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Abstract

Nanoparticles, exhibiting functionally relevant structural heterogeneity, are at the

forefront of cutting-edge research. Now, high-throughput single-particle imaging (SPI)

with x-ray free-electron lasers (XFELs) creates unprecedented opportunities for recov-

ering the shape distributions of millions of particles that exhibit functionally relevant

structural heterogeneity. To realize this potential, three challenges have to be overcome:

(1) simultaneous parametrization of structural variability in real and reciprocal spaces;

(2) efficiently inferring the latent parameters of each SPI measurement; (3) scaling up

comparisons between 105 structural models and 106 XFEL-SPI measurements. Here, we

describe how we overcame these three challenges to resolve the non-equilibrium shape

distributions within millions of gold nanoparticles imaged at the European XFEL. These

shape distributions allowed us to quantify the degree of asymmetry in these particles,

discover a relatively stable ‘shape envelope’ amongst nanoparticles, discern finite-size

effects related to shape-controlling surfactants, and extrapolate nanoparticles’ shapes

to their idealized thermodynamic limit. Ultimately, these demonstrations show that

XFEL SPI can help transform nanoparticle shape characterization from anecdotally

interesting to statistically meaningful.

Keywords

XFEL, Gold Nanoparticle, Monte Carlo, Structural heterogeneity, High-throughput single-

particle imaging

Colloidal, solid-state nanoparticles have properties defined by their size and shape, mak-

ing them attractive for applications ranging from the broad field of photonics and electronics

to catalysis.1–3 In the case of catalysis, for example, the nanoparticle’s catalytic activity

strongly depends on its size and its exposed facets, which have a strong correlation with

the shape.4,5 Hence, understanding and controlling nanoparticles’ structural variations is an
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important aspect of synthesis.6 Commonly used post-synthesis characterization techniques

(like UV-VIS,7 small angle x-ray scattering (SAXS)8), however, mostly measure the mean

of and standard deviation of the size of nanoparticles.

To directly resolve shape variations among nanoparticles, however, requires imaging many

nanoparticles individually, for example, using scanning or transmission electron microscopy

(SEM or TEM).9,10 Tomography is sometimes used, but is time-consuming and hence limited

to a few nanoparticles.11 Nevertheless, electron microscopy-based characterization typically

numbers in the hundreds (e.g., 300-500 particles10). Furthermore, for larger nanoparticles,

multiple scattering limits such three-dimensional (3D) shape characterization. As such, shape

characterization by SEM remains largely two-dimensional (2D). Furthermore, characteriza-

tion by SEM and TEM suffer from orientation bias12 since the nanoparticles are arrested on

substrates for imaging.

In contrast, high-throughput single-particle imaging with intense, ultrafast, x-ray free

electron lasers (XFELs)13 can fundamentally transform how we characterize nanoparticles.

Single particle imaging (SPI) at the European XFEL can interrogate millions of nanoparticles

in a few hours.14 Compared to electron microscopy, XFEL SPI is less limited by multiple

scattering. Hence, XFEL diffraction patterns of single nanoparticles closely correspond to

Ewald sphere sections of the particles’ Fourier volume, which in turn allows the matching

of 3D structure to single-particle 2D diffraction patterns.15 Furthermore, nanoparticles are

injected at different random orientations into the XFEL interaction region, thus avoiding

the orientation bias when imaging substrate-bound nanoparticles.

Resolving the 3D shape variations among a million nanoparticles can uncover statisti-

cally meaningful insights about nanoparticles’ non-equilibrium synthesis pathways. Lurking

within this opportunity, however, is a formidable statistical learning challenge: to infer the

hidden parameters of the measurement of each nanoparticle, such as orientation, incident

photon fluence, structural class, complex phases missing from the diffraction intensities. This

problem is typically tackled by two types of approaches.
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The first approach induces a family of statistically likely 3D structures de novo from large

numbers of SPI patterns. Each measurement’s hidden parameters are iteratively co-refined

together with these induced 3D structures. This approach uses only prior knowledge from ba-

sic scattering physics (e.g., weak phase approximation, shot-noise limited images, etc). Some

examples in this class extend the expand-maximize-compress algorithm (EMC),16–19 to mul-

tiple structural models.14,20 Notably, this approach recovers an over-sampled 3D diffraction

volume of each 3D structure from which its corresponding real-space electron density map

is recovered using computational phase retrieval.21 However, the number of candidate 3D

structures recoverable is limited (≲ 100) by the computational memory needed to store

them.22

The second approach to learning each pattern’s hidden parameters uses diffraction tem-

plate matching, which draws heavily on structural prior knowledge about the samples. Tem-

plate diffraction patterns, typically created from a pool of idealized models, are used to

match and classify experimentally measured SPI patterns. This approach does not gen-

erally require phase retrieval because each template is associated with a particular real-

space model. Template-matching approaches were used to study variations among XFEL

pulses23,24 and recover the histogram of sizes in > 10, 000 organelles by assuming their pro-

tein shells are spheroids.25 Atsushi Tokuhisa et al. proposed a template matching method

for biomolecules15 using diffraction templates generated from 3D structures in molecular dy-

namics simulations. However, just like the first approach, the space of possible conformations

if non-parametric is again limited by memory and compute requirements.

Here, we show how particles’ shape variations (beyond the mere radius of gyration) can

be simultaneously and efficiently parameterized in both real and reciprocal spaces. This

simultaneous parametrization allows us to efficiently infer the latent parameters (including

complex phases) of the individual SPI patterns given a pool of 3D structures. More im-

portantly, this parametrization allows a principled and efficient approach to proposing and

evaluating upwards of 105 candidate 3D structures de novo.
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The recovered distribution of shapes (and sizes) of the millions of gold nanoparticles (two

ensembles with edge lengths of approximately 30 nm and 40 nm, respectively14) is telling.

We quantified the degree of asymmetry in each nanoparticle from the distribution of their

(111) and (100) facet areas. We also discovered a relatively stable ‘shape envelope’ in two

different ensembles of nanoparticles. Since both ensembles were extracted at different times

in a common crystal growth trajectory, we could extrapolate their particle shapes to large

crystals in the thermodynamic limit. Furthermore, we found hints of finite-size effects related

to the surfactant used to control the nanoparticles’ shape. These studies demonstrate the

potential of XFEL for studying nonequilibrium systems that are difficult to image directly

by conventional means or too heavy for molecular dynamics simulation.

Results and Discussion

Synthesis and measurements of nanoparticle ensembles.

Two ensembles of truncated octahedral gold nanoparticles were synthesized using the pro-

tocols described elsewhere.5,26 We used a solution comprising HAuCl4 as the precursor and

poly (diallyldimethylammonium) chloride (PDDA) as a surfactant. This mixture was intro-

duced into a round-bottom flask containing 1,5-pentanediol (PD) solution and refluxed in an

oil bath at a temperature maintained at up to 225 ◦C. Two ensembles of nanoparticles were

created by quenching this mixture in a room-temperature water bath after approximately

4min (for sample oct30) or 7.5min (for sample oct40) of reaction time. Following quenching,

the resulting crude nanoparticle mixture underwent thorough purification to eliminate excess

ligands. This purification involved sequential centrifugation steps in acetone and water. The

resulting nanoparticle pellet was re-suspended in ultra-pure water, which is used for subse-

quent XFEL imaging. Using scanning electron microscopy (SEM) (fig. 4) on small batches

of the nanoparticles from these two ensembles, we determined their nominal average widths

as 30 nm (oct30) and 40 nm (oct40).
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The samples were injected by an electrospray injector and focussed with an aerodynamic

lens stack into the stream of XFEL pulses at the European XFEL (EuXFEL), as described

in Ayyer et al.14 Due to the high pulse repetition rates of the EuXFEL, approximately 105

and 65 diffractions of single particles were accumulated per second to comprise the oct30 and

oct40 datasets respectively. Millions of such XFEL measurements were used to reconstruct

two average 3D structures, each representing either the oct30 or oct40 ensembles.14 The

widths of these two average 3D structures (for oct30 and oct40 respectively) were 35 nm and

40 nm; the longest edge lengths of their (111) facets were 20 nm and 27 nm.

Two-dimensional (2D) in-silico classification14 filtered out empty shots, multiple-particle

shots, and diffraction patterns likely belonging to non-octahedral nanoparticles in both oct30

and oct40 ensembles. After post filtration, 1 287 570 and 823 202 patterns remained in the

oct30 and oct40 datasets respectively.

Parametrizing structural variations

Earlier analyses of the large oct30 and oct40 datasets showed14 noticeable structural varia-

tions amongst truncated octahedral nanoparticles, which led to the averaged 3-dimensional

models showing ‘rounded’ (100) facets. Our goal here is to characterize these variations in a

statistically robust and meaningful way.

The space of nanoparticle structural variations, which is resolvable by our experiment,

lives in a 105-dimensional space (see Methods Section Degrees of freedom in nanoparticles’

structure). However, we seek only the posterior distribution of their first-order distortions

from the average truncated octahedron. Such distortions can be efficiently parameterized

with a simpler 42-dimensional free-facet truncated octahedron (FFTO) model, which consists

of the vertex positions of 14 facets of a truncated octahedron (fig. 2(b)).

We used a weighted Monte Carlo importance sampling scheme to sample the oct30 and

oct40 ensembles’ posterior distribution in the 42-dimensional FFTO space. We then pa-

rameterized the dominant structural variations within these posterior distributions, which
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allowed us to infer the nanoparticles’ synthesis conditions directly.

Posterior estimation using Monte Carlo importance sampling

Exhaustively resolving the posterior probability of a nanoparticle’s structure in a 42-dimensional

FFTO is computationally prohibitive. In a naive approach, this would involve comparing

each diffraction pattern against a large number of possible 3-dimensional models that densely

cover this 42-dimensional space. Each comparison, in turn, requires checking the most likely

orientation in which each pattern could arise within each model. Instead, we know these

structures stay close to a truncated octahedron,14 making the vast majority of these models

in the FFTO space unlikely or, equivalently, unimportant in this analysis. Hence, a much

smaller and non-uniformly spaced pool of FFTO models can capture the most important

nanoparticle structures.

To estimate the posterior distribution of likely structures, we seek a pool of FFTO models,

M = {ρ1, ρ2, . . . }, that efficiently sample the posterior space (see fig. 1(a)). To paraphrase,

this pool should encompass the set of FFTO models that are most likely to produce the

experimentally measured oct30 and oct40 diffraction patterns, K = {K1, K2, . . . }.

We use a weighted Monte Carlo (MC) importance sampling scheme to efficiently accu-

mulate this pool of models (fig. 1(b)). This MC model pool starts with an initial model

that is randomly perturbed from the average 3D structure, which is approximated from the

single-model reconstruction result of the whole dataset. New models in the FFTO space

are iteratively added to this pool in three steps: (1) select a weighted random model from

the existing model pool; (2) perturb this selected model; (3) add the perturbed model to

the pool and update all the models’ weights. For this MC scheme to sufficiently sample the

FFTO space, it needs to explore the space of less likely models. We do this by penalizing

excessive selections of the most likely models in the pool. Hence, the weights used to select

random models in the first step depend on the ratio between the following two quantities:

the percentage of diffraction patterns that are likely due to each model in the pool as defined
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by eq. (5) and shown as numerators in fig. 1(b); and the number of times each model was

selected for perturbation in step 2, which starts at 1 for each added model, and shown as

denominators in fig. 1(b). The numerator ensures that we explore the neighbourhood around

likely models, while the denominator favors selecting less frequently visited models.

With this pool of models, we can evaluate the posterior probability of various nanoparticle

features ν (e.g., length, shape, volume, asymmetry, etc) given the diffraction measurements

of the oct30 and oct40 ensembles (K). This probability is similar to a weighted voting

scheme: each model in the pool (ρi) casts a vote for a particular feature, and this vote is

weighted by that model’s posterior probability given all measurements. This leads to the

posterior estimates in eqs. (1) and (4), which we derive in the Methods section.

We demonstrate this framework on an artificial ensemble of flexible particles. Each par-

ticle consists of four identical balls that are sequentially attached (fig. 1(c)). Each particle’s

structure is described by three angles defined in their body axes (bond angles α, and β;

dihedral angle γ). All possible particle structures are confined to a ground truth linear tra-

jectory (black line in fig. 1(c)). Since the four balls in each particle are identical, swapping

the first and last balls, which also swaps α and β, yields identical diffraction patterns. This

leads to a duplicate of the ground truth trajectory in (α, β, and γ) space. From 100 000

diffraction patterns of randomly rotated particles with random structures along this ground

truth trajectory, we correctly reconstructed the posterior distribution of structures shown in

red in fig. 1(d). Details about this artificial ensemble are discussed in the Methods section.

Validating our estimated posterior distribution is important, especially when the raw data

is sparse and incomplete. Since we did not have the ground truth posterior for the oct30

and oct40 datasets for validation, we checked that our estimated posterior has converged

and is self-consistent. Briefly, we used the reconstructed model pools as a ‘proxy’ to the

ground truth to generate random test diffraction patterns. These generated test patterns

were then used to accumulate a second pool of models, which were compared to the ground

truth ‘proxy’ for repeatability. Details are described in Methods.
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Figure 1: (a) Framework to estimate the structural posterior distribution of particles from
their experimental measurements (i.e., diffraction patterns). (b) The weighted Monte Carlo
importance sampling scheme, which includes model selection (red numbers), perturbation
(red arrows), and weights updating. (c) Rotational degrees of freedom (α, β, γ) in our artifi-
cial ensemble of nanoparticles, each as a 4-ball chain. (d) Posterior distribution of ensemble
in (c) using our Monte Carlo scheme in (a). The ground truth structural trajectory is shown
with the twin black lines from which diffraction patterns are randomly generated. The pool
of Monte Carlo models is rendered in a semi-transparent point cloud, where higher red in-
tensity indicates models with higher data likelihood given the diffraction patterns.
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Dominant structural modes in nanoparticle ensembles

Our weighted Monte Carlo importance sampling of the nanoparticles’ posterior distribution

yielded a pool of FFTO models representing the most probable nanoparticle structures in

our oct30 and oct40 diffraction datasets. However, each FFTO model is described by a

42-element vector, which still has far too many dimensions for us to visualize.

Fortunately, these 42 numbers are not mutually independent, as they can describe the

same nanoparticle structure but at a different orientation and/or translation. Hence, dimen-

sionality reduction should be possible. To accomplish this, we mapped each FFTO model

into a facet-area representation, which consists of an ordered list of the areas of each model’s

14 facets. In this representation, the areas of the (100) direction facets are indexed from 0

to 5, and those of the (111) direction facets are indexed from 6 to 13 (fig. 2(a)). This set

of facet-areas is not only invariant under rotations and translations but is also conveniently

related to each model’s surface free energy.6

To simplify our analysis of the estimated posterior, we ‘hard-assigned’ each diffraction

pattern K only to its most probable model in the Monte Carlo FFTO model pool. Each

time an FFTO model is deemed most likely for a pattern, we projected this FFTO model

into its 14-dimensional facet-area feature space and then appended this facet-area model to

a growing list. Since an FFTO model might be deemed most likely by multiple diffraction

patterns, this model’s facet-area features might appear multiple times within this list. For

brevity, we will refer to this list of features as the facet-area point cloud, or equivalently, the

|K| × 14 matrix X.

Due to the octahedral symmetry of our models, the order of these 14 numbers in a facet-

area feature can be changed by applying any rotation operation within this symmetry group.

This redundancy is eliminated (details in Methods section) since we are not interested in

orientational differences amongst nanoparticles.

The primary structural variations manifest in this facet-area point cloud (Xoct30 or

Xoct40), which has been reduced in symmetry, are examined using principal components
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Figure 2: Quantifying the dominant modes of variation in nanoparticle ensembles (a) Princi-
pal Component Analysis (PCA) was applied to the facet-area features of three nanoparticle
ensembles: oct30, oct40, and a randomly generated synthetic one. The PCA modes of these
features are shown as rows of the matrices (middle block, linear color scale from blues to
reds as negative to positive); these modes (i.e., rows) are sorted by their explained variance
ratio (left block). In the right block, we see the corresponding net plots of the two most
dominant PCA modes of each ensemble, where the facets are colored according to the modal
variations. The facet indices of the PCA mode columns are laid out on the bottom net plot.
(b) The coordinate system for our FFTO models, where the total areas of the (111) and
(100) facets, denoted as S111 and S100, are shown in orange and blue respectively. (c) The
facet-area features of oct30 and oct40 are projected onto the S111-S100 subspace. (d) The
distribution of the S111/S100 area ratio for oct30 and oct40 demonstrates that the former
experiences a more significant truncation along the (100) directions.
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analysis (PCA) (fig. 2(a)). To do this, we decomposed X into 14 modes, sorted by their

explained variances. Modes with higher explained variance describe more frequent structural

variations. We color the modes of these facet-area variations in fig. 2(a) for both Xoct30 and

Xoct40. For comparison, we include an ensemble of randomly perturbed truncated octahedra

Xrand with 10 000 points. Each point was perturbed from an average canonical FFTO model

whose facets are aligned perfectly along the (111) or (100) directions. The first two PCA

modes of Xoct30, Xoct40, and Xrand are colored in the same manner in their accompanying

polyhedral net plot.

These dominant facet-area PCA variations reveal that the surface energy densities of the

nanoparticles’ (111) and (100) facets are distinct. More than 80% of the facet-area variations

of the millions of nanoparticles in Xoct30 and Xoct40 can be explained by their respective first

two PCA modes. The most dominant PCA mode shows that the (111) facet-areas tend to

be correlated, while the next mode shows similar correlations amongst the (100) facet-areas.

This correlation is notably absent in Xrand, where no constraints were imposed on the ratios

amongst the surface energy densities of different facets. The correlations within the first two

modes can be explained by the fact that the free energy of a nanoparticle includes the terms

γ111S111 and γ100S100, where γ and S denote the surface energy densities and total areas of

the subscripted facets. Our observed correlations are hence consistent with expectation that

γ111 and γ100 are different for these octahedral nanoparticles.5,26

Relatedly, the variations in the (111) facet areas are approximately four times higher

than those of (100) facets. This indicates that much of the changes in the surface area of

oct30 and oct40 nanoparticles still lie on their (111) facets.

The third-ranked dominant PCA modes of Xoct30 and Xoct40 in fig. 2(a) are similar, but

likely due to random fluctuations since they resemble the top-ranked mode for Xrand. The

alternating signature of this mode is largely due to eliminating symmetries in these features,

which was also performed on Xrand.

These observations quantify the degree to which each nanoparticle’s structural variations
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are highly correlated to the areas of their (111) and (100) facets. Furthermore, since the

areas of the (111) and (100) facets are separately correlated, these variations can be further

reduced to just the two-dimensional space of S111 vs S100 (the sum of the (111) and (100)

facet-areas respectively). We project the posterior distributions for Xoct30 and Xoct40 into

the S111-S100 subspace in fig. 2(c).

Finally, the S100/S111 ratio of each FFTO model is proportional to the extent of truncation

along the (100) octahedral facet, where smaller ratios indicate less truncation. By projecting

the posterior distribution into the S100/S111 subspace in fig. 2(d), we see that the oct40 is less

truncated than the oct30 ensemble. In the size range of our experiment (30 nm to 50 nm),

smaller particles exhibit a tendency towards being more spherical. A similar behavior was

observed in decahedral multiply twinned gold NPs.27

Evidence of non-equilibrium growth from posterior distributions

The PCA of the posterior distributions in fig. 2 show that the first-order structural variations

in either oct30 or oct40 can be further reduced to features associated with either each

nanoparticle’s (111) facets or those with their (100) facets. Here are two possible feature

pairs that can be physically interpreted. The first pair we chose is (h100, h111): the average

distances of its (100) and (111) facets from each nanoparticle’s origin respectively. These

distances are key parameters in the Wulff construction used to describe the equilibrium

shapes of crystals. The second pair of features is (Lshort, Llong), which are the average lengths

of two types of edges: twenty-four shorter edges of (100) facets (blue edges in fig. 2(b)), and

the remaining twelve longer edges (orange edges in fig. 2(b)) respectively.

We can gain valuable insights into the overall growth trajectory of both nanoparticle en-

sembles by extrapolating from and interpolating between the (h100, h111) features of the oct30

and oct40 ensembles (fig. 3(b)). According to the Gibbs-Wulff theorem, when a constant

volume crystal attains its equilibrium shape, the ratio R = h100/h111 equals the ratio between

the surface tensions of its (100) and (111) facets, denoted as γ100/γ111. In our specific case,
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Figure 3: Signs of non-equilibrium growth in truncated octahedra. (a) A truncated oc-
tahedron (black edges) shown with the oct30 and oct40 octahedral envelopes (green and
pink dashed lines). The distances of the h100 vertices in the oct30 and oct40 envelopes are
26.4 nm and 32.8 nm respectively. The average longest edge lengths of the oct30 and oct40
(111) facets are 21.4 nm and 28.4 nm respectively. (b) The posterior distributions of h111

vs h100 for oct30 and oct40 denote the average distances between the origin and the (111)
and (100) facets respectively. Gray lines show the (h111, h100) relationship for an equilibrium
regular octahedron and a regular truncated octahedron. Blue dotted line interpolates be-
tween the oct30 and oct40 posterior distributions (fit function as plot title). (c) Frequency
histogram of R = h111/h100 projected from (b), annotated with the ratios of a regular trun-
cated octahedron (0.577) and an octahedron (0.870). (d) The distributions of the average
lengths of the shorter and longer edges of the truncated octahedra in oct30 and oct40 (Llong

vs Lshort), each fitted to a line. Both lines fit for −0.5 slope, indicating most nanoparticles
are constrained to an octahedral envelope of edge length (i.e., Llong + 2Lshort) of 26.4 nm
(oct30), or 32.8 nm (oct40). (e) The frequency-distribution of the envelopes’ edge length,
Llong + 2Lshort, show ≤3 nm FWHM deviation in both oct30 and oct40.
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density functional theory28 predicts that R0 = 1.27. Additionally, the ideal (untruncated)

octahedron and regular truncated octahedron exhibit R values of
√
3 and

√
4/3, respectively.

In fig. 3(b), the posterior distributions of oct30 and oct40, when projected to the (h100, h111)

subspace, fit the dashed blue line given by h111 = 0.584h100 + 3.345. Since the only differ-

ence between the synthesis of the oct30 and oct40 ensembles is their reaction times,14,26 we

assume that these two ensembles are two “snapshots” of the same crystal growth trajectory

connected by this fitted blue line.

If we extrapolate this fitted growth trajectory forward in time, assuming the nanocrystals

could grow towards their thermodynamic limit (i.e., h100 → ∞)30 it would approach the facet

displacement ratio of R = h100/h111 → 1.71. This ratio is smaller than R =
√
3 ≈ 1.73 of a

regular (untruncated) octahedron. This trend suggests that larger crystals beyond those in

oct40 will always exhibit some truncation on their (100) facets. This is consistent with the

larger octahedra synthesized by Lu et al. that show ‘rounded’ (100) facets.26 Extrapolating

this growth trajectory backward in time, it intersects the regular truncated octahedra ratio

of R =
√

4
3
≈ 1.15 when h100 is around 11 nm, where the particles are most spherically

symmetric.

Both nanoparticle ensembles in fig. 3(c) deviate significantly from the reference R0. The

oct40 ensemble (= 1.42) deviates more prominently than the oct30 ensemble (= 1.34).

This deviation can be attributed to the synthesis process of these nanocrystals, wherein the

cationic surfactant PDDA was employed to inhibit the growth of (111) facets. The presence

of adsorbed PDDA molecules impedes the contact between the crystal facets and free gold

atoms in the solution. It preferentially attaches to the (111) facets rather than the (100)

facets, this results in an increased value of the sample’s R = h100/h111 compared to the R0.

In the Methods section, we propose a phenomenological model that shows how the ad-

sorption efficiency of PDDA might change as the nanocrystals grow due to finite-area effects.

Consider how each PDDA polymer (about 400 kDa to 500 kDa) is a linear molecule that spans

several nanometers, which is comparable to the sizes of small nanocrystals. We assume that
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at our elevated nanocrystal growth temperatures, each PDDA polymer must be securely ad-

sorbed onto a crystal facet via a minimum number of van der Waals contacts, Nmin. Hence,

the attachment of an incoming PDDA polymer to a crystal facet will be frustrated by ad-

sorbed PDDA that occupy possible attachment sites (fig. 8(a)). When the area of a facet

that is covered by randomly adsorbed PDDA polymers reaches a critical fraction, the average

number of contiguous attachment sites available to an incoming PDDA molecule falls below

Nmin. Consequently, the attachment rate of new PDDA molecules slows dramatically due

to frustrated attachment. Our simple model shows that this critical area fraction is reached

sooner for smaller facet areas due to the size of randomly adsorbed PDDA. Conversely, this

finite-area effect will become unimportant when the crystals are much larger than the average

size of the PDDA molecule.

The finite-area effect mentioned in the previous paragraph suppresses both γ100 and γ111.

Recall that the Gibbs-Wulff theorem states that in an ideal crystal of constant volume at

equilibrium, γ ∝ h. Since R = h100/h111 = γ100/γ111, one might expect R to be constant for

such idealized nanocrystals. However, as shown in fig. 2(c), we observe that the area of the

(111) facets expands relative to the (100) facets as the crystals grow from oct30 to oct40.

Therefore, the finite-area effect suppresses γ111 less than γ100 in oct40 compared to oct30.

This leads to R increasing in fig. 3(c) from oct30 to oct40.

The posterior distributions of oct30 and oct40 in the (Lshort, Llong) subspace of fig. 3(d)

show a linear trend with a −1
2

slope, which means Llong + 2Lshort is close to a constant.

From fig. 3(a) we see that Llong + 2Lshort is the edge length of the enveloping octahedron.

Hence, the distribution in fig. 3(d) for the millions of nanoparticles reveals two notable

insights: a separate octahedral envelope that encompasses the structural variations within

each ensemble; and the relative truncation of the (100) facets within this envelope decreases

from oct30 to oct40.

The edge lengths of the enveloping octahedra for oct30 and oct40 are calculated from

linear fits to their projected posterior distributions in fig. 3(d). Consistent with the explained
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variance ratios of the PCA in fig. 2(a), the nanoparticles’ shape variations within oct30 or

oct40 are largely due to different extents of (100) facet truncations within each ensemble’s

octahedral envelope. The h(100) distances of oct30 and oct40 octahedral envelopes increased

from 26.4 nm to 32.8 nm (fig. 3(a)) respectively, while their corresponding edge lengths in-

creased from 37.3 nm to 46.4 nm (fig. 3(e)). Notably, the average longest edge lengths of the

(111) facets for oct30 and oct40 in fig. 3(a) are 21.3(28) nm and 28.4(33) nm respectively.

These lengths overlap with those from the average 3-dimensional models reconstructed in

Ayyer et al.14 (see Section on Synthesis and measurements of nanoparticle ensembles).

Conclusions

Megahertz XFEL sources offer tremendous potential for inferring properties of particle en-

sembles numbering in the millions. The posterior distributions of these large ensembles of

nanoparticles detail their structural dynamics and interactions. However, estimating these

distributions is a computationally expensive and data-intensive endeavour.

This paper describes a scalable Monte Carlo importance-sampling framework to robustly

estimate the posterior distribution of structural variations amongst very large numbers of

single nanoparticles. By explicitly parameterizing these structures in the free-facet truncated

octahedra (FFTO) space, we were able to avoid ambiguous features that often arise in

prior-free induced ‘manifolds’ on XFEL datasets. Additionally, we also propose methods to

validate the consistency of the recovered posterior distributions that circumvent the issues

with Fourier Shell Correlation which is typically used in XFEL single particle imaging.31

Our manuscript also details practical implementation strategies to accelerate this impor-

tance sampling for millions of noisy and incomplete single-particle XFEL diffraction patterns.

This includes an analytical approach to directly compute the diffraction pattern from poly-

hedra that can be efficiently implemented on GPGPUs (Supplementary). These strategies

allow us to infer structural heterogeneity from datasets that are at least two orders of mag-
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nitude larger than what was previously attempted for single-particle XFEL imaging.

We interpreted such uncommonly high-dimensional posterior distributions using PCA,

which showed that the structural variations within our truncated octahedra ensembles can be

described by two independent degrees of freedom. By picking different projections of these

two degrees of freedom, we inferred key signatures of non-equilibrium growth dynamics of

nanocrystal growth, which led us to hypothesize a finite-area effect that might drive these

dynamics away from equilibrium.

Our work shows a scalable statistical learning path to posterior estimation on massive

datasets in high-throughput XFEL facilities worldwide. More broadly, it illuminates a similar

path for data-driven heterogeneity mapping in single particle imaging, including cryo-electron

microscopy. The four-ball model example in our manuscript shows that our framework also

works for flexible particle chains (e.g., polymers, polypetides, etc). Here, efficiently parame-

terizing an object’s structure is critical. Since the free-energy landscape of biomolecules can

be embedded in a low-dimensional surface,32 a low-dimensional parameterization of their

structures might be possible. Ultimately, we have both the datasets and statistical learn-

ing tools for an unprecedented window into the hidden and chaotic world of nanoparticle

dynamics.
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Methods

Degrees of freedom in nanoparticles’ structure

Upon inspecting the 2D class averages of oct40 nanoparticles (fig. 5), it is observed that most

diffraction patterns are characterized by approximately 12-15 radial resolution elements, as

defined by Loh and Elser.16 Consequently, the electron density maps of each nanoparticle

can be represented by a 3D grid containing approximately 105 resolution elements, calculated

from ∼ (2 × 15 + 1)3. Although it is possible to determine the modal structures20 of our

nanoparticle ensemble in this 105-dimensional space, efficiency can be significantly enhanced

with prior knowledge about these variations.

Data likelihood model

Our aim is to infer the posterior distribution p(ρ |K), representing the structural conforma-

tions (ρs) within an ensemble, using collected diffraction patterns (K). However, directly

applying Bayes’ theorem, p(ρ |K)p(K) = p(K | ρ)p(ρ), to estimate p(ρ |K) is not feasible

due to the imprecision in defining both terms on the right-hand side. Conformation ρ is

conceptualized as a function that assigns electron densities to points in real space, indicat-

ing that ρ’s domain is infinitely dimensional. Defining p(ρ) on such domain is a significant

challenge. Furthermore, since observed patterns are derived from different instances of ρ, for

any specific pair of K and ρ, p(K | ρ) is likely to be zero. This leads to p(K | ρ) frequently

approaching zero, causing the formula to be ill-defined and computationally unstable.
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Instead of studying the full dataset, we should focus on a single pattern. In the context

of a specific pattern pattern K and a particular feature ν, the posterior probability, p(ν |K),

essentially quantifies how much K is distributed or “voted” to a ν. Then the averaged p(ν |K)

over K ∈ K, p(ν |K) ≡
〈
p(ν |K)

〉
K∈K, gives us an overall posterior estimation over a whole

ensemble.

According to Bayes’ theorem:

p(ν |K)p(K) = p(K | ν)p(ν) . (1)

To make progress here, we will need an uninformative-prior assumption about the feature

space: p(ν) is a constant. In addition, the value of p(K | ν) is approximated by p(K | ν;M) ≡∑
ρ∈M p(K | ρ)p(ρ | ν). Assuming the uninformative prior, p(ρ | ν) = 1/Nν,M, where Nν,M is

the number models in M having feature ν. The definition of p(K | ρ) will be discussed later

in eq. (5). To summarize the discussion above with formulae, we have

p(ν |K) ≈ p(ν |K;M)

∝ p(K | ν;M)

=
∑
ρ∈M

p(K | ρ)p(ρ | ν) ,

(2)

and

p(ν |K;M) ≡ 1

|K|
D(ν |K;M) , (3)

where

D(ν |K;M) ≡
∑
K∈K

p(ν |K) . (4)

It is worth to notice that
∑

ν∈V D(ν |K;M) = |K|.

In XFEL-SPI, numerous far-field diffraction patterns (K) are captured, each originating

from a distinct particle in the ensemble illuminated by a single x-ray pulse. Occasionally,

multiple particles may diffract from a single pulse, but this is predominantly filtered out in
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silico (as explained below). Disregarding background and inelastic scattering, these patterns

represent the far-field diffraction resulting from the phase shift induced on the x-ray pulses

by a particle’s two-dimensional (2D) projected scattering potential. The orientation of each

particle is unmeasured and has to be inferred.16 Due to the photon limitation, these patterns

essentially represent the Poisson-sampled Ewald sphere tomograms of the target particle’s

three-dimensional (3D) diffraction intensity W . This diffraction intensity varies linearly

with the unmeasured local fluence of the XFEL pulse that illuminated each particle. Taken

together, the likelihood19 of measuring a particular pattern K given a tomogram WQ of the

particle presented at orientation Q is

p(K |Q,W, ϕ) =
∏

t∈detector

e−ϕKWQt
(
ϕKWQt

)Kt

Kt!
, (5)

where t indexes the detector’s pixels, and ϕK is the local fluence rescaling factor for K.17

For a weakly scattering particle ρ, its diffraction intensities W are the squared modulus

of the Fourier transform of the particle’s real-space electron density distribution ρ(r), which

is represented as W (q) =
∣∣∣Fr→q[ρ(r)]

∣∣∣2. Thus, the likelihood of measuring a pattern K given

an electron density ρ is

p(K | ρ) ≡ p(K |W ) =

∫
dϕK

∑
Q∈Q

p(K |Q,W, ϕK) p(Q)p(ϕK) , (6)

where Q is the set of orientations in SO(3) space considered for particle ρ. The likelihood

p(K | ρ) here estimates how well each pattern K is matched to our Monte Carlo model ρ.

To simplify eq. (6), we once more apply the uninformative prior but this time on orienta-

tions: that the aerosolized particles do not have any orientation bias when injected into the

path of the x-ray pulses (i.e. p(Q) is a constant). Following this, we need to determine the

most probable fluence rescaling factor for each pattern, ϕK , as it has been demonstrated to

be vital for accurate multiple model reconstruction.33 For this purpose, we conducted a single

model EMC reconstruction16 on each dataset K to ascertain the most probable rescaling fac-
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tor ϕ̃K for each pattern.19 Subsequently, we made the assumption that p(ϕK) = δ(ϕK − ϕ̃K).

The two assumptions outlined in this paragraph result in a streamlined version of the like-

lihood function in eq. (6), which is employed to assign weight to model importance in our

Monte Carlo scheme:

p(K | ρ) ∝
∑
Q∈Q

p(K |Q,W, ϕ̃K) . (7)

Four-ball artificial model

As shown in fig. 1(c), the artificial model consists of four identical balls with centers at 0,

a1, a1+a2, and a1+a2+a3. The diameters of these balls are of unit length. In other words,

|a1| = |a2| = |a3| = 1. We are only concerned with the model’s structure, which is described

by three degrees of freedom: α, β and γ. These are chosen as follows:

α = ⟨−a1, a2⟩,

β = ⟨−a2, a3⟩,

γ = ⟨a1 × a2, a2 × a3⟩,

where ⟨v1,v2⟩ represents the angle between vectors v1 and v2. To generate new models, we

perturb our canonical four-ball model, (α, β, γ) → (α + δ1, β + δ2, γ + δ3), where δi=1,2,3 ∈

[−0.02, 0.02] are three independent uniform random numbers. We impose an extra constraint

on the perturbed models that their individual α, β, γ cannot exceed the range [1, 2.5] ×

[1.2, 2.0]× [0, 2.0]. Perturbations that violate this constraint are discarded.

To generate the 100 000 diffraction patterns (i.e., upper black line in fig. 1(d), we first

generated an ensemble of 100 perturbed models within the constrained angular ranges in

the previous paragraph. Then 1000 diffraction patterns were generated from each perturbed

model at random 3D orientations.

In the Monte Carlo search, to average out the effect from the choice of first sampled model,
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we sampled the dataset with 12 different random initial models, resulting 12 trajectories.

The each trajectory has a length of 5000.

Strategies to accelerate Markov Chain Monte Carlo

The importance weight of each candidate model ρ is linked to the model’s data likelihood

p(K | ρ) (eq. (5)). We accelerated this calculation with the following four strategies.

First, we partitioned the Monte Carlo model searches into smaller searches performed in

parallel. Each dataset of diffraction patterns, Koct30 or Koct40, was randomly split into five

similarly-sized, non-overlapping partitions. We accumulated eight different pools of Monte

Carlo models for each partition, each containing 5000 models. Each pool was started from a

randomly perturbed version of the same average model. Eventually, we accumulated 400 000

models: 200 000 for Koct30, and 200 000 for Koct40.

Second, the determination of every single diffraction pattern’s orientation with respect

to each 3D model is performed only once – when the 3D model is first added to the model

pool. When additional models are added to this pool, we only need to rescale existing

models’ weights without comparing the latter against the diffraction data again. Overall,

the number of orientations to be determined scaled like the product of the number of models

and number of diffraction patterns.

Third, we accelerated the calculation of the likelihood p(K | ρ), which as defined in eq. (6),

compares each pattern K against tomograms of all possible orientations of each 3D FFTO

model ρ in the model pool. However, in practice, only the likelihoods of a few orientations

within each model were significant.31 Put differently, p(K | ρ) is sparse. Hence, we used

coarse orientation sampling to first identify rotational neighbourhoods near these significant

orientations. Then we increased the orientation sampling around these neighbourhoods for

each data-model pair (K and ρ).

Fourth, we employed a memory-efficient approach to compute the two-dimensional Ewald

sphere intensity section of each model ρ. A direct way to perform this job is to voxelize the
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real-space electron density of ρ, and then apply a fast Fourier transform on this. Instead,

since ρ is a polyhedron with uniform density, we can compute its Fourier transform more

accurately using a finite-element approach (see Methods). Briefly, each polyhedron is parti-

tioned into non-overlapping tetrahedra, whose separately complex-valued Fourier transforms

can be analytically computed and then coherently added together to give the Ewald sphere

section of the original polyhedron.

These four time- and memory-saving approaches were implemented across 20 parallel-

running NVIDIA GTX 1080 Ti GPUs. The 400 000 models for the Koct30 and Koct40 datasets

were accumulated in approximately 240 hours.

In silico filtration with 2D EMC

As SEM images in fig. 4 show, our synthesized particles contained shapes that did not

resemble truncated octahedra. Similar to previous analyses of this EuXFEL dataset14 , we

filtered out (in silico) some of the undesirable data heterogeneities using 2D classification via

EMC method.14 This method classifies diffraction patterns into multiple 2D models up to

an overall in-plane rotation. This effectively helps us to identify significant patterns unlikely

to arise from single truncated octahedra without having to reconstruct or compare them

against 3D models. In fig. 5, these non-conforming patterns (dark red) clusters include:

multiple-particle shots or triangular particles (cluster 1, 2 and 8), spherical patterns (cluster

2, 3, 4, 6, 11 and 27; absence of prominent streaks), and patterns with feature-less stripe

(cluster 4). To increase the concentration of truncated octahedra, 2D EMC was applied in

three rounds on the oct30 and oct40 datasets separately. After each round, non-conforming

clusters were manually identified (like these dark red clusters in fig. 5) and discarded before

the next round. Only patterns that survived all three times of filtration were used for this

paper: 1282k out of 1608k for the oct30 dataset, and 823k of 1032k for the oct40 dataset.

For reference, we show typical 2D intensity slices of an ideal truncated octahedron from

different orientations in the supplementary (fig. 9).
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100 nm

(a) oct30

(b) oct40

Figure 4: (a) and (b) represent SEM images of the oct30 and oct40 nanoparticle samples,
respectively, each exhibiting nominal average widths of 30 nm and 40 nm. It is important
to acknowledge that within the original sample, not all particles adopt an octahedral shape.
Nevertheless, these non-octahedral variants can be effectively distinguished and filtered out
through the application of the 2D EMC classification process.
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Figure 5: This is the 2D EMC classification of the raw oct40 dataset. Clusters colored with
dark red are unlikely generated from an octahedral sample, hence filtered out for study in
this paper.
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Finite-element Fourier transform
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Figure 6: (a) A polyhedral volume is divided into several smaller non-overlapping tetrahe-
dra. Each tetrahedron includes the coordinate origin (0, 0, 0) and the three vertices of its
triangulated meshes. (b) Each tetrahedra is linearly transformed to a standard trirectangu-
lar tetrahedron. (c) We can compute the complex-valued Fourier transform of each suitably
"rectangularized" tetrahedron in (b). Here we show contours of such Fourier intensities. (d)
The linear transformation from (a) to (b) is be reversed to obtain the Fourier transform of
the highlighted (in orange) tetrahedron in (a).

The finite-element Fourier transform method explicitly calculates the Fourier transform

of a uniform density polyhedral volume parameterized by its surface vertices without initially

’voxelizing’ the volume onto a grid. A ‘voxelized’ electron density is conventionally needed

to compute its 3D discrete Fourier transform (DFT), which can be readily compared with

its XFEL diffraction patterns. Here, the inter-particle variations of Llong within the oct30

ensemble measures only 2-voxels in a 3D electron density array with size 2513 according to

the Nyquist–Shannon sampling theorem.19 To minimize significant truncation errors when

describing small but measurable size/shape variations among the nanoparticles using the

voxelization approach, these volumes are typically padded with extra zeros (equivalent to

oversampling their Fourier volumes by a multiplicative factor of α).

As shown in fig. 6, due to the linearity of the Fourier transform, the Fourier transform of a

3D volume is the sum of the Fourier transforms of its constituent non-overlapping tetrahedra.

28



We derive the analytical formula for computing the Fourier transform of arbitrary tetrahedra

in the Supplementary material.

The complexity of computing Fourier transforms using this tetrahedralization method is

O(NM), where N is the number of point samples in the 3D Fourier volume and M is the

number of tetrahedra. For the truncated octahedra in this work, M = 48. Comparatively,

the computational complexity of ‘voxelizing’ then performing Fast Fourier Transform (FFT)

on each unique polyhedra scales like O(Nα log2(αN)), where α is the typical oversampling

parameter needed to overcome the truncation issue with voxelizing polyhedra (discussed

above).

Hence our tetrahedralization method will generally perform faster when M < α log2(αN).

This is true when we coarse-grain our candidate nanoparticles to polyhedra with relatively

few faces (small M) while our diffraction patterns are highly oversampled (large αN). There

are further time savings for the tetrahedralization method when we only need to compute a

fraction of the full Fourier intensities (e.g., only along a handful of Ewald sphere slices).

Free Facet Truncated Octahedron (FFTO)

The FFTO model consists of 14 facets (fig. 2(b)): six for the (100) directions, and eight for

the (111) directions. Each facet is described by a 3D vector h = (A,B,C), where (A,B,C)

is a point on the facet where the vector (A,B,C) is also normal to the facet. The plane

equation for such a facet is h · (x, y, z) = |h|2 or

Ax+By + Cz = A2 +B2 + C2. (8)

In total, 42 = 14×3 parameters are needed for each FFTO model. For the special case of

an ideal FFTO model with perfect octahedral symmetry, their facets are described by the six

cyclic permutations of (±a, 0, 0) that describe the (100) facets, plus the eight combinations

of (±b,±b,±b) for the (111) facets.
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To perturb an FFTO model, each facet, (A,B,C) is mapped to a new facet (A,B,C)+v,

where v is 3D uniform random vector within a 0.84 nm-radius ball. Each perturbation also

needs to satisfy two constraints. The first constraint is that a model has to be a convex

volume. The second constraint ensures each FFTO model stays reasonably close to the ideal

truncated octahedron. To enforce these two constraints, the closest ideal truncated octahe-

dron model (described in the previous paragraph) is found first for a given candidate FFTO

model. This closeness is defined as the Euclidean distance between the 24 corresponding

pairs of vertices between the two models. Hence, the closest ideal truncated octahedron

to a perturbed FFTO model minimizes this total distance between the two models. If the

distance between any two paired vertices between these two models is larger than 1.68 nm,

then the perturbed FFTO candidate is rejected. For the Monte Carlo importance sampling,

we will continue to perturb each FFTO model until these two constraints are satisfied.

Eliminate symmetry redundancy

Here we explain how we checked if two FFTO models are similar up to a particular per-

mutation of their facet indices. This check is used to re-order the facet indices of our pool

of models in fig. 2 to then distill model-model differences that are not due to trivial per-

mutations of each model’s facet indices. Each FFTO model is uniquely represented by an

14-element vector that detailed the areas of each FFTO model’s 14 facets. Before any new

facet-index permutation is attempted on model ρ, its 14-element area vector, Aρ, is normal-

ized to Aρ/V
2/3 where V is the model’s volume.

Rather than checking and permuting all possible pairs of models in our pool M, we aim to

to re-order each model’s facet index to have the smallest distortion from the pool’s average

area vector A = 1
|M|

∑
ρ∈M Aρ. This re-ordering is performed iteratively with two alternating

steps: in the first step we compute A given each model’s current index order; then in the

second step we re-order each model’s indices to minimize the model’s area vector from the

mean vector using argminP̂ |P̂ (Aρ)−A|2 where P̂ refers to the facet-index permutation over
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the symmetry orbit of the ideal truncated octahedra. This iterative procedure is repeated

until all re-ordering ceases and the mean vector stops changing.

Convergence of posterior estimation

We need to determine if our Markov Chain Monte Carlo (MCMC) scheme has accumulated

a sufficiently large pool of models M that adequately samples the posterior distribution over

all possible models {ρ}. Our demonstration of convergence comprises two steps. First, for

our posterior estimation to have converged, it is necessary that the distribution differences

between two iterations should be sufficiently small after convergence, or

∑
ν

∥∥p(ν |K;M(n)) · ν − p(ν |K;M(m)) · ν
∥∥ , (9)

is a sufficiently small value when m, n are sufficiently large, where m and n are iteration

numbers, M(n) is the sampled model pool at nth iteration, and some normalization, ∥ · ∥,

is used here for multiple-dimensional ν. Second, we further corroborate this convergence if

M is a self-consistent generative model. We demonstrate this self-consistency by assuming a

subset model pool M′ ∈ M as the synthetic ground truth from which a number of diffraction

data are generated K′; we then repeated our MCMC posterior estimation on K′ to obtain a

third model pool, M′′. For our posterior estimation M to have converged, it is necessary that

the posterior predictive pT (ν|K) marginalized over M, M′, and M′′ are sufficiently similar.

Figure 7(a) shows the convergence of our posterior predictive distribution p(S111, S100 |K),

where the feature pair ν = {S100, S111} are the total areas of each FFTO model’s (100) and

(111) facets respectively. In practice, as most patterns are only in favor of one model, to

speed up the calculation, we count only the best matched model for each pattern instead of

strictly following the definitions in eqs. (3) and (9). We denote the area difference between

two models, ρa and ρb, as d(ρa, ρb) = d111(ρa, ρb) + d100(ρa, ρb) =
∣∣S111(ρa)− S111(ρb)

∣∣ +∣∣S100(ρa)− S100(ρb)
∣∣. Then fig. 7(a) summarizes the change in area between the nth and
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a b

Figure 7: Validating the convergence and self-consistency of our reconstructed posterior
predictive distribution p(S111, S100 |K). (a) Convergence in the difference areas between
the most likely models in our reconstructed model pools from the n-th and (n + 200)-th
MCMC iteration. The maximum and minimum changes in areal differences averaged over
40 trajectories shown as faint color fills around the mean change (darker line). (b) Self-
consistency in our reconstructed p(S111, S100 |K). Left panel (experiment): computed from
Bayes model averaging over the pool of FFTO models M given the diffraction data K. Middle
panel (synthetic ground truth): p(S111, S100 |K) of a synthetic ground truth model ensemble
generated from a random subset of M. Right panel (reconstructed): p(S111, S100 |K) of a new
pool of models M′ reconstructed from random patterns generated by the synthetic ground
truth.
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(n + 200)th MCMC iteration as
〈
d
(
ρ
(K)
n , ρ

(K)
n+200

)〉
K∈K, where the ρ

(K)
n stands for the best

matched model for a pattern K in the model pool
{
ρ1, ρ2, . . . , ρn

}
. The colored fills in

fig. 7(a) span the largest and smallest values among all 40 trajectories (eight trajectories

for all five non-overlapping partitions of the full dataset) at each iteration. By iteration

n = 5000, the magnitude of this areal differences is about 10 nm2, which is less than 1%

compared to the total area of a particle.

In the second step of our validation, we tested for self-consistency of the MCMC model

pool M that was reconstructed from diffraction data K. From M we picked the 2000 best-

matched models of 2000 randomly selected patterns in K. These 2000 models forms a

synthetic ground truth pool of models M′. We then generated 1000 diffraction patterns from

each model in M′, denoting these patterns as K′. Each of these patterns are randomly

oriented, and rescaled from the distribution of factors recovered in the earlier single-model

EMC reconstruction of K that initialized the reconstruction of M.19 Thereafter, we used the

same MCMC procedure used to recover a third model pool M′′ from K′. Figure 7(b) shows

three posterior predictive distributions marginalized over the model pool M reconstructed

from K, the synthetic ground truth M′, and M′′ reconstructed from K′. Since we know the

ground truth models M′ for every pattern in the synthetic dataset K′, we can evaluate the

area differences, d111 and d100, between the ground truth models and reconstructed best-

matched models in M′′. The two red rectangles in fig. 7(b) mark the average difference in

d111 and d100 for the oct30 and oct40 datasets.

PDDA coverage

A simple model is proposed to show the finite size effect on PDDA coverage on crystal facet

growth at elevated temperatures (fig. 8(b)). The synthesis protocol creates different shaped

Au nanoparticles by adding PDDA polymer chains to the growth solution.5,26 Each PDDA

polymeric molecule has probability of attaching to the crystal facets only if there is sufficient

areal contact between them. In this model, we use an N ×N square lattice (the gray lattice
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Figure 8: Fractional coverage of non-overlapping PDDA molecules on a crystal facet depends
on the facet’s area. (a) The grey lattice represents a crystal facet covered by PDDA molecules
(yellow squares). The PDDA molecules are not allowed to overlap (i.e., a next PDDA can
occupy the green dashed square but not the red one). (b) The PDDA coverage vs. the side
length of a facet.

in fig. 8(a)) to simulate a crystal facet. Thus N could be regarded as the side length of a

crystal facet whose typical size is few tens nanometers. The PDDA molecules that attach

to the facet are abstracted as an L × L square (yellow square in fig. 8(a)). We attempt to

place PDDA molecules randomly over this facet such that no two PDDA molecules overlap.

This mutual exclusion requirement expresses

Then the coverage is nL2/N2, where n is the number of PDDAs placed. Since the size

of a PDDA is few nanometers, we choose L = 4 in the simulation. For each N , simulations

were run 20 000 times. As shown in fig. 8(b), the average coverage is increasing with the side

length of a facet, which causes effectively smaller surface tension.

Supplementary

Match 2D EMC clusters with ideal 2D intensity slices

In the fig. 9, we manually match several typical 2D EMC clusters with 2D intensity slices of

an ideal octahedra from different orientations. The shape of this octahedra is given by the

average model we reconstructed.
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Figure 9: Here, we select four typical 2D EMC clusters (blue). For each one, a 2D intensity
(black) slice is manually matched, and the corresponding oriented particle is showed in grey.

Finite volume Fourier Transformation

Comparing to biomolecules, nanoparticles are also a common kind of sample in XFEL SPI

experiment but has a much simpler structure. Usually, we could assume its density is uniform

and has a polyhedron shape. In this subsection, we propose a numerical Fourier transfor-

mation scheme for any uniform polyhedron S. This method could avoid the voxelization of

S. As the difficulty of the Fourier transformation of S ,
∫∫∫

S
exp(ik · x) dx comes from the

complexity of the shape of S, we convert this one big integral into several smaller integrals

over tetrahedrons. The surface (boundary) of S, ∂S, can be triangulated into a list of n

triangular faces {
[v

(i)
1 , v

(i)
2 , v

(i)
3 ]

∣∣ i = 1, 2, . . . , n
}
,

where v(i)s are the vertices of triangular i, [v(i)1 , v
(i)
2 , v

(i)
3 ]. Suppose S is convex and the origin

vO is inside S. Then S =
∑

i[v
(i)
1 , v

(i)
2 , v

(i)
3 , vO] where [v

(i)
1 , v

(i)
2 , v

(i)
3 , vO] is the tetrahedron with

base [v
(i)
1 , v

(i)
2 , v

(i)
3 ] and apex vO. Immediately, we get

∫∫∫
S

exp(ik · x) dx =

∫∫∫
∑

i[v
(i)
1 ,v

(i)
2 ,v

(i)
3 ,vO]

exp(ik · x) dx. (10)

Equation (10) retains its validity even when these two assumptions are relaxed. A
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straightforward argument in support of this is that both sides of eq. (10) exhibit conti-

nuity across all vertices, and the integral remains independent of the choice of origin. The

critical factor here is ensuring the correct orientation of a surface, which is determined by

the sequential selection of three vertices, {v(i)1 , v
(i)
2 , v

(i)
3 }, on the surface following the right-

hand rule. It is imperative that the orientation, represented by the “thumb” direction, points

outward from the S. A more rigorous mathematical statement pertaining to this concept,

“orientability”, can be found in most algebraic topology textbooks.

The region covered by [v
(i)
1 , v

(i)
2 , v

(i)
3 , vO] and [vx, vy, vz, vO] can be converted into each

other by a linear transform, A,

A−T[v1,v2,v3,vO] =


1 0

1 0

1 0

 = [vx,vy,vz,vO] (11)

where

A =


vT
1

vT
2

vT
3

 , (12)

vx, vy, and vz are three unit points of x, y, and z-axis, and the v emphasizes that it is a

column vector of vertex v. The integrals over [v
(i)
1 , v

(i)
2 , v

(i)
3 , vO] in eq. (10) can be converted

to integrals over the same trirectangular triangular pyramid [vx, vy, vz, vO].

∫∫∫
S

exp(ik · x) dx =
∑
i

∫∫∫
[v

(i)
1 ,v

(i)
2 ,v

(i)
3 ,vO]

exp(ik · x) dx

=
∑
i

detA(i)

∫∫∫
[vx,vy ,vz ,vO]

exp(iA(i)k · x) dx

=
∑
i

detA(i) · F ⋆(A(i)k)

where F ⋆ is the Fourier transformation of [vx, vy, vz, vO]. The closed-form expression for F ⋆
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can be found by

F ⋆(k) =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

exp
[
i(kxx+ kyy + kzz)

]
dz dy dx

=
i
∑

xyz

[
exp(ikx)− 1

]
kykz(kz − ky)∏

xyz kx
∏

xyz(kx − ky)
, (13)

where
∑

xyz and
∏

xyz are the index-rolling summation and production, for instance,
∑

xyz kx =

kx + ky + kz,
∏

xyz(ky − kz) = (ky − kz)(kz − kx)(kx − ky).

In the numerical calculation of eq. (13), zero denominator in eq. (13) causes zero divi-

sion error. Those cases are supposed to be handled separately by calculating the limits of

eq. (13). It should be pointed out that as the right-triangular pyramid has C3v symmetry, all

permutations (σ(x) σ(y) σ(z)), like (y x z), to the index list (x y z) in F ⋆(kx, ky, kz) give the

same values, which also could be verified directly from eq. (13). Therefore, all zero-division

cases are divided into six classes, and the condition label for each class is a representative of

its index-permutated class.

1. kx = ky = kz = 0

F ⋆(0, 0, 0) =
1

6
;

2. kx = ky = kz ̸= 0

F ⋆(kx, kx, kx) =
−2i + exp(ikx)(2i + 2kx − ik2

x)

2k3
x

;

3. kx ̸= 0, ky = kz = 0

F ⋆(kx, 0, 0) =
1

k2
x

+
i
[
−2 + 2 exp(ikx) + k2

x

]
2k3

x

;

4. kz = kx ̸= 0, ky = 0

F ⋆(kx, 0, kx) = −−2i + kx + exp(ikx)(2i + kx)

k3
x

;
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5. kx = 0, ky ̸= 0, kz ̸= 0, ky ̸= kz

F ⋆(0, ky, kz) =
i
[
exp(iky)− 1

]
k2
y(ky − kz)

+
i
[
exp(ikz)− 1

]
k2
z(kz − ky)

− 1

kykz
;

6. kx = ky ̸= 0, kz ̸= 0

F ⋆(kx, kx, kz) =
1

k2
y(ky − kz)2kz

{
i
[
exp(iky)− 1

]
k2
z+

ik2
y

[
exp(ikz)− 1 + i exp(iky)kz

]
+

kykz
[
2i + exp(iky)(−2i + kz)

]}
.
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