in Eq. (2.39)) is optimized, and the SCAN’s nu-
merical stability is therefore improved [19]. The r2SCAN is proposed to restore
exact constraint adherence to rSCAN, maintain rSCAN’s numerical stability
and the accuracy of SCAN [105]. Table 7.1 summarizes the cross-comparison
for the satisfied constraints of SCAN, rSCAN, and r2SCAN.

Constraint SCAN rSCAN r2SCAN
uniform density limit

√
×

√

uniform density scaling
√

×
√

GE2
√

×
√

GE4x
√

× ×

Table 7.1: Summary of the adherence of the known exact constraints in rSCAN
and r2SCAN, compared with SCAN.

A brief summary of the 17 constraints valid in SCAN is listed as follows:

• for the exchange term,

1 negativity

2 spin-scaling

3 uniform density scaling

4 (GE4x) fourth-order gradient expansion

5 non-uniform density scaling

6 tight bound for two-electron density

• for the correction term,

7 non-positivity

8 (GE2) second-order gradient expansion

9 uniform density scaling to the high-density limit
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10 uniform density scaling to the low-density limit

11 zero correlation energy for any one-electron spin-polarized density

12 non-uniform density scaling

• for both the exchange and correction terms,

13 size extensively

14 Lieb-Oxford bound

15 Lieb-Oxford bound for two-electron densities

16 weak dependence upon relative spin polarization in the low-density limit

17 static linear response of the uniform electron gas

7.2 Derivation of SIC Potential

The SIC potential v̂SIC is defined by the SIC energy (ESIC defined in Eq. (4.1))
variation with respect to the density

v̂SIC(r) = δESIC[{ni}]
δn(r)

=
Ne∑
i

∫
d3r′

δESIC[{ni}]
δni(r′)

δni(r′)
δn(r)

=
Ne∑
i

∫
d3r′v̂1eSIC

i

δni(r′)
δn(r)

.

(7.1)

Here the one-electron SIC potential v̂1eSIC
i is the sum of the single-particle

Hartree potential v̂es[ni] and the single-particle XC potential v̂xc[ni]. In the
generalized Kohn-Sham framework [52], the SIC potential is evaluated by act-
ing on the SIC orbitals

v̂SIC(r)ϕi(r) = v̂SIC(r) δn(r)
δϕ∗

i (r′)
= v̂1eSIC

i ϕi(r) . (7.2)

The SIC potential operator in Eq. (4.16) is written as

v̂SIC =
Ne∑
i

v̂1eSIC
i |ϕi⟩⟨ϕi| , (7.3)

which gives v̂SICϕi(r) =
∑Ne

j v̂1eSIC
j |ϕj⟩⟨ϕj|ϕi⟩ = v̂1eSIC

i ϕi(r).
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7.3 Derivation of Constraint 2

By fixing the total density n, the Euler equation Eq. (4.5) is simplified to

δ

[
ESIC-DFA −

Ne∑
ab

λab (⟨ϕa|ϕb⟩ − δab)
]
= 0. (7.4)

Given the total density (δn = 0), a set of one-electron equations for the SIC
potential can be obtained by solving the Euler equation:

ĥDFA(
∑
i

δni) +
∑
i

v̂1eSIC
i δni

−
∑
ab

λab(δϕ∗
a · ϕb + ϕ∗

a · δϕb) = 0

⇔
∑
i

v̂1eSIC
i (δϕ∗

i · ϕi + ϕ∗
i · δϕi)

−
∑
ai

λai(δϕ∗
a · ϕi + ϕ∗

a · δϕi) = 0

⇔{
∑
i

δϕ∗
i (v1eSIC

i ϕi −
∑
a

λaiϕa)}+ H.C. = 0

⇔v̂1eSIC
i ϕi =

∑
a

λaiϕa .

(7.5)

With the Hermitian property of the Lagrange multiplier λab = λ∗ba, Constraint
2 shown in Eq. (4.12) is obtained by

⟨ϕm|v̂1eSIC
m − v̂1eSIC

n |ϕn⟩
= ⟨ϕm|v̂1eSIC

m |ϕn⟩ − ⟨ϕm|v̂1eSIC
n |ϕn⟩

=
∑
a

λ∗na⟨ϕa|ϕn⟩ −
∑
a

λan⟨ϕm|ϕa⟩

= λ∗nm − λmn

= 0 .

(7.6)
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Furthermore, the Hermitian property of the SIC-DFA KS non-interacting Hamil-
tonian can be proven by

⟨ϕm|ĥSIC-DFA† − ĥSIC-DFA|ϕn⟩
=⟨ϕm|ĥSIC-DFA†|ϕn⟩ − ⟨ϕm|ĥSIC-DFA|ϕn⟩
=⟨ϕm|(t̂s + v̂ext + v̂es + v̂xc + v̂SIC)†|ϕn⟩
− ⟨ϕm|t̂s + v̂ext + v̂es + v̂xc + v̂SIC|ϕn⟩

=⟨ϕm|t̂s + v̂ext + v̂es + v̂xc + v̂SIC†|ϕn⟩
− ⟨ϕm|t̂s + v̂ext + v̂es + v̂xc + v̂SIC|ϕn⟩

=⟨ϕm|v̂SIC†|ϕn⟩ − ⟨ϕm|v̂SIC|ϕn⟩

=
Ne∑
j

⟨ϕm|ϕj⟩⟨ϕj|v̂1eSIC
j |ϕn⟩ − ⟨ϕm|

Ne∑
i

v̂1eSIC
i |ϕi⟩⟨ϕi|ϕn⟩

=⟨ϕm|
Ne∑
j

δjmv̂
1eSIC
j |ϕn⟩ − ⟨ϕm|

Ne∑
i

v̂1eSIC
i δin|ϕn⟩

=⟨ϕm|v̂1eSIC
m |ϕn⟩ − ⟨ϕm|v̂1eSIC

n |ϕn⟩
=0 .

(7.7)

7.4 Derivation of Edmiston and Ruedenberg (E-R)
Restriction

The Dirac notation for the integral of the squared orbital density is∫
n2
i (r)d3r = ⟨ϕi|ni|ϕi⟩. (7.8)

The request for maximizing the integral of all squared orbital densities (men-
tioned in Eq. (4.21)) is written as

δ
∫
n2
i (r) = 0 . (7.9)

It is indicated that the maximum of total inner density overlaps implies the
minimization of the overlaps between two different densities ∑m ̸=n⟨ϕm|nn|ϕm⟩
[140]. Subjecting to the orthonormalization condition for the SIC occupied
orbitals

⟨ϕa|ϕb⟩ − δab = 0 , (7.10)
the maximization results in the Euler equation:

δ

[∑
i

⟨ϕi|ni|ϕi⟩ −
∑
ab

ηab (⟨ϕa|ϕb⟩ − δab)
]
= 0. (7.11)

This Euler equation gives a set of one-electron equations for the E-R orbitals:

niϕi =
∑
a

1
2
ηaiϕa . (7.12)
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These one-electron equations produce the orbital density constraint

⟨ϕm|nm − nn|ϕn⟩
= ⟨ϕm|nm|ϕn⟩ − ⟨ϕm|nn|ϕn⟩

=
∑
b

1
2
η∗bm⟨ϕb|ϕn⟩ −

∑
a

1
2
ηan⟨ϕm|ϕa⟩

=
∑
b

1
2
η∗bmδbn −

∑
a

1
2
ηanδma

= 1
2
(η∗nm − ηmn) = 0 .

(7.13)

Moreover, Constraint 1 (Eq. (4.6)) ensures that summing the inner density
overlaps is invariant under a unitary transformation Uma of the SIC orbitals
(ϕ′

m = ∑
a Umaϕa) :∫

d3rn2(r) =
∫
d3r(

∑
n

n′
n)(
∑
m

n′
m)

=
∑
mn

⟨ϕ′
m|n′

n|ϕ′
m⟩

=
∑
mn

∑
a

U∗
ma

∑
b

U∗
bn

∑
c

Unc

∑
d

Umd⟨ϕa|ϕ†
bϕc|ϕd⟩

=
∑
ad

∑
m

∑
a

U∗
maUmd

∑
bc

∑
n

U∗
bn

∑
c

Unc⟨ϕa|ϕ†
bϕc|ϕd⟩

=
∑
ad

δad
∑
bc

δbc⟨ϕa|ϕ†
bϕc|ϕd⟩

=
∑
ab

⟨ϕa|ϕ†
bϕb|ϕa⟩

=
∑
ab

⟨ϕa|nb|ϕa⟩ .

(7.14)

7.5 Derivation of Constraint 3

Constraint 3 comes from maximizing the overlap matrix of the SIC orbital
densities under the potential orbital constraint:

max
∑
i

(∫
d3rn2

i (r)|v̂1eSIC†
i =v̂1eSIC

i

)
. (7.15)

Here we mark v1eSIC
i as vi for simplification.

Using the one-electron equations of SIC potential in Eq. (7.5), the self-consistently
localized Lagrangian with the multipliers ηmn is constructed as

L =
∑
i

∫
d3rn2

i (r)−
∑
mn

ηmn

⟨ϕm|v̂1eSIC†
i |ϕn⟩ −

∑
j

λjn⟨ϕm|ϕj⟩

 . (7.16)
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The variation is

δL =
∑
i

2niδϕ
∗
iϕi + 2niϕ

∗
i δϕi

−
∑
mn

ηmn(δϕ∗
mvmϕn + ϕ∗

mδvmϕn + ϕ∗
m vmδϕn)

−
∑
j

λjn(δϕ∗
mϕj + ϕ∗

mδϕj))

=
∑
i

2niδϕ
∗
iϕi

−
∑
mn

ηmn(δϕ∗
mvmϕn + δϕ∗

mϕ
∗
m

δvm
δnm

ϕnϕm

−
∑
j

λjnδϕ
∗
mϕj)

+
∑
i

2niϕ
∗
i δϕi

−
∑
mn

ηmn(ϕ∗
mvmδϕn + ϕ∗

mϕ
∗
m

δvm
δnm

ϕnδϕm

−
∑
j

λjnϕ
∗
mδϕj) .

(7.17)

The zero of the variation δL = 0 leads to

2niϕi =
∑
n

ηinviϕn

+
∑
n

ηinϕ
∗
i

δvi
δni

ϕnϕi −
∑
n

∑
a

ηiaλnaϕn

↔2niϕi = (vi + ni
δvi
δni

)
∑
n

ηinϕn −
∑
n

∑
a

ηiaλnaϕn

↔2niϕi =
δ(vini)
δni

∑
n

ηinϕn −
∑
n

∑
a

ηiaλnaϕn .

(7.18)

Considering δ(vini)
δni

≈ (λii + vi), a further simplification is obtained :

⟨j|2ni|i⟩λii = λiiηij −
∑
a

ηiaλja , (7.19)

where |i⟩ is a mark of |ϕi⟩. The matrix elements ηij can be evaluated by re-
cursively solving this equation. A matrix ¯̄Dji = ⟨j|2ni|i⟩ and λ̃ij = λiiδij are
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introduced to illustrate this recursive progress.
⟨j|2ni|i⟩λii = λiiηij −

∑
a

ηiaλja

⇔ ¯̄Dλ̃ = ηT λ̃− ληT

⇔ηT = ¯̄D + ληT λ̃−1

⇔ηT = ¯̄D + λ( ¯̄D + ληT λ̃−1)λ̃−1

= ¯̄D + λ ¯̄Dλ̃−1 + λ2ηT λ̃−2

= lim
x→∞

x−1∑
a=0

λa ¯̄Dλ̃−a

= lim
x→∞

(
x−1∑
a=0

λa ¯̄Dλ̃−a + λxηT λ̃−x)

= lim
x→∞

(
x−1∑
a=0

λa ¯̄Dλ̃−a + (λλ̃−1)xηT )

⇔ lim
x→∞

(1− (λλ̃−1)x)ηT =
x−1∑
a=0

λa ¯̄Dλ̃−a

⇔ηT = lim
x→∞

(
λ̃(λ̃− λ)−1

)x x−1∑
a=0

λa ¯̄Dλ̃−a .

(7.20)

If the expansion of ηT is cut off at x = 1, we get

ηT = λ̃(λ̃− λ)−1 ¯̄D . (7.21)

The ηT is removed by taking the property ηT = η into the equation above:

(λ̃(λ̃− λ)−1 ¯̄D)† = λ̃(λ̃− λ)−1 ¯̄D

⇔ ¯̄D†(λ̃− λ)−1λ̃ = λ̃(λ̃− λ)−1 ¯̄D

⇔(λ̃− λ)λ̃−1 ¯̄D† = ¯̄Dλ̃−1(λ̃− λ) .

(7.22)

Considering that ¯̄D and λ̃ are Hermitian matrices, we can further simplify this
equation to get Constraint 3:

(λ̃− λ)λ̃−1 ¯̄D† = ¯̄Dλ̃−1(λ̃− λ)

− λλ̃−1 ¯̄D† = − ¯̄Dλ̃−1λ

⇔λ ¯̄D† = ¯̄Dλ
⇔⟨ϕm|nmv̂n|ϕn⟩ = ⟨ϕm|v̂mnn|ϕn⟩ .

(7.23)

7.6 Data : Computed and Experimental Formation
Energy for G2-1 Test Set

The calculated formation energy for LDA, PBE, and SCAN with respect to the
reference values according to the G2-1 theory [102] are presented in Table 7.2.
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The total energy for all systems within the G2-1 set using SCAN and SIC-SCAN
are given in Table 7.3 and Table 7.4.

Expt. LDA PBE SCAN
LiH -2.51 -2.65 -2.33 -2.43
BeH -2.16 -2.59 -2.41 -2.64
CH -3.64 -3.95 -3.67 -3.56

CH2(1A1) -8.26 -9.16 -8.44 -8.57
CH2(3B1) -7.85 -8.61 -7.75 -7.63

CH3 -13.34 -14.67 -13.45 -13.59
CH4 -18.22 -20.04 -18.22 -18.24
NH -3.62 -4.04 -3.84 -3.72

NH2 -7.88 -8.97 -8.18 -8.06
NH3 -12.92 -14.60 -13.10 -12.85
OH -4.63 -5.38 -4.77 -4.72

H2O -10.09 -11.57 -10.16 -9.97
HF -6.13 -6.98 -6.17 -5.94

SiH2(1A1) -6.59 -7.16 -6.48 -6.52
SiH2(3B1) -5.69 -6.28 -5.78 -6.04

SiH3 -9.79 -10.63 -9.72 -10.05
SiH4 -13.98 -15.02 -13.68 -14.09
PH2 -6.63 -7.49 -6.72 -6.85
PH3 -10.49 -11.69 -10.39 -10.55
SH2 -7.93 -8.95 -7.91 -7.95
HCl -4.65 -5.15 -4.73 -4.60
Li2 -1.06 -1.02 -0.88 -0.80
LiF -5.98 -6.73 -6.04 -5.85

C2H2 -17.60 -19.93 -18.00 -17.52
C2H4 -24.44 -27.41 -24.80 -24.49
C2H6 -30.89 -34.41 -31.10 -31.01

CN -7.87 -9.47 -8.57 -7.80
HCN -13.56 -15.62 -14.16 -13.45

CO -11.26 -12.97 -11.66 -11.07
HCO -12.10 -14.43 -12.80 -12.29

H2CO -16.22 -18.82 -16.75 -16.26
CH3OH -22.24 -25.43 -22.56 -22.31

N2 -9.91 -11.55 -10.56 -9.63
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N2H4 -19.01 -22.33 -19.66 -19.00
NO -6.63 -8.61 -7.46 -6.62
O2 -5.24 -7.58 -6.23 -5.55

H2O2 -11.67 -14.56 -12.24 -11.64
F2 -1.70 -3.29 -2.30 -1.59

CO2 -16.90 -20.53 -18.05 -17.13
Na2 -0.74 -0.74 -0.78 -0.61
Si2 -3.28 -3.87 -3.63 -3.37
P2 -5.08 -6.17 -5.29 -4.97
S2 -4.45 -5.80 -5.01 -4.79

Cl2 -2.58 -3.41 -3.04 -2.53
NaCl -4.29 -4.33 -4.18 -4.23

SiO -8.37 -9.68 -8.59 -8.19
CS -7.46 -8.73 -7.79 -7.30
SO -5.46 -7.22 -6.14 -5.74

ClO -2.84 -4.42 -3.62 -3.01
ClF -2.71 -3.97 -3.24 -2.63

Si2H6 -23.04 -25.04 -22.72 -23.36
CH3Cl -17.15 -19.29 -17.45 -17.23

CH3SH -20.57 -23.23 -20.76 -20.69
HOCl -7.17 -9.07 -7.71 -7.15

SO2 -11.24 -14.58 -12.20 -11.39

Table 7.2: Formation energy (in eV) of the G2-1 test set for LDA, PBE, and
SCAN calculated in FHI-aims using tight tier-1 NAO basis set. Ge-
ometries and experimental values are taken from Ref. [102] and ref-
erences within.

SCAN SIC-SCAN (real) SIC-SCAN (complex)
H -0.50016177 -0.49944475 -0.49944475

He -2.90493667 -2.89814732 -2.89814732
Li -7.47828238 -7.47107607 -7.47108942
Be -14.64835692 -14.63992632 -14.63999588
B -24.63934851 -24.62536876 -24.63938461
C -37.83752135 -37.80809375 -37.86395821
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N -54.5872058 -54.52967642 -54.63929257
O -75.07124621 -74.99085186 -75.15816454
F -99.74522364 -99.62962522 -99.88992635

Ne -128.9493868 -128.7829113 -129.1406733
Na -162.2743854 -162.090964 -162.5201797
Mg -200.0709478 -199.8666666 -200.3675556
Al -242.369569 -242.1350979 -242.7174744
Si -289.3885255 -289.1187077 -289.791548
P -341.292263 -340.9772652 -341.7521286
S -398.150199 -397.7931029 -398.6711863

Cl -460.1941605 -459.7877979 -460.7814757
Ar -527.5856474 -527.1196201 -528.2367977

Table 7.3: Total energy (in Hartree) of atoms H-Ar calculated by SCAN and
SIC-SCAN. The SIC-SCAN calculations using real and complex SIC
orbitals are marked as SIC-SCAN(real) and SIC-SCAN(complex), re-
spectively. The calculations are done in FHI-aims using tight tier-1
NAO basis set. (1 Hartree = 27.2114 eV)

SCAN SIC-SCAN (real) SIC-SCAN (complex)
LiH -219.5316868 -219.2546198 -219.2549627
BeH -414.8379633 -414.5706462 -414.5974284
CH -1046.75817 -1045.909905 -1047.236968

CH2(1A1) -1065.371266 -1064.272405 -1066.111285
CH2(3B1) -1064.430293 -1063.483299 -1064.769884

CH3 -1084.005003 -1082.813714 -1084.56143
CH4 -1102.264771 -1101.182451 -1102.486629
NH -1502.689554 -1501.043723 -1503.96088

NH2 -1520.636088 -1518.84928 -1522.009302
NH3 -1539.03726 -1537.056698 -1540.530822
OH -2061.074128 -2058.551443 -2063.761318

H2O -2079.929437 -2076.995705 -2082.489912
HF -2733.689087 -2729.863524 -2737.666846

SiH2(1A1) -7908.204564 -7900.880739 -7918.774802
SiH2(3B1) -7907.718993 -7900.306401 -7918.53571
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SiH3 -7925.342156 -7918.042819 -7936.002204
SiH4 -7942.991178 -7935.763224 -7953.594738
PH2 -9320.869991 -9312.430263 -9332.981938
PH3 -9338.183418 -9329.737161 -9350.119495
SH2 -10869.11699 -10859.32287 -10883.06427
HCl -12540.41814 -12529.22528 -12556.35565
Li2 -407.7795692 -407.4197584 -407.420828
LiF -2923.473664 -2919.081491 -2927.517642

C2H2 -2103.906418 -2101.359912 -2105.630563
C2H4 -2138.103632 -2135.838423 -2139.209054
C2H6 -2171.84303 -2169.758284 -2172.195099

CN -2522.742495 -2518.833828 -2524.701882
HCN -2542.003581 -2538.667859 -2544.142141

CO -3083.395237 -3079.247284 -3086.149566
HCO -3098.225891 -3094.010155 -3101.031578

H2CO -3115.804896 -3111.722517 -3118.656333
CH3OH -3149.071235 -3145.215175 -3151.765218

N2 -2980.33876 -2976.375188 -2982.718947
N2H4 -3044.152617 -3040.393641 -3046.548561

NO -3534.717658 -3530.023498 -3537.927283
O2 -4091.034768 -4085.234982 -4094.990019

H2O2 -4124.339933 -4118.744824 -4128.540173
F2 -5429.864016 -5422.49673 -5435.944668

CO2 -5132.195316 -5124.256602 -5137.90579
Na2 -8831.808887 -8821.849069 -8845.192821
Si2 -15752.30311 -15737.34404 -15774.1802
P2 -18578.57724 -18561.09669 -18603.66184
S2 -21672.68087 -21652.78281 -21700.74111

Cl2 -25046.93759 -25024.69406 -25078.505
NaCl -16942.03315 -16925.5753 -16964.74317

SiO -9925.396329 -9914.469476 -9938.823334
CS -11870.83195 -11859.22838 -11885.51356
SO -12882.42234 -12869.37471 -12898.63568

ClO -14567.95901 -14554.04184 -14585.67475
ClF -15238.97729 -15224.04943 -15258.06022

Si2H6 -15853.94547 -15839.46319 -15875.16065
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CH3Cl -13609.85292 -13597.71554 -13625.77518
CH3SH -11938.65656 -11927.8963 -11952.70255

HOCl -14585.70773 -14571.71658 -14603.63769
SO2 -14930.81614 -14914.2202 -14949.69407

Table 7.4: Total energy (in eV) of the G2-1 test set calculated by SCAN and
SIC-SCAN. The SIC-SCAN calculations using real and complex SIC
orbitals are marked as SIC-SCAN(real) and SIC-SCAN(complex), re-
spectively. The calculations are done in FHI-aims using tight tier-1
NAO basis set. Geometries are taken from Ref. [102] and references
within. (1 Hartree = 27.2114 eV)

7.7 Data : Computed and Experimental HOMO
Energy

The calculated HOMO energy of 24 molecules for LDA, PBE, SCAN, SIC-SCAN,
and G0W0@PBE with respect to experimental results are presented in table 7.5
and table 7.6.

Mol. Expt. LDA PBE SCAN G0W0@PBE
LiH 7.9 4.3838 4.3518 4.4935 6.54
CH4 12.6 9.4615 9.4420 9.8147 13.93
NH3 10.07 6.1747 6.0698 6.3946 10.32
H2O 12.62 7.3645 7.2144 7.5973 11.97
PH3 9.87 6.7492 6.6883 6.9429 10.27
SH2 10.46 6.3572 6.2590 6.5766 10.03
HCl 12.74 8.1158 8.0116 8.4095 12.25
Li2 5.11 3.1750 3.1607 3.1555 4.99
LiF 11.3 6.2893 6.0643 6.3595 9.95

C2H2 11.4 7.3798 7.2032 7.4072 11.02
C2H4 10.51 6.9618 6.7731 6.9334 10.33
C2H6 11.52 8.1320 8.1460 8.4901 12.37
HCN 13.6 9.1658 9.0550 9.3269 13.21

CO 14.01 9.0954 9.0126 9.5531 13.25
H2CO 10.89 6.3338 6.2493 6.5667 10.33

CH3OH 10.84 6.3939 6.2889 6.6369 10.33
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N2 15.58 10.372 10.223 10.7517 14.89
F2 15.7 9.6238 9.4366 10.066 14.96

CO2 13.78 9.3235 9.0876 9.4994 13.25
Na2 4.89 3.1831 3.0844 3.0970 4.83
P2 10.53 7.2115 7.0859 7.3928 10.21

Cl2 11.48 7.5414 7.4281 7.8308 11.1
NaCl 9.2 5.2983 5.1707 5.4222 8.1
SO2 12.35 8.2859 8.0854 8.4792 11.82

Table 7.5: Calculated negative HOMO energy (−ϵHOMO) (in eV) of 24 molecules
against the experimental ionization potential (IP). The calculations
of LDA, PBE, and SCAN are done in FHI-aims using tight tier-1
NAO basis set. Geometries are taken from the G2-1 test set [102].
The calculated GW results are from Ref. [176]. The experimental
IPs are taken from Ref. [77].

Mol. Expt. SCAN SIC-SCAN
(real)

SIC-SCAN
(complex)

G0W0@PBE

LiH 7.9 4.4935 8.7523 8.7507 6.54
CH4 12.6 9.8147 15.637 15.066 13.93
NH3 10.07 6.3946 12.089 12.141 10.32
H2O 12.62 7.5973 14.375 14.511 11.97
PH3 9.87 6.9429 11.143 11.186 10.27
SH2 10.46 6.5766 11.025 11.083 10.03
HCl 12.74 8.4095 13.311 13.373 12.25
Li2 5.11 3.1555 5.3052 5.3048 4.99
LiF 11.3 6.3595 13.705 13.624 9.95

C2H2 11.4 7.4072 12.228 11.991 11.02
C2H4 10.51 6.9334 11.884 11.766 10.33
C2H6 11.52 8.4901 14.266 13.651 12.37
HCN 13.6 9.3269 14.603 14.320 13.21

CO 14.01 9.5531 15.152 15.361 13.25
H2CO 10.89 6.5667 13.175 12.977 10.33

CH3OH 10.84 6.6369 13.162 12.880 10.33
N2 15.58 10.751 17.117 16.860 14.89
F2 15.7 10.066 18.510 17.983 14.96
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CO2 13.78 9.4994 15.372 15.793 13.25
Na2 4.89 3.0970 4.9537 4.9602 4.83
P2 10.53 7.3928 10.855 10.632 10.21

Cl2 11.48 7.8308 12.834 12.579 11.1
NaCl 9.2 5.4222 10.068 10.287 8.1
SO2 12.35 8.4792 14.404 14.519 11.82

Table 7.6: Calculated negative HOMO energy (−ϵHOMO) (in eV) of 24 molecules
against the experimental ionization potential (IP). The calculations
of SCAN and SIC-SCAN are done in FHI-aims using tight tier-1 NAO
basis set. The SIC-SCAN calculations using real and complex SIC
orbitals are marked as SIC-SCAN(real) and SIC-SCAN(complex), re-
spectively. Geometries are taken from the G2-1 test set [102]. The
calculated GW results are taken from Ref. [176]. The experimental
IPs are taken from Ref. [77].

7.8 Data : Hydrogen-Transfer Reactions
We examined all hydrogen-transfer reactions included in the BH76 [123, 124,
195] test set with the SIC-SCAN method. The results are shown in Table 7.7.

Reaction Ref. SCAN SIC-SCAN
H + N2O −−→ OH + N2 Vf 17.7 9.3593 17.0142

Vb 82.6 64.4961 102.246
H + HF −−→ HF + H Vf 42.1 29.1821 49.5751

Vb 42.1 29.1821 49.5751
H + HCl −−→ HCl + H Vf 17.8 9.2535 17.6535

Vb 17.8 9.2535 17.6535
H + CH3F −−→ HF + CH3 Vf 30.5 20.2660 38.6226

Vb 56.9 47.0115 59.7744
H + F2 −−→ HF + F Vf 1.5 11.2299 -4.9326

Vb 104.8 89.1248 102.978
H + N2 −−→ HN2 Vf 14.6 4.2386 10.2319

Vb 10.9 9.7294 17.8880
H + CO −−→ HCO Vf 3.2 -3.7977 -0.3135

Vb 22.8 24.3449 27.5432
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H + C2H4 −−→ C2H5 Vf 2 -4.5371 -2.8421
Vb 42 43.1095 46.8258

H + HCl −−→ H2 + Cl Vf 6.1 -1.3678 3.82873
Vb 8 -0.0006 6.35705

OH + H2 −−→ H2O + H Vf 5.2 -2.2772 7.36300
Vb 21.6 11.1609 13.2525

CH3 + H2 −−→ CH4 + H Vf 11.9 7.1925 8.34285
Vb 15 6.8811 11.9220

H + H2 −−→ H H2 Vf 9.7 2.3180 6.85034
Vb 9.7 2.3180 6.85034

F + H2 −−→ HF + H Vf 1.6 -7.5273 2.95872
Vb 33.8 21.8723 19.2582

H + PH3 −−→ H2 + PH2 Vf 2.9 -3.0964 1.64202
Vb 24.7 19.0854 22.0598

H + OH −−→ H2 + O Vf 10.9 3.0086 10.8601
Vb 13.2 1.7343 15.0209

H + H2S −−→ H2 + HS Vf 3.9 -2.6232 2.13884
Vb 17.2 10.9347 15.5090

Table 7.7: Comparison of the barrier heights (in kcal/mol) of the hydrogen-
transfer reactions in the BH76 test set [123, 124, 195]. Vf is the
forward reaction barrier height, and Vb is the backward reaction bar-
rier height. The calculations of SCAN and SIC-SCAN are done in
FHI-aims using tight tier-1 NAO basis set. The complex SIC or-
bitals are used in the SIC-SCAN calculations. The geometries and
Weizmann-1 (W1) results are taken from Ref. [123]. (1 kcal/mol =
0.0434 eV)
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