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Abstract

Computer simulations of molecules and materials are an indispens-
able tool for physics, chemistry, and materials science. A wide range
of methods are available for this task: On one end, first-principles
electronic structure approaches, which numerically solve the Schrö-
dinger equation, obtain high accuracy at high computational cost. On
the other end, forcefields, simple analytical approximations, are fast to
evaluate, but require parametrisation and an explicit model of desired
physical interactions. Machine learning is increasingly used to bridge
the gap between these two extremes, aiming to combine high accur-
acy with computational efficiency. To this end, regression models are
trained on quantum-mechanical reference calculations and then used
as surrogate model during simulations.

This thesis considers two topics related to such models: Represent-
ations of atomistic systems, and the application of machine-learning
potentials to thermal transport simulations.

Efficient learning in this setting requires models, and therefore in-
put features, that respect fundamental symmetries. We comprehens-
ively review and discuss such representations and relations between
them. For selected representations, we compare energy predictions
for a range of datasets in numerical experiments controlled for data
distribution, regression method, and hyperparameter optimisation.

The Green-Kubo method is a rigorous framework for thermal trans-
port simulations in materials. It is based on equilibrium molecular
dynamics simulations, requiring both an accurate description of the
potential energy surface and careful consideration of convergence in
simulation duration and size. In this context, machine-learning po-
tentials trained with first-principles data promise the ability to reach
convergence at a fraction of the computational cost. This thesis adapts
the implementation of the Green-Kubo approach to the recently de-
veloped class of message-passing machine-learning potentials, which
iteratively consider semi-local interactions beyond the initial interac-
tion cutoff. We derive an adapted heat flux formulation for such poten-
tials that can be implemented using automatic differentiation without
compromising computational efficiency. The approach is validated by
computing the thermal conductivity of zirconia, tin selenide, and sil-
icon with message-passing neural networks.
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Zusammenfassung

Computersimulationen von Molekülen und Materialien sind ein wich-
tiges Werkzeug für Chemie, Physik, und Materialwissenschaft. Es ste-
hen dazu ein Spektrum an Methoden zur Verfügung: Auf der einen
Seite stehen quantenmechanische Ansätze, die numerisch die Schrö-
dingergleichung lösen und somit unter großem Rechenaufwand ge-
naue Ergebnisse erzielen können. Auf der anderen Seite stehen einfa-
che analytische Näherungen, sogenannte Kraftfelder, die sehr effizient
sind, jedoch für neue Probleme parametrisiert werden müssen, und
bei denen physikalische Wechselwirkungen explizit modelliert wer-
den müssen. Methoden aus dem maschinellen Lernen werden zu-
nehmend dazu verwendet, diese Extreme zusammenzuführen und
Genauigkeit mit Effizienz zu vereinbaren. Dabei werden Regressi-
onsmodelle auf Referenzrechnungen trainiert und dann als Ersatz für
quantenmechanische Rechnungen in Simulationen verwendet.

Diese Arbeit setzt sich mit der Konstruktion und Anwendung sol-
cher Modelle auseinander und erforscht dabei zwei verschiedene The-
men: Die Darstellung von Molekülen und Materialien für maschinel-
les Lernen, und die Anwendung von tiefen neuronalen Netzwerken
auf die Simulation von Wärmetransport.

Für das effiziente maschinelle Lernen in diesem Zusammenhang
werden Modelle benötigt, bei denen grundlegende physikalische Sym-
metrien berücksichtigt werden. Von entscheidender Bedeutung ist
dabei die angemessene Darstellung von atomistischen Systemen, auf
deren Basis die Regression stattfindet. Wir fassen bestehende Metho-
den für die Konstruktion solcher Darstellungen zusammen, und zei-
gen dabei Zusammenhänge und gemeinsame Konstruktionsprinzipi-
en auf. Ausgewählte Methoden werden in numerischen Experimen-
ten auf verschiedenen Datensätzen verglichen. Dabei werden andere
Faktoren wie die statistische Verteilung der Daten, die Regressionsme-
thode, oder die Optimierung von Hyper-Parametern gleich gehalten.

Die Green-Kubo-Methode ist ein Ansatz für die Simulation von ther-
mischer Leitfähigkeit. Sie basiert auf Molekulardynamik, und benö-
tigt daher sowohl ein genaues Modell der Potentialoberfläche als auch
eine genaue Betrachtung der Konvergenz bezüglich der Simulations-
größe und -dauer. In diesem Zusammenhang versprechen Kraftfel-
der, die auf quantenmechanischen Referenzrechnungen trainiert wor-
den sind, konvergierte Ergebnisse in einem Bruchteil der Rechenzeit
zu liefern. In dieser Arbeit wird die Implementierung der Green-
Kubo-Methode auf Kraftfelder erweitert die durch eine vor kurzem
entwickelte Klasse von neuronalen Netzwerken, sogenannte Message-
Passing-Netzwerke, beschrieben werden. In solchen Kraftfeldern kön-
nen Wechselwirkungen über die lokalen Nachbarschaften von Ato-
men hinausreichen. Wir leiten eine passende Formulierung des Wär-
mestroms her welche mit automatischer Differenzierung effizient im-
plementiert werden kann. Diese Methode wird dann für die Vorhersa-
ge der thermischen Leitfähigkeit von Zirconiumdioxid, Zinnselenid,
und Silizium angewendet.
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Chapter 1
Introduction

But science, he said, had been the wild card, the twist.
With . . . history itself become a slaughterhouse, science
had started popping. Not all at once, no one big heroic
thing, but there were cleaner, cheaper energy sources,
more effective ways to get carbon out of the air, new
drugs that did what antibiotics had done before, nano-
technology that was more than just car paint that healed
itself . . . things that made people blink and sit up, but
then the rest of it would just go on, deeper into the ditch.

–William Gibson, The Peripheral

12 1 2 3 4 5 6 7 8 9 10 11
0

10
20
30
40
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70
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MD

Figure 1: Monthly percentage
of the ARCHER2 HPC system
used for first-principles (QM)
simulations and classical MD
codes from December 2021 to
November 2022 [1].

Note that an index of abbreviations is
provided in the Glossary on page 163.

Computer simulations of atomistic systems are an indispensable
tool for chemistry, physics, and materials science. Consequently, a sig-
nificant fraction of the computational resources available to scientific
inquiry today are dedicated to this task, as indicated by figure 1.

Since the earliest days of computing, simple but fast models have
been employed to investigate the behaviour of microscopic systems [2–
5]. Today, interatomic potentials, or forcefields (FFs), play an import-
ant role in the study of dynamical behaviour of materials, molecules,
and proteins. In FFs, the quantum-mechanical Born-Oppenheimer
(BO) potential energy surface (PES) on which the nuclei move is ap-
proximated in terms of interatomic potentials, often inspired by simple
physical approximations, which are then parametrised to match ref-
erence calculations or experimental data [6–8].

In parallel, the rapid increase of available computational power over
the last decades has enabled first-principles quantum-mechanical cal-
culations, for instance with density-functional theory (DFT) [9–11], for
ever-larger systems. As a result, high-accuracy ab initio molecular dy-
namics (aiMD) [12] simulations for hundreds of atoms and tens of pi-
coseconds are now performed routinely on modern high-performance
computing (HPC) systems. Nevertheless, the computational cost of
first-principles calculations restricts accessible size and length scales,
limiting, for instance, the ability to converge thermodynamic observ-
ables. Therefore, computationally efficient models such as FFs are still
required, but can now make use of increasingly large datasets of ref-
erence calculations for parametrisation.

Machine learning (ML) [13] offers an array of methods to approx-
imate functions based on a set of training examples, extending the
concept of FFs by doing away with simple functional forms and repla-
cing them with high-dimensional regression models. At the expense
of direct physical interpretability, and a lack of built-in physics and
chemistry, which may affect and limit extrapolation, such machine-
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learning interatomic potentials (MLIPs) [14–20] offer the advantage of
flexibility, and the ability, at least in principle, to systematically im-
prove by adding more reference data, combining computational effi-
ciency1 with high accuracy. 1 For instance, chapter 5 of this thesis

considers MLIPs that are three to four or-
ders of magnitude faster to evaluate than
DFT for structures of similar size.

In addition to learning a single PES, ML approaches have also been
used to approximate general structure-property mappings across chem-
ical space [21, 22]. Beyond such surrogate modeling approaches, ML
can also be integrated more deeply into electronic structure calcula-
tions, for instance via learned exchange-correlation functionals [23,
24] or wave function methods based on neural networks (NNs) [25].
Many other applications of ML in computational quantum physics,
chemistry, and biology have been considered [26–30].

The effective use of ML in the context of atomistic modeling can
greatly benefit from an interdisciplinary approach.

While the underlying first-principles methods can, in principle, be
treated as black-box processes that generate data, knowledge of their
structure can be used to construct data- and compute-efficient models.
For instance, as explored in chapter 3, the symmetries of the BO PES
can be directly included in model architecture, avoiding the need to
infer them from data.

In the other direction, the use of ML models for physical problems
often requires an understanding of their architecture. Chapter 4, for
instance, discusses message-passing neural networks (MPNNs) [31],
models based on convolutional neural networks [32, 33], which origin-
ate from the domain of computer vision. When used as MLIPs, they
constitute a class of interatomic potentials that exhibit semi-local inter-
actions. Such interactions do not appear in standard formulations of
other FFs, and adapted formulations of physical quantities are there-
fore required for their practical use.

Finally, these modeling tasks can take also advantage of the rapid
development of computational methods in ML. The rapid prolifer-
ation of deep learning [34] has yielded an array of tools and tech-
niques that can be repurposed for such tasks. In particular, the training
and use of deep NNs required the development of specialised pro-
gramming frameworks [35–37] that make use of highly parallel accel-
erator devices such as graphics processing units (GPUs) and tensor
processing units (TPUs), and implement efficient automatic differen-
tiation (AD) [38–40]. Many methods, and in particular MD, require de-
rivatives of the PES. Here, AD can be used to simplify the implement-
ation of FFs without compromising computional efficiency. Chapter 4
discusses how AD can be used to efficiently compute physical quant-
ities of interest for MLIPs in a unified manner.

This thesis discusses such connections between ML and atomistic
modeling for two topics: The construction of representations of atom-
istic systems, i.e., engineering suitable features for ML, and the ap-
plication of MLIPs based on MPNNs to thermal transport simulations
with the Green-Kubo (GK) method.
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Description of Chapters

• Chapter 2 (Foundation) provides a brief review of foundational
topics, establishing the context and notation for the presented work.

• Chapter 3 (Review and Benchmark of Representations of Mo-
lecules and Materials) discusses representations of atomistic sys-
tems. Methods for incorporating physical symmetries, as well as
requirements of representations, are discussed, and common tech-
niques are identified. A review of available representations is con-
ducted, and selected methods are benchmarked for energy predic-
tions on a number of datasets in experiments controlled for hyper-
parameter optimisation, regression method, and dataset distribu-
tion. Tradeoffs between computational cost and accuracy are ex-
plored. We find that increased body-order leads to higher accur-
acy, but correspondingly higher computational cost, and that local
representations outperform global ones.

• Chapter 4 (Heat Flux for Semi-Local Machine-Learning Poten-
tials) considers the application of MLIPs based on MPNNs to ther-
mal transport simulations with the GK method. Performing such
simulations requires access to the heat flux, a derivative quantity
that describes changes in energy density, and is known to be chal-
lenging to define and implement for many-body interatomic po-
tentials. We tackle this problem with AD. As a prerequisite, this
requires an understanding of the types of potentials described by
MPNNs, which admit semi-local interactions beyond local atomic
neighbourhoods. A unified perspective on such potentials, which
we term graph-based machine-learning potentials (GLPs), is intro-
duced, and used to define and implement the stress. Finally, an ad-
apted version of the heat flux, the ‘unfolded’ heat flux, is derived,
which applies to GLPs and can be implemented with AD without
compromising asymptotic linear scaling of computational cost.

• Chapter 5 (Thermal Conductivity with Message-Passing Neural
Networks) applies the methods developed in chapter 4 to comput-
ing the thermal conductivity of selected materials, first verifying the
heat flux formulations, and then exploring the feasibility of GK cal-
culations with MPNNs. First, thermal conductivity for zirconia is
computed across temperatures (300 K to 1800 K) and phases (mono-
clinic, tetragonal) with a SchNet [41, 42] GLP trained on aiMD tra-
jectories. Results are in good agreement with another MLIP, as well
as experiments. However, the potential is observed to break down
at elevated temperatures. Finally, materials with low thermal con-
ductivity, tin selenide at 300 K, and high thermal conductivity, sil-
icon at 400 K, are investigated with So3krates [43] GLPs. For silicon,
simulation size convergence is identified as a key issue, which limits
the presented approach to materials with low thermal conductivity.

• Chapter 6 (Conclusion) provides a summary of this thesis, dis-
cusses open questions and avenues for future work, and finally of-
fers a broader perspective on future developments.
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Main Contributions

• Review and benchmark of representations: We survey common
techniques to incorporate physical symmetries into representations
of atomistic systems, and provide an extensive review of available
representations. A benchmark of three selected representations on
three datasets is conducted, controlling for other factors, to isolate
the impact of the representation on predictive accuracy.

• Heat flux for message-passing machine-learning potentials: A for-
mulation of the heat flux suitable for interatomic potentials with
semi-local interactions is derived, which includes MLIPs based on
MPNNs. This formulation can be implemented efficiently with AD,
and therefore enables the practical use of MPNNs for GK simula-
tions for the first time.

• Application of message-passing neural networks to predictions
of thermal conductivity: We apply two different MPNN architec-
tures to thermal transport simulations in three different materials,
verifying the heat flux formulation introduced in this thesis. Chal-
lenges for future applications are outlined, and convergence is in-
vestigated in detail.

• Understanding graph-based interatomic potentials: We discuss
how interatomic potentials that use atomic neighbourhoods and are
based on atom-pair vectors can be viewed as acting on a graph rep-
resentation of atomistic systems. In this unified perspective, which
includes finite-distance terms of classic FFs, common MLIPs, and
MLIPs based on MPNNs, local and semi-local interactions can be
distinguished, and we discuss how common definitions of derivat-
ive quantities such as pairwise forces and atomic stress are affected
by this distinction. This framework allows a unified AD-based im-
plementation of forces, stress and heat flux, which we provide, and
yields the conceptual basis for the discussion of the heat flux.
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Chapter 2
Foundations

You got to build your foundations!

– overheard in Manchester pub

This chapter sets the stage for the work presented in chapters 3 to 5
by providing an overview of foundational concepts and introducing
relevant terminology and notation.

In section 2.1, we begin by discussing quantum mechanics, and the
particular task of solving the electronic Schrödinger equation. Com-
putational approaches to this task are briefly discussed, with a partic-
ular focus on DFT. We conclude with the introduction of the BO PES.
The dynamics of nuclei moving on this PES can be modelled with MD,
the focus of section 2.2. Approaches to modeling systems at different
thermodynamic conditions are introduced, and the usage of approx-
imate PES such as FFs and MLIPs is motivated. Section 2.3 then ex-
plores how bulk properties can be obtained from simulations with a
finite number of independent atoms through periodicity. Section 2.4
introduces the concepts and terminology of ML applied to atomistic
modeling, as well as providing an overview of the techniques and
types of applications relevant for this thesis. Finally, section 2.5 in-
troduces the GK method for the calculation of thermal conductivity.
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Section 2.1
Quantum Mechanics

“At the moment,” the mathematics announced, “I’m solving Schrödinger’s
equation on a grid of ten spatial and four temporal dimensions. No one
else can do that.”

– M. John Harrison, Light

Full introductions to quantum mechan-
ics can be found in many textbooks, for
instance Dirac [47] and Napolitano and
Sakurai [48]. An excellent overview of
quantum chemistry can be found in ref-
erence [49], and a more detailed account
of DFT in reference [50].

This section reviews select concepts of quantum mechanics (QM), and
the approximations employed for this thesis. First, we briefly intro-
duce the mathematical formulation of QM, and the particular prob-
lem of describing an atomistic system of nuclei and electrons. Then,
strategies for solving this computationally challenging problem, even
when reduced to electrons, are discussed. Armed with an approxim-
ate solution to the electronic Schrödinger equation, we then introduce
the Born-Oppenheimer (BO) potential energy surface (PES).

2.1.1 Quantum Mechanics and Quantum Chemistry

To date, QM provides the most accurate and well-tested description
of the behaviour of matter at the atomic scale. Its formal machinery,
developed from the 1920s onwards, is based on abstract state vectors,
or kets, |𝜙⟩ in a Hilbert space that describes the overall state space of
the quantum-mechanical system.

Linear operators �̂� act on kets in that space; self-adjoint operators1 1 In a finite-dimensional complex vec-
tor space, this is equivalent to the mat-
rix representation of the operator being
Hermitian, i.e., equivalent to its conjug-
ate transpose.

correspond to physical observables. The dynamics of a quantum sys-
tem are governed by the time-dependent Schrödinger equation

�̂� |𝜙; 𝑡⟩ = 𝑖 ℎ̄
𝜕

𝜕𝑡
|𝜙; 𝑡⟩ , (2.1.1)

where �̂�, the Hamiltonian, evaluates the total energy. If �̂� is not de-
pendent on time, which is the case considered in this thesis, the time-
evolution of any initial state |𝜙; 𝑡0⟩ is given by its expansion in the ei-
genstates of �̂�.2 It is therefore sufficient to solve the time-independent

2 More precisely, letting 𝑎 label eigen-
states of an operator that commutes
with �̂�, with corresponding energy ei-
genvalues 𝐸𝑎 , the state at time 𝑡 is given
by ∑︁

𝑎 exp (−𝑖𝐸𝑎(𝑡 − 𝑡0)/ℎ̄) |𝑎⟩ ⟨𝑎 |𝜙; 𝑡0⟩:
The dynamics are fully determined by
the solution of the time-independent
Schrödinger equation. A full exposition
of quantum dynamics can be found in
reference [48, ch. 2].

Schrödinger equation, which poses an eigenvalue problem

�̂� |𝜙⟩ = 𝐸 |𝜙⟩ , (2.1.2)

where 𝐸 is the total energy of the quantum system.

For the systems of concern in this thesis, which are composed of
𝑁 atomic nuclei3 with charges 𝑍𝑖 and masses 𝑚𝑖 , as well as 𝑛 electrons,

3 We do not consider the internal struc-
ture of nuclei.
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which all share the mass 𝑚e, the Hamiltonian in atomic units is

�̂� = �̂�el + �̂�nuc + �̂�el-el + �̂�nuc-nuc + �̂�el-nuc (2.1.3)

= −1
2

𝑛∑︂
𝑝=1

p̂e
𝑝 −

1
2

𝑁∑︂
𝑖=1

𝑚e

𝑚𝑖
p̂𝑖 (2.1.4)

+
𝑛∑︂

𝑝=1

∑︂
𝑞<𝑝

1
|r̂e
𝑝 − r̂e

𝑞 |
+

𝑁∑︂
𝑖=1

∑︂
𝑗<𝑖

𝑍𝑖𝑍 𝑗

|r̂𝑖 − r̂ 𝑗 |
−

𝑛∑︂
𝑝=1

𝑁∑︂
𝑖=1

𝑍𝑖

|r̂𝑖 − r̂e
𝑝 |

, (2.1.5)

with p̂ denoting momentum and r̂ position operators, and a super-
script e indicating electronic quantities. Solving this problem is the
main task of quantum chemistry.

We note that this Hamiltonian is
non-relativistic, and contains no spin-
dependent terms. However, relativistic
effects cannot be simply discarded;
approximations are employed in
practice [51–53].

In the context of this section, spin
enters through the spin-statistics the-
orem [54], which places additional con-
straints on the solutions: Wave func-
tions, i.e., eigenkets in position repres-
entation, must be anti-symmetric.

As a first step towards solving this problem, we separate the elec-
tronic states from the nuclear ones, motivated by the appearance of
the mass ratio 𝑚e/𝑚𝑖 ≈ 10−4 − 10−6 in �̂�nuc. This can be achieved by
expanding the full solution of �̂� in terms of solutions |𝜙𝑎⟩ of the elec-
tronic Hamiltonian

�̂�el = �̂�el + �̂�el-el + �̂�el-nuc , (2.1.6)

describing the electrons in an external potential �̂�el-nuc which para-
metrically depends on atomic positions. Neglecting terms of the or-
der (𝑚e/𝑚𝑖)1/4, which describe the coupling of electronic states due
to the nuclei, leads to a set of separate nuclear Schrödinger equations
enumerated by the electronic states 𝑎 with energy 𝐸𝑎 :

(�̂�nuc + �̂�nuc-nuc + 𝐸𝑎) |𝜒⟩ = 𝐸 |𝜒⟩ . (2.1.7)

This approximation is known as the Born-Oppenheimer (BO) approx-
imation [55]. Intuitively, we have made the assumption that the re-
sponse of the electrons to movement of the nuclei is instantaneous.

We now further assume that the electronic ground state (𝑎=0) is suf-
ficiently separated from the first excited state (𝑎=1)4 such that the elec- 4 At 300 K, thermal energy is

𝑘B · 300 K ≈ 26 meV, smaller than
typical bandgaps for the materials in-
vestigated in this work (semiconductors
and insulators) [56, ch. 28].

tronic system remains in the ground state as atomic positions change.
We can therefore identify a single potential energy surface, the BO PES,
on which the nuclei move. It will be discussed further in section 2.1.3.

We now turn our attention to the task of obtaining the ground-
state solution |𝜙0⟩ of the electronic Schrödinger equation. Despite
the simplification of neglecting nuclear degrees of freedom, analytical
solutions are unknown for any but the simplest systems. Therefore,
we must rely on numerical methods for practical uses.5

5 Such methods are typically called ab
initio or first-principles methods.

A complete introduction to Slater de-
terminants and approaches to construct
many-body states is given in Szabo and
Ostlund [57]. For the remainder of this
section, we largely follow the exposition
by Foulkes [58].

Let us briefly consider the difficulty of this task. For an exact solu-
tion, we must find the lowest eigenvalue of the electronic Hamiltonian
in an appropriate basis, constructed from a complete basis for the indi-
vidual electron states. Equivalently, we could attempt to directly solve
the Schrödinger equation as a partial differential equation in the po-
sition basis, constructing a many-body wave function. We could also
exploit the Rayleigh-Ritz variational principle,6 which states that the

6 The variational principle is a standard
tool in QM, introduced, for instance in
[48, ch. 5.4] or [57, ch. 1.3]. A historical
overview can be found in reference [59].ground state minimises the energy, i.e.,

|Ψ⟩ is a trial wavefunction.|𝜙0⟩ = arg min
|Ψ⟩

⟨Ψ|�̂�el |Ψ⟩
⟨Ψ|Ψ⟩ . (2.1.8)
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In all cases, we face the additional constraint that electrons, being
spin-1/2 fermions, cannot occupy the same state due to the Pauli ex-
clusion principle [54]. Therefore, a naive ansatz requires at least 𝑘 ≥ 𝑛

states |𝑎 = 1...𝑘⟩ for each electron,7 leading to an overall Hilbert space 7 More precisely, since the Hamiltonian
does not include spin, 𝑛/2 would be suf-
ficient, as each state can be occupied by
two opposite-spin electrons.

We also note that the single-electron
states must be obtained from a single-
electron basis first. The Hartree-Fock
approach, introduced below, is one way
to accomplish this.

of dimension at least 𝑛𝑛 .
Some relief is brought by the realisation that we do not require a

description of the individual states of each electron, which are indis-
tinguishable – it is sufficient to consider the

(︁𝑘
𝑛

)︁
ways to distribute 𝑛

electrons into 𝑘 available states, or orbitals. We term each such selection
a, a one-hot vector8 of dimension 𝑘 indicating which 𝑛 states are oc-

8 Entries are either 0 or 1.cupied.9 From this, one can then construct a suitably anti-symmetric 9 This can be naturally expressed in
terms of second quantisation, i.e., the in-
troduction of number states and ladder
operators. In the interest of brevity, we
do not pursue this here.

state from a linear combination of states |𝑎1, 𝑎2, ..., 𝑎𝑘⟩ using Slater de-
terminants, which form a complete basis of the anti-symmetric full
configuration-interaction (FCI) subspace. We can also note that �̂�el
only contains one- and two-electron operators, so we can avoid in-
stantiating the 𝑘𝑛 × 𝑘𝑛 Hamiltonian, and instead focus on its matrix
elements in the anti-symmetric subspace.

If we further restrict ourselves to using a single Slater determin-
ant, in other words, aim to find the single a and corresponding set of
orbitals that minimise the energy, we arrive at the Hartree-Fock (HF)
method [60, 61]. Working it out in detail is beyond the scope of this
thesis; the end result are a set of single-particle equations in an effective
potential obtained by averaging over all electrons. The overall model
must be solved iteratively in a self-consistent field (SCF) iteration.

Beyond HF, many more sophisticated methods can be constructed,
often using its single-electron basis functions as starting point. While
such full configuration-interaction (FCI) methods in practice scale ex-
ponentially with the number of electrons,10 it can be used for small 10 For instance, using 𝑘 = 2𝑛 single-

electron states yields
(︁2𝑛
𝑛

)︁
≈ 22𝑛/

√
𝑛 for

large 𝑛 via Stirling’s approximation.
systems, or serve as the basis for other methods. Coupled cluster
methods, for instance, operate in terms of creation/annihilation op-
erators – adding/removing electrons from a HF ground state – be-
coming equivalent to FCI if all excitations are considered. However,
the expansion can often be truncated at single, double, or triple excita-
tions with reasonable accuracy, yielding a significant reduction in cost
compared to FCI. However, computational cost still scales approxim-
ately as 𝑂(𝑛6−7), making it difficult to apply to larger systems.

Alternative approaches that attempt to circumvent the eigenvalue
problem of directly solving the Schrödinger equation exist: Variational
quantum Monte Carlo approaches stochastically evaluate the right-
hand side in equation (2.1.8), and then minimise over some paramet-
rised ansatz for |Ψ⟩. Recently, NN ansatzes have emerged as a prom-
ising direction for this type of method [25]. Diffusion Monte Carlo
methods take a different approach, noting that exp (−𝜏�̂�) acting one
a ket |Ψ⟩ will yield the ground state in the limit of 𝜏 → ∞. One
can then re-interpret the time-evolution as a stochastic diffusion-and-
branching process of classical particles, which can be simulated nu-
merically. However, the fermionic nature of electrons causes addi-
tional difficulty, making further approximations necessary.
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2.1.2 Density-Functional Theory

We have seen that the many-body nature of the electronic state, com-
bined with the anti-symmetry constraint, causes great difficulty in the
search for the ground state. This motivates the search for a method
that avoids dealing with the many-body wave function altogether.

This method is DFT, which descends from the Hohenberg-Kohn the-
orems [9], stating that (a) there is a one-to-one correspondence between
the ground state electron density11 𝑛0(r), the ‘external’ potential ap- 11 𝑛0(r) ≔ ⟨𝜙0 |

∑︁𝑛
𝑝=1 𝛿(r − r̂e

𝑝)|𝜙0⟩.
Computing the density requires evalu-
ating the 3(𝑛 − 1) dimensional integral
𝑛0(r) = 𝑛

∫
d3r2 ... d3r𝑛 |𝜙0(r, r2, ...r𝑛)|2;

the anti-symmetry of the wave function
allows the permutation of arguments
such that r can be shifted to the first
position.

pearing as �̂�el-nuc in equation (2.1.6), and the ground state itself, and
(b) that the ground state density minimises the energy when phrased
as a functional of the density, 𝐸[𝑛]. This reduces the dimensionality
of the problem considerably: Instead of considering a wave function
with 3𝑛 coordinates, we can focus on a scalar field in three dimensions!

However, our problem is not yet solved. Consider the energy func-
tional for a given density 𝑛

𝐸[𝑛] = ⟨Ψ[𝑛]|�̂�el + �̂�el-el |Ψ[𝑛]⟩ + 𝐸ext[𝑛] (2.1.9)

where the latter part corresponds to the ‘external’ potential due to
�̂�el-nuc, and the former to the ‘universal’ terms that are independent of
external circumstances. While 𝐸ext can be straightforwardly phrased
in terms of the density,12 the universal functional retains the full dif- 12 In the present case, it is simply

the electrostatic energy of a charge
density in the potential of the nuclei,
−

∫
d3r 𝑛(r)∑︁𝑖 𝑍𝑖/|r𝑖 − r |.

ficulty of the many-body problem of interacting electrons, as it is un-
known how to phrase it directly in terms of the density [62, ch. 6.4].

Relief is provided by the Kohn-Sham scheme [10],13 which intro- 13 From this point on, DFT will typically
refer to Kohn-Sham DFT.duces an auxiliary system of non-interacting electrons14 with the same
14 The state of the Kohn-Sham system is
also given by a Slater determinant. In-
terestingly, one can show that for a com-
plete basis, a single such determinant is
sufficient to reproduce the exact density.
This appears to hold with reasonable ac-
curacy for finite basis sets as well [63].

ground-state density 𝑛. The functional is then split further

𝐸[𝑛] = 𝑇aux[𝑛] + 𝐸aux, es[𝑛] + 𝐸ext[𝑛] + 𝐸xc[𝑛] , (2.1.10)

with𝑇aux describing the kinetic energy of the auxiliary electrons,𝐸aux, es
the electrostatic energy of their charge distribution interacting with it-
self, and 𝐸xc absorbs all the remaining contributions. Minimising this
functional with respect to the states of the auxiliary electrons yields a
set of single-particle Schrödinger equations, which in turn depend on
the density, and must therefore be solved self-consistently until some
convergence criterion is reached, similar to the SCF iterations in the
HF method.

With this procedure, we have now further isolated the difficulty of
the many-body problem in the exchange-correlation functional 𝐸xc[𝑛].
Treating it exactly would be equivalent to solving the full problem,
so approximate exchange-correlation functionals must be used. All
known such approximations are uncontrolled; their exact impact on
accuracy is unknown and they cannot be systematically improved.
Their validity must therefore be checked empirically, comparing to ex-
periment or other, more computationally demanding, methods. Nev-
ertheless, in practice, even simple approximations are often found to
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be sufficient for many cases of interest, yielding a method of overall
𝑂(𝑛3) scaling.15 15 Variations of DFT with different scal-

ing behaviour exist, for instance linear-
scaling formulations [64–66], which ex-
ploit locality (see also reference [62,
ch. 18]), or DFT with hybrid or double-
hybrid funtionals [67], which scale more
steeply than cubically.

The most straightforward approximation for 𝐸xc is the local-density
approximation (LDA), which simply takes the density at each spatial
point into account. In that case, the general functional of the dens-
ity at every spatial point at once is replaced by an operation acting on
the density at each point separately, which is then integrated over the
simulation domain to yield 𝐸xc.16 16 The mapping between electron dens-

ity 𝑛(r) and and energy density 𝑒(r) is
often based on the energy density of the
homogeneous electron gas, which can be
obtained via diffusion Monte Carlo app-
roaches [68].

Beyond LDA, improvements can be achieved by adding information
of the local gradient of the density as well, leading to the generalised
gradient approximation (GGA) class of approaches, of which the Per-
dew, Burke, and Ernzerhof (PBE) [69] functional is one. PBE, and its
re-parametrisation for solids, PBEsol [70], will be used in latter parts
of this thesis.

More sophisticated exchange-correlation functionals can also be con-
structed. For instance, hybrid functionals include a portion of HF in-
formation. Efforts to integrate ML approaches into DFT have been
made [71, 72]. For instance, the DeepMind 21 (DM21) functional [23]
predicts the strength of different elements of hybrid functionals (the
enhancement factors) based on local features.

2.1.3 Born-Oppenheimer Potential Energy Surface

Let us now assume that we have obtained an approximate ground-
state solution of the electronic problem, which we term |𝜙0⟩ = |𝜙[𝑛0]⟩.
Its energy eigenvalue is 𝐸0 = ⟨𝜙0 |�̂�el |𝜙0⟩, which parametrically de-
pends on the positions ℛ = { r𝑖 | 𝑖 = 1...𝑁 } and nuclear charges 𝒵 =

{ 𝑍𝑖 | 𝑖 = 1...𝑁 }. Substituting into equation (2.1.7), the Hamiltonian
for the nuclei is therefore

−1
2

𝑁∑︂
𝑖=1

𝑚e

𝑚𝑖
p̂𝑖 +

𝑁∑︂
𝑖=1

∑︂
𝑗<𝑖

𝑍𝑖𝑍 𝑗

|r̂𝑖 − r̂ 𝑗 |
+ 𝐸0[ℛ,𝒵] . (2.1.11)

In the classical limit, this Hamiltonian yields the Hamiltonian function
in equation (2.2.1), from which the equations of motion for the nuclei
can be obtained: They move on a potential energy surface defined by
the potential energy

𝑈(ℛ,𝒵) = 1
2

𝑁∑︂
𝑖=1

𝑁∑︂
𝑗=1
𝑗≠𝑖

𝑍𝑖𝑍 𝑗

|r𝑖 − r 𝑗 |
+ 𝐸0[ℛ,𝒵] . (2.1.12)

The negative derivatives of 𝑈 with respect to r𝑖 ∈ ℛ then correspond
to the forces acting on each atom, determining their dynamical beha-
viour. We will discuss this further in section 2.2.

For now, we must answer a more fundamental question: How do we
obtain derivatives of 𝑈? Essentially, the answer is contained within See also reference [48, ch. 5.4]. The

variational principle in equation (2.1.8)
can alternatively be phrased as finding
a state |𝜙0⟩ where the functional on the
right-hand side is robust under the vari-
ation |𝜙0⟩ + 𝛿 |𝜙0⟩.

equation (2.1.8): The ground state minimises the functional on the
right-hand side, and therefore, perturbations, or variations, should not



24 part 2: foundations

change the ground state energy; the ground state is a stationary point
of that functional. As a consequence, we can write [62, ch. 3.3]:

d
d𝜆𝐸0 = ✘✘✘✘✘✘✘

⟨
𝜕𝜙0

𝜕𝜆
|�̂�el |𝜙0⟩ +✘✘✘✘✘✘✘

⟨𝜙0 |�̂�el |
𝜕𝜙0

𝜕𝜆
⟩ + ⟨𝜙0 |

𝜕�̂�el
𝜕𝜆

|𝜙0⟩ (2.1.13)

= ⟨𝜙0 |
𝜕�̂�el
𝜕𝜆

|𝜙0⟩ (2.1.14)

where we use 𝜆 as any of the parameters entering �̂�el. This result is
known as the Hellmann-Feynman theorem [73]. It allows us to com-
pute forces for DFT by first computing the analytical derivative of the
electron-nuclear Coulomb interaction, and evaluating it with a given
density.17 No derivatives of the density must be taken, and the terms 17 It is interesting to note that this motiv-

ates the use of learned electronic densities
to obtain forces [74].

which do not depend on nuclear coordinates do not contribute. How-
ever, we have not yet accounted for additional terms arising due to
practical implementation details: For instance, if basis functions de-
pend on atomic positions, so-called Pulay forces appear [75]. We also
have skipped over complications arising from approximate solutions,
which break the assumption of stationarity and therefore yield non-
vanishing derivatives in the first two terms.

At this point, we have a practical method for obtaining the energy
and forces18 for a given atomistic system. Let us now consider some

18 The stress can also be computed, in
principle, from the Hellmann-Feynman
theorem. In practice, its implementation
is rather involved [76].applications for this ability.
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Section 2.2
Molecular Dynamics

In the previous section, we concluded that, under appropriate assump-
tions, we can compute the classical1 potential energy𝑈 of an atomistic 1 We note in passing that methods to

treat nuclei in a quantum mechanical
way exist. In principle, one has to
solve the nuclear Schrödinger equation
given by equation (2.1.11). In prac-
tice, some quantities can be extracted
from modified MD approaches. For in-
stance, the quantum mechanical parti-
tion function can be computed by ex-
ecuting multiple dynamics simulations
in parallel, coupling each replica via a
spring. This ‘ring polymer’ system, in
the infinite-replica limit, can then be
mapped onto the quantum system. Such
a path-integral MD treatment can become
necessary at low temperatures and for
light atoms. [77]

We do not consider this further, but re-
mark that MLIPs offer an intriguing way
to manage the high computational cost
of such approaches.

system and obtain forces F𝑖 = −𝜕𝑈/𝜕r𝑖 acting on each atom via the
Hellmann-Feynman theorem.

We are therefore in a position to apply the machinery of classical
mechanics, having successfully isolated quantum mechanical beha-
viour inside the electronic energy 𝐸0. This section briefly discusses
how this leads to molecular dynamics (MD), the practice of simulating
the movement of atoms on the BO PES by integrating their equations
of motion. We begin with introducing these equations of motion, and
then discuss how their numerical integration can be used to investig-
ate thermodynamic properties. We conclude by discussing the use of
approximate PES such as FFs and MLIPs.

2.2.1 Equations of Motion

We now drop any explicit dependence
on the atomic masses𝑚𝑖 and the charges,
as they do not change during dynamics.

We can study dynamical behaviour of our system by formulating the
classical Hamiltonian from equation (2.1.11) for a given set of positions
ℛ and momenta 𝒫 ≔ { p𝑖 | 𝑖 = 1...𝑁 }, which we combine in a phase-
space point Γ ≔ (ℛ,𝒫). To highlight time-dependence, we write
Γ𝑡 ≕ (ℛ(𝑡),𝒫(𝑡)) ≔ ({ r𝑖(𝑡) | 𝑖 = 1...𝑁 } , { p𝑖(𝑡) | 𝑖 = 1...𝑁 }).

The classical Hamiltonian is then

ℋ(Γ𝑡) =
𝑁∑︂
𝑖=1

p𝑖(𝑡)2
2𝑚𝑖

+𝑈(ℛ(𝑡)) . (2.2.1)

From this Hamiltonian, we can deduce the equations of motion for the
phase-space coordinates, arriving at Newton’s equations of motion.2

2 The equations of motion are

ṙ𝑖(𝑡) =
𝜕ℋ

𝜕p𝑖(𝑡)
= p𝑖(𝑡)/𝑚𝑖

ṗ𝑖(𝑡) = − 𝜕ℋ
𝜕r𝑖(𝑡)

= − 𝜕𝑈(𝑡)
𝜕r𝑖(𝑡)

= F𝑖(𝑡) .

In practice, as we do not have access to a closed-form solution for F𝑖 ,
these equations of motion must be solved numerically, typically by
integrating them from a chosen starting configuration Γ𝑡=0.

In the present work, we employ the velocity Verlet integrator [5],3

3 In particular, 𝑡 → 𝑡 +Δ𝑡 entails [78]

p𝑖(𝑡 +
1
2Δ𝑡) = p𝑖(𝑡) +

1
2Δ𝑡F𝑖(𝑡)

r𝑖(𝑡 +Δ𝑡) = r𝑖(𝑡) +Δ𝑡
p𝑖(𝑡 + 1

2Δ𝑡)
𝑚𝑖

F𝑖(𝑡 +Δ𝑡) = − 𝜕𝑈(ℛ(𝑡 +Δ𝑡))
𝜕r𝑖(𝑡 +Δ𝑡)

p𝑖(𝑡 +Δ𝑡) = p𝑖(𝑡 +
1
2Δ𝑡) +

1
2𝑚𝑖

Δ𝑡F𝑖(𝑡 +Δ𝑡) .

incurring error in the positions and velocities of 𝑂(Δ𝑡4) per timestep
Δ𝑡 and 𝑂(Δ𝑡2) over the course of the simulation. The scheme is sym-
plectic4 and time-reversible, and requires only a single evaluation of

4 Loosely speaking, this property en-
sures that while total energy can fluc-
tuate slightly during the simulation,
there exists an auxiliary Hamiltonian for
which energy is conserved exactly.

forces per timestep. This time-evolution describes an isolated sys-
tem in the micro-canonical, or 𝑁𝑉𝐸 ensemble, with fixed number of
particles 𝑁 , volume 𝑉 , and energy 𝐸.

We now consider simulations at other conditions. One such case is
the canonical ensemble, 𝑁𝑉𝑇, i.e., simulations with a set temperature
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rather than a fixed energy. One approach to this problem is to modify
the equations of motion with an additional stochastic term.5 Overall, 5 In particular, we add

ṗ𝑖(𝑡) = F𝑖(𝑡) − 𝛾p𝑖(𝑡) +
√︁

2𝑘B𝑇𝛾𝑚𝑖η(𝑡) ,

where η(𝑡) is a stochastic noise term, 𝑘B
the Boltzmann constant, and 𝛾 the coup-
ling strength.

these modified Langevin equations of motion [79] model the system in
contact with a thermal bath;6 it is subject to a thermostat.

6 Operationally, they describe the force
on each particle being augmented with
a random ‘kick’ that injects energy into
the system.

These equations of motion can be numerically integrated, similar
to the 𝑁𝑉𝐸 case [80, 81]. Many other approaches exist, for instance
the Nosé-Hoover family of methods [82–84], which introduce an aux-
iliary system, or stochastic velocity rescaling [85], which directly mod-
ifies the velocities. The latter method aims to overcome shortcomings
in previous approaches, such as the lack of a conserved quantity in
Langevin dynamics, or the requirement for chains of Nosé-Hoover
thermostats to correct lack of ergodicity in some systems.

Finally, we consider constant pressure and temperature, the
isothermal-isobaric 𝑁𝑝𝑇 ensemble, additionally introducing a baro-
stat, which ensures that the system reaches, or remains at, a certain
pressure.7 A simple barostat/thermostat was introduced by Berend-

7 The pressure in this context is defined
in terms of the stress σ = σkin + σpot.
The former term is simply

𝜎
𝛼𝛽
kin =

∑︂
𝑖
−1/𝑉𝑝𝛼

𝑖
𝑝
𝛽
𝑖
/𝑚𝑖 , (2.2.2)

the contribution of an ideal gas, while
the latter is the strain derivative of 𝑈 .
The pressure is then simply −1/3 tr(σ).sen et al. [86]. In principle, it modifies positions and velocities at each

timestep to minimise the deviations relative to the target temperature
and pressure.8 The Berendsen approach yields efficient volume equi- 8 More precisely,

r𝑖(𝑡) → r𝑖(𝑡) ·
(︁
1−Δ𝑡𝜆p(𝑝 − 𝑝(𝑡))

)︁
p𝑖(𝑡) → p𝑖(𝑡) ·

√︁
1+Δ𝑡𝜆T(𝑇/𝑇(𝑡) − 1) ,

with parameters 𝜆. These modifications
must then be added to the numerical in-
tegration of the equations of motion.

libration, but incorrect volume fluctuations and kinetic energy distri-
bution, among other problems [87]. Nevertheless, it remains the only
𝑁𝑝𝑇 method currently implemented in the ase [88] package, which
FHI-vibes [89] relies on, and it is used in this thesis to generate train-
ing data, for which we find this approach to be sufficient.

In cases where such properties must be modeled accurately, altern-
ative, more involved, barostats are used. Volume fluctuations can be
modelled with the Bussi-Zykova-Parrinello method [90]. For general,
anisotropic, changes in simulation cell shape, stochastic cell rescal-
ing [91, 92], or Martyna-Tobias-Klein [93] and Raiteri-Gale-Bussi [94]
approaches can be used.

2.2.2 Thermodynamic Ensembles

With the considerations in the previous section, we have gained the
ability to numerically simulate an atomic system consistent with ex-
ternal constraints such as a constant energy (𝑁𝑉𝐸), constant temper-
ature (𝑁𝑉𝑇), or constant temperature and pressure (𝑁𝑝𝑇) using MD.
Let us now investigate how we can use this ability to compute thermo-
dynamic ensemble averages.

For this, we must first define the notion of a thermodynamic en-
semble [78, ch. 2]. For present purposes, it is sufficient to define it as a
probability distribution 𝑓 (Γ) that assigns each possible configuration9 9 In statistical mechanics, such a config-

uration is called a microstate.of the system a probability. We consider the following ensembles:

The normalisation constants, the parti-
tion functions 𝒵, are obtained by integ-
rating over all possible states.

𝑁𝑉𝐸 micro-canonical 𝑝(Γ) ∝ 𝛿(𝐸(Γ) − 𝐸)
𝑁𝑉𝑇 canonical 𝑝(Γ) ∝ exp (−𝛽𝐸(Γ))
𝑁𝑝𝑇 isothermal-isobaric 𝑝(Γ) ∝ exp (−𝛽(𝐸(Γ) + 𝑃𝑉)) ,

where 𝛽 = 1/(𝑘B𝑇). In many cases, we wish to evaluate expectation
𝑘B is the Boltzmann constant, converting
from temperature to energy.
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values of observables 𝑂(Γ) of the form

⟨𝑂⟩ =
∫

dΓ 𝑂(Γ)𝑝(Γ) . (2.2.3)

MD provides a straightforward way by replacing the integral over Γ

with an integral over simulation time, under the assumption of er-
godicity.10 We can then use our ability to numerically simulate the 10 A system is ergodic when the time av-

erage and ensemble average coincide. It
is often difficult to prove rigorously for a
given system; ergodicity is therefore of-
ten simply assumed.

time evolution under a given ensemble, and compute

⟨𝑂⟩ = lim
𝑡0→∞

1
𝑡0

∫ 𝑡0

0
d𝜏𝑂(Γ𝜏) , (2.2.4)

where Γ𝜏 denotes a phase-space point at time 𝜏, after simulation of its
time-evolution starting from Γ𝜏=0.

2.2.3 Forcefields and Machine-Learning Potentials

So far, we have assumed that 𝑈(ℛ) is the BO PES, discussing ab ini-
tio molecular dynamics (aiMD) [95].11 However, the severe computa-

11 We note in passing that multiple app-
roaches to aiMD exist. In particular,
one can perform a new calculation for
every timestep, i.e., new SCF iterations
in the case of DFT, often using the pre-
vious density as initial guess to aid con-
vergence. This approach is sometimes
called Born-Oppenheimer MD [95]. Al-
ternatively, in Car-Parrinello MD [12],
the electronic system is included in the
dynamics simulation itself with an ex-
tended Lagrangian, and the electronic
system is then kept at a low temperature,
ensuring that it approaches, and then
remains in, the ground state. In this
thesis, aiMD is always performed with
the former approach.

tional cost of first-principles methods, even of DFT, limits the size and
length scales accessible in aiMD simulations.12

12 For illustration, on a single node on the
raven HPC system with 72 cores, using
the computational settings of section 5.1,
a single step of aiMD takes approxim-
ately four minutes for 96 atoms. There-
fore,≈ 360 timesteps can be computed in
a day. At a typical timestep of 4 fs, 1 ns of
simulation time would therefore require
approximately two years. Such simula-
tions can be performed with FFs in less
than a day.

Convergence of thermodynamic observables can, however, require
large simulations over long timescales (see section 5.2). The size of the
simulated system limits the scale of behaviour that can be modelled;
for instance, collective excitations become limited in their wavelength
by the size of the simulation cell. Some systems, such as biomolecules
and proteins, are challenging to model explicitly with first-principles
approaches due to their large number of atoms, and the additional
requirement of treating solvents.

These considerations motivate the practice of approximating the BO
PES with computationally cheaper expressions, so-called interatomic
potentials13 or FFs [7]. In fact, the original formulation and application

13 We will often refer to them as ‘poten-
tials’ for brevity.

of MD occurred in such a context [5, 96, 97], and it remains the most
widely used approach in studies of the dynamics of many-atom sys-
tems today. We provide a brief overview of key ideas and methods in
the following.

The principle of such approximations is to replace the many-body
function 𝑈(ℛ), which depends jointly on all atomic positions, with
a parametrised analytical expression constructed from terms that are
computed for subsets ofℛ, such as pairs, triplets, or higher-order com-
binations. Such a body-order expansion will appear again in section 3.2.
The parameters of this FF are then optimised to match experimental
values or the results of first-principles calculations.

The computational cost of evaluating the resulting expression can
be controlled by two main mechanisms: The truncation of interactions
based on pairwise distance, which enables linear scaling with system
size 𝑁 ,14 and specialised techniques that make use of the structure of

14 In this thesis, the limit 𝑁 → ∞ is al-
ways taken at constant density. In that
case, the average number of neighbours
of any atom is independent of the over-
all size of the system. We then further
assume that the potential is defined as
some function 𝑓 acting on all neighbours
of a given atom with computational cost
scaling as 𝑂(𝑐(𝑁nbh)), with some cost
function 𝑐. Anticipating the introduc-
tion of atomic potential energy contribu-
tions below, this function must be eval-
uated 𝑁 times, so the overall scaling
is 𝑂(𝑁𝑐(𝑁nbh)). As 𝑁nbh is bounded,
overall scaling is𝑂(𝑁). We note that this
argument relies on the assumption of a
homogeneous system.

specific interactions to enable favourable computational scaling. For
instance, for pairwise Coulomb interactions, where the sum over a
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periodic system is conditionally convergent [98], techniques such as
Ewald summation [99, 100] or fast multipole methods [101, 102] are
used to both resolve this issue and enable efficient evaluation.

Additive Pairwise Potentials The first FF used for MD was a pairwise
square well potential [96, 97].15 Experiments with the Lennard-Jones 15 Defined in reference [97]:

𝑉(𝑟) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ for 𝑟 < 𝑟a

const. for 𝑟a < 𝑟 < 𝑟b
0 otherwise,

with two radii 𝑟a and 𝑟b.

[103] potential followed shortly after. It is defined as

𝑈(ℛ) =
𝑁∑︂

𝑖 𝑗=1
2𝜖

(︂
𝜎12/𝑟12

𝑖 𝑗 − 𝜎6/𝑟6
𝑖 𝑗

)︂
, (2.2.5)

with two adjustable parameters 𝜖 and 𝜎; the double sum is often trun-
cated at some cutoff radius16 𝑟c. The Lennard-Jones potential serves 16 In practice, a cutoff function is also

added to ensure continuity. See ap-
pendix C.2 for the form used in this
work. Alternatively, Ewald summation
can be used to treat all-to-all interactions
in periodic systems.

as a prototypical example of pairwise additive potentials, which con-
sist of sums of pairwise terms. Other examples include the Bucking-
ham [104] and Morse [105] potential, as well as the pairwise Coulomb
potential, which will be discussed further below. The Lennard-Jones
potential is employed even today to approximate Van der Waals in-
teractions, and is used in this thesis as a test case for which analytical
derivatives are straightforward to obtain, see section 4.1.

Many-Body Potentials However, in such additive pairwise potentials,
all pairs of atoms are treated on an equal footing: Atomic bonding is
not modeled, leading to the failure of such non-bonded potentials to
describe systems with covalent bonds, for instance silicon. For this
reason, more complex bonded FFs were developed, starting with the
embedded atom method (EAM) [106, 107], where pairwise interac-
tions are augmented with a modification through the atomic density
at 𝑖, and the Stillinger-Weber (SW) [108] potential, which added an
angle-dependent triplet term in addition to a pairwise interaction.

The Tersoff potential [109], introduced shortly after, is defined as

𝑈 =

𝑁∑︂
𝑖 𝑗=1

𝑈𝑖 𝑗 (2.2.6)

𝑈𝑖 𝑗 = 𝑓rep.(𝑟𝑖 𝑗) − 𝑏𝑖 𝑗 𝑓attr.(𝑟𝑖 𝑗) (2.2.7)
𝑏𝑖 𝑗 = (1+ 𝛽𝑛𝜁𝑛𝑖𝑗)

−1/(2𝑛) (2.2.8)

𝜁𝑖 𝑗 =
∑︂
𝑘≠𝑖,𝑗

𝑓3-bdy(r𝑖 𝑗 , r𝑖𝑘) . (2.2.9)

Here, 𝑏𝑖 𝑗 is a bond-order function, 𝑓rep. and 𝑓attr. a repulsive and attract-
ive pair potential, and 𝑓3-bdy a function that takes the angle between r𝑖 𝑗
and r𝑖𝑘 as well as 𝑟𝑖 𝑗 and 𝑟𝑖𝑘 into account. Other variables are free para-
meters. In this potential, the interaction between atoms 𝑖 and 𝑗 is mod-
ified by the overall environment of the pair, or bond, under consider-
ation. This idea was extended in the Brenner [110] potential, mod-
ulating interactions based on the bonds of 𝑖 and 𝑗. The general idea
of modifying pairwise interactions based on atomic environments will
occur again in section 4.1. Since potentials of this type can no longer be
decomposed into a sum over pairwise contributions that only depend
on r𝑖 𝑗 , they are also referred to as many-body potentials.
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Atomic Potential Energy Contributions Even though FFs are naturally
described in terms of sums over 𝑛-tuples of atoms, it is conceptually
useful to recast them in terms of an additive ansatz,

𝑈 =

𝑁∑︂
𝑖=1

𝑈𝑖 , (2.2.10)

simply collecting terms sharing an index. This gives rise to atomic
potential energy contributions 𝑈𝑖 , which are, however, not uniquely
defined: Contributions can be distributed, or partitioned, in different
ways without changing 𝑈 by renaming indices.17 At present, 𝑈𝑖 can 17 This freedom of choice will appear

again as a gauge freedom of the energy
density in section 2.5.

each depend on all positionsℛ; for finite-distance interactions,18 which
18 This typically includes bonded terms,
and some non-bonded ones. For in-
stance, in this work, we use a truncated
Lennard-Jones potential, which would
otherwise be classified as non-bonded,
but is included here.

are studied in this thesis, it reduces to a function of a finite neighbour-
hood 𝒩(𝑖), defined further in section 2.4.

Polarisable Potentials and Electrostatics The most straightforward way
to model electrostatic interactions is a pairwise Coulomb interaction
with fixed charges 𝑞 located at each atom,

𝑈𝑖 𝑗 ∝
𝑞𝑖𝑞 𝑗

|r𝑖 𝑗 |
. (2.2.11)

However, such a model cannot account for charge transfer. Therefore,
many different schemes for the adjustment of charges during dynam-
ics have been proposed, some of which are surveyed in reference [111].
Beyond point charges located at atoms, descriptions of dipoles and
higher-order multipoles can also be included in such polarisable FFs.

One commonly used class of methods is charge equilibration [112,
113]. The input parameters to such a scheme are then FF parameters,
or can be predicted based on atomic environments [114].

Reactive Forcefields Once bonds are introduced, the modeling of bond
breaking and formation, and therefore chemical reactions becomes
feasible, leading to reactive FFs [8], defined as a combination of non-
bonded and bonded terms with electrostatics.

Currently used reactive FFs, such as ReaxFF [115, 116], COMB [117,
118], MEAM [119] and many others surveyed in reference [8],19 contain 19 In the interest of brevity, we have not

discussed FFs focusing on biomolecu-
lar simulations, such as AMBER and
CHARMM. An overview is given in ref-
erence [6].

a multitude of different terms and corrections. For instance, ReaxFF is
defined as [116]

𝑈 = 𝑈bond +𝑈over +𝑈angle +𝑈torsion (2.2.12)
+𝑈vdW +𝑈Coulomb , (2.2.13)

respectively describing bond-related interactions,20 penalising over- 20 Similar in concept to the Tersoff poten-
tial described above.coordination,21 computing angular and torsional contributions, non- 21 Assigning higher energy to unphysical
situations where, for instance, a carbon
atom with more than four bonds.

bonded Van der Waals interactions, pairwise Coulomb interactions,
and system-specific terms. In the classification from above, the latter
two—Van der Waals and Coulomb—terms are non-bonded interac-
tions, the remainder are considered bonded.

Parametrisation Each term in a FF expression depends on a number
of parameters, on the order of 100 in the case of ReaxFF. Parametrising
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such a FF for a new material is therefore a non-trivial task, requiring
global optimisation schemes and a well-curated database of reference
results. In the case of ReaxFF, recent efforts have been made to make
use of modern ML frameworks with support for AD, allowing the use
of gradient descent methods for optimisation [120, 121]. Once para-
metrisation for a particular material, or class of materials, is complete,
FFs often display good transferability and robustness, as many phys-
ical mechanisms are modeled explicitly. For instance, nuclear repul-
sion is typically included directly in the energy expression, avoiding
undefined behaviour for configurations where interatomic distances
are smaller than the ones seen during training.

Machine-Learning Potentials In parallel to the development of FFs, and
in tandem with increasing computational capabilities and the continu-
ing development of first-principles methods, an alternative approach
to the design of FFs was developed: The use of general function inter-
polation, or regression (see section 2.4), techniques for the reconstruc-
tion of PES based on reference calculations.

Early machine-learning interatomic potential (MLIP) approaches
focused on interpolating the PES in between a grid of first-principles
calculations, based on the coordinates of the system at hand, and there-
fore limited to relatively small systems, in line with available first-
principles data [122–125]. Representations (see chapter 3) for high-
dimensional systems appeared a decade later [15–17], and constitute
an active field of study today [18–20].

In such approaches, the explicit modeling of physical interactions,
based on chemical insights, intuition, or approximations, which char-
acterises FFs is replaced, or augmented, by fitting a flexible functional
form directly to data. This brings advantages and disadvantages: On
the one hand, such models can be highly expressive and model mech-
anisms present in the data, but not known at the time of MLIP con-
struction, and can be systematically improved, at least in principle, by
adding data. On the other hand, lacking explicit physical mechanisms
can impact transferability and stability in situations not present in the
training data. A recent discussion of stability in MD can be found in
reference [126]; see also section 2.4.

Many concepts from FF development have been included in MLIPs.
For instance, a majority of models22 are constructed based on the ad- 22 Other approaches are possible,

for instance the direct prediction of
forces [127–129] in the gradient domain.

ditive ansatz of equation (2.2.10), which will be discussed further in
section 2.4.2. Some MLIPs include interaction terms from FFs in their
architecture; a paradigmatic example is SpookyNet [130], which was
recently used for a large-scale biomolecular simulation [131].

While currently available MLIPs are typically less computationally
efficient than FFs, efforts have been made to close the gap [132–134];
efforts to include recently developed mechanisms from MLIPs, such
as message passing, into FFs have also been made [135]. Further con-
vergence on shared methods is anticipated as a future development.

MLIPs will be discussed further in section 2.4.



31

Section 2.3
Periodic Systems

I will be bold enough to suggest this solution to the ancient problem: The
Library is unlimited but periodic. If an eternal traveler should journey in
any direction, he would find after untold centuries that the same volumes
are repeated in the same disorder – which, repeated, becomes order: the
Order. My solitude is cheered by that elegant hope.

– Jorge Luis Borges, The Library of Babel

In the last sections, we have discussed methods to model systems with
relatively small numbers of atoms. Despite large-scale benchmarks,
for instance with a highly parallel MLIP [133] or DFT on TPUs [136],
routine calculations in the context of dynamics are limited in size:
Millions of atoms are achievable with fast FFs, tens of thousands to
thousands of atoms with MLIPs, hundreds with DFT, and tens or
even fewer atoms in higher-level quantum chemistry methods. Ob-
jects even on the scale of millimetres, however, contain ≈ 1019 atoms.1 1 For illustration, elemental Si contains

approximately 0.5 × 1023 atoms per cu-
bic centimetre.

In order to make predictions about such ‘bulk’ systems regardless,
we transition to an alternative description: We now consider the sys-
tem at hand, which is large relative to the atomistic resolution of the
methods we are investigating, as infinite. From this infinite bulk, we
select a finite region as simulation cell and tile it periodically in space.
With this step, we have formally reduced the many, or rather infinite,
degrees of freedom contained in the bulk to the ones in the simulation
cell.2 Because of this reduction, which entails an approximation of the 2 To be precise, to the positions in the

simulation cell, and the definition of the
cell boundaries.

overall behaviour of the system, the selection of the simulation cell
must be carefully checked for convergence in practice. The severity of
this approximation depends on the type of system being investigated:
Crystalline solids, which exhibit long-range order, and are, barring
quantum effects, strictly periodic at 0 K, are naturally modeled in a
periodic fashion [56]. Amorphous solids, on the other hand, which
are locally ordered but disordered at the larger scale, are challenging
to treat in this manner [137]. Bulk liquids and gases can be described
periodically in many cases, provided that all relevant interactions can
be modeled within the simulation cell [78].

Having motivated the transition to a periodic system, we will
now discuss the mathematical, as well as the computational, descrip-
tion of such systems in detail. We begin by introducing notation and
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terminology, then discuss how periodic systems are used and imple-
mented, and conclude with some remarks on uniqueness.

2.3.1 Terminology and Notation

We define three lattice vectors b𝑎 and the positions in the simulation
cell (s.c.) ℛsc. These lattice vectors span a parallelepiped3 containing 3 In principle, other shapes can also be

chosen, as long as they can be seamlessly
tiled in three dimensions.

the 𝑁 positionsℛsc, which is then periodically tiled to form the infinite
bulk system ℛall, formed of replicas ℛrep and the simulation cell itself.
In summary: We will often use the sets defined here to

refer to collections of indices instead of
positions. For instance 𝑖 ∈ ℛsc in a sum
should be taken as indicating a sum over
all r𝑖 ∈ ℛsc.

We introduce the following convention:
In addition to enumerating cartesian dir-
ections, greek indices will also enumer-
ate (lattice) basis vectors. To distin-
guish from cartesian directions, indices
of basis vectors will be lowered.

ℬ = { b𝛼 | 𝛼 = 1, 2, 3 } lattice vectors
ℛsc = { r𝑖 | 𝑖 = 1...𝑁 } positions in s.c.

n = { 𝑛𝛼 | 𝛼 = 1, 2, 3 } ∈ Z3 offset vector

r𝑖n = r𝑖 +
∑︂3

𝛼=1 𝑛𝛼b𝛼 (replica) position

ℛrep =
{︁

r𝑖n
|︁|︁ r𝑖 ∈ ℛsc, n ∈ Z3, n ≠ 0

}︁
replica positions

ℛall = ℛsc ∪ℛrep

=
{︁

r𝑖n
|︁|︁ r𝑖 ∈ ℛsc, n ∈ Z3 }︁

all positions .

It is often necessary to move between replica positions and those in the
simulation cell. Latin indices, for instance 𝑗, can refer to positions in
both the simulation cell and replicas, and should be taken as shorthand
for 𝑗n, where 𝑗 ∈ ℛsc and n identifies the replica that 𝑗 resides in.4 If 4 If 𝑗 ∈ ℛsc, then n = 0.

a double index of this form appears, the latin index always refers to a
position in the simulation cell.

The lattice vectors inℬ can be seen as basis vectors for a coordinate
system, in which a position r can be written as x such that

r =
∑︂
𝛼

𝑥𝛼b𝛼 . (2.3.1)

Positions inℛsc are, by definition, given by 𝑥𝛼 ∈ [0, 1]. The coordinates
in this basis, x, are called fractional coordinates. They can be obtained
by computing the inverse of the column matrix obtained from ℬ: Let-
ting B = [ b𝛼 | 𝛼 = 1, 2, 3 ] then x = B−1 · r. The rows of B−1 are the
reciprocal lattice vectors5 𝒜 = { a𝛼 | 𝛼 = 1, 2, 3 }. Intuitively, the nor- 5 Multiple definitions exist; in a physics

context, an additional factor of 2𝜋 is of-
ten introduced to aid the discussion of
wave vectors.

malised reciprocal lattice vectors a𝛼 are the surface normals6 of the

6 We follow the convention that ℬ is
chosen such that the resulting coordin-
ate system is right-handed. This en-
sures that the reciprocal lattice vectors
always point into the parallelepiped if
they are computed via the standard
cross products.

parallelepiped spanned by ℬ, indexed such that a𝛼 is orthogonal to
the surface spanned by the two b𝛽 for which 𝛽 ≠ 𝛼. Therefore, a𝛼 · b𝛼

yields the distance between opposite faces of the parallelepiped.
Simulation cells whereℬ are orthogonal are called orthorhombic cells.

If all b additionally share the same length, the cell is cubic. The general
case, when the orthorhombic cell is distorted into a parallelepiped is
called non-orthorhombic or triclinic. We note that the coordinate sys-
tem can always be re-oriented in a standard way that ensures that b1
is aligned with the x-axis and b2 lies in the x-y plane.7

7 In the convention for B adopted here,
this leads to an upper triangular form.
The opposite convention, where the rows
of B are the b, yields a lower triangu-
lar form. Both conventions are routinely
employed in software.

The smallest possible choice of simulation cell that still generates
the same bulk structure is the primitive cell. Many choices are possible,
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all with the same volume. At present, we always adopt a form that
can be written as described above. An alternative construction is the
Wigner-Seitz cell, defined as the set of points closest to the origin of a
given cell.8 8 More precisely, the volume closest to

the Bravais lattice point (see below).A finite number of periodic repetitions of a primitive cell, i.e. re-
stricting n to a finite range, is called a supercell. Supercells are often
used to initialise MD simulations for crystalline systems, where the
primitive cell is given by the fully relaxed structure at 0 K. Once atoms
in this pristine supercell have moved independently, for instance dur-
ing a MD timestep, the supercell can no longer be reduced to a repe-
tition of primitive cells, becoming the primitive cell of the resulting
system. All cells that can be periodically tiled are called unit cells; we
choose the alternative term simulation cell to emphasise that only the
positions in that cell are treated explicitly.

Crystallography is concerned with the systematic study of peri-
odic systems. It describes periodic structures as consisting of a Bravais
lattice, formed by taking linear combinations of vectors in ℬ with in-
teger coefficients. Each point on the Bravais lattice R = 𝑛1b1 + 𝑛2b2 +
𝑛3b3 is then decorated with a basis9 of atoms, replicas of positions 9 We avoid usage of this term as it con-

flicts with the perspective that ℬ yields
basis vectors for a coordinate system.

in the unit cell. Bravais lattices can be categorised by the symmetry
operations that leave them unchanged,10 yielding 14 different classes 10 More precisely, we consider the space

group of the lattice, which contains
all operations that leave distances un-
changed (rigid operations). This group
in turn is composed of translations
through lattice vectors and operations
that leave one lattice point unchanged
(point group). Combining the 7 possible
point groups (or crystal systems) with
translations yields 14 space groups.

of Bravais lattices. Systematic enumeration of possible basis arrange-
ments yields a total number of 230 distinct crystal structures.11

11 This enumeration proceeds by redu-
cing the symmetry of the basis, starting
from the maximally symmetric choice of
a single atom. See reference [56, ch. 7].

2.3.2 Usage

Now that we have introduced the concept of periodicity, we consider
how to apply it to solving problems in practice.

For a detailed account of these issues, see
[56, ch. 8].

Schrödinger Equation In order to apply periodicity to the task of solv-
ing the electronic Schrödinger equation – or the Kohn-Sham equations
– we must augment the periodic description with suitable boundary
conditions. Periodicity alone, via the Bloch theorem [138],12 yields the 12 Similar results can be shown for peri-

odic Hamiltonians, or general differen-
tial equations, giving rise to Floquet the-
ory [139].

information that solutions must take the form 𝜙(r) = exp(𝑖kr)𝑢k(r)
where 𝑢k is periodic with the lattice,13 but does not yet tell us how to

13 𝑢k(r + R) = 𝑢k(r) for any lattice trans-
lation R.

select k. This is achieved by introducing Born-von Karman boundary
conditions, demanding that for some fixed { 𝑛𝛼 | 𝛼 = 1, 2, 3 } the wave
function is periodic: 𝜙(r) = 𝜙(r + 𝑛𝛼b𝛼). This yields14 the restriction 14 Note that we choose a different norm-

alisation of a in this paragraph to avoid
factors of 2𝜋.

that k =
∑︁3

𝛼=1 a𝛼𝑚𝛼/𝑛𝛼 with 𝑚𝛼 ∈ Z.
In other words, k is restricted to two cases: (a) a limited number of

modes where the wavelength exceeds the size of the unit cell, |𝑚𝛼 | ≤
𝑛𝛼, and (b) many modes where the wavelength is smaller than the unit
cell. The former are contained within the Brillouin zone, the primitive
cell15 of the reciprocal lattice.16 The latter k can be decomposed into 15 In particular, the Wigner-Seitz cell.

16 The lattice spanned by 𝒜.a component in the Brillouin zone, and a component that can be ab-
sorbed into 𝑢k.

The implications of this are profound: In order to model a periodic
system extending to a supercell of size 𝑛𝛼 in each direction, we can
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solve a finite number of separate eigenvalue problems for the differ-
ent 𝑢k. If the 𝑛𝛼 are increased towards infinity, leading to ever-finer
sampling of the Brillouin zone, the bulk limit is recovered. In prac-
tice, convergence with respect to this k-grid must be checked, but often,
moderate numbers of k-points are sufficient. Many different strategies
for choosing relevant k to sample can be employed, often informed by
symmetry [140, 141]. Another implication is that the only periodicity
exceeding the unit cell is contained within the phase of 𝜙. Therefore,
the density is strictly periodic with the lattice, and we can expect the
forces, and therefore the BO PES, to be periodic as well.17 17 From symmetry considerations alone,

it is clear that once we take 𝑛𝛼 → ∞, no
physical observable can depend on the
choice of which replica to choose as sim-
ulation cell.

Molecular Dynamics Working with a periodic potential 𝑈(r + R) =

𝑈(r), we can immediately conclude that the force acting on an atom in
the simulation cell is the same as the one acting on each of its replicas.
Since the time-evolution is determined by the forces,18 we can restrict 18 In the case of 𝑁𝑝𝑇, also the stress,

which also does not depend on the
choice of which cell is used.

MD simulations to the atoms in the simulation cell. We will discuss
how this is implemented in practice in section 2.3.3.

This approach restricts the kinds of dynamics we can observe: Any
collective vibrational modes are bounded in wavelength by the simu-
lation cell, as only these 𝑁 atoms can move independently.

A detailed introduction to phonons can
be found in reference [142].

Phonons Collective vibrational modes are called phonons. They occur
in an alternative approach to modeling lattice dynamics: The BO PES
is approximated with a Taylor expansion around the minimum en-
ergy configuration. The second-order approximation, corresponding
to harmonic springs between atoms in the simulation cell, yields an
analytical solution of the equations of motion in terms of plane waves,
the phonons.19 Higher-order corrections introduce scattering between 19 Phonons also emerge in the quantum

case, where they are commonly de-
scribed in second quantisation terms
and interpreted as bosonic quasi-
particles. This leads to the phonon gas
model, which can be used to describe
thermodynamic properties of solids.
In section 2.5, we will investigate an
approach that goes beyond this model,
which breaks down in the case of
anharmonic PES, or multiple minima.

these modes. Once again, the choice of simulation cell – typically a
supercell – restricts the possible k. Extrapolation schemes to larger
supercells have been proposed [143, 144].

2.3.3 Implementation

For this thesis, we must consider periodicity in two contexts: Defining
potentials in a way that ensures their periodicity, and implementations
of MD for periodic systems.

For the former case, we proceed from the fact that the potentials
we are considering must respect global translational invariance in ad-
dition to periodicity.20 20 After all, we are modeling the BO PES,

which shares this invariance. Additional
invariances of this form are discussed in
a different context in section 3.1.

They are therefore constructed from atom-pair vectors

r𝑖 𝑗 = r 𝑗 − r𝑖 , (2.3.2)

rather than atomic positions directly. We then observe that for any
fixed 𝑖, the set of atom-pair vectors r𝑖 𝑗 is identical regardless which
cell is chosen for 𝑖; the only difference is which replica the 𝑗 belong
to. Therefore, the choice of simulation cell does not impact the set of
atom-pair vectors

{︁
r𝑖 𝑗

|︁|︁ 𝑖 ∈ ℛsc, 𝑗 ∈ ℛall
}︁

which are the input for the
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potential. By construction, any potential of this form is therefore in-
variant under the choice of simulation cell.

In practice, it is often convenient to rephrase the set of atom-pair
vectors in terms of positions in the simulation cell only. This can be
achieved by augmenting the definition of atom-pair vectors with the
minimum image convention (MIC):

|rmic
𝑖 𝑗 | = min

n∈Z3
|r 𝑗n − r𝑖 | 𝑖, 𝑗 ∈ ℛsc . (2.3.3)

This convention states that whenever we compute an atom-pair vec-
tor pointing from 𝑖 to 𝑗, we take the one pointing towards the nearest
replica (or the ‘original’) of 𝑗. In essence, this treats atom-pair vectors
as being defined modulo lattice vectors. This introduces discontinuit-
ies: Holding r𝑖 fixed, rmic

𝑖 𝑗
changes direction, but not magnitude, when

r 𝑗 moves more than half the length of the unit cell away. Addition-
ally, the MIC imposes an implicit cutoff on the interactions contained
within the set of atom-pair vectors: Apart from degenerate situations,
only a single replica can ever be be considered.

To avoid both issues, we introduce the maximum cutoff radius

𝑟max
c = min

𝛼

|a𝛼 · b𝛼 |
2 (2.3.4)

for a given simulation cell. In orthorhombic cells, it reduces simply
to being half the length of the smallest lattice vector. If the interac-
tion cutoff of the employed potential is below this value, 𝑟c < 𝑟max

c ,
every atom in ℛsc can only interact with a single replica of each other
position; self-interactions are also impossible.

We finally note that the MIC can be implemented using modular
arithmetic21 without explicitly constructing the replicas r 𝑗n. In some 21 For non-orthorhombic systems, it is

particularly convenient to first transition
to fractional coordinates, where the MIC
can be achieved by computing distances
modulo 1. However, MIC distances ob-
tained with this method are only correct
below 𝑟max

c [145].

cases, as we will see in sections 4.1 and 4.2, this can lead to difficulties.

In dynamics simulations, we can either let positions evolve freely,
relying on the potential to ensure that forces are computed in a peri-
odic fashion, or return (wrap) positions whenever they leave the simu-
lation cell. The latter case corresponds to imbuing the simulation cell
with the topology of a circle in each coordinate direction,22 leading to 22 In the general triclinic case, this is

more clear in fractional coordinates: The
faces of the unit cube are joined to the
opposite side.

a toroidal system.
This choice can be convenient in practice, as it prevents uncontrolled

growth of position vectors, but can also lead to difficulties due to the
mismatch between this description and the physical situation of a bulk
system composed of a checkerboard of replicas. For instance, for the cal-
culation of diffusion constants, which relies on tracking the displace-
ment of each particle from its original position, wrapping positions
back leads to unphysical results [146, 147]. Additionally, as atoms
close to the boundary can oscillate across it during simulations, wrap-
ping positions at every timestep leads to jumps, which can cause cache
misses in neighbourlist computations and therefore incur additional
computational cost. In the present work, which investigates systems
where no diffusion occurs,23 we therefore avoid wrapping positions.24

23 In other words, where positions stay
bounded over time. In this case, we do
not face the difficulty of positions grow-
ing over time, which would cause preci-
sion issues in long simulations.
24 See section 4.1.3 for a construction
where it is necessary to wrap positions
into the simulation cell.
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2.3.4 Uniqueness

We conclude by considering some properties of the positions ℛsc. For
a given bulk system ℛall, even disregarding rotation and translation of
the overall coordinate system, the positions within ℛsc are not unique.
First of all, a given bulk can be equivalently described by the primitive
cell or many choices of supercell.25 Even restricting ourselves to the 25 This gives rise to the expectation that

potentials are extensive in a simple
sense: When the simulation cell is
doubled in one direction, we expect,
modulo convergence, the energy to
double as well. Forces, on the other
hand, should remain unchanged. See
appendix B.1 for a further discussion.

primitive cell, which fixes the number of atoms 𝑁 , many equivalent
choices can be obtained by (a) shifting the origin ofℛsc, or (b) changing
the shape of the cell.

In addition to cases covered by translational invariance, both opera-
tions can lead to some, but not all, atomic positions changing when the
cell definition is changed. In other words, they are non-unique, and no
physical observable can depend on the arbitrary choices made in de-
fining the simulation cell. This leads to many practical difficulties, for
instance the inability to define a consistent dipole moment even for two
charged particles in a periodic system: Different choices of boundary
can arbitrarily change sign and direction.26 The quantum-mechanical 26 The more general case of polarisation

is discussed in reference [148].position operator also becomes ill-defined; its modification for peri-
odic cases is non-trivial [149]. Momenta of distributions in periodic
boundary conditions also cannot be uniquely evaluated [148, 150, 151],
which will pose an essential difficulty in chapter 4.

A straightforward approach to ensure boundary invariance, i.e., in-
variance with respect to the arbitrary choice of simulation cell, is to
find a formulation of the desired physical quantity in terms not only
of ℛsc, but the bulk system. In particular, as we have seen above, a
formulation in terms of the set of atom-pair vectors originating from
every position in ℛsc is independent of the choice of boundary. We
will use this in section 4.2.



37

Section 2.4
Atomistic Machine Learning

In this section, we briefly review core terminology and introduce nota-

For a detailed introduction to ML and
statistical learning, see Hastie et al. [13].

tion for ML, discuss applications relevant for this thesis, and introduce
the main models we will be using: kernel ridge regression (KRR) in
chapter 3 and neural network (NN) regression in chapters 4 and 5. The
section concludes with a brief discussions of automatic differentiation
(AD), required for the practical and efficient implementation of deriv-
atives of complex models, and of particular importance for chapter 4.

2.4.1 Terminology and Notation

We keep the definition of 𝒱 deliberately
vague at this point. For kernel methods,
a set is sufficient, for instance. In prac-
tice, for computer implementation, we
typically work with subsets of R𝑑 repres-
ented as vectors.

In this thesis, we focus on regression
tasks, where labels are continuous in 𝒪.
Classification deals with a finite number
of discrete labels.

Supervised Learning The task of supervised ML is to obtain an approx-
imation 𝑓 : 𝒱 → 𝒪 of a ground truth relationship 𝑡 : 𝒱 → 𝒪 between
an input space 𝒱 and an output space 𝒪 based on a set of 𝑛 examples,
the training data or training set

𝒟train = { (x𝑖 , 𝑡(x𝑖) = 𝑦𝑖) | 𝑖 = 1...𝑛 } . (2.4.1)

At present, we consider a restricted form of this general task, the learn-
ing of mappings between atomistic systems ℳ consisting of atoms
𝒜 to properties computed with a first-principles electronic structure
method. For simplicity of notation, we focus on scalar properties,1

1 We can always consider construct-
ing a separate model for each out-
put. Multi-task learning is also possible.
Some properties can also be naturally
learned together, such as potential en-
ergy, forces, and stress.

𝒪 ⊆ R. In the presence of noise, for instance Gaussian noise sampled
from a fixed normal distribution 𝜖∼𝒩 , values of the ground truth
function, the labels, are observed as 𝑦𝑖 + 𝜖. In the present setting of
approximating numerical QM calculations, noise plays a minor role,
but nevertheless emerges later in the context of regularisation.

Loss Functions The quality of the approximation 𝑓 can be evaluated
by computing a loss (or error) function 𝑙(𝑦, 𝑓 (x)) ∈ R for the train-
ing data 𝒟train, or test data2 𝒟test. By convention, loss functions are

2 Statistical learning theory often makes
the assumption that 𝒟train and 𝒟test
are drawn independently from the
same distribution, the independent and
identically distributed (i.i.d.) assump-
tion. In practice, this cannot always be
assured. In chapter 3, efforts are made
to approximate it for the purposes of
benchmarking. Ensuring that test data
is not used during training, not even
for the definition of hyper-parameters,
is standard practice to ensure that
performance estimates are relevant.

defined such that lower loss corresponds to a better approximation.
Training an ML model therefore amounts to minimising the average
of a loss function on 𝒟train. Evaluation consists of computing the loss
on unseen data to estimate the degree to which the model can general-
ise outside of the training set. An overview of common loss functions,
and in particular those used in this thesis, is given in appendix A.3.
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Hyperparameters ML models typically possess some parameters that
are not determined during training,3 but must be set in advance to 3 For instance, structural choices and dis-

crete parameters are not amenable to the
gradient descent approaches used for
NNs. Training is formally understood
as an optimisation in some fixed space of
functions. Hyperparameters determine
that space, or the function to be minim-
ised, while parameters are the result of
the minimisation.

define the overall search space of approximators. Such a paramet-
ers are called hyperparameters (HPs). In this work, we distinguish
between structural and numerical HPs, where the former includes
structural choices, for instance the choices of NN architecture, while
the latter refers to parameters that can be varied continuously, for in-
stance regularisation strength in kernel ridge regression (KRR). Dif-
ferent approaches to setting HPs exist; one standard method adopted
in this thesis is to optimise HPs by computing the loss for an auxiliary
validation set that is extracted from 𝒟train and not used for training. An
overview of approaches can be found in [152, ch. 5].

Regularisation Expecting to approximate 𝑡 based on a finite number
of examples relies on the assumption of some regularity, or smooth-
ness.4 Such an assumption can be partially encoded in the ansatz for 4 This can also be viewed as a question of

sampling: Given a signal of finite band-
width, a finite number of samples is suf-
ficient to reconstruct it [153]; regularisa-
tion aims to match the bandwidth of the
model to the available training data.

𝑓 , but is often also included in the training process in the form of reg-
ularisation. Intuitively, we can imagine an unregularised 𝑓 attempt
to pass through every 𝑦 in 𝒟train exactly, while permitting arbitrary
behaviour in between. Regularisation aims to penalise such complex
models. [154]

Atomistic Systems An atomistic system, or configuration or structure
is described as a set of 𝑁 atoms ℳ = { 𝒜𝑖 | 𝑖 = 1...𝑁 }, where each
atom is associated with a position r𝑖 and atomic properties P𝑖 . We
typically restrict P𝑖 to the atomic number 𝑍𝑖 . In periodic systems, r𝑖
are taken to be in ℛsc and ℳ additionally depends on the lattice ℬ. In
practice, we therefore describe a system ℳ as a 3-tuple (ℛ,𝒵,ℬ); ℬ
can be empty for non-periodic systems, ℛ = ℛsc otherwise. Chapter 3
explores approaches to map such a description to a fixed-size vector,
which is more convenient for regression methods.

One core concept in the construction of atomistic ML models is the
usage of atomic environments 𝒩(𝑖), which is a finite set of atoms in
the vicinity of 𝑖. Such neighbourhoods can be constructed in differ-
ent ways, the most common of which is to introduce a cutoff radius
𝑟c such that 𝒩(𝑖) =

{︁
𝑗
|︁|︁ |r𝑖 𝑗 | ≤ 𝑟c, 𝑗 ∈ ℛ

}︁
. We note that the definition

of neighbourhoods in periodic systems can lead to difficulties; a com-
mon approach is to choose 𝑖, 𝑗 ∈ ℛsc and imbue r𝑖 𝑗 with the MIC as
discussed in section 2.3. This will be considered further in section 4.1,
where we argue that the decomposition into atomic environments nat-
urally leads to a graph description.
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Let us now briefly consider applications of ML in the context of atom-
istic modeling, focusing on those investigated in this thesis.

2.4.2 Machine-Learning Potentials

A tutorial introduction to MLIPs can be
found in [155].

In section 2.2, we already encountered the idea of a machine-learning
interatomic potential (MLIP) [14–20], where the regression task is to
approximate the mapping between positions ℛ and total potential en-
ergy𝑈 based on a training set of first-principles reference calculations.

An essential consideration for MLIPs is the procurement of training
data. If the MLIP encounters configurations for which it cannot make a
reasonable prediction, unphysical behaviour and instability in the res-
ulting MD can result.5 Approaches to mitigating this difficulty, which 5 Such instabilities are encountered in

section 5.1.4.is inherent in data-driven models, are an active area of research today.
Some regression methods, for instance Gaussian process regression
(GPR), which we will encounter in section 2.4.4, include an estimate
of model uncertainty, which can serve as criterion to add training data
during MD. Committee models can also be used [155–157]; many other
approaches and variations have been suggested [158–160]. Since an
ideal uncertainty estimate would be equivalent to making perfect pre-
dictions, approximate solutions must be used in practice, and verified
empirically. Recent approaches that use uncertainty estimates to refine
the PES on-the-fly during MD simulations [161] have yielded prom-
ising results [162–166].

Many MLIPs are based on an additive ansatz for the potential en-
ergy, encountered previously in section 2.2, decomposing𝑈 into atomic
potential energy contributions

𝑈 =
∑︂
𝑖∈ℛsc

𝑈𝑖 , (2.4.2)

where 𝑈𝑖 depends on on a finite atomic neighbourhood 𝒩(𝑖) only.6 6 This architecture is common in FFs,
and can also be motivated by the
‘nearsightedness of electronic mat-
ter’ [167], which also motivates the
development of linear-scaling DFT
methods; see [62, ch. 18].

This construction ensures 𝑂(𝑁) scaling of computational cost7 for en-

7 Assuming constant density.

ergy8 prediction as only a bounded number of atoms must be con-

8 And consequently force and stress (see
section 2.4.6).

sidered for each𝑈𝑖 . It also ensures extensivity in a trivial sense. How-
ever, such strict locality limits the ability to model long-range effects.9

9 In a system of fixed size, if all degrees
of freedom are seen by the model, long-
range effects can in principle be modeled
implicitly [127]. However, it is unclear
how such approximations can be expec-
ted to generalise across system sizes.

Attempts have therefore been made to re-introduce longer-range in-
teractions into local models, for instance through explicit electrostat-
ics [114], message passing mechanisms [31] (see section 4.1), Fourier-
space methods [168, 169], locality in other spaces [43], or all-to-all
transformer models [130]. Research in this area is ongoing. Models
not based on a locality assumption have also been proposed, but are
difficult to scale to larger systems [127, 129, 170].

Despite these challenges, MLIPs have become an important tool for
atomistic simulations, and have attracted a large amount of research
attention over the past years. Recent applications include the simula-
tion of large proteins [131] and the study of disordered silicon [171].
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2.4.3 Screening Tasks

In screening-type applications, a large pool of candidates, for instance
drug-like molecules, must be searched for compounds with certain
desirable characteristics [8]. This poses multiple challenges: The size
of chemical space is formidable, even when restricted to subsets such
as drug-like molecules [172], rendering brute-force approaches not al-
ways feasible. Additionally, even if the search space can be constrained
sufficiently, the prediction of properties of interest can require much
computational effort, restricting the reach of such approaches. Finally,
the prediction of properties via quantum mechanical simulations re-
quires the knowledge of structure first, additionally incurring compu-
tational cost due to structure relaxation.

ML models have been suggested as a way to circumvent some of
these difficulties [21, 22]. MLIPs can be used in place of ab initio app-
roaches to perform structural relaxation, for instance for the purpose
of crystal structure prediction [173]. Structure-property models can
be constructed to directly predict target properties for candidate struc-
tures without first-principles calculations, a task which we will invest-
igate in section 3.3. Specialised ML models such as sure independ-
ence screening and sparsifying operator (SISSO) [174] can be used to
construct data-driven analytical expressions for key properties, allow-
ing rapid sampling and potentially more guided exploration of target
spaces [175]. Generative models, which do not directly rely on super-
vised learning, have also been proposed to generate desired structures
without a prior search [176–181].

2.4.4 Kernel Ridge Regression

Kernel ridge regression (KRR) [182] writes the prediction as

𝑓 (x) =
𝑁∑︂
𝑖=1

𝛼𝑖 𝑘(x, xi) (2.4.3)

where 𝑘(x, x′) is a kernel function 𝑘 : 𝒱 ×𝒱 → R, such that the kernel
matrix K𝑖 𝑗 = 𝑘(x𝑖 , x 𝑗) is symmetric and positive semi-definite.10

10 This means

K⊤ = K

c⊤ · K · c ≥ 0 ∀c ∈ R𝑛 .

Equality iff c = 0 defines positive def-
initeness. Sometimes, the term ‘posit-
ive definite’ is used in place of semi-
definite, and ‘strictly positive definite’ in
place of definite. [183] At present, semi-
definiteness is sufficient.

This condition ensures that 𝑘(x, x′)
corresponds to an inner product
⟨𝑘(·, x), 𝑘(·, x′)⟩ℋ in a reproducing
kernel Hilbert space (RKHS) ℋ of
real-valued functions [184].
𝑘x = 𝑘(·, x) is the reproducing kernel of

this space, which means that the opera-
tion of computing 𝑓 (x)where x ∈ 𝒱 and
𝑓 ∈ ℋ can be expressed in terms of an
inner product within ℋ :

𝑓 (x) = ⟨ 𝑓 , 𝑘x⟩ℋ .

In other words, the kernel function
provides a natural ‘basis’ to express
functions in ℋ , providing the prelimin-
aries for the representer theorem [185, 186].

This theorem ensures that the 𝑓 min-
imising a regularised loss functional

arg min
𝑓 ∈ℋ

1
𝑛

𝑛∑︂
𝑖=1

𝑙( 𝑓 (x𝑖), 𝑦𝑖) +𝜆| 𝑓 |2ℋ ,

with a loss function 𝑙 and the norm | · |ℋ
in the RKHS of 𝑘 admits a solution in the
form given by equation (2.4.3).

The regression weights α = [𝛼1, ..., 𝛼𝑛]⊤ are obtained by minimising
the squared deviation between predictions and labels

α′ = arg min
𝛼

(Kα − y)⊤ · (Kα − y) . (2.4.4)

For KRR, regularisation is implemented by adding an additional term
to the minimisation problem:

α′ = arg min
𝛼

(Kα − y)⊤ · (Kα − y) +𝜆α⊤ · K · α . (2.4.5)

The solution of this quadratic form is straightforward:

α = (K +𝜆1)−1 y . (2.4.6)

In this form, we can also see that regularisation plays a role in improv-
ing the conditioning, and therefore numerical stability, during train-
ing.11 Additionally, Cholesky decomposition is often used in place of

11 We note in passing that it also al-
lows us to relax the requirement of semi-
definiteness of K. After all, in practice,
we simply require the term in paren-
theses to be invertible.
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explicit matrix inversion.
Once α is determined, predictions for new points X′ = [x′1, x′2, ...]

can be obtained by computing L𝑖 𝑗 = 𝑘(x𝑖 , x′
𝑗
) where x𝑖 ∈ 𝒟train. Then

predictions y′ are simply obtained by computing

y′ = L⊤ · α . (2.4.7)

The choice of kernel, in addition to 𝜆, is the main (structural) HP
choice in KRR. Many kernel functions have been proposed. In this
work, we employ the squared exponential (SE) kernel12 12 Also commonly called Gaussian ker-

nel, or radial basis function (RBF) kernel.

𝑘(x, x′) = exp− |x − x′ |2
2𝜎2 , (2.4.8)

which encodes an expectation of smoothness [187] that can be under-
stood intuitively by considering 𝑘(x, ·) as the basis functions in which
the target is expanded. The numerical HP 𝜎 controls the width, and
hence the smoothness, of the employed Gaussians.

Other kernel functions range from the linear kernel ⟨x, x′⟩, the Lapla-
cian kernel,13 admitting cusps at the training data, to the Matérn fam- 13 The RBF kernel with the 1-norm in-

stead of the 2-norm.ily of kernels, providing a generalisation of the RBF kernel [152, 182].
We note that kernel methods can be used beyond KRR; in essence, the
identification of kernel evaluation with an inner product in a high-
dimensional RKHS can be used to transform linear methods into non-
linear ones [183, 188, 189].

For atomistic modeling, we must tackle one additional difficulty: In
many cases, we must solve regression problems with labels per sys-
tem, but features per atom.14 With KRR, the approach described in 14 These are local representations, intro-

duced in section 3.1.references [44, 190, 191] can be used: Starting from an additive ansatz
for the per-system label, a modified kernel can be defined that sums
over blocks of a larger atom-to-atom kernel matrix.

Finally, we note that the results of KRR can also be obtained from a
Bayesian perspective, which yields Gaussian process regression (GPR).

An excellent visual introduction to
Gaussian processes can be found in
reference [192]. A full exposition is
given by Rasmussen and Williams [152].In GPR, the kernel function takes the role of the covariance of a Gauss-

ian process,15 which in turn is viewed as a prior probability distribu- 15 In a nutshell, a collection of random
variables (the input space 𝒱) such that
each subset is Gaussian. We can view it
as a probability distribution over func-
tions, which are obtained by drawing a
sample for every point in 𝒱. If the mean
is zero, the covariance function entirely
describes a Gaussian process.

tion over possible functions. Adding training data, via Bayes rule [193],
increasingly refines the posterior distribution to reflect added know-
ledge. Predictions are typically obtained as the mean of the resulting
predictive distribution, and are identical to the ones obtained from
KRR. The Bayesian perspective, however, affords a clear way to obtain
and interpret predictive uncertainties.

2.4.5 Neural Networks

Hastie et al. [13] introduce NNs in the
context of statistical learning.

While KRR models explicitly base their predictions on the training
data, introducing additional model parameters for every additional
training point, a neural network (NN) has a fixed number of paramet-
ers, independent on dataset size.16 NNs are implemented as a com-

16 This distinction between such non-
parametric and parametric models be-
comes less clear once HPs are intro-
duced. For good performance in prac-
tice, the size of a NN is adapted to the
amount of available data.

plex, but fixed, function with many adjustable parameters. Their con-
ceptual basis is simple: A function 𝑓 is constructed from multiple layers
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that each consist of functions that take linear combinations of inputs
and process the result with an activation function17 𝜎. Letting 𝑙 index 17 Choice of activation function is a struc-

tural HP.the layer, defining 𝑛𝑙 as the width of that layer, and denoting the output
of the previous layer as x𝑙−1, we obtain Biases can be included by adding a con-

stant entry to the inputs.
We also note that this form can be seen

as a simplified model of a neuron, with
the inputs representing dendrites con-
necting to neighbouring neurons. This
analogy lends NNs their name.

x𝑙 =
[︁
𝜎(α⊤

𝑙𝑚 · x𝑙−1) |𝑚 = 1...𝑛𝑙

]︁⊤ . (2.4.9)

The x0 are the inputs to the resulting network, which are then trans-
formed through successive layers, yielding more and more abstract
representations of the data. The final layer is then constructed to pro-
duce outputs with the desired dimensionality. This construction is
called a fully-connected feed-forward NN, or multi-layer perceptron.
In different limits, for instance network width or number of layers
(depth), such NNs are universal function approximators [194, 195].

In practice, fully connected layers are used as building blocks for
more intricate architectures, which can involve convolutions [32, 33],
recurrence [196], or even the solution of an ordinary differential equa-
tion [197]. We will encounter a particular architecture, the MPNN, in
section 4.1. For now, we consider a more fundamental question: How
can we determine the parameters of a NN?

In contrast with KRR, analytical solutions are typically not available,
as the loss function is not generally convex. We therefore must find a
different approach to solve the minimisation problem As above 𝑙 is a loss function acting on

single samples. More general forms are
also possible.

W = arg min
W′

1
𝑛

𝑛∑︂
𝑖=1

𝑙( 𝑓W′(x𝑖) − 𝑦𝑖) , (2.4.10)

where we have introduced 𝑓W as the NN with parameters W .
Variations on gradient descent are typically used to tackle this min-

imisation. In particular, standard neural network training proceeds
via mini-batch18 stochastic gradient descent (SGD), extended in differ-

18 Gradient descent proceeds by comput-
ing the gradient of the loss function over
the entire training set, which is often
not computationally feasible. Stochastic
gradient descent proceeds by taking
the gradient for single examples, lead-
ing to noisy gradient estimates. Mini-
batch stochastic gradient descent is a
compromise, taking some (randomly
sampled) subset of the full training data.
This batch size is a HP. Batching in this
form also yields computational advant-
ages, as calculations can be vectorised.

ent ways, for instance by adding a momentum term, or methods with
an adaptive learning rate. The selection of the minimisation method
and its parameters is a HP, but standard methods like adaptive mo-
ment estimation (ADAM) [198] can often yield acceptable results. Train-
ing is terminated after a set number of iterations over the training set
(epochs), or via early stopping approaches, where the loss on a valid-
ation set, typically set aside from 𝒟train, is used to terminate training
when generalisation no longer improves. Early stopping can therefore
be interpreted as a form of regularisation.

2.4.6 Automatic Differentiation

The efficient training of NNs via gradient descent requires the ability
to compute gradients of the loss function with respect to the paramet-
ers. The construction of MLIPs additionally requires gradients with
respect to inputs, obtaining forces and stress.

Automatic differentiation (AD) provides this ability. It is a tech-
nique to obtain derivatives of functions implemented as computer pro-
grammes [38–40], and therefore also called algorithmic or procedural
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differentiation. It is distinct from numerical differentiation, where fi-
nite difference schemes are employed, and symbolic differentiation,
where analytical derivatives are obtained manually19 ahead of time 19 Or via computer algebra systems.

and then implemented manually. Instead, AD relies on the observa-
tion that complex computations can often be split up into elementary
steps, for which derivatives are readily computed and implemented. If
one can track those derivatives during the computation of the forward,
or primal, function, the chain rule allows one to obtain derivatives.

The result of tracking a given computation is the computational graph.
Once the forward computation has concluded, the this graph can be
traversed in two directions:20 From the inputs forwards and from the 20 In general, mixed schemes are pos-

sible, but not yet a standard feature in
common AD frameworks. A unified
treatment of different schemes is also
possible [199].

outputs backwards, yielding forward and reverse mode21 AD.

21 Another common name is back-
propagation, or simply backprop.

For a general differentiable function

𝑓 : x ∈ R𝑁 → 𝑓 (x) = y ∈ R𝑀 , (2.4.11)

the Jacobian of 𝑓 is defined as the 𝑀 × 𝑁 matrix ∂ f𝑖 𝑗 = 𝜕𝑦𝑖(x)/𝜕𝑥 𝑗 .
AD can be used to compute the Jacobian-vector product (JVP) ∂ f · v
(forward mode) and the vector-Jacobian product (VJP) v⊤ · ∂ f (reverse
mode) with the same asymptotic computational cost as the primal
function. For 𝑀=1, i.e., scalar outputs, this reveals how MLIPs can
efficiently obtain forces: Differentiating the scalar total potential en-
ergy 𝑈 is a trivial VJP with v=1. The ability to compute products of
this type can also be leveraged to compute products of higher-order
differential operators [200].

We emphasise two properties of AD that are particularly relevant for
this work: (a) derivatives can only be obtained with respect to quantit-
ies that are explicitly used in the forward computation, and (b) the gen-
eral calculation of Jacobians requires repeated (𝑁 or 𝑀) evaluations of
JVPs or VJPs. If 𝑀 ∝ 𝑁 and the cost of 𝑓 is 𝑂(𝑁), this leads to quad-
ratic cost of calculating ∂ f explicitly.22

22 In some cases, this scaling can be cir-
cumvented by exploiting knowledge of
the sparsity of J. We will use this in sec-
tion 4.2.
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Section 2.5
Green-Kubo Method

This section discusses the Green-Kubo (GK) method, and in particular
its application to the calculation of thermal transport coefficients. It
represents an important application of MD simulations, starting with
early experiments with hard sphere [201] and Lennard-Jones [5] FFs
in the 1970s, and is the focus of chapters 4 and 5 of this thesis.

This thesis is concerned with lattice ther-
mal transport. We therefore do not treat
electronic or mass transport, and use κ
to indicate lattice thermal conductivity.
Equation (2.5.1) holds in a regime where
temperature gradients are small on the
atomic (microscopic) scale and a steady
state has been achieved [202].

The thermal conductivity tensor κ describes the heat flux J arising
in a system exposed to a stationary temperature gradient (∇𝑇), in ac-
cordance with Fourier’s law:

J = −κ · (∇𝑇) ; (2.5.1)

it quantifies the ability of a material to conduct heat. Its computational
prediction is of great interest for the design of novel high-performance
materials which are needed, for example, as thermal barrier coatings
in engines [203], or thermoelectrics for waste heat recovery [204].

There are three families of approaches to this modeling task.

Non-Equilibrium Methods An immediately intuitive approach is to in-
troduce an explicit temperature gradient into the simulation, and then
directly observe the resulting heat flux. However, this approach is
challenging to implement: It requires maintaining portions of the sim-
ulated systems at different temperatures using thermostats, introdu-
cing artificial boundaries. Additionally, long simulations are needed
to achieve a steady state configuration, and, due to the small length
scales accessible via simulation, unphysical large temperature gradi-
ents need to be imposed. [205–207]

Boltzmann Transport Approaches based on the phonon gas model lead
to early breakthroughs in studying thermal transport in crystalline
solids, for instance understanding the 1/𝑇 dependence of thermal con-
ductivity at elevated temperatures [208], which arises from first-order
anharmonic corrections to a harmonic approximation to the poten-
tial energy surface. With the advent of first-principles methods, such

While a purely harmonic model dis-
plays infinite thermal conductivity, as
no mechanism for energy exchange
between modes is possible, anharmonic
contributions can be treated as per-
turbations to such a model, leading to
phonon-phonon interactions and finite
thermal conductivity [209].

approaches based on the Boltzmann transport equation (BTE) have be-
come a standard method for computing thermal conductivities [210–
213]. However, this class of methods faces severe challenges in an-
harmonic materials with complex crystal structures: A perturbative
treatment requires increasingly higher-order terms to treat strong an-
harmonicity, and the computational cost of evaluating force constants,
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as well as the solution of the Boltzmann transport equation, becomes
increasingly challenging [214]. The harmonic approximation can also
break down entirely at elevated, or very low, temperatures, and for
strongly anharmonic materials.

Green-Kubo Method Even though thermal transport occurs in a non-
equilibrium situation, thermal conductivity can be computed from en-
ergy fluctuations in equilibrium, as initially observed by Onsager [215,
216] and later formalised by Green and Kubo [217–219]. This approach
can account for any order of anharmonicity, and is therefore able to
treat materials where anharmonic effects play an important role. In
practice, it is implemented through MD simulations, requiring an ac-
curate model of the BO PES. High-accuracy MD simulations can be
performed using DFT when the exchange-correlation approximation
is reliable [11]. For the GK method, this ab initio Green-Kubo (aiGK)
approach [143, 151] suffers from its numerical costs which limits the
system sizes and timescales, and therefore requires additional denois-
ing and extrapolation approaches [143, 144, 220]. For this reason, FFs
are often used for the GK method, and there is growing interest in the
use of MLIPs for this task.

2.5.1 Intuition

Let us define a local energy density that corresponds to the total energy
𝐸 of the system in question when integrated over its volume:

𝐸 =

∫
𝑉

d3𝑟 𝑒(r, 𝑡) . (2.5.2)

This energy density cannot be expected to be uniquely defined: Any
function that integrates to zero over𝑉 can be added to it without chan-
ging 𝐸 [221], leading to a gauge freedom that carries through to the heat
flux, which is introduced below. The final thermal conductivity, how-
ever, can be shown to be invariant to the resulting gauge transforma-
tion of the heat flux, as will be discussed further in section 2.5.3.

For a given, non-unique, energy density, we can then compute its
first moment, the energy barycentre

B =

∫
𝑉

d3𝑟 r 𝑒(r, 𝑡) . (2.5.3)

The chage of this ‘centre of mass’ of the energy density is the heat flux1

1 In the systems studied in this thesis, the
energy flux and heat flux is identical and
will be used interchangeably.

J =
d
d𝑡 B . (2.5.4)

We note that in addition to the non-uniqueness of the energy dens-
ity, the definition of the barycentre, and consequently the heat flux,
faces another difficulty: In a periodic system (see section 2.3), abso-
lute positions r are not uniquely defined; the barycentre and heat flux
as defined here are not boundary invariant. This issue is tackled in
section 4.2 by deriving the microscopic heat flux density in a periodic
system.
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We essentially recapitulate Onsager’s re-
gression hypothesis [216]:

... the average regression
of fluctuations will obey the
same laws as the correspond-
ing macroscopic irreversible
processes.

A more general statement, which also
applies to quantum systems, is the
fluctuation-dissipation theorem [222, 223].

Setting these issues of uniqueness aside, we are now finally in a po-
sition to consider the core intuition behind the Green-Kubo method:
When the system evolves in thermal equilibrium at finite temperat-
ure, slight inhomogeneities in the energy distribution arise at random,
causing the barycentre to shift. This inhomogeneity might as well have
resulted from an external perturbation; the heat flux that arises to cor-
rect it will be the same in both situations. We can therefore draw con-
clusions about the out-of-equilibrium phenomenon of thermal trans-
port by observing local energy fluctuations in equilibrium.

2.5.2 Green-Kubo Formula
For a thorough and pedagogical deriva-
tion, see [142, ch. 3], [224, ch. 3], or [225].A more rigorous statement can be derived by studying the behaviour

of currents associated with the energy density, which, due to energy
conservation, obeys a continuity equation Note that 𝑒(r) is only defined in terms

of its volume integral, introducing some
ambiguity. The consequences of this
gauge freedom will be discussed in the
next section.

𝑒(r, 𝑡) +∇ · j(r, 𝑡) = 0 ; (2.5.5)

every local change 𝑒(r, 𝑡) in energy causes a corresponding local cur-
rent density j(r, 𝑡). The integral over this density yields the heat flux

J(𝑡) =
∫
𝑉

d3𝑟 j(r, 𝑡) . (2.5.6)

The Green-Kubo formula is obtained by studying how such energy
currents arise in response to a perturbation of the system through a
sufficiently small external temperature gradient, modelled as an addi-
tional term in the Hamiltonian.

Linear response theory can then be used to express the expectation
values of the energy currents arising in response in terms of the unper-
turbed time-evolution of the system. Spatially integrating the resulting
relations, and keeping in mind the thermodynamic limit,2 we arrive at 2 𝑁 ,𝑉 → ∞ while 𝑁/𝑉 = const.

the Green-Kubo formula, relating the thermal conductivity to the in-
tegral of the heat flux autocorrelation function (HFACF) as the system
evolves in equilibrium:

In the present case, we are concerned
with thermal transport. However, the
Green-Kubo formalism can be applied to
other transport phenomena, for instance
diffusion.

κ(𝑇, 𝑝) = 1
𝑘B𝑇2𝑉

lim
𝑡→∞

∫ 𝑡

0
d𝜏 ⟨J(𝜏) ⊗ J(0)⟩𝑇,𝑝 , (2.5.7)

with the Boltzmann constant 𝑘B, system volume 𝑉 , pressure 𝑝 and
temperature 𝑇. The ⟨·⟩ denotes the ensemble average at the thermo-

Alternatively, we could write the bracket
as: ∑︁

𝑠 𝑝(Γ0
𝑠 )(. . .) with 𝑝 denoting the

probability of each Γ0
𝑠 .

dynamic conditions of interest. More explicitly (see section 2.2):

κ(𝑇, 𝑝) = 1
𝑘B𝑇2𝑉

lim
𝑡→∞

∫ 𝑡

0
d𝜏

⟨︁
J(Γ𝜏𝑠 ) ⊗ J(Γ0

𝑠 )
⟩︁
Γ0
𝑠 ∼ℰ(𝑇,𝑝) . (2.5.8)

The starting conditions Γ0
𝑠 are sampled from a thermodynamic en-

semble3 ℰ(𝑇, 𝑝), and evolved in time for 𝜏 in the micro-canonical en- 3 We take 𝑇, 𝑝 as representing any ther-
modynamic variable characterising the
ensemble of interest.

semble to Γ𝜏𝑠 ; we take the average over all such initial conditions.
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An alternative, but equivalent, formulation is given by the Helfand-
Einstein (HE) relation [226], identifying𝜅with the slope of the squared
displacement of the energy barycentre Note that in this notation, the scalar

equivalent of κ is obtained.
𝜅(𝑇, 𝑝) = lim

𝑡→∞
1
𝑡

1
6𝑘B𝑇2𝑉

⟨︁
|B(𝑡) − B(0)|2

⟩︁
𝑇,𝑝 (2.5.9)

= lim
𝑡→∞

1
𝑡

1
6𝑘B𝑇2𝑉

⟨︃
|
∫ 𝑡

0
d𝜏 J(𝜏)|2

⟩︃
𝑇,𝑝

. (2.5.10)

This form lends itself to an intuitive view of observing the barycentre
undergo a random walk4 through the material, diffusing away from

4 A random walk is a path where every
step is drawn from a fixed probability
distribution, for instance choosing steps
±1 with equal probability.

its initial position. The ‘speed’ of its movement yields the transport
coefficient. It also shows that the thermodynamic limit is required: In
a finite system, the displacement would clearly be bounded as 𝑡 → ∞,
and 𝜅 would be zero as a result [146, 227, 228].

2.5.3 Gauge Freedom
An extended discussion of this idea can
be found in [151, 229].The HE relation makes it clear that any heat flux that can be written as

the time-derivative of a quantity that is bounded in the infinite-time
limit will lead to a vanishing thermal conductivity. Such a heat flux is
called non-diffusive, since it does not correspond to a diffusion of the
corresponding energy barycentre. At this point, we encounter an apparent

contradiction: The heat flux was defined
as the time-derivative of the barycentre
at the beginning. Therefore, one would
expect the thermal conductivity to al-
ways vanish. The solution to this prob-
lem is noting that this section takes place
in the thermodynamic limit: r and hence
B is unbounded and therefore this the-
orem does not apply. In a periodic
system, r is not uniquely defined and
therefore B cannot be unambiguously
defined. As we will see in section 4.2,
this conundrum is resolved by consid-
ering the heat flux instead, defining the
barycentre as its time integral.

A lemma proved by Marcolongo et al. [151] states that

|𝜅(J1 + J2) − 𝜅(J1) − 𝜅(J2)| ≤ 2
√︁
𝜅(J1)𝜅(J2) , (2.5.11)

which implies that if J2 is a heat flux that produces a vanishing ther-
mal conductivity, the thermal conductivity obtained from the heat flux
J1 + J2 is identical to the one obtained from J1 alone. Therefore, addit-
ive terms in J that are time-derivatives of a bounded quantity can be
neglected without changing the resulting 𝜅.

These two observations can be used to resolve an ambiguity in
the derivation of the GK theory encountered above: Since 𝑒(r) is only
defined in terms of its volume integral, the divergence of a bounded
vector field5 p(r) can be added to it without changing 𝐸 [221]. This 5 The volume integral of the divergence

can be written as a surface integral,
which can be neglected in the thermo-
dynamic limit.

gauge term leads to an additional term in the heat flux,

𝑒(r) → 𝑒(r, 𝑡) + ∇ · p(r, 𝑡) (2.5.12)

⇒ J(𝑡) → J(𝑡) − d
d𝑡

∫
drp(r, 𝑡) . (2.5.13)

Due to the lemma above, this additional term does not have an impact
on the thermal conductivity. In sections 4.2.5 and 5.2, we will use this
gauge freedom of the heat flux to remove non-contributing terms from
the heat flux to reduce noise or avoid the computation of unnecessary
terms.

2.5.4 Finite Simulations

The Green-Kubo relation was derived in the thermodynamic limit,
and additionally contains the infinite-time limit of the integral of the
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HFACF, as well as the thermodynamic ensemble average. We now
briefly review the approximations required to implement it in prac-
tice, using the tools of MD simulations.

For a more comprehensive overview,
see references [144, 230]. The particu-
lar approach to implementing the GK
method used in this thesis is based on
Knoop et al. [144] and further described
in section 5.2.1.

Finite Size Despite the large amount of computing power available at
modern HPC facilities, a system of infinite size cannot be simulated
in practice. We instead approximate it by choosing a sufficiently large
portion of the system under consideration, and then transitioning to a
periodic system, as discussed in section 2.3. This procedure introduces
finite-size effects as artefacts, for instance through unphysical scattering
at the boundaries.

Finite Time Similar considerations apply to the runtime of simula-
tions. Only finite simulation durations 𝑡0 are feasible.

Any value for κ obtained for a particular choice of simulation cell
size 𝑁 and simulation duration 𝑡0 with a practical implementation of
the GK method will therefore depend on the choice of parameters. In
order to report reliable estimates of κ, the convergence with respect
to these parameters must be studied carefully, as we will explore in
section 5.2. Transitioning to finite simulations also introduces noise,
which is amplified by finite-precision arithmetic, as well as numerical
integration schemes. Additional noise is introduced by non-diffusive
terms in the heat flux.

Integration Time Consequently, quantities like the HFACF inevitably
accumulate noise over the duration of the simulation. For this reason,
and the fact that simulations are only run for finite 𝑡0, the time integ-
ral in equation (2.5.7) must be truncated to a finite integration time
𝑡c < 𝑡0. This is justified by the expectation6 that the HFACF decays to 6 Otherwise, κ would diverge in the 𝑡 →

∞ limit. We expect a thermodynamic
system to eventually ‘forget’ previous
states and decorrelate.

zero after some characteristic time 𝜏c. A suitable cutoff time can be de-
termined in different ways, we follow the one outlined in [144], which
first smoothes the HFACF with a lowpass filter and then takes the first
time the HFACF crosses zero.

Noise Reduction In addition to choosing an integration cutoff, it is of-
ten necessary to de-noise the HFACF in order to avoid unphysical oscil-
lations in the estimate for κ. This can be achieved by a combination of
physically-motivated removal of non-diffusive terms in the heat flux,
and additionally by applying a suitable low-pass filter. This is dis-
cussed further in section 5.2.

Finally, the thermodynamic average in equation (2.5.8) must be
tackled: Only a finite number of initial states can be sampled from
ℰ(𝑇, 𝑝). We also cannot directly sample the associated probability dis-
tribution, instead, we can access to the time-evolution of a system in
a given ensemble through MD, extracting de-correlated samples from
the resulting trajectory.
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Ensemble Average Initial configurations
{︁
Γ0
𝑠

|︁|︁ 𝑠 = 1 . . . 𝑛
}︁

are sampled
from the thermodynamic ensemble describing the situation being ex-
amined, for instance the canonical ensemble for constant temperat-
ure.7 Then, we can evolve the systems 𝑠 for some time 𝑡0 in the micro- 7 Practical considerations typically lead

to using the 𝑁𝑉𝑇 ensemble to generate
initial configurations even for constant-
pressure situations.

canonical ensemble, allowing us to compute the instantaneous heat
flux J𝑠(𝑡) for each trajectory.

As we have seen, while there are some practical difficulties in apply-
ing the GK approach, they are surmountable by a careful analysis of
convergence, numerical approaches to noise reduction, and approx-
imations to the ensemble average. While the computational cost of
obtaining sufficiently converged results may limit the applicability of
the method, no further conceptual difficulties remain – except one: the
definition of the heat flux, which we will tackle in section 4.2.
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Chapter 3
Review and Benchmark of Representations
of Molecules and Materials

Such is the allegory of otherness vanquished and con-
demned to the servile fate of resemblance. Our image in
the mirror is not innocent, then. Behind every reflection,
every resemblance, every representation, a defeated en-
emy lies concealed. The Other vanquished, and con-
demned merely to be the Same. This casts a singular
light on the problem of representations . . .

– Jean Baudrillard, The Perfect Crime

The definition of suitable input features is a highly relevant
aspect of the construction of ML models, in particular those which
do not rely on deep learning.1 In this part of the thesis, we consider

1 In such systems, for instance graph-
based potentials discussed in section 4.1,
a rudimentary initial graph represent-
ation, which ensures translational in-
variance, is then augmented through
learned transformations into a richer rep-
resentation. The architecture of the NN
itself has to ensure remaining invari-
ances, for example permutation invari-
ance through the use of commutative ag-
gregation functions.

the design of such features for atomistic ML, and particularly focus
on those fulfilling fundamental physical invariances. We term such
features representations.

The role, requirements and different types of representations are
discussed in section 3.1. Then, in section 3.2, we comprehensively
survey the landscape of available representations, and discuss selec-
ted representations in detail. Finally, in section 3.3, we empirically
compare those selected representations, benchmarking energy predic-
tions for organic molecules, binary alloys, and Al-Ga-In sesquioxides
in numerical experiments controlled for data distribution, regression
method, and HP optimisation.

Overall, we find that, despite the wide variety of available
representations, many common construction principles, as well as an
overall taxonomy, can be identified. Mainly, we distinguish between
local and global representations and between using invariant 𝑘-body
functions and explicit symmetrisation to deal with invariances. Em-
pirically, when controlling for other factors, similar behaviour is ob-
served across representations. In particular, both prediction accuracy
and computational cost increase with interaction order.
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Publications

The presented work has been published as:

“Representations of molecules and materials for interpolation of
quantum-mechanical simulations via machine learning,”
by Marcel F. Langer, Alex Goeßmann, and Matthias Rupp
in npj Computational Materials 8, 41 (2022)
doi:10.1038/s41524-022-00721-x

Referenced as [44].

Figures and text have been adapted from this publication with the kind
permission of my coauthors, as permitted under the terms of the Cre-
ative Commons Attribution 4.0 International License,
https://creativecommons.org/licenses/by/4.0/.

Data and Code Availability

Both data and code for the findings reported in this chapter are pub-
licly available. The study was performed with the cmlkit package,
which is discussed in appendix E.1.

The following repositories are related to this work:

• https://gitlab.com/repbench/repbench-project contains all ad-
ditional code specific to this project. It is available at
https://marcel.science/repbench.

• https://gitlab.com/repbench/repbench-datasets contains the
used data splits and the datasets in cmlkit format.

• https://gitlab.com/repbench/repbench-results contains the data
underlying all plots and tables, including the optimised models and
HP search spaces.

https://doi.org/10.1038/s41524-022-00721-x
https://creativecommons.org/licenses/by/4.0/
https://gitlab.com/repbench/repbench-project
https://marcel.science/repbench
https://gitlab.com/repbench/repbench-datasets
https://gitlab.com/repbench/repbench-results
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Section 3.1
Role, Types, and Requirements

This section introduces the concept of representations and their role in
atomistic ML. The distinction between local and global representations
and the requirements they should fulfil are discussed.

The role of representations is to map atomistic systems, described
as a set of 𝑁 atomic positions ℛ, atomic charges 𝒵, and, if applicable,
a periodic basis ℬ, to a feature space suitable to regression.

In practical terms, we therefore map the triple (ℛ,𝒵,ℬ) to a set of
real numbers with a fixed dimension 𝑛. We distinguish two element-
ary approaches: Those producing a set of features per atom, which we
term local representations

rlocal : (ℛ,𝒵,ℬ) −→ x ∈ R𝑁×𝑛 , (3.1.1)

and those that yield one representation per structure, which we call
global representations,

rglobal : (ℛ,𝒵,ℬ) −→ x ∈ R𝑛 . (3.1.2)

Local representations can immediately be applied to predict quant-
ities that are intrinsically related to single atoms, for instance nuclear
chemical shifts or core level excitations [231]. Extensive global prop-
erties, such as energies, can be modelled by additionally assuming
additivity, decomposing a global property into atomic contributions.

In contrast, global representations are well-suited for properties of
entire systems, such as the band gap or polarisability. However, they
do not include extensivity1 by design, and therefore may be ill-suited 1 See appendix B.1.

for global, but extensive, quantities.

With the introduction of deep learning, much effort has been
put into including insights from representation development into end-
to-end learning systems. Recent work has focused on unifying the
approaches even further [232, 233]. At present, however, we focus on
fixed representations, which are not trained beyond HP optimisation.

3.1.1 Requirements

Representations are used to assist machine learning models with the
task of inferring a structure-property mapping from reference data,
improving sample efficiency, predictive accuracy, and, ideally, compu-
tational efficiency. In order to achieve this task, representations should
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fulfil a number of requirements, some of which depend on the prop-
erty to be predicted.

i Invariance or equivariance to transformations acting on the input struc-
ture, including (a) changes in atom indexing, and often (b) translations,
(c) rotations, and (d) reflections.

ii Uniqueness, that is, variance against all transformations that change
the predicted property: Two systems that differ in property should be
mapped to different representations.

iii (a) Continuity, and ideally (b) differentiability, with respect to ℛ.

iv Computational efficiency relative to the reference calculations.

v Generality; being able to encode any atomistic system.

vi Structure of representation feature space and the resulting data dis-
tribution should be suitable for regression.

We now discuss these requirements in more detail.

Invariance and Equivariance

We will use the term geometric invariance
to refer to invariance with respect to ro-
tations and, if required, reflections.

In many cases, the structure-property mapping to be approximated
with ML is known to change in a well-defined way under transforma-
tions of the structure. For instance, in the absence of external fields, en-
ergy is invariant to re-indexing (or permutation) of atoms of the same
element, translation in space, as well as global rotations and reflec-
tions. Incorporating such knowledge into the ML model as an induct-
ive bias can simplify the learning problem and reduce the amount of
required training data [234–241].

In this context, one can distinguish between invariance and equivari-
ance. In the former case, the property to be predicted is unchanged
under a given transformation. In the latter case, the transformation
can equivalently be applied to the input or the output. As an example,
while the energy, a scalar quantity, is unchanged when a molecular is
rotated, the forces acting on each atom, which are vectors, rotate with
the molecule.

Allowing the model to reflect these properties eliminates redund-
ancy: Structures considered distinct can be treated as identical, and
the model can naturally generalise to unseen, transformed, structures.
Recently, the introduction of equivariant deep neural networks has re-
vealed that the inclusion of equivariance can improve even the pre-
diction of scalar quantities, as equivariant features can efficiently rep-
resent higher-order geometric information [242]. In this chapter, we
focus on invariant models. Equivariant NNs are briefly discussed in
section 3.4.

Uniqueness

The invariance requirement naturally complements the requirement
of variance with respect to any other transformation that changes the
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target property; two systems that differ in property should be mapped
to different representations. Systems with equal representation that
differ in property introduce errors [243–245]: Because the ML model
cannot distinguish them, it predicts the same value for both, yielding
at least one erroneous prediction. Uniqueness is necessary and suffi-
cient for reconstruction, up to invariant transformations, of an atom-
istic system from its representation [246, 247].

Continuity and Differentiability

Discontinuities work against the regularity assumptions in ML mod-
els, which try to find the least complex function compatible with the
training data. Intuitively, continuous functions require less training
data than functions with jumps.

Beyond mere continuity, differentiable representations enable the
construction of differentiable ML models. Gradients can then be used
for training with gradient descent methods, or used to further con-
strain the interpolation function (‘force matching’), improving sample
efficiency [128, 190, 248]. If the ML model is intended to be used as a
MLIP, continuous differentiability ensures that the forces obtained by
differentiating the energy model are energy-conserving.

Computational Efficiency
We note in passing that the results of
sufficiently cheaper simulations, com-
pared to the method to be approxim-
ated, can be used to construct repres-
entations [249, 250] or to predict prop-
erties at a higher level of theory (‘Δ-
learning’) [250–252].

In many cases, the introduction of ML-based approaches to quantum
simulations aims to reduce computational cost. Therefore, the ML
model must be faster to compute than the underlying reference data,
leading to the requirement of computational efficiency.

Generality

Representations should be able to encode any atomistic system. While
current representations handle finite and periodic systems, less work
has been done on charged systems [237, 253–259], excited states [260–
264], continuous spin systems, isotopes, and systems subjected to ex-
ternal fields [265, 266].

Structure

The role of the representation is to map atomistic systems into a space
amenable to regression. Strictly speaking, for kernel regression this is
the kernel feature space, that is, representation space transformed by
the kernel. We limit our discussion to the representation itself.

Representations often have a Hilbert space structure, featuring an
inner product, completeness, projections, and other advantages. Be-
sides the formal space defined by the representation, the structure of
the subspace spanned by the data is critical [245, 267].

This requirement is currently less well understood than the ones
discussed previously, and largely evaluated empirically, which we will
undertake in section 3.3.
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In addition, simplicity, both conceptually and in terms of imple-
mentation, is a desirable quality of representations, albeit difficult to
quantify. For practical application, the availability of an efficient and
usable open source implementation is also desirable.

3.1.2 Representations, Descriptors, and Fingerprints

In this work, the term ‘representation’ is used to refer to features that
fulfil invariance, continuity, and efficiency requirements, as well as
uniqueness.

By this definition, (ℛ,𝒵,ℬ) is not a representation, as it violates the
invariance properties. Internal coordinates fulfil geometric invariance
requirements, but are specific to any given system, and retain choice
of freedom in the ordering of coordinates, violating i.a.

Descriptors and fingerprints from cheminformatics [268] and ma-
terials informatics violate ii and iii.a.

Simple representations such as the Coulomb matrix (section 3.2)
either suffer from coarse-graining, violating ii, or from discontinuities,
violating iii.a. In practice, representations do not satisfy all require-
ments exactly (section 3.2) but can achieve high predictive accuracy
regardless (section 3.3); for example, for some datasets, modeling a
fraction of higher-order terms can be sufficiently unique already [269].
The optimal interaction orders to utilise in a representation also de-
pend on the type and amount of data available [270].
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Section 3.2
Review

Having established the role and requirements of representations, we
now turn our attention to the variety of proposed representations,
seen in table 3.2.1, and aim to provide an overview and a general
classification of these approaches. This section is structured accord-
ingly. First, general principles for constructing representations are
outlined, and then studied in detail for three particular representa-
tions: many-body tensor representation (MBTR), symmetry functions,
and smooth overlap of atomic positions (SOAP). We then conclude by
providing a short review of other representations, and discuss connec-
tions between them.

3.2.1 𝑘-Body and Density Expansions

We identify two main perspectives on the problem of representing
atomistic systems, and by extension approximating invariant (or equi-
variant) functions of the configuration of atomistic systems.

We note in passing that translational in-
variance can also be treated explicitly
with symmetrisation, recovering atom-
pair vectors [328].

The first consideration in designing representations is the approach
to symmetry. In particular, the approach to rotational, and to some ex-
tent parity, invariance can be used to categorise representations. Trans-
lational and permutational symmetry, on the other hand, are typic-
ally resolved in a similar fashion for essentially all representations:
Translational invariance is ensured by working with atom-pair vec-
tors, rather than absolute coordinates, and permutational invariance
is enforced by summing over atomic contributions.

Broadly speaking, geometric invariance can be tackled in two ways:
Constructing representations from invariant functions directly, and
explicit symmetrisation. For instance, if a representation is construc-
ted from interatomic distances and angles, rotational invariance is im-
mediately ensured. The alternative to this approach is to first compute
an intermediate representation that is not invariant, and then explicitly
integrate it over all possible transformations.

While both approaches are in principle equivalent in the appro-
priate limits, they nevertheless give rise to two distinct perspectives,
and to different scaling of computational cost in practice. We now
briefly introduce both, setting up the task at hand as follows: We
aim to represent an arrangement of 𝑁 + 1 atoms, selecting a central
atom, which we index with 𝑖 = 0, as origin of the coordinate system.1

1 We make this choice in order to directly
describe local representations, restrict-
ing the sum to a finite neighbourhood
of the central atom. Global approaches
are recovered by dropping this restric-
tion and varying the index of the cent-
ral atom over all 𝑁 . Periodic systems re-
quire special treatment, as discussed in
section 2.3 – at present, we simply take
our positions to be within ℛsc, and im-
plicitly assume the MIC.

Atom positions r 𝑗,𝑗>0 are therefore identified with atom-pair vectors
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References

Year Repr. Orig. Development Impl.

2007 SF [16] [255, 271–274] [275, 276]
2010 BS [17] [277–279] [280]
2012 CM [21] [231, 243, 251, 281, 282] [276, 283]
2013 SOAP [246] [17, 236, 247, 278, 279, 284–288] [276, 289]
2013 OMF [249] [290, 291] —
2015 BoB [292] [293] [294]
2015 WST [295] [295–300] [301]
2016 MTP [302] [256, 303–305] [306]
2017 MBTR [307] [308] [276, 283]
2017 HDAD [309] — —
2018 DECAF [310] — [311]
2018 FCHL [312] [313] [294]
2018 IDMBR [314] — [315]
2018 MOB [250] [316–318] —
2019 ACE [319] [237, 320] [321, 322]
2020 NICE [323] — [324]
2020 GM [325] — —
2021 MILAD [326] — [327]

Table 3.2.1: Overview of repres-
entations.
For each representation (Repr.),
year of publication (Year),
original reference (Orig.),
references for further meth-
odological development (De-
velopment), and availability
of implementations (Impl.)
are shown. See Glossary for
abbreviations.

r𝑖 𝑗 = r 𝑗 − r0 = r 𝑗 . This ensures translational invariance a priori, and
allows a concise notation subsequently, but, as we will see, requires
a careful definition of body-order. We additionally use P𝑖 to denote
atomic properties, such as atomic numbers 𝑍𝑖 .

Body-Order Expansion This approach descends from the idea of ex-
panding the PES in a series of functions of increasing body order 𝑘,
i.e., explicitly acting on 𝑘 atomic positions [329]: Note that the 𝑘=1 body function can-

not take r𝑖 into account due to transla-
tional invariance. Since r 𝑗>0 are atom-
pair vectors, r0 is implicitly included in
subsequent terms in the expansion.

𝑓 ({ r𝑖 , P𝑖 | 𝑖 = 0, 1...𝑁 }) = 𝑓𝑘=1(P0) (3.2.1)

+
𝑁∑︂
𝑗=1

𝑓𝑘=2(r 𝑗 , P𝑗 , P0) (3.2.2)

+
𝑁∑︂
𝑖=1

𝑁∑︂
𝑗=1

𝑁∑︂
𝑚=1

𝑓𝑘=3(r 𝑗 , P𝑗 , r 𝑗 , P𝑚 , P0) (3.2.3)

+ ... . (3.2.4)

Provided that 𝑓𝑘 are constructed to be invariant, this expansion is in-
variant by design, and no further consideration of symmetry is needed.
Typical building blocks of 𝑘-body functions include atomic number
counts (𝑘=1), distances, sometimes inverted or squared (𝑘=2), angles
or their cosine (𝑘=3), dihedral or torsional angles (𝑘=4). Less com-
mon, (al)chemical relationships can be included, for example, based
on period and group in the periodic table [312].

Computational cost of this type of method scales like 𝑂(𝑁 𝑘) due
to the explicit evaluation of 𝑘-body functions. Nevertheless, as imple-
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mentation and parallelisation is straightforward, 𝑘-body expansions
form the basis of many classical FFs (see section 2.2.3), and a num-
ber of ML representations, for instance the MBTR and SF approaches,
discussed below.

We can only present an abridged version
of this topic here. For a more detailed
discussion, see reference [320].

Density Expansion In a first step, the arrangement of atoms is repres-
ented as a density in space by placing a set of functions (or distribu-
tions) Δ(r) at each position r𝑖 :

𝜌(r, { r𝑖 , P𝑖 | 𝑖 = 1...𝑁 }) =
𝑁∑︂
𝑖=1

Δ(r𝑖 − r) . (3.2.5)

Then, this density is expanded in a basis of functions 𝜙nlm(r), yielding
an intermediate representation Here, ⟨⟩ simply denotes an inner

product; we compute a spatial overlap
integral between the two functions. If
delta distributions are used for Δ(r), we
simply recover 𝐴𝑛𝑙𝑚 =

∑︁
𝑗 𝜙𝑛𝑙𝑚(r 𝑗).

𝐴𝑛𝑙𝑚 ≔ ⟨𝜙𝑛𝑙𝑚 |𝜌⟩ , (3.2.6)

which is then symmetrised, formally by integrating over all possible
transformations. Clearly, symmetrising a single such representation
discards much useful information,2 and therefore, 𝜈 copies of 𝐴𝑛𝑙𝑚 are 2 For instance, consider rotationally

symmetrising a single density: All
angular information is lost, as retaining
it would break rotatonal invariance.
Two densities, on the other hand, can
retain relative rotations. A thorough
introduction can be found in [328].

combined and symmetrised jointly, retaining 𝑘 = (𝜈+ 1)-body correla-
tions.3 Note, however, that for finite bases, no full 𝑘-body information

3 For example, the 𝜈 = 2 power spectrum
used in SOAP is equivalent to an angular
distribution function [287].

is retained, as 𝑘-tuples are not computed explicitly.
The advantage of this approach is precisely due to the avoidance of

explicit evaluation of 𝑘-body functions: As the sum over neighbour-
hoods is executed first, no immediate polynomial scaling with body-
order is introduced. However, symmetrisation incurs computational
cost, limiting 𝜈. In practice, 𝜈 = 2 is often sufficient.

In order to facilitate the symmetrisation, a basis in terms of spher-
ical harmonics 𝑌𝑚

𝑙
is usually employed, which have well-understood

transformation properties under rotations. In particular, the theory
of the addition of angular momentum, or equivalently, the theory of
representations of SO(3), yields prescriptions for how intermediate
representations with given (𝑙1, 𝑙2, ..., 𝑙𝜈) can be combined into a final
representation with a particular 𝑙. Rotational symmetrisation is then
equivalent to obtaining final representations with 𝑙 = 0, not requir-
ing the evaluation of integrals over the symmetry group. Equivariant
models can be constructed by permitting 𝑙 > 0. We also note in passing
that these ideas can be used to construct NNs with equivariant inter-
mediate representations [242, 330, 331].

The notion of 𝑘-body representations as introduced here, where
we use either explicit 𝑘-body functions, or 𝜈 copies of density expan-
sions, requires additional considerations once non-linearities are in-
troduced, or terms are combined. For instance, products of distance-
based terms are formally three-body, but cannot retain full angular in-
formation. Similarly, taking powers 𝜁 or products of 𝑘, 𝑘′-body terms
produces formally many-body terms, which regardless are less ex-
pressive than the full 𝑘𝜁- and 𝑘 · 𝑘′-body terms [269]. Non-linearities
can yield formally infinite-body terms [232].
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3.2.2 Selected Representations

We discuss three representations that fulfil the requirements in sec-
tion 3.1 and for which a general implementation, including for periodic
systems, and not tied to a specific regression approach, was available
when this work was undertaken. These representations are empiric-
ally compared in section 3.3, and now serve as paradigmatic examples
of the approaches outlined in the previous section.

Symmetry Functions
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Figure 3.2.1: Illustration of the
SF representation. Shown are
radial functions 𝐺2

𝑖
(𝜇,𝜂), equa-

tion (3.2.8), for increasing val-
ues of 𝜇. The local environment
of a central atom is described
by summing contributions from
neighbouring atoms separately
by element.

SFs [16, 271] are collections of 𝑘-body functions that describe relations
between a central atom and the atoms in a local environment around
it. They are typically based on distances (radial SFs, 𝑘=2) and angles
(angular SFs, 𝑘=3). Each SF encodes a local feature of an atomic envir-
onment, for example the number of H atoms at a given distance from
a central C atom. Figure 3.2.1 illustrates radial SFs.

For each SF and 𝑘-tuple of chemical elements, contributions are
summed. Sufficient resolution is achieved by varying the HPs of an
SF. For continuity (and differentiability), a cutoff function 𝑓c ensures
that SFs decay to zero at the cutoff radius 𝑟c.

The five SFs proposed by Behler in reference [271] are

𝐺1
𝑖 =

∑︂
𝑗

𝑓c(𝑟𝑖 𝑗) (3.2.7)

𝐺2
𝑖 =

∑︂
𝑗

exp
(︁
−𝜂(𝑟𝑖 𝑗 − 𝜇)2

)︁
𝑓c(𝑟𝑖 𝑗) (3.2.8)

𝐺3
𝑖 =

∑︂
𝑗

cos(𝜅 𝑟𝑖 𝑗) 𝑓c(𝑟𝑖 𝑗) (3.2.9)

𝐺4
𝑖 = 21−𝜁 ∑︂

𝑗,𝑘≠𝑖
(1+𝜆 cos𝜃𝑖 𝑗𝑘)𝜁

· exp
(︁
−𝜂(𝑟2

𝑖 𝑗 + 𝑟2
𝑖𝑘
+ 𝑟2

𝑗𝑘
)
)︁

(3.2.10)

· 𝑓c(𝑟𝑖 𝑗) 𝑓c(𝑟𝑖𝑘) 𝑓c(𝑟 𝑗𝑘)
𝐺5

𝑖 = 21−𝜁 ∑︂
𝑗,𝑘≠𝑖

(1+𝜆 cos𝜃𝑖 𝑗𝑘)𝜁

· exp
(︁
−𝜂(𝑟2

𝑖 𝑗 + 𝑟2
𝑖𝑘
)
)︁
𝑓c(𝑟𝑖 𝑗) 𝑓c(𝑟𝑖𝑘) (3.2.11)
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with the cutoff function

𝑓c(𝑟𝑖 𝑗) =
{︄

0.5 cos
(︁
𝜋𝑟𝑖 𝑗/𝑟c

)︁
for 𝑟𝑖 𝑗 ≤ 𝑟c

0 for 𝑟𝑖 𝑗 > 𝑟c .
(3.2.12)

In the above equations, index 𝑖 is the central atom; 𝑗, 𝑘 run over all
atoms in the local environment around 𝑖 with cutoff radius 𝑟c. 𝑟𝑙𝑚 in-
dicates pairwise distance4 and 𝜃𝑙𝑚𝑛 the angle between three atoms. 𝜂 4 In solids, the MIC is used.

and 𝜅 are broadening parameters. 𝜇 a shift parameter, and 𝜁 determ-
ines angular resolution. 𝜆= ± 1 determines whether the angular part
of 𝐺4

𝑖
and 𝐺5

𝑖
peaks at 0◦ or 180◦.

The choice of which SFs to use is a structural HP. Grids of paramet-
ers are often used, for instance choosing𝜇 in equation (3.2.8) in regular
intervals. One such scheme [273] is employed in section 3.3.

Variants of SFs include partial radial distribution functions [332],
improved angular resolution [272], and reparametrisations to improve
scaling with the number of chemical species [255, 273, 274].

Smooth Overlap of Atomic Positions

∑
nlm

cnlmgn(r)Ylm(r0)

∑
nlm

cnlmgn(r)Ylm(r0)

Figure 3.2.2: Illustration of the
SOAP representation. The local
density around a central atom
is modeled by atom-centred nor-
mal distributions and expanded
into radial and spherical har-
monics basis functions.

SOAP [246], illustrated in figure 3.2.2, is an early example of the density-
based approach. It uses Gaussian functions as Δ(r) to construct the
atomic density, and employs orthogonal radial and spherical harmon-
ics basis functions to expand the density

Note that the expansion of the density
can be done analytically, as the expan-
sions of Gaussians in spherical harmon-
ics is known.

𝜌(r) =
∑︂
𝑛𝑙𝑚

𝐴𝑛𝑙𝑚 𝑔𝑛(r)𝑌𝑚
𝑙
(r), (3.2.13)

where 𝑔𝑛 are radial, and 𝑌𝑚
𝑙

are (angular) spherical harmonics basis
functions. 𝐴𝑛𝑙𝑚 , the expansion coefficients, are then intermediate rep-
resentation introduced previously.

From these coefficients, rotationally invariant quantities can be con-
structed, such as the power spectrum

𝑝𝑛𝑛′𝑙 =
∑︂
𝑚

𝐴𝑛𝑙𝑚𝐴
∗
𝑛′𝑙𝑚 , (3.2.14)

which can be understood as combining two copies of 𝐴𝑛𝑙𝑚 into a joint
object with 𝑙 = 0. The power spectrum is equivalent to a radial and
angular distribution function [287], and captures up to three-body in-
teractions, as it corresponds to 𝜈 = 2.
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Numerical HPs are the maximal number of radial and angular basis
functions, the broadening width, and the cut-off radius. Structural
HPs are the type of radial basis functions.

An alternative to the power spectrum is the bispectrum (BS)
[17], a set of invariants that couples multiple angular momentum and
radial channels. It corresponds to combining 𝜈 = 3 copies of 𝐴𝑛𝑙𝑚 , and
is related to three-point correlations of a four-dimensional spherical
harmonics expansions. Spectral Neighbor Analysis Potential (SNAP)
includes quadratic terms in the BS components [277].

Extensions of the SOAP framework include recursion relations for
faster evaluation [286] and alternative radial basis functions 𝑔𝑛 , such as
third- and higher-order polynomials [286], Gaussian functions [276],
and spherical Bessel functions of the first kind [247, 288]. SOAP can
also be viewed as a special case of the atomic cluster expansion (ACE)
approach [319, 320].

Many-Body Tensor Representation

Figure 3.2.3: Illustration of the
MBTR. Shown is a broadened
histogram of distances (no
weighting) arranged by element
combination.

Finally, we consider the MBTR, illustrated in figure 3.2.3, a global rep-
resentation consisting of broadened distributions of 𝑘-body terms, ar-
ranged by element combination.

For each 𝑘-body function and 𝑘-tuple of elements, all correspond-
ing terms (for example, all distances between C and H atoms) are
broadened and summed up. The resulting distributions describe the
geometric features of an atomistic system:

𝑓𝑘(𝑥, 𝑧1, . . . , 𝑧𝑘) =
∑︂
𝑖1 ... 𝑖𝑘

𝑤𝑘 𝒩(𝑥 |𝑔𝑘 , 𝜎)
𝑘∏︂
𝑗=1

𝛿𝑧 𝑗𝑍𝑖 𝑗
, (3.2.15)

where 𝑤𝑘 is a weighting function that reduces the influence of tuples
with atoms far from each other, and 𝑔𝑘 is a 𝑘-body function; both 𝑤𝑘

and 𝑔𝑘 depend on atoms 𝑖1, . . . , 𝑖𝑘 . 𝒩(𝑥 |𝜇, 𝜎) denotes a normal distri-
bution with mean 𝜇 and variance 𝜎2, evaluated at 𝑥. The product of
Kronecker 𝛿 restricts to the given element combination 𝑧1, . . . , 𝑧𝑘 .

Periodic systems can be treated by using strong weighting func-
tions and constraining one index to the unit cell. In practice, equa-
tion (3.2.15) can be discretised. Structural HPs include the choice of
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𝑤𝑘 and 𝑔𝑘 ; numerical HPs include variance 𝜎 of normal distributions.
Requiring one atom in each tuple to be the central atom results in a
local variant [333].

3.2.3 Other Representations

Many other representations were proposed.
The Coulomb matrix (CM) [21] describes a system via inverse dis-

tances between atoms but does not contain higher-order terms. It is
fast to compute, easy to implement, and in the commonly used sorted
version [21], allows reconstruction of an atomistic system via a least-
squares problem. However, it suffers either from discontinuities in the
sorted version or from information loss in the diagonalised version as
its eigenspectrum is not unique [243, 281]. A local variant exists [282].

Bag of bonds (BoB) [292] uses the same inverse distance terms as
the CM but arranges them by element pair instead of by atom pair.
The ‘BA-representation’ [293] extends this to higher-order interactions
using bags of dressed atoms, distances, angles, and torsions. The
inverse-distance many-body representation (IDMBR) [314] employs
higher powers of inverse distances and separation by element com-
binations.

Histograms of distances, angles, and dihedral angles (HDAD) [309]
are histograms of geometric features organized by element combina-
tion. This global representation is similar to MBTR but typically uses
fewer bins, without broadening or explicit weighting.

The Faber-Christensen-Huang-von Lilienfeld (FCHL) representa-
tion [312, 313] describes atomic environments with normal distribu-
tions over row and column in the periodic table (𝑘=1), interatomic
distances (𝑘=2), and angles (𝑘=3), scaled by power laws.

In the FCHL18 variant [312] the full continuous distributions are
used, requiring an integral kernel for regression. Among other op-
timisations, FCHL19 [313] discretises these distributions, similar to the
approach taken by SFs, and can be used with standard vector kernels.

Wavelet scattering transform (WST) [295–300] use a convolutional
wavelet frame representation to describe variations of (local) atomic
density at different scales and orientations. Integrating non-linear
functions of the wavelet coefficients yields invariant features, where
second- and higher-order features couple two or more length scales.
Variations use different wavelets [295–298, 300] and radial basis func-
tions [296, 297, 300].

Moment tensor potentials (MTPs) [302] describe atomic environ-
ments using a spanning set of efficiently computable, rotationally and
permutationally invariant polynomials derived from tensor contrac-
tions. Related representations include Gaussian moments (GM) [325],
based on contractions of tensors from linear combinations of Gaussian-
type atomic orbitals; the 𝑁-body iterative contraction of equivariants
(NICE) framework, [323] which uses recursion relations to compute
higher-order terms efficiently; ACE [237, 319, 320], which employs a
basis of isometry- and permutation-invariant polynomials from trigo-
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nometric functions and spherical harmonics; and, moment invariants
local atomic descriptors (MILAD), which are non-redundant invari-
ants constructed from Zernike polynomials. Extensions of density-
based approaches to multiple central atoms [334], as well as architec-
tures similar to MPNNs have been proposed [232, 233, 335].

Overlap matrix fingerprint (OMF) [249, 290, 291] and related app-
roaches [336, 337] employ the sorted eigenvalues (and derived quantit-
ies) of overlap matrices based on Gaussian-type orbitals as represent-
ation. Eigenvalue crossings can cause derivative discontinuities, re-
quiring post-processing [291] to ensure continuity. Using a molecular
orbital basis (MOB) [250, 316], and related approaches [338], adds the
cost of computing the basis, for example, localised molecular orbitals
via a HF SCF calculations. Other matrices can be used, such as Fock,
Coulomb, and exchange matrices, or even the Hessian, for example,
from a computationally cheaper reference method.

Density-encoded canonically-aligned fingerprint (DECAF) [310]
represent the local density in a canonical, invariant coordinate frame
found by solving an optimisation problem related to kernel principal
component analysis, representing an alternative approach to construct-
ing invariant representations.

Tensor properties require equivariance. Proposed solutions include
local coordinates from eigendecompositions [231], which exhibit dis-
continuities when eigenvalues cross, related local coordinate systems
[310], and internal vectors (IV) [339], which are based on inner products
of summed neighbour vectors at different scales, as well as covariant
extensions of SOAP [235, 236] and ACE [237].

3.2.4 Connections

We now discuss relationships between representations, to which de-
gree they satisfy the requirements in section 3.1, trade-offs between
local and global representations, and relationships to other methods.

The approach to invariance can be used to categorise representa-
tions. BoB, CM, FCHL, HDAD, IDMBR, MBTR, and SF rely on invari-
ant 𝑘-body functions. ACE, BS, GM, MILAD, MOB, MTP, NICE, OMF,
SOAP, and WST, on the other hand, rely on explicit symmetrisation.
A similar distinction can be made for kernels [340].

Within a given family of approaches, further connections can be
identified. For suitable HPs, SFs can be identified with terms in the
distance-based MBTR, fixing one index to the central atom. If a grid
of parameters is used for SFs, both representations correspond to histo-
grams of geometric features, similar to the HDAD representation. This
suggests a local MBTR or HDAD variant by restricting summation to
atomic environments [333], and a global variant of SFs by summing
over the whole system.

ACE, BS, GM, MILAD, MTP, NICE, and SOAP share the idea of gen-
erating tensors that are then systematically contracted to obtain rota-
tionally invariant features. These tensors should form an orthonormal
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basis, or at least a spanning set, for atomic environments. Within a
representation, recursive relationships can exist between many-body
terms of different orders [286, 320, 323]. References [237, 319, 320]
discuss technical details of the relationships between density-based
representations.

Local representations can be used to model global properties by
assuming that these decompose into atomic contributions. In terms of
prediction errors, this tends to work well for energies, see appendix B.1.
Learning with atomic contributions adds technical complexity to the
regression model and is equivalent to pairwise-sum kernels on whole
systems. Other approaches to creating global kernels from local ones
exist [284].

Conversely, using global representations for local properties can re-
quire modifying the representation to incorporate locality and direc-
tionality of the property [231, 276]. A general recipe for constructing
local representations from global ones is to require interactions to in-
clude the central atom, starting from 𝑘=2 [333].

Two modeling aspects directly related to representations are which
subset of the features to use and the construction of derived features.
Both modulate feature space dimensionality and structure.

Adding products of 2-body and 3-body terms as features, for ex-
ample, can improve performance [269], as these features formally re-
late to higher-order terms, but can also degrade performance if the fea-
tures are unrelated to the predicted property, or if there is insufficient
data to infer the relationship. Feature selection tailors a representa-
tion to a dataset by selecting a small subset of features that still predict
the target property accurately enough. Optimal choices of features
depend on dataset size and distribution.

In this work, we focus exclusively on representations. In kernel re-
gression, however, kernels can be defined directly between two sys-
tems, without an explicit intermediate representation. For example,
𝑛-body kernels between atomic environments can be systematically
constructed from a non-invariant Gaussian kernel using Haar integ-
ration, or using invariant 𝑘-body functions, yielding kernels of varying
body-order and degrees of freedom [270, 340]. The SOAP representa-
tion was initially developed as such a kernel.

Similarly, while neural networks can use representations as inputs,
their architecture can also be designed to learn implicit representations
from the raw data (end-to-end learning). However, some featurisation
is typically employed as pre-processing, for instance the transforma-
tion of structures into a graph representation. This is discussed in
further detail in section 4.1.

In all cases, the requirements in section 3.1 apply.

Some representations, in particular early ones such as the CM,
do not fulfil these requirements. Most representations fulfil some re-
quirements only in the limit, that is, absent practical constraints such
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as truncation of infinite sums, short cutoff radii, and restriction to low-
order interaction terms. The degree of fulfilment therefore often de-
pends on HPs. Effects can be antagonistic; for example, in SOAP, both
uniqueness and computational effort increase with 𝑛𝑙𝑚 [246]. In ad-
dition, not all invariances of a property might be known or require
additional effort to model, for example, symmetries [234].

Mathematical proof or systematic empirical verification that a rep-
resentation satisfies a requirement or related property are sometimes
provided: The symmetrised invariant moment polynomials of MTPs
form a spanning set for all permutationally and rotationally invari-
ant polynomials [302]; the ACE framework encompasses these poly-
nomials and allows their systematic construction [320]. For SOAP,
systematic reconstruction experiments demonstrate the dependence
of uniqueness on parametrisation [246].

While uniqueness guarantees that reconstruction of a system up to
invariances is possible in principle, accuracy and complexity of this
task vary with representation and parametrisation. For example, re-
construction is a simple least-squares problem for the global CM as
it comprises the whole distance matrix, whereas for local representa-
tions, (global) reconstruction is more involved.

If a local representation comprises only up to 4-body terms then
there are degenerate environments that it cannot distinguish [245], but
that can differ in property. Combining representations of different en-
vironments in a system, which is typically done to predict global prop-
erties like total energies, can break the degeneracy.

However, by distorting feature space, these degeneracies degrade
learning efficiency and limit achievable accuracy, even if the training
set contains no degenerate systems [245]. It is currently unknown
whether degenerate environments exist for representations with terms
of order 𝑘>4. The degree to which a representation is unique can be
numerically investigated through the eigendecomposition of a sens-
itivity matrix based on its derivatives with respect to atom coordin-
ates [291].
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Section 3.3
Benchmark

In this section, we benchmark the three selected representations, SFs,
SOAP, and MBTR, on three publicly available datasets, qm9, ba10, and
nmd18, probing to what extent the choice of representation can in-
fluence prediction accuracy. The benchmark datasets are related to
screening applications, rather than MD, and we therefore focus on en-
ergy predictions, as opposed to forces and dynamical properties. For
MLIPs, different benchmarking approaches must be taken, which are
discussed in other works, for instance reference [341].

Reference

[309] [276] [341] [252] [308] [342] [343] [344] [291] [345] [267] here

Finite systems ✓ ✓ × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓

Periodic systems × ✓ ✓ × ✓ × ✓ × × × ✓ ✓

Other properties ✓ ✓ × × × ✓ ✓ ✓ ✓ × ✓ ×
Numerical HPs × ✓ ✓ × × ✓ × × × ✓ × ✓

Structural HPs × × × × × × × × × × × ✓

Regression HPs ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ × ✓

Timings × × ✓ ✓ × × × × × × × ✓

Table 3.3.1: Overview of re-
lated work. Finite systems: study
uses datasets of finite systems,
such as molecules or clusters;
Periodic systems: uses datasets
of periodic systems, such as
crystalline materials; Other
properties: evaluate properties
other than energy (and forces);
numerical / structural / regression
HPs: which HPs were optimised
automatically.

Works introducing novel representations often compare their
performance estimates with those reported in the literature. While
such comparisons are useful, it can be difficult to draw conclusions on
representations only, as other factors differ, for instance the datasets,
training and test set choices, regressions methods, choice of HPs, val-
idation procedures, and reported quantities. In this work, we aim to
control for such factors, in particular regression method, data distri-
bution, and HP optimisation approach.

Several other studies systematically measured and compared pre-
diction errors of representations, which are listed in table 3.3.1. In the
table, we distinguish between studies that automatically optimise nu-
merical HPs of representations, for example, the width of a normal
distribution; structural HPs of representations, for example, choice of
basis functions; and HPs of the regression method, for example, reg-
ularisation strength.
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3.3.1 Datasets

qm9
We use the version available at qmml.
org, which offers a convenient format for
parsing, and exclude all structures in the
uncharacterized.txt file and those lis-
ted in the readme.txt file as ‘difficult to
converge’, as those are potentially prob-
lematic. Total energies were converted
to energies of atomisation by subtract-
ing the atomic contributions given in file
atomref.txt. We further exclude struc-
tures with ≤ 6 non-H atoms.

The qm9 dataset [251, 346], also known as gdb9-14, contains 133 885
small organic molecules composed of H, C, N, O, F with up to 9 non-
H atoms, and is a standard benchmark dataset for ML models.

It is a subset of the ‘generated database 17’ (GDB-17) [347]. Mo-
lecular ground state geometries and properties, including energetics,
are computed with DFT using the Becke 3-parameter Lee-Yang-Parr
(B3LYP) [348] hybrid functional with 6-31G(2df,p) basis set.

In this benchmark, we predict the atomisation energy at 0 K.

ba10
We use the version available at qmml.
org, removing structures with fewer
than 5 atoms in the simulation cell. No
further processing, beyond the stratific-
ation discussed below, is applied.

The ba10 dataset [308], also known as dft-10b, contains unrelaxed
geometries and their enthalpies of formation for the 10 binary alloys
AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and NbNi.
For each alloy system, unrelaxed geometries with lattice parameters
from Vegard’s rule [349, 350] and energies are computed for all pos-
sible unit cells [351] with 1–8 atoms for face-centred cubic (FCC) and
body-centred cubic (BCC) lattices, and 2–8 atoms for hexagonal close-
packed (HCP) lattices, using the PBE functional [69] with projector-
augmented wave (PAW) potentials and generalized regular 𝑘-point
grids [352, 353]. The dataset contains 631 FCC, 631 BCC, and 333 HCP
structures per alloy system, yielding 15 950 structures in total.

We predict enthalpies of formation.

nmd18
Once again, the version of the dataset
available at qmml.org is used. Only
structures with more than 10 atoms in
the simulation cell are used.

The nmd18 dataset [354] is a Kaggle challenge [355] dataset containing
3 000 ternary oxides,1 of potential interest as transparent conducting

1 (Al𝑥 -Ga𝑦 -In𝑧 )2O3 with 𝑥 + 𝑦 + 𝑧 = 1.oxides. We predict formation and bandgap energies of relaxed struc-
tures, using either relaxed (nmd18r) or approximate (nmd18u) struc-
tures from Vegard’s rule as input. Geometries and energies are com-
puted with DFT using the PBE exchange-correlation functional as im-
plemented in FHI-aims [356] with tight settings.

The challenge scenario is to predict formation and band-gap en-
ergies of relaxed structures from unrelaxed geometries obtained via
Vegard’s rule. This is equivalent to strong noise or bias in the inputs.
Unlike pure benchmarking scenarios, where computationally expens-
ive relaxed geometries are given, the challenge scenario is closer to a
virtual screening application in that Vegard’s rule geometries are com-
putationally inexpensive to obtain.

The dataset contains all structures from the challenge training and
leaderboard data. We report root mean squared error (RMSE), as op-
posed to the root mean square logarithmic error (RMSLE) used in the
challenge.

qmml.org
qmml.org
qmml.org
qmml.org
qmml.org
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3.3.2 Method

Our overall goal in this benchmark is to isolate the impact of repres-
entations on prediction error. We therefore attempt to keep all other
possible factors constant, designing the experiment to treat all repres-
entations as similarly as possible. In this section, we briefly discuss
our design choices.

Stratification Rather than sampling subsets purely at random, we use
multivariate stratification to ensure that subsets are representative of
the overall dataset. This reduces the variance of performance estimates
and ensures the validity of the i.i.d. data assumption inherent in ML. Additional information is given in the

dataset repository.We achieve this by using a simple Monte-Carlo approach, iterating
until selected statistics of each subset match the parent dataset within
a fractional tolerance, typically<1 %. For dataset qm9, these were num-
ber of N, O and F atoms, number of molecules with 7, 8 and 9 non-H
atoms, binned number of atoms (with H), and binned energy. For da-
taset ba10, these were number of all constituting elements, unit cells
with 6, 7, 8, and 9 atoms, binned sizes and energies. For dataset nmd18,
these were number of Al, Ga, In, O atoms, unit cells with 20, 30, 40, 60,
80 atoms, and binned energies.

Subsets For training and validation, data subsets were sampled as fol-
lows: An outer validation set2 was drawn using the procedure detailed 2 In the literature, the terms ‘test set’ and

‘validation set’ are sometimes used with
different meaning. To avoid confusion,
we use ‘outer’ for the subset employed
to measure performance, and ‘inner’ for
the subset employed to optimise HPs.

above (10 k molecules for qm9, 1 k structures for ba10, 600 structures for
nmd18). From the remaining entries, outer training sets of sizes 100, 250,
650, 1 600, 4 000 and 10 000 for datasets qm9, ba10 and 100, 160, 250, 400,
650, 1 000 and 1 600 for dataset nmd18 were randomly drawn. These
sizes were chosen to be equidistant in log-space. Each outer training
set was then split into an inner training set and an inner validation set by
randomly drawing the latter. We used an 80 / 20 split, yielding inner
validation sets of size 20, 50, 130, 320, 800, 2 000 for datasets qm9, ba10
and 20, 32, 50, 80, 130, 200, 320 for nmd18. The whole procedure was
repeated 10 times, yielding 10 different outer train/validation splits.

Regression Method We use KRR (section 2.4), with a Gaussian ker-
nel as ML model. KRR is a widely-used non-parametric regression
method, with few tunable HPs: In the present setting, we must only
tune the length scale of the Gaussian kernel, 𝜎, and the regularisation
strength 𝜆. Another advantage of KRR is that training amounts to
solving a convex optimisation problem; results are therefore determ-
inistic.

Representations We compare the selected representations discussed
in section 3.2.2: SFs, SOAP, and MBTR. SFs and SOAP are local rep-
resentations, representing the 𝑘-body function and density expansion
approaches. MBTR is a global representation based on on 𝑘-body
functions.
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For the 𝑘-body approaches we consider variants with 𝑘=2 and 𝑘=2, 3.
For SOAP, which corresponds to 𝑘=2, 3, a variation in body-order is
not available. Details of remaining HP choices are discussed in the
supplementary material of reference [44].

In order to execute the described HP
optimisation approach, I developed
the cmlkit package, described in
appendix E.1.

Hyper-Parameter Optimisation For this work, we adopt an end-to-end
perspective, essentially considering HP optimisation as part of the
training procedure. The ‘models’ being compared are therefore not a
combination of representation and regressor with fixed HPs. Instead,
we compare model families, or search spaces, fixing only broad ar-
chitectural choices, and allowing ranges of possible parameters for all
other HPs. For each training set size, we then optimise HPs on the
training set, using the inner train/validation splits. Once HPs have
been determined, the model is re-trained on the entire outer training
sets and used to predict the corresponding outer validation set. For
computational efficiency, we only tune HPs on one outer split, rather
then re-tuning for each. Once the search space has been defined, no
human input is needed, the HP tuning procedure is fully automatic.

loss functionhyperopt
(TPE)

local grid search
(max 25 steps)

Representation 

parameters

KRR parameters 

starting values

KRR parameters

final values

Compute 

mean RMSE 

over 10 splits 

of training set

Figure 3.3.1: Sketch of the HP
optimisation approach. TPEs,
implemented in the hyperopt
package [357], are used to
sample representation para-
meters and starting parameters
for a local grid search of KRR
parameters. The overall loss
function is the mean RMSE over
inner training/validation splits.

Due to the combinatorial nature of these search spaces, a full enumer-
ation is unfeasible. Instead, we use a model-based stochastic optim-
isation method based on TPEs [357, 358]. In a nutshell, this method
models the space of possible models as a tree-structured set of choices,
for instance, between different 𝑘-body functions, or different values
of a numerical HP. TPEs treat this search space as a prior distribu-
tion over HPs, updated every time a loss is computed to increase prior
weight around HP settings with better loss. Search therefore amounts
to drawing samples from this distribution, and, once the loss is eval-
uated, updating the probability distribution. This approach has the
advantage of being straightforward to parallelise, as samples can be
drawn while others are being evaluated. In defining the search space,
we use uniform priors throughout, discretising numerical HPs on log-
arithmic or linear grids as necessary.

For KRR parameters, we adopt a two-step procedure: TPE is used
to determine starting parameters for a local grid search of 𝜎 and 𝜆,
which attempts to find the nearest local minimum of the loss land-
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scape. The loss for this second optimisation is the mean RMSE over
all ten inner splits, and its result is used as loss for TPE. This allows the
fine-tuning of KRR parameters without requiring the recomputation
of representations. We use the best result, judged by final loss, of three
independent runs of the HP optimisation procedure. Details on the search spaces used in this

work can be found in the supplementary
material of reference [44].

We aim for similarly-sized search spaces for all numerical HPs, and
a comprehensive selection of structural ones, treating all representa-
tions on an equal footing as much as possible. Some choices, however,
have to be excluded a priori to avoid excessive computational cost.

Note that we use base-10 logarithms for
learning curves.

Learning Curves The main outcome of this study are learning curves,
which show the dependence of prediction error 𝜖 on training set size 𝑛.
Asymptotically, we assume the error to decay as a negative power [359,
360] 𝜖 = 𝑎′𝑛−𝑏 . On a log-log plot, 𝜖 is therefore linear, log 𝜖 = 𝑎 −
𝑏 log(𝑛), and the offset 𝑎 = log 𝑎′ and slope 𝑏 can be used to characterise
predictive performance of models [293]. For asymptotic fits, we weight
training set sizes by the standard deviation over their respective splits
to attenuate for small sample effects, as the above equation is valid
only in the limit 𝑛 → ∞.

Timings Additionally, we report timings for the calculation of rep-
resentations and kernel matrices. Experiments were run on a single
core of an Intel Xeon E5-2698v4 2.2 GHz processor on the draco HPC
system. For consistency, all timings were run on the first outer valid-
ation set of each dataset. Reported timings are the mean over three
repetitions, and then further averaged over the number of entries in
the respective evaluation sets. Kernel matrices are computed between
all points in the respective validation set, and therefore averaged over
the squared number of entries.

Pareto Frontiers Based on learning curves and timings, we also re-
port on the relationship between computational cost and accuracy.
When comparing observations in two dimensions, here time 𝑡 and
error 𝜖, there is no unique ordering <, and we resort to the usual
notion of dominance: Let x, x′ ∈ R𝑑; then x dominates x′ if 𝑥𝑖 ≤
𝑥′
𝑖

for all dimensions 𝑖 and 𝑥𝑖 < 𝑥′
𝑖

for some 𝑖. The set of all non-
dominated points is called the Pareto frontier, indicating the ‘best pos-
sible’ tradeoff between compute times and error.

Error Metrics We report RMSE, the loss minimized by least-squares
regression such as KRR, and thus a natural choice. Additionally, we
provide the rRMSE, as a quantity that can be compared across data-
sets. Both are defined in appendix A.3. For comparison with literature
results, we also give MAE in figures B.2 to B.4.
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Figure 3.3.2: Learning curves
for selected representations on
datasets qm9 (top), ba10 (centre),
and nmd18r (bottom). Shown
are RMSE and rRMSE of energy
predictions on out-of-sample-
data as a function of training
set size. Boxes, whiskers, bars,
crosses show interquartile
range, total range, median,
mean, respectively. Lines are
fits to theoretical asymptotic
RMSE.

See figure B.3 for MAE.
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3.3.3 Results

Figure 3.3.2 displays the learning curves for the main considered da-
tasets, qm9, ba10, and nmd18r. Asymptotically, observed prediction
accuracies relate as

SF(𝑘=2, 3) ≺ SF(𝑘=2), MBTR(𝑘=2, 3) ⪯ MBTR(𝑘=2),
SOAP ≺ SF(𝑘=2, 3), SOAP ≺ MBTR(𝑘=2, 3),

SF(𝑘=2, 3) ⪯ MBTR(𝑘=2, 3), SF(𝑘=2) ≺ MBTR(𝑘=2),

where 𝐴 ≺ 𝐵 (𝐴 ⪯ 𝐵) indicates that 𝐴 has lower (or equal) estimated
error than 𝐵 asymptotically. Except for MBTR(𝑘=2, 3) ⪯̸ SF(𝑘=2) on
dataset nmd18r,

SOAP ≺ SF(𝑘=2, 3) ⪯ MBTR(𝑘=2, 3) ≺ SF(𝑘=2) ≺ MBTR(𝑘=2).

We conclude that, for energy predictions, accuracy improves with in-
teraction order and for local representations over global ones. The
magnitude of these effects varies across datasets.

Converged prediction errors are in reasonable agreement with the
literature (see tables B.1 to B.3), considering the lack of standardised
conditions such as sampling, regression method, HP optimisation, tar-
get properties, and reported performance statistics.

Time in ms Dataset

Representation qm9 ba10 nmd18

MBTR 𝑘=2 0.76± 0.32 13 ± 5.1 340± 99
SF 𝑘=2 1.40± 0.18 3.3± 1.4 8.2± 1.1
MBTR 𝑘=2, 3 12.0± 6.9 290± 140 28 k ± 4.4 k
SF 𝑘=2, 3 2.80± 0.85 27± 12 98± 89
SOAP 1.90± 0.54 9.1± 4.8 19.0± 8.6

Table 3.3.2: Computational cost
of calculating representations.
Shown are mean ± standard de-
viation over all training set sizes
of a dataset.

Computational costs, shown in figure 3.3.3 and tables 3.3.2 to 3.3.4,
tend to increase with predictive accuracy, due to the cost of additional
training data and higher body-order terms. Representations should
therefore be selected based on a target accuracy, constrained by avail-
able computing resources. SOAP largely lies on the Pareto frontier,
only occasionally dominated by less accurate, but faster SF(𝑘=2) rep-
resentations. Computational cost of MBTR with 𝑘=2, 3 increases sig-
nificantly for periodic systems, and in particular for nmd18, which in-
cludes larger simulation cells than ba10.

To some extent, however, the fast calculation of local representations
is balanced out by the higher cost of computing kernel matrices, as seen
in table 3.3.3. Local representations require the intermediate compu-
tation of an atom-atom kernel matrix (see section 2.4.4), and therefore
the calculation of the kernel scales quadratically with the number of
atoms.3 Table 3.3.4 shows the resulting overall computational cost of

3 Methods to mitigate this scaling be-
haviour exist; an overview of sparsity-
based approaches can be found in refer-
ence [361].predictions. Despite the higher cost of computing the representation,
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Figure 3.3.3: Compute times
of selected representations for
datasets qm9 (top), ba10 (centre),
and nmd18r (bottom). Shown
are RMSE and rRMSE of energy
predictions on out-of-sample-
data as a function of the time
needed to compute all repres-
entations in a training set. Lines
indicate Pareto frontiers; inset
numbers show training set sizes.

See figure B.4 for MAE.
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Time in µs Dataset

Representation qm9 ba10 nmd18

MBTR 𝑘 = 2 0.16 0.64 0.13± 0.05
SF 𝑘 = 2 12.16± 1.80 8.90± 1.39 72.95± 4.71
MBTR 𝑘 = 2, 3 0.90 7.01± 0.16 0.92± 0.96
SF 𝑘 = 2, 3 17.41± 3.25 20.03± 4.02 106.35± 14.87
SOAP 59.78± 37.73 72.60± 19.70 296.23± 258.28

Table 3.3.3: Computational cost
of calculating single system-
system kernel matrix elements.
Shown are mean ± standard de-
viation over all training set sizes
of a dataset.

the global MBTR remains competitive in overall performance, with the
exception of nmd18 and 𝑘=2, 3.

Dataset

qm9 ba10 nmd18

Representation 𝑡rep 𝑡kernel total 𝑡rep 𝑡kernel total 𝑡rep 𝑡kernel total

MBTR 𝑘=2 8s + 16s = 23s 2m + 1m = 3m 57m + 13s = 57m
SF 𝑘=2 14s + 20m = 20m 33s + 15m = 15m 1m + 2h = 2h
MBTR 𝑘=2, 3 2m + 1m = 3m 49m + 12m = 1h 76h + 2m = 77h
SF 𝑘=2, 3 28s + 29m = 29m 4m + 33m = 38m 16m + 3h = 3h
SOAP 19s + 2h = 2h 2m + 2h = 2h 3m + 8h = 8h

Table 3.3.4: Overview of com-
putational costs. Shown are
runtime estimates for predic-
tion with 𝑁train=𝑁pred=10 000.
Based on mean compute times
𝑡rep for representations and
𝑡kernel for kernel matrices from
tables 3.3.2 and 3.3.3, we es-
timate total prediction times as
𝑁test · 𝑡rep + 𝑁train · 𝑁test · 𝑡kernel.
Times are rounded to the
nearest second, minute, or hour.

Dependence of predictive accuracy on interaction order has been
observed by others [276, 277, 312, 314, 362] and might be partially
due to a higher resolution of structural features; some structures can-
not be distinguished from two-body (and even three-body) features
alone [245]. However, such degeneracies are not the only factor: Even
if structures can be distinguished in principle by distances alone, an-
gular terms allow more immediate characterisation of structure, for
instance in carbon rings of organic molecules appearing in qm9 [314].
These effects may become visible in different data regimes: In ba10,
differences in accuracy between 𝑘=2 and 𝑘=2, 3 appear only larger
training set sizes, potential due to the resolution limit of 𝑘=2 features,
whereas in qm9, where angular features are immediately relevant, dif-
ferences apear even for small training set sizes. We observe an in-

Similar observations have been made for
equivariant NNs: In multi-layer atomic
cluster expansion (MACE), where body-
order can be explicitly controlled, Bata-
tia et al. [335] observe a systematic in-
crease in slope with body-order 𝜈. How-
ever, the relationship between 𝜈, degree
𝐿 of employed intermediate equivariant
layers, and learning curves remains an
active domain of investigation [242].

crease in the slope of the learning curves, with body-order, varying in
magnitude between data-sets.

Better performance of local representations might be due to
higher resolution and better generalisation (both from representing
only a small part of the whole structure), and has also been observed
by others [345, 363]. The impact of assuming additivity is unclear
but likely depends on the structure of the modeled property, see ap-
pendix B.1. Our comparison includes only a single global representa-
tion (MBTR), warranting further study of the locality aspect.
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Predictive accuracy is worse for solid-state datasets compared to
the molecular qm9 one. This might indicate that periodic systems pose
harder learning tasks than molecules.

MBTR performs worse for solid-state datasets than for the qm9 one,
in particular for nmd18r. This might be due to lack of intrinsic scaling
with number of atoms, impeding interpolation between unit cells of
different size. The high computational cost of MBTR with 𝑘=3 for in
this setting also renders HP optimisation more difficult.

For the qm9 dataset at 1600 training samples, we observe an in-
crease in RMSE standard deviation compared to neighbouring train-
ing set sizes for most methods. Comparing to MAE, see figure B.3,
which exhibits no such effect, and investigating errors individually,
revealed that this is due to outliers. Few predictions with high error
appear in some, but not all, outer splits. The problematic structures
are ring molecules, and are not present in the outer training split used
for HP optimisation. This stresses the importance of carefully stratify-
ing benchmark datasets, and highlights the limitations of the present
approach to HP optimisation, which only considered one of the outer
training sets.

Figure B.1 presents results for the nmd18 dataset with approxim-
ate geometries obtained from Vegard’s rule, which we term nmd18u.
In contrast to relaxed structures, such geometries can be obtained at
almost no cost, and could be used in virtual screening campaigns.

We observe (i) a strong increase in prediction errors (24 % to 26 %
for rRMSE, from 3 % to 10 %), (ii) collapse of all representations to sim-
ilar performance, (iii) large differences between MAE and RMSE, see
figure B.2, indicating significant outliers.

From this, we conclude that the map from unrelaxed structures to
ground-state energies is harder to learn than the map from relaxed
structures to their energies, as it requires implicitly approximating the
relaxation process. This mismatch between structures and property
dominates the error, so representations are not the limiting factor in
this setting.

Our findings suggest the following guidance:

• If their prediction errors are sufficient for an application, we recom-
mend 𝑘=2 versions of simple representations such as SFs and MBTR
as they are fastest to compute.

• For large systems, local representations should be used.

• For strong noise or bias on input structures, as in dataset nmd18u,
performance differences between representations vanish, and com-
putationally cheaper features that do not satisfy the requirements
in section 3.1 (descriptors) suffice.
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Section 3.4
Summary

In this chapter, we reviewed and benchmarked representations of atom-
istic systems for the construction of ML models of energies obtained
with first-principles calculations.

We distinguished local and global representations and between us-
ing invariant 𝑘-body functions and explicit symmetrisation of a dens-
ity representation to deal with invariances, and found that many previ-
ously suggested representations can be described in these frameworks.
An overview of existing approaches was given.

Empirically, we observed that when controlling for other factors,
for instance distribution of training and validation data, regression
method, and HP optimisation, both prediction accuracy and compute
time of SFs, MBTR and SOAP increase with interaction order, and for
local representations over global ones.

Limitations

The benchmark in section 3.3 was restricted to a particular regression
model, KRR, and to only one property: Energy. We therefore do not
consider MLIPs, where forces are required, or the prediction of other
properties, for instance bandgaps. We also do not study end-to-end
models like NNs, where representations are learned, rather than fixed,
and the regressor is optimised jointly with the representation.

In particular, this excludes equivariant NNs, and the larger context
of geometric deep learning [364]. In a nutshell, these networks [240,
330] rely on the ideas discussed in section 3.2: Architectures such
as NequIP [242] or So3krates [43] are inspired by density-based rep-
resentations, constructing intermediate layers with 𝑙>0 and ensure
that all operations within the network preserve equivariance by us-
ing appropriate tensor products. Other approaches, for instance Di-
meNet [365], rely more explicitly on 𝑘-body information, constructing
messages from angles in addition to distances. Other methods, such as
PaiNN [331], employ an intermediate approach: To avoid the compu-
tational overhead of transitioning to a spherical harmonics basis, vec-
torial features are generated from atom-pair vectors and non-linearities
in ‘real space’ are employed. In such equivariant NNs, similar relation-
ships between body-order and degree of equivariance have been ob-
served [335]. An understanding of the relationship between equivari-
ance, body-order, and dataset and property dependence so far remains
elusive, and represents an intriguing direction for future work.
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Chapter 4
Heat Flux for Semi-Local Machine-Learning Potentials

I saw the best minds of my generation destroyed by mad-
ness, starving hysterical naked, . . .

who passed through universities with radiant cool eyes
hallucinating Arkansas and Blake-light tragedy
among the scholars of war, . . .

–Allen Ginsberg, Howl

The GK method [217–219], briefly introduced in section 2.5, is a
framework for the prediction of the thermal conductivity of materials,
including strongly anharmonic and complex compounds. It is based
on observing fluctuations in the distribution of energy, the heat flux,
during equilibrium MD simulations. It therefore requires access to
the BO PES as well as a definition of the heat flux.

FFs have been used for the GK method since the 1970s [366–371],
decades prior to the recent development of ab initio Green-Kubo (aiGK)
approaches [143, 151]. MLIPs continue this tradition, aiming to com-
bine computational efficiency, albeit typically reduced in comparison
to FFs, with the accuracy of DFT. While different types of short-ranged
MLIPs have been used to investigate thermal transport via GK [163,
372–378], more recent semi-local MLIPs [31, 41, 42, 130, 233, 242, 257,
335, 365, 379, 380] have not yet been used for this purpose, partially
because a heat flux formulation that incorporates message-passing
mechanisms was not available.

In this chapter, we fill that gap and explain how to implement
the GK approach for such MLIPs using AD.

Since AD relies on explicitly tracing the ‘forward’ computation, an
understanding of how atomic potential energies are computed in prac-
tical implementations of such MLIPs is required. Section 4.1 is ded-
icated to this task: It introduces the notion of GLPs, which take a
graph of MIC atom-pair vectors as inputs, encoding atomic neigh-
bourhoods, and compute atomic potential energy contributions either
based on neighbourhoods alone (local models) or can iteratively take
neighbours-of-neighbours into account (semi-local models). As pre-
paration for the heat flux, the definition and computation of forces and
stress is discussed, unifying previous formulations for FFs and MLIPs.

Having established this foundation, we are then in a position to



80 part 4: heat flux for semi-local machine-learning potentials

consider the computation of the heat flux in section 4.2. As starting
point, we first re-derive a general form of the heat flux, originally due
to Hardy [381], to explicitly account for periodicity. Then, strategies
for efficiently implementing the heat flux with AD are discussed, and
the ‘unfolded’ heat flux is introduced, which is applicable to GLPs and
scales linearly with system size.

Related publications

Results of the presented work have been submitted for publication as:

“Heat flux for semilocal machine-learning potentials,”
by Marcel F. Langer, Florian Knoop, Christian Carbogno, Matthias
Scheffler, and Matthias Rupp
in Physical Review B in press
arXiv:2303.14434

Referenced as [45].

“Stress and heat flux via automatic differentiation,”
by Marcel F. Langer, J. Thorben Frank, and Florian Knoop
in revision
arXiv:2305.01401

Referenced as [46].

In particular, the heat flux for semi-local MLIPs was introduced in [45],
results for stress and GLPs appear in [46].

Data and Code Availability

The glp package uses jax to implement the forces and stress from sec-
tion 4.1, and the heat flux formulations presented in section 4.2. It is
available at https://github.com/sirmarcel/glp. A pytorch imple-
mentation of different heat flux formulations for schnetpack is avail-
able at https://github.com/sirmarcel/gknet-archive.

Data and code related to tables 4.1.1 and 4.1.2 can be found at
doi:10.5281/zenodo.7852530.

https://arxiv.org/abs/2303.14434
https://arxiv.org/abs/2305.01401
https://github.com/sirmarcel/glp
https://github.com/sirmarcel/gknet-archive
https://doi.org/10.5281/zenodo.7852530
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Section 4.1
Graph Machine-Learning Potentials

Not the Edge lecture again, I said.

– William Gibson, New Rose Hotel

We emphasise that such graph repres-
entations are not a novel concept. Graph
kernels were proposed early to construct
ML models for molecules, for instance
in reference [382] and references therein,
and graph neural networks [383] have
become a popular class of models for
atomistic ML. The aim of this section is
to connect such graph-based MLIPs to
other MLIPs and FFs, arguing that they
can be treated in a unified manner.

In this section, we discuss how interatomic potentials with a finite
cutoff radius can be viewed as acting on a graph representation of a
molecule or material. We introduce the term graph-based machine-
learning potential (GLP), or graph potential, to describe this class of
interatomic potentials. This class contains the ‘bonded’ terms of com-
mon FFs, local MLIPs, as well as models featuring message-passing
mechanisms [31], which allow semi-local interactions.

Having introduced this unified perspective, which specifies the ‘for-
ward’ computation of the potential energy, we then argue that AD af-
fords a straightforward and efficient way to compute forces and stress
tensors for GLPs, even for periodic systems. The definition of pairwise
forces in many-body potentials is discussed briefly, and an overview
and comparison of equivalent stress tensor formulations is provided.

4.1.1 Semi-Local Interatomic Potentials

The starting point for our considerations is an additive ansatz for the
potential energy 𝑈 , which we encountered in section 2.2.3. In such
interatomic potentials, 𝑈 is computed as the sum of atomic contribu-
tions 𝑈𝑖 , which are in turn computed based on local neighbourhoods
𝒩(𝑖) for each atom. Due to the requirement of translational invariance,
these contributions can only depend on atom-pair vectors; absolute
positions cannot be used.1 1 More precisely, it is advantageous to in-

clude translational symmetry when con-
structing models of the BO PES; see sec-
tion 3.1.1.

Atomic potential energies therefore depend on pairwise connec-
tions to neighbouring atoms – a description that can be formalised
in terms of a graph, which we will now undertake. The foundation In this chapter, we focus on periodic sys-

tems and therefore use ℛsc; the non-
periodic case can be recovered by set-
ting ℬ larger than any possible inter-
action distance. We will also drop 𝒵
from now on. In general additional la-
bels can be assigned to nodes and edges,
for instance for the purposes of mes-
sage passing; we suppress such complic-
ations for now.

of graph potentials is a representation of the system under consider-
ation as a directed graph 𝒢 = (𝒱,ℰ), with the vertices (or nodes) 𝒱
representing the atoms in the simulation cell, labeled by 𝑍𝑖 . The edges
ℰ encode atomic neighbourhoods

ℰ =

{︂
rmic
𝑖 𝑗

|︁|︁|︁ |rmic
𝑖 𝑗 | ≤ 𝑟c, 𝑖, 𝑗 ∈ ℛsc

}︂
(4.1.1)

=

{︂
rmic
𝑖 𝑗

|︁|︁|︁ 𝑖 ∈ ℛsc, 𝑗 ∈ 𝒩(𝑖)
}︂

. (4.1.2)
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Determine neighbours

|rmic
𝑖 𝑗

| < 𝑟c

Construct graph

Figure 4.1.1: Construction of a
graph representation.Crucially, as we rely on the MIC to construct 𝒢, it is boundary invari-

ant. As discussed in section 2.3, in order to avoid discontinuities, we
additionally require that 𝑟c is chosen such that at most one replica is
within a given atomic environment.2 As opposed to the original defin-

2 In other words, 𝑟c<𝑟max
c as defined in

equation (2.3.4).

ition of crystal graphs by Xie and Grossman [384], 𝒢 therefore only
contains single edges between vertices.3 This construction is sketched

3 More precisely, each edge between ver-
tices exists exactly twice, once in each
direction. From a physical perspect-
ive, this definition amounts to a kind of
‘double counting’, since r𝑖 𝑗 = −r 𝑗𝑖 ; no in-
formation is added by taking both dir-
ections into account. However, this con-
vention avoids the difficulty of defining
an arbitrary ordering of edges, and can
be used to distinguish derivatives at a
later stage. We will make use of this in
section 4.2.8.

in figure 4.1.1. We note in passing that the topology of 𝒢 can change
during the course of an MD simulation; GLPs must therefore be con-
structed to remain continuously differentiable as such changes occur.

If we restrict interactions to nearest neighbours on the graph,
setting𝑈𝑖 = 𝑈𝑖(𝒩(𝑖)), we recover the notion of a strictly local potential,
and can therefore naturally describe any potential of this type, either
MLIPs or FFs. As the number of neighbours can be expected to remain
constant as 𝑁 increases, provided we keep the density fixed as we take
the limit, this yields 𝑂(𝑁) scaling of energy predictions. However, not
all interactions of interest may be captured within 𝑟c.

Let us therefore consider how to construct interactions beyond the
cutoff. The simplest way would be to increase the cutoff radius dir-
ectly, simply enlarging atomic neighbourhoods. This leads to a cubic
increase in the size of neighbourhoods, which can introduce computa-
tional difficulties.4 Semi-local GLPs [31, 41, 42, 130, 233, 242, 257, 335, 4 We note in passing that in the case

of simple pairwise interactions, Ewald
summation [99, 100] or fast multipole
methods [101, 102] can be used to
recover 𝑂(𝑁 log 𝑁) or linear scaling,
respectively. However, we consider
general many-body interactions, where
such techniques are not available at this
point.

365, 379, 380] are an intriguing alternative construction. In such sys-
tems, longer-range interactions are iteratively built up from local ones
by repeated interactions between neighbouring atomic environments.
For 𝑀 such interactions, the maximum effective cutoff radius there-
fore becomes 𝑟eff

c ≔𝑟c𝑀, retaining most of the computational advant-
ages of the original cutoff radius while allowing interactions beyond
local neighbourhoods. Alternatively, this approach can be viewed as
an explicit sparsification of the full model within the extended neigh-
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bourhood defined by 𝑟eff
c .

The interaction order 𝑀 allows us to classify GLPs. At 𝑀=1, only
information from direct neighbours of 𝑖 is used to compute𝑈𝑖 , at 𝑀=2,
the neighbours of all neighbours of 𝑖 are included as well, and so on.
In other words, 𝑀 counts the maximum number of edges traversed
from 𝑖 to compute 𝑈𝑖 . We introduce ℰ𝑀(𝑖) as that set of edges, and
𝒩𝑀(𝑖) as the corresponding set of neighbourhoods.

Note that while atomic potential ener-
gies have a range of 𝑟eff

c , i.e., change
only due to position changes within that
radius, the forces can be influenced by
changes up to 2𝑟eff

c .

For 𝑀>1, the energy at an atom 𝑖 may depend on edges between
atoms outside the local atomic neighbourhood. For this reason, we
use the term semi-local MLIP, distinguishing from potentials with fully
local character. However, we must emphasise that for finite 𝑀, such
models are still local5 in the extended neighbourhood within the cutoff 5 Non-local models are discussed briefly

in chapter 6.radius 𝑟eff
c . In order to realise the computational advantage associated

with the smaller 𝑟c, however, we cannot explicitly construct these ex-
tended neighbourhoods for each 𝑖.

We finally define graph potentials as potential energy functions
where 𝑈 =

∑︁
𝑖∈ℛsc 𝑈𝑖(𝒢). For this thesis, we further restrict GLPs to

those where 𝑟eff
c admits only interactions with single replicas.6,

7 Set- 6 This is not a crucial restriction, but it
simplifies the comparison of heat flux
formulations in section 4.2: If 𝑟eff

c >𝑟max
c ,

the MIC does not apply and Jmic is no
longer equivalent to Junfolded

pot .
7 This criterion is 𝑟eff

c <𝑟max
c as defined in

equation (2.3.4).

ting 𝑀=1, this definition includes distance-truncated terms of classical
FFs (see section 2.2.3), as well as MLIPs that are not explicitly defined
as graph NNs, provided that atomic potential energies are computed
based on atom-pair vectors.

In this framework, as we rely on a cutoff radius to define 𝒢, we can-
not readily describe potentials with global interactions or long-range
electrostatics. In some cases, for instance when inputs to electrostat-
ics are predicted based on local environments [114, 385], some of the
present considerations could be nevertheless applied. We do not pur-
sue this here.

4.1.2 Message-Passing Neural Networks

To simplify the notation, we now drop
the MIC label from rmic

𝑖 𝑗
, as all r𝑖 𝑗 appear-

ing in the remainder of this section are
edges in 𝒢 and therefore generated with
the MIC in mind.

Having introduced the abstract notion of semi-local GLPs, we now
consider their explicit construction using the message-passing neural
network (MPNN) architecture [31]. MPNNs operate on 𝒢 in three
stages, illustrated in figure 4.1.2: initialisation, message-passing, and
readout, where each message-passing step is labeled by 𝑡=0, . . . , 𝑀.
During initialisation (𝑡=0), every atom 𝑖 is assigned a state vector s𝑡=0

𝑖
,

based on its chemical species. During the next stage, these states are
updated with messages m𝑡

𝑖
that can depend on the states of both the

receiver atom 𝑖 and its neighbours 𝑗 ∈ 𝒩(𝑖), as well as on the edges r𝑖 𝑗
connecting them:

m𝑡+1
𝑖 =

∑︂
𝑗∈𝑁(𝑖)

M𝑡(s𝑡𝑖 , s𝑡𝑗 , r𝑖 𝑗) (4.1.3)

s𝑡+1
𝑖 = F𝑡(s𝑡𝑖 , m𝑡+1

𝑖 ) . (4.1.4)

Here, the message functions8 M𝑡 and update functions F𝑡 are differ-

8 In practice, message functions are not
entirely arbitrary. To ensure smooth-
ness, or more precisely, to ensure that the
potential is a continuously differentiable
function of positions, the message func-
tion typically incorporates a predefined
cutoff function 𝑓c(𝑟𝑖 𝑗). This function is
defined such that contributions to ener-
gies and forces continuously approach
zero as 𝑟𝑖 𝑗 approaches the cutoff radius
𝑟c. If this is not the case, the resulting
FF ceases to be conservative and energy
conservation is violated.

entiable functions implemented as neural networks. They are learned
during training, and can differ over message-passing iterations. The
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message functions M𝑡 model pairwise interactions. Their aggregation
into the total message m𝑡+1

𝑖
via a sum ensures permutational invari-

ance. The update functions F𝑡 describe how the interactions with all
neighbours influence the new state of the receiver atom. Over multiple
iterations, information is propagated through the graph.

1 2 3

4 5
𝑈1 𝑈2 𝑈3 𝑈4 𝑈5

6

Figure 4.1.2: Sketch of neural
message passing with 𝑀=2.
Connections are only con-
sidered in one direction for
simplicity.
(1) Initialisation: Each edge
symbolises an interatomic dis-
tance and is associated with a
colour, each node an atom with
an empty initial state.
(2+3) Message-passing: Each
node is updated based on the
(empty) neighbouring state, and
its incoming edge. Afterwards,
each node depends on the
incoming edge.
(4+5) Another message-passing
step. Now, every state depends
on next-to-nearest neighbours.
(6) Readout: 𝑈𝑖 are predicted
based on the final states.

After 𝑀 message-passing steps, the final stage is reached where a
readout function 𝑅 predicts the atomic potential energy contributions
𝑈𝑖 . This atom-independent readout function is learned during train-
ing and acts on each vector s𝑀

𝑖
representing the final state of atom 𝑖.

The total potential energy 𝑈 is then simply given by

𝑈 =
∑︂
𝑖∈𝒱

𝑈𝑖 with 𝑈𝑖 = 𝑅(s𝑀𝑖 ) . (4.1.5)

Different strategies can be employed to deal with rotational invari-
ance. Early MPNNs such as SchNet [41, 42] only use interatomic dis-
tances as inputs, discarding angular information. Message functions
that take angular or higher-order information into account are also
possible [233, 335, 365]. Recent equivariant MPNNs [43, 130, 238, 240,
242, 386] can make use of atom-pair vectors and can ensure that s𝑡

𝑖
and

m𝑡
𝑖

transform appropriately under rotations. The presented deriva-
tions are applicable to both invariant and equivariant MPNNs.

4.1.3 Periodicity and Unfolded Construction

The ‘standard’ construction of GLPs discussed so far incorporates peri-
odicity implicitly: Interactions are wrapped around boundaries, ad-
opting the ‘toroidal’ view of a periodic system discussed in section 2.3.
Since the atom-pair vectors within𝒩(𝑖) are identical whether 𝑖 is in the
simulation cell or a replica, this is equivalent to messages propagating
into neighbouring replicas. By keeping all interactions within ℛsc, re-
dundant computational effort for replicas is avoided.

However, this efficiency has a cost: Vertices on the graph represent
both atoms in ℛsc and replicas. Therefore, derivatives obtained with
AD with respect to r𝑖 contain contributions from both. This poses an
essential difficulty for the computation of the heat flux, which requires
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the attribution of partial derivatives to replica positions, and will be
discussed further in section 4.2.

Unfold Construct
graph

Figure 4.1.3: Construction of an
‘unfolded’ graph representation
for the system in figure 4.1.1
with 𝑀=2. First (left),ℛunf is de-
termined by extending the sim-
ulation cell up to 𝑟eff

c . Then
(centre), positions in ℛunf are
explicitly constructed. Finally
(right), the input graph 𝒢 is
constructed from all positions
in ℛunf. Positions in ℛsc are
marked in black, replicas in red.
Edges that contribute to 𝑈𝑖 ∈
ℛsc are drawn as solid, others as
dotted lines.

One solution, inspired by previous work on the derivation of the
stress and heat flux for periodic systems [387, 388], and illustrated in
figure 4.1.3, lies in modifying the construction of𝒢 to reflect the ‘check-
erboard’ picture from section 2.3, constructing replicas explicitly. To
this end, the simulation cell is extended, or unfolded, to include all posi-
tions that can interact with positions in the simulation cell. The graph
is then construction for this unfolded simulation cell, ℛunf, without
the MIC. By construction, predictions for nodes representing atoms in
ℛsc are then identical, while derivatives of these potential energies 𝑈𝑖

with respect to positions in ℛunf distinguish between the simulation
cell and replicas.

The unfolded simulation cell can be constructed efficiently by de-
termining atoms that lie within 𝑟eff

c of the boundary; a brief overview
over a practical implementation is given in appendix C.3. The number
of additional positions is proportional to the surface area of the sim-
ulation cell and therefore scales as 𝑂(𝑁2/3) (see appendix C.5). It is
therefore asymptotically dominated by the increase in 𝑁 itself.

4.1.4 Derivatives

As seen in section 2.2, the main quantities relevant for MD simulations
are derivatives of the PES. We now consider how to compute forces and
stress using AD.

Forces For general MD simulations, we at least require the forces

F𝑖 = −𝜕𝑈

𝜕r𝑖
. (4.1.6)

Since𝑈 is a scalar, and ℛsc are an explicit input to its computation, the
forces can be computed as a trivial JVP9 that can be evaluated with the 9 The product is over an output dimen-

sion of size 1.same asymptotic cost as 𝑈 .
An interesting situation arises if pairwise forces are desired. Strictly

speaking, in a many-body potential, where interactions cannot be de-
composed into pairwise contributions, such quantities are not well-
defined and Newton’s third law is replaced by conservation of mo-
mentum, which requires ∑︁𝑁

𝑖=1 F𝑖 = 0. Nevertheless, pairwise forces
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with an antisymmetric structure can be defined by exploiting the con-
struction of GLPs in terms of atom-pair vectors.10 10 For pairwise distances, and without

reference to graph structure, a more
formal argument along similar lines ap-
pears in the work by Admal and Tad-
mor [389].

𝑈 is a function of all edges within 𝑀 hops,

𝑈 = 𝑈(
{︁

r𝑖 𝑗
|︁|︁ 𝑖 𝑗 ∈ ℰ𝑀(𝑖)

}︁
) . (4.1.7)

Hence, by the chain rule,

F𝑖 =
∑︂
𝑗∈𝒩(𝑖)

𝜕𝑈

𝜕r𝑖 𝑗
− 𝜕𝑈

𝜕r 𝑗𝑖
(4.1.8)

≕
∑︂
𝑗∈𝒩(𝑖)

F𝑖 𝑗 . (4.1.9)

The pairwise forces such defined exhibit anti-symmetry, and there-

In particular,

𝜕𝑈

𝜕r𝑖
=

∑︂
𝑗𝑘∈ℰ𝑀(𝑖)

𝜕𝑈

𝜕r 𝑗𝑘

𝜕r 𝑗𝑘
𝜕r𝑖

, (4.1.10)

the second term is only non-vanishing
when either 𝑗 or 𝑘 are 𝑖.

fore fulfil Newton’s third law. For 𝑀=1, this recovers a more standard
form [371] where only neighbouring atoms are involved,

F𝑖 𝑗 =
𝜕𝑈𝑖

𝜕r𝑖 𝑗
−

𝜕𝑈 𝑗

𝜕r 𝑗𝑖
. (4.1.11)

However, for 𝑀>1, this calculation of pairwise forces includes a sum
over all 𝑈𝑘 that are influenced by a given edge

F𝑖 𝑗 =
∑︂

𝑘∈𝒩𝑀(𝑖)

𝜕𝑈𝑘

𝜕r𝑖 𝑗
− 𝜕𝑈𝑘

𝜕r 𝑗𝑖
, (4.1.12)

subverting expectations connecting local potential energies to pair-
wise forces. This apparent contradiction is a consequence of the com-
bination of the peculiar construction of GLPs and AD: In principle, it
is always possible to define extended neighbourhoods up to 𝑟eff

c , ob-
taining𝑈𝑖 purely as a function of atom-pair vectors originating from 𝑖.
However, to construct derivatives with respect to these atom-pair vec-
tors with AD, these extended neighbourhoods have to be computed
explicitly, therefore negating the computational efficiency gains of a
GLP architecture.

Stress The definition of the (potential) stress is [76]

σ =
1
𝑉

𝜕𝑈′

𝜕ϵ

|︁|︁
ϵ=0 , (4.1.13)

with𝑈′ denoting the potential energy after a transformation of all po-
sitions with the 3× 3 symmetric strain tensor ϵ

r → (1+ ϵ) · r for r ∈ ℛall . (4.1.14)

While computing the derivative in equation (4.1.13) for arbitrary po-
tentials and periodic systems has been classified as requiring ‘much
effort’ [390] in the past, and has been the focus of much discussion [387,
389], it is straightforward with AD.

Two approaches are possible: (a) Equation (4.1.13) can be imple-
mented directly by explicitly performing the strain transformation dur-
ing the calculation of𝑈 , obtaining the stress with AD by differentiating
with respect to ϵ, or (b) equation (4.1.13) can be re-written in terms of
other derivatives, which are then computed with AD.
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This yields a number of equivalent definitions of the stress The notation 𝒮′ indicates that ϵ is ap-
plied to all vectors in 𝒮.
It must be stressed that the equivalence
of the given formulations rests on defin-
itions so far. For instance, the edges in
𝒢 must be constructed with the MIC as
defined in equation (2.3.3). If they are in-
stead computed using the modulo oper-
ation in fractional coordinates, the stress
cannot be obtained directly fromℛsc and
ℬ; equations (4.1.15) and (4.1.18) yield
incorrect results.
Equation (4.1.20) uses ℛunf, the ‘unfol-
ded’ simulation cell that contains all po-
sitions that contribute to atomic energies
in the simulation cell. We defined it pre-
viously in section 4.1.3.

𝑉σ =
𝜕𝑈(ℛsc

′,ℬ′)
𝜕ϵ

(4.1.15)

=
𝜕𝑈(ℰ′)
𝜕ϵ

(4.1.16)

=
𝜕𝑈(ℛunf

′)
𝜕ϵ

(4.1.17)

=
∑︂
𝑖∈ℛsc

r 𝑗 ⊗
𝜕𝑈

𝜕r𝑖
+

∑︂
b∈ℬ

b ⊗ 𝜕𝑈

𝜕b
(4.1.18)

=
∑︂
𝑖 𝑗∈ℰ

r𝑖 𝑗 ⊗
𝜕𝑈

𝜕r𝑖 𝑗
(4.1.19)

=
∑︂
𝑖∈ℛunf

r𝑖 ⊗
𝜕𝑈

𝜕r𝑖
. (4.1.20)

recovering formulations given by Louwerse and Baerends [390] and
Thompson [387].11,

12 All formulations are compared in table 4.1.1 for

11 In particular, equation (4.1.18) appears
as equation 8 in reference [390] and
equation (4.1.20) can be identified with
equation 13 therein. Equation (4.1.18)
is the ‘atom-cell’ form given in refer-
ence [387, eq. 27], equation (4.1.20) the
‘atom’ form in equation 25. In the
case of pair-additive GLPs with 𝑀=1,
equation (4.1.19) reduces to the standard
form which can be found, for example, in
reference [390, eq. 2].
12 Different forms are implemented in
available MLIP packages. For example,
schnetpack [391, 392] and nequip [242,
393] implement equation (4.1.15), MACE
in pytorch [394] implements equa-
tion (4.1.15), while MACE in jax [395]
uses equation (4.1.18).

the Lennard-Jones potential and in table 4.1.2 for the So3krates [43]
GLP with 𝑀=2. They are found to be equivalent. Further discussion
and details on these experiments can be found in appendix C.1 as well
as reference [46].

A more complex situation arises if strain derivatives of atomic en-
ergies, in other words, atomic stresses

𝑉σ𝑖 ≔
𝜕𝑈𝑖

𝜕ϵ
for 𝑖 ∈ ℛsc (4.1.21)

are required. Their calculation requires either one backwards pass per
𝑈𝑖 , or one forward pass for each entry in ϵ. If only reverse-mode AD is
available, its evaluation therefore scales quadratically with 𝑁 . Linear
scaling is retained with forward mode. For GLPs with 𝑀=1, linear
scaling in reverse mode can be recovered by using equation (4.1.19):
Every edge can be uniquely assigned to one 𝑈𝑖 , and therefore the de-
rivatives can be used to construct atomic stresses. For 𝑀>1, this is
not possible; similar to the observations for pairwise forces, atomic
stresses take a semi-local form.

As will be discussed in section 4.2, similar issues arise in the calcu-
lation of the heat flux, which relies on derivatives of atomic potential
energies 𝑈𝑖 : A direct implementation requires separate AD passes for
each 𝑈𝑖 and leads to quadratic scaling.

To summarise, this section has introduced an abstract description
of interatomic potentials in terms of a mapping between a graph 𝒢 of
atom-pair vectors (the edges ℰ) and atoms (the vertices 𝒱) and a set
of atomic potential energies 𝑈𝑖 . In this framework, (pairwise) forces
and the stress tensor can be defined and implemented in a unified way,
not requiring further information about the structure of the potential.
To illustrate this, and enable subsequent work, the glp package, using
jax [37], briefly discussed in appendix E.3, has been developed.
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Equation MAE in eV maxAE in eV MAPE in % maxAPE in %

Fin. diff. 7.70× 10−4 4.18× 10−3 1.04× 10−1 5.30
4.1.15 1.19× 10−5 6.54× 10−5 1.79× 10−3 7.35× 10−2

4.1.16 8.25× 10−6 4.11× 10−5 1.27× 10−3 6.75× 10−2

4.1.17 9.17× 10−6 4.46× 10−5 1.36× 10−3 4.39× 10−2

4.1.18 1.18× 10−5 6.44× 10−5 1.79× 10−3 7.19× 10−2

4.1.19 8.22× 10−6 4.16× 10−5 1.27× 10−3 6.59× 10−2

4.1.20 9.16× 10−6 4.51× 10−5 1.37× 10−3 4.92× 10−2

Table 4.1.1: Error in stress
for Lennard-Jones argon, com-
paring different formulations, as
well as finite differences, with
an analytical implementation in
ASE. Results are shown for
single precision arithmetic, and
for σ ·𝑉 in place of σ.

Equation MAE in eV maxAE in eV MAPE in % maxAPE in %

4.1.15 1.58× 10−2 8.26× 10−2 4.40× 10−2 7.01× 10−1

4.1.16 1.58× 10−2 8.26× 10−2 4.38× 10−2 6.92× 10−1

4.1.17 1.57× 10−2 8.37× 10−2 4.33× 10−2 6.69× 10−1

4.1.18 1.58× 10−2 8.27× 10−2 4.40× 10−2 7.00× 10−1

4.1.19 1.58× 10−2 8.26× 10−2 4.38× 10−2 6.91× 10−1

4.1.20 1.57× 10−2 8.37× 10−2 4.33× 10−2 6.71× 10−1

Table 4.1.2: Error in stress for
SnSe, using the 𝑀=2 So3krates
model discussed further in sec-
tion 5.4, comparing different for-
mulations of the stress with fi-
nite differences. Results are
shown for single precision arith-
metic, and for σ ·𝑉 in place of σ.
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Section 4.2
Heat Flux

. . . there are many subtleties associated with the calculation of trans-
port coefficients in computer simulations. These subtleties cannot be
completely divorced from a consideration of the boundary conditions.

– M.P. Allen, Computer Simulations in Chemical Physics

Gotta Go Fast!

– Sonic the Hedgehog, Sonic X Theme Song

As we have seen in section 2.5, the instantaneous heat flux J(𝑡) is the
central quantity required to compute thermal conductivities with the
GK method. Its formulation and implementation for different types
of potential has been the focus of much previous work.

Initial efforts by Irving and Kirkwood [396], later formalised
by Noll [397], and continued by others [398–401] were undertaken
within the wider context of establishing a connection between con-
tinuum descriptions and statistical mechanics. These early works as-
sumed additive pairwise potentials, leading to first GK simulations
with such potentials [201, 366, 367]. Shortly after, Hardy established
a form of the heat flux for periodic quantum systems [381] without
this assumption. However, this form was not straightforward to ap-
ply to the non-pairwise many-body FFs (see section 2.2.3) developed
in the late 1980s [108–110]. This lead to the development of many dif-
fering forms of the heat flux for such cases, often based on extensions
of stress-based formulas developed for pairwise potentials [368–371].

It has only recently been widely acknowledged that such many-
body potentials, or, more precisely, those which are not composed
of additive pairwise terms, require a fundamentally different treat-
ment. Fan et al. [371] showed that the classical equivalent of the for-
mulation by Hardy [381] provides a general heat flux, unifying pre-
vious formulations for many-body potentials, and highlighting the
distinction between stress-based pairwise and general Hardy-like for-
mulas. Boone et al. [402] investigated previous heat flux formula-
tions in the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) code, finding that a heat flux for pairwise poten-
tials is incorrect for many-body potentials. Based on a derivation by
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Toori et al. [403], they provide a heat flux for three- and four-body
potentials. Surblys et al. [404] provide an alternative ‘centroid’ for-
mulation for LAMMPS, also based on the work by Toori et al. [403].

In parallel, heat flux formulations for DFT were developed, enabling
aiGK calculations [143, 151].

This complex landscape of different forms of the heat flux, and
different perspectives on its derivation, presents a challenge for the
present work. Here, we seek to develop a heat flux for MLIPs in gen-
eral and GLPs in particular, under the constraint that derivatives are
computed with AD, rather than manually implemented. While some
existing forms can be applied in principle to this case, doing so is not
straightforward and can lead to high computational cost, as we will
highlight over the course of this section. Nomenclature differs sig- A discussion of selected heat flux for-

mulations and their relationship to the
ones discussed in this work is given in
appendix C.6.

nificantly across existing forms, and periodicity is often treated only
implicitly, leading to potential ambiguities in implementation.

In this section, we aim to clarify the formulation of the heat flux
for classical many-body potentials, including semi-local GLPs, and
provide guidelines for the efficient and simple implementation of the
result with AD. An instructive implementation in jax [37] is provided
in the glp package (see appendix E.3).

To this end, we proceed in two stages: In the first part of this section,
sections 4.2.1 to 4.2.5, the Hardy heat flux formulation is re-derived
with a particular emphasis on an explicit treatment of periodicity and
consistent nomenclature. In the second part, sections 4.2.6 to 4.2.9,
strategies for the efficient implementation of the result are discussed,
and a linear-scaling formulation using AD for local and semi-local
GLPs is developed. Section 4.2.10 provides a summary of results.

4.2.1 Setting the Problem

The heat flux required for the GK method was introduced in section 2.5
as the spatial integral of a heat current density j(r, 𝑡), which arises from
a continuity equation, equation (2.5.5), for the energy density 𝑒(r, 𝑡),
which in turn is defined as a scalar field that integrates to the total
energy of the system 𝐸. Obtaining the heat flux therefore requires
(a) making an ansatz for 𝑒(r, 𝑡), (b) solving the continuity equation for
j(r, 𝑡), and (c) executing the spatial integral to obtain J(𝑡).

Overall, these steps follow a later approach by Hardy [398], which
the present works extends to non-pairwise potentials. Explicitly separ-
ating the computation of the heat current density from the integration
allows us to introduce periodicity in a controlled manner, using the
notation established in section 2.3.
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4.2.2 Defining the Energy Density
We now adopt the notation of section 2.2,
treating a system with 𝑁 atoms con-
tained in a volume 𝑉 ; the bulk limit will
be considered later. Recall that the en-
ergy depends on time through atomic
positions (potential energy) and the ve-
locities (kinetic energy); there is no ex-
plicit time dependence in this setting.
We therefore drop explicit mentions of 𝑡,
for instance writing 𝑒(r) instead of 𝑒(r, 𝑡).

Conceptually, defining 𝑒(r) requires a formal connection between a
continuum (or hydrodynamical) description in terms of spatially con-
tinuous densities, and the statistical mechanics (or MD) description
in terms of statistical ensembles of point particles. While details vary
across methods,1 the essential idea is to use localisation functions Δ(r𝑖 −

1 An early introduction to such app-
roaches is given by Noll [397]. A recent
overview can be found in reference [401].

r), which are peaked at r𝑖 , decay to 0 as |r − r𝑖 | increases, and are nor-
malised to 1, to formally map quantities assigned to discrete atoms 𝑖

to densities.
In the case of inhomogeneous systems with atomically sharp inter-

faces or non-equilibrium approaches, the microscopic2 details of local- 2 On the scale of single atoms, as op-
posed to the simulation cell.isation function and averaging approach gain central importance [405].

The GK method, however, is concerned with system-wide averages
and equilibrium MD, and we therefore use generic localisation func-
tions, not relying on any particular form.

The usage of localisation functions requires the ability to assign con-
tributions to the total energy 𝐸 to atomic positions,3 which is straight-

3 We note in passing that one does not
necessarily need to rely on atomic posi-
tions. Recent work by Surblys et al. [404],
for instance, assigns potential energy
contributions arising from groups of
atoms to their centre of mass. In sec-
tion 4.2.5, we will also see that in solids,
it is useful to assign atomic potential
energies to fixed, rather than instantan-
eous, positions. Nevertheless, access to
some form of contributions to 𝑈 is re-
quired.

forward for the kinetic energy4 𝑇, but not for the potential energy 𝑈 .

4 Recall that in the framework of MD
as described in section 2.2, nuclei are
treated as classical point particles with
kinetic energy 𝑇𝑖 = 1/2𝑚𝑖v2

𝑖
.

To proceed, we restrict the present derivation to potentials construc-
ted a priori from atomic contributions

𝑈(ℛ) =
𝑁∑︂
𝑖=1

𝑈𝑖(ℛ) . (4.2.1)

For now, these contributions can be an arbitrary many-body function
of all 𝑁 atomic positions ℛ. This setting differs from the case of DFT,
where an energy density can be defined [221], but no direct decompos-
ition of the total energy into atomic contributions is available.5 Previ- 5 The derivation of the heat flux

therefore proceeds differently. Carbor-
gno et al. [143] exploit the structure
of the Hamiltonian in equation (2.1.6),
which consists of one- and two-body
terms involving atomic and electronic
degrees of freedom, to define atomic
contributions to the Hellmann-Feynman
forces and thereby obtain a heat flux for
solids. Marcolongo et al. [151] proceed
from the energy density directly,
obtaining a numerically more involved
heat flux.

ous discussions of the heat flux have been concerned with the ques-
tion of uniqueness arising from the arbitrary partitioning of a given
total potential energy into atomic contributions. For potentials expli-
citly composed of two- or three-body contributions, numerical exper-
iments [406] and the gauge principle [229] have shown that the ex-
act composition of atomic contributions has no impact on the thermal
conductivity. In the case of MLIPs, 𝑈𝑖 may be many-body functions
without any further decomposition into 𝑘-body contributions. There-
fore, a given partitioning into 𝑈𝑖 must be considered as-is.6 6 Re-partitioning can in principle be per-

formed by defining an additional func-
tion that redistributes energy between
atoms, which may be advantageous for
the purpose of GK convergence [220]. In
that case, the thermal conductivity re-
mains unchanged if such a change cor-
responds to a non-diffusive flux as dis-
cussed in section 2.5.3. At present, this
is not pursued.

With these considerations, we are now in a position to make the
ansatz for the energy density

𝑒(r) =
𝑁∑︂
𝑖=1

Δ(r𝑖 − r) (𝑈𝑖 +𝑇𝑖) =
𝑁∑︂
𝑖=1

Δ(r𝑖 − r)𝐸𝑖 . (4.2.2)

4.2.3 Solving the Continuity Equation

The next step is solving equation (2.5.5), which we accomplish by re-
writing the time derivative of 𝑒(r) in a form that can be directly iden-
tified as the divergence of the heat current density j(r), and therefore
the solution of the continuity equation.
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To this end, we first define a bond function:7 7 In essence, a bond function gives a con-
tribution only where r lies on the line
segment between r𝑖 and r 𝑗 . It can be seen
as the two-dimensional equivalent of the
localisation function.

Λ𝑖 𝑗(r) =
∫ 1

0
d𝜆Δ(𝜆r𝑖 + (1−𝜆)r 𝑗 − r) . (4.2.3)

One can then show that8

8 A more rigorous derivation of sim-
ilar relations is given by Noll in [397],
based on the work of Irving and Kirk-
wood [396]. A short proof is provided
in appendix C.7.

Δ(r𝑖 − r) −Δ(r 𝑗 − r) = r𝑖 𝑗 ·∇rΛ𝑖 𝑗(r) . (4.2.4)

With this identity, any term that can be written in terms of a difference
at two locations r𝑖 and r 𝑗 can be identified as a heat flux along the line
segment between them.

The time-derivative of 𝑒(r) is

d
d𝑡 𝑒(r, 𝑡) =

𝑁∑︂
𝑖=1

(︃
d
d𝑡 𝐸𝑖

)︃
Δ(r𝑖 − r) +

𝑁∑︂
𝑖=1

𝐸𝑖

(︃
d
d𝑡Δ(r𝑖 − r)

)︃
. (4.2.5)

The first term can be tackled by splitting 𝐸𝑖 = 𝑈𝑖 +𝑇𝑖 and resolving the
time derivative (see appendix C.8) Note that this manipulation relies on the

ability to freely rename 𝑖 and 𝑗, as both
appear in a sum running over 1...𝑁 . For
this reason, we have not yet transitioned
to a periodic system.

𝑁∑︂
𝑖=1

(︃
d
d𝑡 𝐸𝑖

)︃
Δ(r𝑖 − r) (4.2.6)

=

𝑁∑︂
𝑖,𝑗=1

[︃(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃ (︁
Δ(r𝑖 − r) −Δ(r 𝑗 − r)

)︁ ]︃
, (4.2.7)

and finally applying the identity from equation (4.2.4) to obtain

= ∇r ·
[︄

𝑁∑︂
𝑖,𝑗=1

r𝑖 𝑗

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃
Λ𝑖 𝑗(r)

]︄
. (4.2.8)

The second term is resolved by the chain rule
𝑁∑︂
𝑖=1

𝐸𝑖

(︃
d
d𝑡Δ(r𝑖 − r)

)︃
= −

𝑁∑︂
𝑖=1

𝐸𝑖

(︂
∇rΔ(r𝑖 − r) · v𝑖

)︂
(4.2.9)

= −∇r ·
(︂ 𝑁∑︂
𝑖=1

𝐸𝑖Δ(r𝑖 − r)v𝑖

)︂
. (4.2.10)

Comparing with equation (2.5.5), we find Note the flipped signs.

j(r) =
𝑁∑︂

𝑖,𝑗=1
r 𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃
Λ𝑖 𝑗(r) +

𝑁∑︂
𝑖=1

𝐸𝑖v𝑖Δ(r𝑖 − r) . (4.2.11)

While so far we have relied on purely algebraic manipulations, this
result can also be justified from a physical perspective. Any energy
change at atom 𝑖 must be balanced out by corresponding changes in
the atoms 𝑗 it interacts with, with an energy current flowing between
them.9 If we can divide up the change in 𝑈𝑖 into contributions that

9 This does not mean that pairwise fluxes
are always zero – this is only the case if
𝜕𝑈𝑖/𝜕r 𝑗 = 𝜕𝑈𝑗/𝜕r𝑖 , which only applies
to pair potentials. In general, the energy
change in 𝑖 is divided up in some way
between its neighbours.can be attributed to different 𝑗, and identify the corresponding terms

in 𝑈 𝑗 , we know the magnitude of the current between 𝑖 and 𝑗. It is a
natural assumption that the current flows directly between them, par-
allel to r𝑖 𝑗 . The first term in equation (4.2.11) is one way to construct a
vector field accordingly. The second term describes an alternative pro-
cess to change local distribution of energy: Rather than energy flowing
between atoms, the energy situated at a given atom is ‘dragged along’
by the atom moving. Together, these two processes describe how the
energy density can change, and therefore yield the heat current dens-
ity, solving the continuity equation.



chapter 4.2: heat flux 93

4.2.4 Heat Flux in the Bulk

At this point, j(r) has been obtained for 𝑁 particles with open bound-
ary conditions. As discussed in section 2.3, practical simulations of
bulk systems, however, are performed in a periodic setting. We there-
fore adopt the notation established in that section, obtaining

jbulk(r) =
∑︂
𝑖∈ℛall
𝑗∈ℛall

r 𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃
Λ𝑖 𝑗(r) +

∑︂
𝑖∈ℛall

𝐸𝑖v𝑖Δ(r𝑖 − r) . (4.2.12)

The result is illustrated in figure 4.2.1. As this current density is defined

Figure 4.2.1: Illustration of
the first term of the bulk cur-
rent density in equation (4.2.12),
showing bond functions as lines
connecting atoms. The system
from figure 4.1.2 is used, as-
suming that 𝑈𝑖 depends on in-
teractions up to 𝑀=2. Only
bond functions involving the
atom highlighted in orange and
its replicas are shown. The sim-
ulation cell and a 3× 3 supercell
are shown as solid and dashed
lines, respectively.

directly on the bulk system, it is not sensitive to the particular choice
of simulation cell; the issue of boundary invariance has been avoided.
Crucially, each bond function between pairs of symmetrically equival-
ent positions appears exactly once in each cell.

Therefore, the integral over any simulation cell,10 yields 10 We assume a fixed number of atoms in
the simulation cell. Supercells pose no
additional challenge, but simply add a
multiplier.

The terminology of these different con-
tributions to the heat flux is discussed in
section 4.2.5.

J =

∫
s.c.

d3r jbulk(𝑟) (4.2.13)

=
∑︂
𝑖∈ℛsc
𝑗∈ℛall

(︃
r 𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
+

∑︂
𝑖∈ℛsc

𝐸𝑖v𝑖 (4.2.14)

≕ Jpot + Jconv , (4.2.15)

where we have used the fact that all contributions where 𝑖 ∉ ℛsc can
be computed equivalently for the replica of 𝑖 in the simulation cell.11 11 The derivatives of 𝑈𝑖 for 𝑖 ∉ ℛsc are

identical to the ones of 𝑖 ∈ ℛsc, except for
re-indexing the positions r 𝑗 that contrib-
ute. r 𝑗𝑖 are invariant under that change,
and so is v𝑗 .

We note in passing that the contributions in front of v𝑖 in the first
term of equation (4.2.14) are, in general, not equivalent to those ap-
pearing in the stress formulations of equations (4.1.18) to (4.1.20). This
heat flux is also not the time-derivative of a barycentre12 B. Indeed, for 12 If the sum over 𝑗 would instead run

over ℛsc, we would recover the time-
derivative of the energy barycentre of a
non-periodic system. However, the res-
ulting heat flux term Jpot would be non-
diffusive. For this reason, this derivation
has taken care to explicitly introduce the
ranges of all involved sums.

the purposes of the HE relation, the barycentre must be defined as the
time integral of the heat flux [146, 147].

With this, we have obtained the desired general form of the heat
flux. It is similar to the classical equivalent of the Hardy formula [381],
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as given, for instance in reference [371, eq. B3], but includes an explicit
treatment of periodicity. It is valid, in principle, for any potential of
the form in equation (4.2.1).

4.2.5 Terminology of Heat Flux Contributions

The heat flux in equation (4.2.15) consists of two terms: The ‘potential’
term Jpot describes the flow of energy between pairs of atoms, while
the ‘convective’ term Jconv describes the transport of energy located at
individual atoms through their movement.13 This standard termino- 13 In the literature, different naming

conventions for these terms exist. For
instance, Fan et al. [371] refer to Jconv
as ‘kinetic’ term, while Carbogno
et al. [143] refer to Jpot as ‘conductive’
or ‘virial’ term. We do not adopt this
terminology as Jpot is not composed of
virials, i.e., contributions to the stress,
in all cases: For GLPs with 𝑀>1, the
terms appearing in the heat flux no
longer sum to the stress.

logy is somewhat deceptive, as pointed out by Ercole [407]: Jconv can-
not be neglected even if no convection occurs, as its cross-correlation
with Jpot may be non-vanishing [408]. In appendix D.5, this is shown
for the case of zirconia at varying temperatures.

Instead, in solids, where atomic positions stay bounded over time,
it is useful to decompose J differently [212, 367]:

Intermediate steps and further details
can be found in appendix C.9.

J =
∑︂
𝑖∈ℛsc
𝑗∈ℛall

(︃
r0
𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
+ d

d𝑡
∑︂
𝑖∈ℛsc

u𝑖𝐸𝑖 (4.2.16)

≕ Jint + Jdisp , (4.2.17)

introducing fixed reference positions r0
𝑖

and displacements u𝑖(𝑡) from
these positions. The ‘interaction’ term Jint contains the components of
Jpot that determine the thermal conductivity in solids, the remaining
‘displacement’ term Jdisp is non-diffusive if u𝑖 and 𝐸𝑖 are bounded.
This is demonstrated, again for zirconia, in appendix D.5.

4.2.6 Implementing the Heat Flux
For the sake of generality, we will pro-
ceed with Jpot instead of Jint. Results can
be equivalently obtained for Jint by sub-
stituting the r prefactors with r0. Out-
side of this section, we will often use J
to refer to refer to both Jint and the full
heat flux Jpot + Jconv.

As 𝐸𝑖 is directly available in the present setting, Jconv presents no fur-
ther difficulty.14 Jpot, however, requires disentangling the contribu-

14 From a computational perspective,
Jconv simply requires a sum over all
atoms in the simulation cell, re-using
quantities that have already been com-
puted to predict the energy. Therefore,
if the potential scales as 𝑂(𝑁), so does
the computation of Jconv. However, its
implementation still presents additional
complexity, which is why it was avoided
in the initial implementation of the heat
flux used for SchNet and zirconia. The
re-implementation in glp always com-
putes the full heat flux.

tions of every atom, including those in the bulk, to every atomic po-
tential energy 𝑈𝑖 , in a double sum with |ℛsc | · |ℛall | terms.

For general many-body potentials, where a direct decomposition
of 𝑈𝑖 into pairwise contributions is not available, this presents a chal-
lenge, and has lead to the development of a variety of specialised ex-
pressions surveyed in the introduction of this section. Let us now re-
view strategies for tackling it.

We restrict the present discussion to potentials with a maximum
interaction cutoff radius,15 𝑟eff

c . In other words, potentials where

15 The case of unrestricted sums over the
bulk is beyond the scope of the present
work. In some cases, for instance known
point charges and pairwise Coulomb in-
teractions [409], Ewald summation [99]
can be used to compute the heat flux.

𝑈𝑖 = 𝑈𝑖(
{︁

r 𝑗
|︁|︁ r 𝑗 ∈ ℛall, |r𝑖 𝑗 | ≤ 𝑟eff

c
}︁
) (4.2.18)

⇒ 𝜕𝑈𝑖

𝜕r 𝑗
= 0 ∀r 𝑗 ∈ ℛall where |r𝑖 𝑗 | > 𝑟eff

c . (4.2.19)

With this restriction, the sum over ℛall reduces to a sum over ℛunf, the
‘unfolded’ simulation cell, which contains the simulation cell itself and
all replica positions within a shell of width 𝑟eff

c (see section 4.1.3).
Even with this restriction, however, the sum still contains 𝑂(|ℛsc | ·

|ℛunf |) = 𝑂(𝑁2) terms, as |ℛunf | ≈ 𝑁 + 𝑁2/3. Its naive evaluation An estimate of the number of additional
positions is given in appendix C.5.
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would therefore scale quadratically with system size,16 rendering it 16 In these considerations, we implicitly
assume that the computational cost of
the potential under consideration scales
linearly with 𝑁 , or, more precisely,
the computational cost of obtaining any
given 𝑈𝑖 remains constant as 𝑁 is in-
creased at constant density. In other
words, we largely focus on GLPs, where
this is ensured by construction.

undesirable for the GK method. However, we have not yet considered
the structure of the Jacobian 𝜕𝑈𝑖/𝜕r 𝑗 . Due to equation (4.2.19), it exhib-
its a known sparsity pattern: Only terms where |r𝑖 𝑗 | ≤ 𝑟eff

c are nonzero.
The number of such terms is 𝑂(𝑁), as the size of the 𝑁 neighbour-
hoods of each 𝑖 remains constant as 𝑁 is increased at constant density.

In principle, we can therefore expect to be able to compute Jpot with
computational cost that scales linearly with system size. Indeed, in
section 4.2.9, an AD-based linear-scaling approach to implementing
Jpot is presented, which we term the ‘unfolded’ heat flux Junfolded

pot . In
this approach, ℛunf is explicitly constructed.

However, this requires a modification of the implementation of a
given potential. For instance, GLPs as introduced in section 4.1 avoid
the construction of replica positions beyond 𝑟c entirely; they are func-
tions of (ℛsc,ℬ), or, equivalently, of 𝒢. In order to better understand
the heat flux for such cases, we also consider the heat flux for potentials
which are explicitly constructed from (ℛsc,ℬ), in section 4.2.7, and for
GLPs, in section 4.2.8. We find that only local GLPs, where 𝑟eff

c =𝑟c and
𝑀=1, admit an efficient formulation of the heat flux; for semi-local
GLPs, the ‘unfolded’ approach is preferable.

4.2.7 Heat Flux with Minimum Image Convention

If 𝑟eff
c <𝑟max

c , each 𝑈𝑖 only depends on at most one replica of each r 𝑗 .17 17 Recall the definition of 𝑟max
c in equa-

tion (2.3.4).In that case, the partial derivative in equation (4.2.14) can be computed
with respect to the equivalent position in the simulation cell. However,
the atom-pair vector r 𝑗𝑖 must still connect r𝑖 in the simulation cell with
the respective position r 𝑗 which may be a replica.18 This can be ensured 18 If r 𝑗𝑖 is simply taken between posi-

tions in the simulation cell, the result-
ing heat flux is bounded and therefore
yields vanishing thermal conductivity.

by adopting the MIC, yielding

Jmic
pot ≔

∑︂
𝑖,𝑗∈ℛsc

(︃
rmic
𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
. (4.2.20)

While this form of the heat flux requires no replica positions, it is
also unsuitable for the efficient implementation with AD: As differ-
ent factors are multiplied with each entry of the Jacobian 𝜕𝑈𝑖/𝜕r 𝑗 , the
evaluation of this heat flux requires the computation of the explicit full
Jacobian, leading to quadratic scaling as discussed in section 2.4.6.

However, as it requires no modification in the implementation of a
given potential, and can be implemented directly, albeit inefficiently,
with AD, we use Jmic

pot as baseline for the development of more special-
ised approaches.
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4.2.8 Heat Flux for Graph Machine-Learning Potentials

For GLPs, 𝑈𝑖 is a function of all edges within 𝑀 hops on the graph: Recall that 𝒩(𝑖) denotes all vertices
within 𝑟c, and that edges r𝑖 𝑗 as defined in
section 4.1 have been computed with the
MIC. All atom-pair vectors correspond-
ing to edges are therefore subject to the
MIC, and marked as such.

𝑈𝑀=1
𝑖 = 𝑈𝑖

(︂{︂
rmic
𝑖 𝑗

|︁|︁|︁ 𝑗 ∈ 𝒩(𝑖)
}︂)︂

𝑈𝑀=2
𝑖 = 𝑈𝑖

(︂{︂
rmic
𝑖 𝑗

|︁|︁|︁ 𝑗 ∈ 𝒩(𝑖)
}︂
∪

{︂
rmic
𝑗𝑘

|︁|︁|︁ 𝑗 ∈ 𝒩(𝑖), 𝑘 ∈ 𝒩(𝑗)
}︂)︂

𝑈𝑀=3
𝑖 = ...

The form in equation (4.2.21) was de-
rived by Fan et al. [371] using a slightly
different argument: In general, the set of
atom-pair vectors between ℛsc and ℛall
can be used to define a separate set of
inputs for each 𝑈𝑖 , without referring to
the additional structure of a GLP. There-
fore, equation (4.2.21) should in prin-
ciple be applicable to any potential, not
only GLPs with 𝑀=1. In practice, how-
ever, this would require the construc-
tion of separate neighbourhoods with
size 𝑟eff

c for each atom 𝑖 and then sep-
arate message-passing steps within each
enlarged environment. This would com-
promise the computational efficiency
gained by the semi-local structure of
GLPs, which are explicitly construc-
ted to avoid the consideration of such
large environments, and share compu-
tational work between adjacent neigh-
bourhoods.

We consider the local case, 𝑀=1, first. Simply substituting in
equation (4.2.14) yields the ‘local’ heat flux

Jlocal
pot ≔

∑︂
𝑖 𝑗∈ℰ

(︄
rmic
𝑗𝑖

(︄
𝜕𝑈𝑖

𝜕rmic
𝑖 𝑗

· v𝑗

)︄)︄
. (4.2.21)

While this expression contains only |ℰ | terms, it still requires the ex-
plicit evaluation of each term in the Jacobian 𝜕𝑈𝑖/𝜕rmic

𝑖 𝑗
, rendering it

quadratically scaling when implemented with AD. This problem can
be alleviated by recognising that for 𝑀=1, the inputs to each 𝑈𝑖 are
separate, as the atom-pair vectors in 𝒩(𝑖) are used only in the compu-
tation of 𝑈𝑖 . Therefore

𝜕𝑈𝑖

𝜕r 𝑗
=

𝜕𝑈𝑖

𝜕rmic
𝑖 𝑗

=
𝜕𝑈

𝜕rmic
𝑖 𝑗

; (4.2.22)

it is sufficient to compute the gradient of 𝑈 with respect to ℰ. This

This ‘edges only’ formulation of the heat
flux is attractive from an implementation
standpoint: It requires only derivatives
that can be obtained with a single gradi-
ent computation, and does not require
the construction of an unfolded simula-
tion cell. As seen in figure 4.2.2, while
overall scaling is similar to the unfol-
ded heat flux, it is substantially faster. It
is therefore tempting to use it even for
𝑀≥1, where it is not equivalent to Jpot.
However, as seen in figure D.24, predic-
tions with this form differ from the full
heat flux. This difference of approxim-
ately 5 % across temperatures does not
reduce with convergence (not shown).
Investigating to what extent Jedges

pot can
be used as an approximation for the full
heat flux is left for future work.

yields the a form of the heat flux that relies exclusively on the edges in
the graph,

Jedges
pot ≔

∑︂
𝑖 𝑗∈ℰ

(︄
rmic
𝑗𝑖

(︄
𝜕𝑈

𝜕rmic
𝑖 𝑗

· v𝑗

)︄)︄
. (4.2.23)

For local GLPs with 𝑀=1, we have therefore obtained an alternative
form of the heat flux that can be efficiently implemented using AD.

For semi-local GLPs with𝑀≥1, atom-pair vectors are shared between
atomic energy contributions, and equation (4.2.22) does not apply. In-
stead, we can compute the heat flux with equation (4.2.20), or equival-
ently as

Jsemi-local
pot ≔

∑︂
𝑖∈𝒱
𝑗𝑘∈ℰ

rmic
𝑗𝑖

(︄[︄
𝜕𝑈𝑖

𝜕rmic
𝑘 𝑗

− 𝜕𝑈𝑖

𝜕rmic
𝑗𝑘

]︄
· v𝑗

)︄
. (4.2.24)

Like equations (4.2.20) and (4.2.21), this form requires access to an ex-
plicit Jacobian 𝜕𝑈𝑖/𝜕rmic

𝑘 𝑗
and therefore scales quadratically when im-

plemented with AD.
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Figure 4.2.2: Computation time
per timestep for different sys-
tem sizes 𝑁 for zirconia, evalu-
ating SchNet MPNNs with 𝑀=1
and 𝑀=2, for different heat flux
formulations. Only equivalent
forms of the heat flux are shown;
Jsemi-local
pot and Jlocal

pot have been
omitted as they scale identic-
ally to Jmic

pot . Benchmarks were
performed on a single Tesla
Volta V100 32GB GPU, comput-
ing only Jpot. To estimate the
asymptotic scaling, a function
proportional to 𝑁𝑥 has been fit-
ted to the results for large 𝑁 .
Note that on this setup with
limited memory, the asymptotic
limit cannot be reached.

4.2.9 Unfolded Heat Flux

Finally, we consider the ‘unfolded’ heat flux, which is obtained by re-
stricting the sum over ℛall in equation (4.2.14) to ℛunf,

Junfolded
pot ≔

∑︂
𝑖∈ℛsc
𝑗∈ℛunf

(︃
r 𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
. (4.2.25)

As discussed in section 2.4.6, the efficient use of AD requires expres-
sions in the form of either JVPs or VJPs. In other words, our task is to
rewrite Junfolded

pot in equation (4.2.25) such that one sum can be executed
inside the derivative.

As shown in appendix C.11, this can be done and yields
The vector-vector product in the first
term should be taken between the de-
nominator of the partial derivative and
v𝑗 , not between B and v𝑗 .

Junfolded
pot =

∑︂
𝑗∈ℛunf

𝜕B
𝜕r 𝑗

· v𝑗 −
∑︂
𝑗∈ℛunf

r 𝑗

(︃
𝜕𝑈

𝜕r 𝑗
· v𝑗

)︃
, (4.2.26)

defining an intermediate quantity
Here rconst

𝑖
denotes positions that are nu-

merically identical to r𝑖 but are treated as
constants during the calculation of de-
rivatives.

B ≔
∑︂
𝑖∈ℛsc

rconst
𝑖 𝑈𝑖 . (4.2.27)

The first term in equation (4.2.26) is a JVP, the second term a VJP.
Therefore, they can be be computed with the same asymptotic compu-
tational cost as B and 𝑈 , respectively. Provided that the computation
of 𝑈𝑖 is linear in the number of input positions, overall computational
cost is 𝑂(|ℛunf |) = 𝑂(𝑁 +𝑁2/3) = 𝑂(𝑁). Linear scaling is restored.19

19 We remark that since all positions in
ℛunf must be considered explicitly, and
since the size of ℛunf scales cubically
with the effective cutoff radius, this ap-
proach is limited to moderate numbers
of interaction steps 𝑀. However, we find
that in practice, this limitation is not crit-
ical, as 𝑀=2 is often sufficient for good
predictive performance.
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4.2.10 Results

In sections 4.2.1 to 4.2.5 we developed a formulation of the heat flux
for the purposes of the GK method20 for potentials decomposed into 20 In other words, without considering

the microscopic structure of continuum
quantities.

atomic contributions as defined in equation (4.2.1) and using the nota-
tion for periodicity introduced in section 2.3. The result is a variation
on the well-known Hardy formula and given in equation (4.2.15).

We then considered different ways to make use of knowledge of
the particular structure of different potentials to efficiently implement
this formula. A number of specialised forms were derived, which are
summarised in table 4.2.1.

Name Equation Scaling Prerequisites

Junfolded
pot 4.2.26 𝑂(𝑁) Explicit construction of ℛunf

Jedges
pot 4.2.23 𝑂(𝑁) GLP, 𝑀=1

Jlocal
pot 4.2.21 𝑂(𝑁2) GLP, 𝑀=1

Jsemi-local
pot 4.2.24 𝑂(𝑁2) GLP, 𝑀≥1

Jmic
pot 4.2.20 𝑂(𝑁2) 𝑟eff

c <𝑟max
c

Table 4.2.1: Summary of heat
flux formulations

If the given prerequisites are fulfilled, and Jconv is added, all these for-
mulas are mathematically identical to the general heat flux in equa-
tion (4.2.15): For 𝑀≥1, Junfolded

pot , Jsemi-local
pot , and Jmic

pot are equivalent;

Jedges
pot and Jlocal

pot are not. This is shown in figure D.24. For 𝑀=1, all
formulations in table 4.2.1 are identical, as shown in figure D.25.

The computational cost of selected formulations can be seen in fig-
ure 4.2.2. The efficient re-formulation of the heat flux, Junfolded

pot , re-
mains at least one order of magnitude faster than the unoptimised
Jmic
pot ,21 with computational cost scaling approximately linearly. Jedges

pot , 21 And equivalently, Jsemi-local
pot and Jlocal

pot .

which is only applicable to 𝑀=1, displays the same scaling of compu-
tational cost as Junfolded

pot , at overall reduced computational cost.

With this, we have established the infrastructure required to effi-
ciently perform GK calculations with semi-local GLPs.

Example implementations of equations (4.2.20), (4.2.23) and (4.2.26)
using jax are provided in the glp package [410]. Additionally, differ-
ent heat flux formulas are also implemented in pytorch and can be
found at https://github.com/sirmarcel/gknet-archive.

https://github.com/sirmarcel/gknet-archive
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Section 4.3
Summary

This chapter discussed the implementation of the GK method for the
calculation of thermal conductivities with MLIPs based on MPNNs.
Such simulations require access to the heat flux, a quantity computed
from derivatives of atomic contributions to the potential energy.

In order to efficiently compute the required derivatives for such
models with AD, a general understanding of the ‘forward’ compu-
tation is required. To this end, in section 4.1, the concept of graph
potentials, or GLPs, was introduced. An account of their construction
and the calculation of forces and stress with AD was provided. We
verified that a number of previous formulations of the stress are equi-
valent and can be implemented directly with AD. This section also
introduced the notion of local and semi-local potentials: While in the
former, interactions take place entirely within atomic neighbourhoods
with cutoff radius 𝑟c, the latter admits repeated interactions between
such neighbourhoods, leading to correlations up to 𝑟eff

c ≥ 𝑟c.
Finding that prior formulations of the heat flux are not suitable for

semi-local GLPs and AD, adapted forms of the heat flux were derived
in section 4.2: The ‘unfolded’ heat flux in equation (4.2.26) applies to
semi-local potentials, and the ‘edges’ heat flux in equation (4.2.23) ap-
plies to local potentials. Using AD, the computational cost for both
scales asymptotically linearly with the number of atoms 𝑁 in the sim-
ulation cell,1 enabling the practical use of MLIPs based on MPNNs for 1 Provided the density is held constant as

𝑁 is increased.the GK method.

Limitations

The framework developed in this chapter explicitly excludes non-local
interactions, which are present, for instance, in MLIPs that feature at-
tention mechanisms,2 or those that model all-to-all interactions,3 as 2 Such as SpookyNet [130]

or So3krates [43].
3 Such as (s)GDML [127–129].

well as in long-range electrostatics. None of the provided heat flux
formulations apply to such models, for which equation (4.2.14) must
be evaluated explicitly.4 4 In the case of the forces, equation (4.1.6)

applies, and for the stress, it is preferable
to rely on end-to-end AD, for instance
equation (4.1.15). Care must be taken to
construct replica positions explicitly in
that case.

Beyond this fundamental restriction, the ‘unfolded’ heat flux is lim-
ited in practice by the need to explicitly construct an extended non-
periodic system: As the effective cutoff radius 𝑟eff

c increases,5 the num-
5 For instance through higher numbers
of message-passing steps 𝑀.

ber of additional positions grows cubically. In the experiments repor-
ted in the following chapter, 𝑁 is therefore limited to ≈ 5000 atoms,
and 𝑀 to ≤ 3. However, for the studied systems, little advantage is
found for 𝑀 > 2.
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Chapter 5
Thermal Conductivity with Message-Passing Neural Networks

. . . who scribbled all night rocking and rolling over lofty
incantations which in the yellow morning were
stanzas of gibberish . . .

–Allen Ginsberg, Howl

In the previous chapter, we established a method to compute the
heat flux for semi-local MLIPs, providing the missing piece to use re-
cently developed MLIPs based on MPNNs for thermal conductivity
calculations with the GK method. In this chapter, we apply this abil-
ity to the calculation of the thermal conductivity of selected materials.

First, in sections 5.1 to 5.3, zirconia (ZrO2) is studied in detail. Zir-
conia, alongside silicon, was one of the only two crystalline materi-
als that had been investigated with aiMD when this project was star-
ted, in a work by Carbogno et al. [143] that introduced a heat flux
definition and a size extrapolation scheme for DFT.1 Its highly anhar- 1 Recently, this number was increased to

approximately 60 materials in a large-
scale effort by Knoop et al. [411] (see sec-
tion 5.4). Additionally, Li3CIO [412] and
ICE-X [413] were recently investigated.

monic PES [414, 415] make it a prototypical candidate for treatment
with the GK method. It has also recently been investigated with a
local MLIP based on a SOAP-like descriptor and Bayesian regression
by Verdi et al. [163], as well as a FF based on the Buckingham poten-
tial [416]. Experimental measurements of thermal conductivity, sur-
veyed in appendix D.8, are also available. This prototypical material
can therefore serve as a test case.

In section 5.1, the training and evaluation of a GLP using the SchNet
architecture [41, 42] is discussed: A simple training scheme based on
𝑁𝑝𝑇 aiMD simulations yields a potential that remains stable up to
1800 K. In this temperature range, it can be used to predict thermal
conductivities in the monoclinic and tetragonal phases of zirconia, us-
ing a workflow based on work by Knoop et al. [144], discussed in sec-
tion 5.2. The results are shown in section 5.3 and are consistent with
other experimental and computational studies. Using this potential,
we also verify the heat flux formulations of section 4.2.

Having established workflows and the heat flux, we then further
explore the practical feasibility of GK calculations with GLPs in sec-
tion 5.4. Using the recently developed equivariant So3krates GLP [43],
thermal conductivity for two additional materials is investigated: tin
selenide (SnSe) and silicon (Si).
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These materials were chosen to cover the case of high and low an-
harmonicity, and correspondingly low and high thermal conductivity,
compared to zirconia. Anharmonicity can be quantified with the an-
harmonicity measure2 𝜎A introduced by Knoop et al. [417]. For SnSe, 2 In a nutshell, it measures the deviation

between forces obtained with a har-
monic model and those obtained with
DFT. 𝜎A≤0.2 is considered ‘very har-
monic’ in reference [417].

𝜎A = 0.350 at 300 K [142], and for Si 𝜎A = 0.177 at 400 K. ZrO2, in com-
parison, is slightly more anharmonic than Si in the monoclinic phase
at 300 K, with 𝜎A = 0.183, and strongly anharmonic in the tetragonal
phase at 1400 K, with 𝜎A = 0.565.3 3 Details on the calculation of 𝜎A for Si

and ZrO2 can be found in appendix D.1.For SnSe at 300 K, a So3krates potential trained with 3000 reference
calculations is in good agreement with experiments, size-extrapolated
aiGK results, and MLIP results for the thermal conductivity at 300 K.
For Si at 400 K, i.e., in the regime of low anharmonicity, size conver-
gence is found to pose a challenge: Full size convergence could not be
achieved with the currently available implementation of the heat flux.
The predicted value of 𝜅 underestimates experimental values by ap-
proximately 45 %. In addition to convergence issues, biased sampling
of the PES is conjectured as a possible cause.

Related publications

Some results in this chapter have been submitted for publication:

“Heat flux for semilocal machine-learning potentials,”
by Marcel F. Langer, Florian Knoop, Christian Carbogno, Matthias
Scheffler, and Matthias Rupp
in Physical Review B in press
arXiv:2303.14434

Referenced as [45].

“Stress and heat flux via automatic differentiation,”
by Marcel F. Langer, J. Thorben Frank, and Florian Knoop
in revision
arXiv:2305.01401

Referenced as [46].

In particular, results for ZrO2 have been reported in reference [45], and
results for SnSe have been reported in reference [46].

Data and Code Availability

Data and code related to the reported results can be found at
doi:10.5281/zenodo.7767432 for zirconia,
doi:10.5281/zenodo.7852530 for tin selenide, and
doi:10.5281/zenodo.7963152 for silicon.

First-principles calculations are additionally available at
doi:10.17172/NOMAD/2023.03.24-2 for zirconia, and
doi:10.17172/NOMAD/2023.06.04-1 for silicon.

https://arxiv.org/abs/2303.14434
https://arxiv.org/abs/2305.01401
https://doi.org/10.5281/zenodo.7767432
https://doi.org/10.5281/zenodo.7852530
https://doi.org/10.5281/zenodo.7963152
https://doi.org/10.17172/NOMAD/2023.03.24-2
https://doi.org/10.17172/NOMAD/2023.06.04-1
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Section 5.1
Potential for Zirconia

Deep learning still comes from approximately ten thousand hours of work
on any given subject.

– Hannu Rajaniemi, The Quantum Thief

In this section, we construct a MLIP for zirconia, based on the SchNet
[41, 391] MPNN architecture implemented in schnetpack [391]. We
discuss the generation of training data, based on aiMD trajectories in
the 𝑁𝑝𝑇 ensemble, as well as the training scheme, and then investigate
convergence with respect to two main parameters, the cutoff radius
𝑟c and the number of interaction steps 𝑀, on the basis of auxiliary
physical quantities and test set error. The section concludes with an
investigation of the limits of the resulting potential and its suitability
for the task at hand.

5.1.1 Training Data
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Figure 5.1.1: Temperature
versus runtime for the four 𝑁𝑝𝑇

trajectories used for training.
Train and test sets are marked
by colour; the solid lines indic-
ate the rolling mean over 0.1 ps,
shading the unfiltered data.

We generate training data using aiMD for a set of trajectories in the
𝑁𝑝𝑇 ensemble, heating a 96-atom supercell constructed from a tet-
ragonal primitive cell to a set of target temperatures, 750 K, 1500 K,
2250 K, and 3000 K, covering the range of temperatures up to the melt-
ing point. A tetragonal primitive cell was chosen to match previous
work by Carbogno et al. [143]; we will later find that the model gener-
alises reasonably well to the monoclinic phase.

For this work, we did not implement an on-the-fly learning scheme
[339], which can be used to refine the model during simulations, and
can reduce the amount of training data, but inevitably couples the gen-
eration of data and model parameters. We aim to investigate the con-
vergence with respect to model parameters, and therefore prioritise
the simplicity of a fixed training set. In practice, we find this approach
sufficient for the present application; see section 5.1.4.

Each trajectory was started from the same 96-atom simulation cell,
velocities initialised at 10 K based on the Boltzmann distribution, and
then ran for 2500 timesteps with Δ𝑡=4 fs. We use the Berendsen1 baro- 1 In particular, its implementation inase,

which varies the length, but not the
angle of lattice vectors. Figure D.1 shows
the magnitude of the lattice vectors for
the training and validation data.

stat [86], with the pressure and temperature time constants 𝜏𝑝 and 𝜏𝑇
set to 10 ps, ensuring that the temperature range is traversed slowly,
maximising coverage. This can be seen in figure 5.1.1.

Over these trajectories, 10 000 total single-point calculations were
performed, using FHI-aims [356], with the PBEsol [70] functional, 2×
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2 × 2 𝑘-points, and light basis sets, with an additional basis function
for O, following the computational approach of reference [143]. The
calculations were set up and run using FHI-vibes [89] and ase [88].
We use the first 2000 steps of each trajectory for training, and the re-
maining 500 steps for validation.

Before training, the mean of the potential energy over that entire
dataset, −3 290 119.25 eV, is subtracted from all energies.2 Predictions 2 In principle, this offset can also be

learned or added within the model.
However, given the limited available
precision, it is prudent to eliminate it
from the beginning.

of the MPNN are scaled with a factor of 20 eV to ensure that they can
cover the full range of training data, where the standard deviation of
energies is 12.84 eV.

As test data,3 we obtained the calculations by Carbogno et al. [418] 3 The dataset consists of three trajector-
ies of about 15 000 steps per temperature
(300K to 2400K in intervals of 300K) with
potential energy and force labels for each
step. We use every tenth step of all tra-
jectories to create the test set.

from the NOMAD repository [419]. This data was not used during
training.

5.1.2 Training and Hyperparameters

As labels, we use the potential energy, the forces on each atom, and the
stress in a joint squared error loss function, with weights 0.001, 0.999
and 100.0 respectively, and the ADAM optimiser [198]. Whenever a
plateau of the loss on the validation set is encountered (with a patience
of 20 epochs), the learning rate is reduced by a factor of 1/4 from a
start of 10−4 to a minimum of 10−6. If the loss has not improved for 200
epochs, the training is terminated. Training was performed on two
Tesla Volta V100 32GB GPUs using a batch size of 100.

Change 𝑅2 Energy in % 𝑅2 Forces in %

No change 99.5 97.6
Patience halved 99.4 97.5
Learning rate decay 1/2 99.6 97.6
Patience reduced to 1/10 99.0 97.0
Batch size 25 99.8 97.8
Stress weight changed to 10 99.6 97.6
256 → 128 → 1 output network 99.6 97.7

Table 5.1.1: Impact of modifica-
tions to HPs on test set error

In this work, we consider the cutoff radius 𝑟c and the interaction
depth 𝑀 as main HPs of the model and investigate convergence in
detail. Other parameters were chosen empirically, based on the final
validation loss after training, and not optimised explicitly. We find
that the default settings of SchNet, 128 atom features, 128 filter width,
and a two-layer (128 → 64 → 1) output network, provide satisfact-
ory performance, with no significant improvement observed when in-
creasing the size of the network. Training settings were chosen such
that maximum training times do not exceed approximately seven days.
Nevertheless, we probe the robustness of the chosen parameters in
table 5.1.1, finding that the test set error does not strongly depend on
variations in the choice of HPs.
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5.1.3 Convergence with Cutoff Radius and Number of In-
teractions

We now focus on the cut-off radius 𝑟c, which determines the amount of
local information available, and the number of message passing steps
𝑀, which controls the range of interactions on the graph.
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Figure 5.1.2: AE (see ap-
pendix A.3) for the forces on
the test set, for models with
different cutoff radii 𝑟c and
numbers of message passing
steps 𝑀. Horizontal offsets
have been added to distinguish
𝑀. Boxes, whiskers, bars,
markers show interquartile
range, total range, median, and
mean, respectively. The relative
AE is scaled by the standard
deviation 1.37 eV/Å. Samples in
the upper quartile are predom-
inantly from trajectories above
2000 K, where limited training
data is available.

First, test set errors were evaluated, shown in figure 5.1.2. Going from
𝑀=1, i.e., no message passing, to 𝑀=2 yields an approximately con-
stant decrease in error across 𝑟c. An additional message passing step
yields only marginal improvements.

Predictive accuracy increases with cutoff radius, but saturates as
the diameter of local environments exceeds the diameter of approx-
imately 10 Å of the simulation cells used in training, approaching an
all-to-all model. In this regime, all degrees of freedom are seen in
the simulation cell, and message-passing cannot propagate additional
information. However, 𝑀=1 is equivalent to a non-linear pair poten-
tial, while 𝑀>1 can model higher-order interactions, leading to lower
errors. We therefore proceed with 𝑀=2 in the following, which is
sufficient to demonstrate the effect of message passing for heat flux
predictions and minimises additional computational cost.

Since predictive accuracy on a fixed test set cannot fully predict
model performance for practical applications [126], where larger re-
gions of the potential energy surface are explored, we evaluate dy-
namical properties as well. Figure 5.1.3 shows the vibrational dens-
ity of states (VDOS) for different choices of 𝑟c, evaluated for traject-
ories at 300K, started from identical initial configurations. For 𝑟c=5 Å
and higher, the reference VDOS from aiMD is adequately reproduced.
Further increasing the cutoff only leads to marginal improvements or
deviations at higher frequencies.

We therefore choose 𝑟c=5 Å and 𝑀=2 as ‘production’ settings for
the following.



106 part 5: thermal conductivity with message-passing neural networks

0 5 10 15 20 25
Frequency in THz

In
te
ns

it
y
(o
ff
se
tf
or

vi
si
bi
lit
y)

FHI-aims

rc = 6.5 Å
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rc = 5.5 Å
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Figure 5.1.3: Comparison of
VDOS for MPNNs (𝑀=2) with
different cutoff radii compared
to a baseline computed with
FHI-aims. The chosen pro-
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The corresponding figure
with 𝑀=1 can be found in
figure D.2.

5.1.4 Testing the Potential

Having chosen a set of HPs, we now further test the resulting MLIP.
In order to assess its ability to model the dynamics of zirconia, we first
consider the phonon band structure and density of states. The result
is displayed in figure 5.1.4; the final model captures major features of
the band structure, reproducing reference results adequately.

As a test of model stability and applicability, we investigate the
temperature dependence of the unit cell volume, probing the mono-
clinic to tetragonal phase transition of zirconia, which occurs at around
1480 K and is accompanied by a discontinuous change in volume [420].
To this end, we perform an 𝑁𝑝𝑇 simulation,4 increasing the temperat- 4 We use the Martyna-Tobias-Klein baro-

stat [93] with time constant 𝜏=5 ps
and stochastic velocity rescaling thermo-
stats [85] with 𝜏=5 ps for the positions
and 𝜏=3 ps for the lattice, with a simu-
lation timestep of 1 fs, and a simulation
cell of 324 atoms using i-pi [421].

ure with a heating rate of 1 K/ps. We compare with a similar simula-
tion by Verdi et al. [163], which uses a heating rate of 0.5 K/ps. We note
that this simple approach cannot be expected to produce a quantitative
estimate of the transition temperature, which requires thermodynamic
integration [163]. It can, however, indicate whether the transition is
captured at all.

Figure 5.1.5 shows the result: Despite not being explicitly trained
for this task, the model qualitatively captures the phase transition, at a
similar temperature to another MLIP. However, it over-estimates unit
cell volume by approximately 1 %, and becomes unstable above 2000 K.

Further tests reveal that, starting with approximately 1900 K, stable
𝑁𝑉𝐸 simulations are no longer guaranteed: Out of eleven trajectories
with 1 ns duration each, one encounters an instability. Attempting the
same at 2000 K leads to failure in every trajectory.

Below 1800 K, we observe no instabilities in the potential in tetra-
gonal and monoclinic cells, despite running hundreds of nanoseconds
of MD at varying supercell sizes over the course of this work. In this
temperature range, the MLIP is therefore considered stable.

To better understand the cause of the MLIP breakdown at el-
evated temperatures, we now investigate atomic displacements over
time. The results for the monoclinic and tetragonal phases can be seen
in figures D.5 and D.7. With increasing temperature, oxygen atoms
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become more mobile, displaying increasing displacements from their
average positions. As the temperature of the monoclinic to tetragonal
phase transition, 1400 K, is approached, different types of dynamical
events are observed: Oxygen atoms become temporarily displaced
into other local minima, or even participate in exchange-type oxygen
diffusion. This latter effect becomes more pronounced with increas-
ing temperature. While the MLIP remains stable for isolated events,
increased diffusion above 1900 K leads to the breakdown of the poten-
tial, as shown, for instance, in figure D.6.

This might be due to the limited amount of training data for these
processes, especially for the thermodynamic conditions close to the
tetragonal to cubic phase transition.5 Displacements for the training 5 In figure D.1, magnitudes of lattice vec-

tors in the training data are shown. Only
two of the four total trajectories contain
data in the cubic phase.

data are shown in figure D.8, revealing that this behaviour is also
present in the training data, in line with recent literature [422], albeit
in the form of slightly different diffusion events due to the smaller sim-
ulation cell and shorter trajectory lengths. However, we note that the
portion of the data used for training contains limited samples for such
events, as they occur towards the latter parts of the trajectories, which
were reserved for validation.

These observations suggest that our approach has yielded an MLIP
capable of describing the dynamics of monoclinic and tetragonal zir-
conia up to temperatures of approximately 1800 K with sufficient ac-
curacy for equilibrium MD and the GK method. At higher temperat-
ures, an accurate description of defect formation is required, the de-
velopment and validation of which is beyond the scope of the present
work. For now, with its limitations in mind, we proceed with the
SchNet MLIP to GK calculations.
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Figure 5.1.4: Phonon band
structure and density of states
in the monoclinic (top) and tet-
ragonal (bottom) phases, using
the final SchNet MLIP with
𝑀=2 and 𝑟c=5 Å, compared to a
FHI-aims reference calculation.
Results are shown for a 324-
atom supercell. Convergence
with respect to supercell size
was checked.

Other values for 𝑀 and 𝑟c are
shown in figures D.3 and D.4;
higher 𝑟c yields no significant
improvements, while 𝑀=1
degrades accuracy.
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Figure 5.1.5: Unit cell volume,
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10 ps, versus externally im-
posed temperature, compared
to a similar MLIP simula-
tion [163] and experimental
reference values [420]. Vertical
lines indicate the estimated
transition temperatures.
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Section 5.2
Green-Kubo Convergence and Workflow

Homo sapiens is about pattern recognition, he says.
Both a gift and a trap.

– William Gibson, Pattern Recognition

In section 2.5, a number of approximations required for a practical ap-
plication of the GK method were discussed. Now, we investigate the
impact of these approximations for zirconia and the SchNet MLIP, and
determine parameters that yield converged results. The primary para-
meters determining convergence are the size of the simulation cell 𝑁
and the simulation duration 𝑡0. Additional parameters enter through
the employed noise reduction scheme, the determination of the integ-
ration cutoff, and through computational efficiency considerations.

In principle, all such parameters can depend on each other; the level
of convergence reached with regards to some parameters can influence
the behaviour of others. Additionally, the convergence behaviour is
dependent on the considered temperature and phase. In order to cope
with this combinatorial problem, where an exhaustive search of all
parameters is impractical, we first develop a general understanding
of the behaviour of the system, fixing some parameters a priori. We
then investigate the sensitivity of results with respect to these initial
choices, and relax them where possible.

This section is organised accordingly: After initially describing
the parameters and choices to be considered in section 5.2.1, we per-
form a number of overview experiments in section 5.2.2 to establish
general trends. Then, in section 5.2.3, we consider noise reduction,
investigating the impact of different parameters and choices. Next,
computational parameters are investigated in section 5.2.4. Finally, in
section 5.2.5 we study the convergence with respect to simulation size
and duration. The final choices of parameters are summarised in sec-
tion 5.2.6.

5.2.1 Workflow and Parameters

We recall the Green-Kubo relation from equation (2.5.8), and now re-
cast it in the concrete form that is used in the present implementation,
which is based on Knoop et al. [144]. For a simulation cell1 of size

1 The origin of the supercells used is dis-
cussed in appendix D.6; experimental
lattice parameters are used, as opposed
to determining them using the MLIP.

𝑁 , we simulate 𝑛 trajectories, indexed by 𝑠, with starting conditions
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sampled from an 𝑁𝑉𝑇 thermalisation trajectory, for a duration 𝑡0. At
every 𝑛hf-th timestep, we compute the instantaneous heat flux2 J𝑠(𝜏), 2 As discussed previously, we use Jint in

place of the full J that includes a convect-
ive term. The impact of this choice is dis-
cussed in appendix D.5.

subtracting a non-diffusive gauge term.3

3 The gauge term slightly differs from the
one used by Knoop et al.For the present
simulation durations and system sizes,
we find no significant differences. De-
tails are discussed in appendix D.4.

For the resulting set of time-series J𝑠(𝜏), we first subtract the time
average ⟨J𝑠⟩, and then compute the set of HFACFs

C𝑠(𝜏) =
1

𝑡0 − 𝜏

∫ 𝑡0−𝜏

0
d𝜏′ J𝑠(𝜏 + 𝜏′) ⊗ J𝑠(𝜏′) (5.2.1)

for each trajectory, which is subsequently averaged to yield C(𝜏). The
integral of C(𝜏) yields the cumulative thermal conductivity

κ(𝜏) ≔
∫ 𝜏

0
d𝜏′ C(𝜏′) , (5.2.2)

which is subject to a lowpass filter, parametrised by a filter frequency
𝜔filter. From this filtered κ(𝜏), the smoothed HFACF is obtained via fi-
nite differences to determine a cutoff time 𝑡c, yielding the final thermal
conductivity

κ = κ(𝑡c) . (5.2.3)

In this work, we consider the isotropic thermal conductivity4 4 In principle, convergence can be con-
sidered separately for the different com-
ponents. However, no reference results
are available for individual components,
so this was not pursued.

𝜅 = tr(κ)/3 =

∫ 𝑡c

0
d𝜏 tr(C(𝜏))/3 =

∫ 𝑡c

0
d𝜏𝐶(𝜏) = 𝜅(𝑡c) , (5.2.4)

The cutoff time is then taken to be the the first zero crossing of the
HFACF, 𝐶(𝑡c) = 0.

Main convergence parameters 𝑁 and 𝑡0
are represented as (𝑁 , 𝑡0) in this section.

To summarise, we must consider the following parameters:

• (𝑁 , 𝑡0), characterising size and duration of simulations,

• 𝑛, the number of independent trajectories,

• 𝜔filter, the filter width,

• 𝑛hf, the spacing of heat flux computations.

We additionally briefly consider the relative importance and imple-
mentation of the two components of the noise reduction approach.

5.2.2 Exploration

We begin by investigating the dependence of 𝜅(𝜏) on 𝑁 and 𝑡0, making
the preliminary choices of 𝑛=11, 𝑛hf=1, and 𝜔filter=1 THz. Considered
choices for 𝑁 and 𝑡0, also shown in figure 5.2.5, are

• ‘production’ setting (1500, 1 ns), and its variant with reduced 𝑡0,

• ‘unconverged’ setting (96, 0.1 ns), and its variant with increased 𝑡0,

• ‘light’ setting (768, 0.5 ns) chosen as balance between convergence
and computational cost,

• ‘tight’ setting (4116, 2 ns).
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Figure 5.2.1: 𝜅(𝜏) for mono-
clinic zirconia at 300 K for dif-
ferent 𝑁 and 𝑡0. Opaque
lines indicate 𝜅(𝜏) with ap-
plied noise reduction, translu-
cent ones without.

This set of choices allows us to separate the convergence with respect
to 𝑁 and 𝑡0, and investigate the suitability of the final settings for the
remainder of this work.
At 300 K, figure 5.2.1, we find that lower 𝑁 and 𝑡0 yield correspond-
ingly lower estimates for 𝜅. At larger 𝑡0, noise removal has less impact,
as overall noise is reduced.

Both observations are consistent with expectations: Larger simula-
tion cells can capture long-wavelength phonons and reduce unphys-
ical boundary scattering. Longer simulation times allow spurious cor-
relations to average out, and ensure that all relevant transport pro-
cesses are captured. The same pattern holds at 1400 K, figure 5.2.2,
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Figure 5.2.2: 𝜅(𝜏) for tetragonal
zirconia at 1400 K for different 𝑁
and 𝑡0. Opaque lines indicate
𝜅(𝜏) with applied noise reduc-
tion, translucent ones without.

with significantly reduced overall noise. At this elevated temperature,
the PES is less harmonic, and average phonon lifetimes are reduced,
and consequently, 𝜅(𝜏) converges faster with integration time. This
also yields faster convergence with respect to 𝑁 and 𝑡0. The employed
noise reduction approach is effective for both ‘unconverged’ and ‘con-
verged’ settings, as well as temperatures and phases.

So far, we have considered 𝜅(𝜏) averaged over eleven trajector-
ies. Let us now broadly investigate the impact of this averaging. We
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Figure 5.2.3: 𝜅(𝜏) for mono-
clinic zirconia at 300 K, com-
paring ensemble average and
single trajectories. Opaque lines
indicate 𝜅(𝜏) with applied noise
reduction, translucent ones
without.

consider (1500, 1 ns) in figure 5.2.3. The averaged 𝜅(𝜏) exhibits signi-
ficantly reduced noise compared to individual trajectories, both with
and without explicit noise reduction. The standard error of the en-
semble average exceeds the level of residual noise. This observation
extends across temperatures and phases (not shown).

5.2.3 Noise Reduction

In section 5.2.2, we observed that, after sufficient integration times, and
for sufficiently converged choices of 𝑡0, averaged 𝜅(𝜏) exhibits little re-
sidual noise. However, noise plays a significant role in the automated
determination of the integration cutoff, which is based on the HFACF
𝐶(𝜏), rather than 𝜅(𝜏) directly.

Noise reduction must therefore be considered. We follow the ap-
proach of Knoop et al. [144]. It consists of (a) the removal of a gauge
term5 from J, and (b) filtering 𝜅(𝜏) with a lowpass filter. The impact 5 See appendix D.4.

of both components is shown in figure 5.2.4. Without noise reduction,
high-frequency fluctuations dominate the HFACF𝐶(𝜏) and prevent an
automatic determination of the integration cutoff time 𝑡c. Removing
a gauge term, reduces, but does not fully remove such noise. In con-
trast, the filtering approach is able to reduce most noise even without
the removal of the gauge term.

However, the removal of the gauge term becomes relevant for the
‘unconverged’ setting, shown in figure D.9. In order to treat all choices
of 𝑁 and 𝑡0 on an equal footing, we therefore employ both mechan-
isms jointly. At higher temperature, see figure D.10, overall noise is
reduced, but similar observations can be made.

Having established the necessity of noise removal, we now study
the impact of 𝜔filter. Knoop et al. propose to automatically determ-
ine 𝜔filter based on the lowest significant frequencies of the VDOS.
However, this implies that 𝜔filter depends on the particular trajectory
under consideration, and can vary across temperature. In this work,
we intend to compare results across temperatures and trajectories, and



chapter 5.2: green-kubo convergence and workflow 113

0

1

2

3

4

5

6

7

8

9

κ
in

W
/m

K

Filter × Gauge × Filter × GaugeX FilterX Gauge × FilterX GaugeX

0 5 10 15 20 25 30 35 40
Time in ps

H
FA

C
F
(a
rb
.u

ni
ts
)

Figure 5.2.4: 𝜅(𝜏) (top) and𝐶(𝜏)
(bottom) for monoclinic zirconia
at 300 K for ‘production’ para-
meter choices (1500, 1 ns), com-
paring different components of
the noise reduction approach.
The checkmark ✓ indicates that
the component is used, while ×
indicates that it is disabled. For
filtering, 𝜔filter=1 THz was used.
The vertical lines in the bottom
plot indicate the cutoff time 𝑡c.
See figures D.9 and D.10 for
other settings and temperatures.

therefore require a robust and consistent choice. We therefore choose a
fixed 𝜔filter=1 THz, which approximately corresponds to the first peak
in figure 5.1.3, and study its overall impact on𝜅(𝜏) and𝐶(𝜏). The result
can be seen in figures D.11 to D.14.

No strong dependence of the final thermal conductivity on the filter
frequency is observed, and 𝜔filter=1 THz is found to be a robust choice
across temperatures, phases, and levels of convergence.

5.2.4 Spacing and Number of Trajectories

Since the computation of the heat flux incurs additional computational
cost, and since the processes relevant for heat transport occur on longer
timescales than single simulation timesteps, the heat flux can be com-
puted at a larger spacing 𝑛hf>1 for efficiency.

Figures D.15 and D.16 show the dependence of 𝜅(𝜏), and the value
for 𝜅 determined by the first zero crossing of the HFACF, on this para-
meter. Across temperatures, spacings up to 𝑛hf=3 yield identical res-
ults. We choose 𝑛hf=2 to ensure consistency.

To some extent, the number of independent trajectories, 𝑛, is con-
sidered in the reported standard error. Nevertheless, an insufficient
number of trajectories could lead to strong statistical fluctuations in
reported results, which should be avoided. In figures D.17 and D.18,
the dependence of 𝜅 on 𝑛 is briefly considered; the chosen number of
trajectories, 𝑛=11, is found to be more than sufficient.
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5.2.5 Size and Time

Having determined noise reduction and computational settings, we
can now finally investigate convergence with respect to 𝑁 and 𝑡0.
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Figure 5.2.5: 𝜅 for monoclinic
zirconia at 300 K for different
choices of 𝑁 and 𝑡0. Error bars
indicate the standard error
across trajectories. 𝑁 is shown
as 𝑁1/3, which is proportional
to the length scale of the simu-
lation cell. For each choice of
𝑁 , 𝑡0 from 0.1 ns to 2.0 ns are
shown with a horizontal offset.
‘Production’, ‘light’, ‘uncon-
verged’ and ‘tight’ choices are
indicated; for the ‘production’
setting, the standard error is
also shown as a shaded band.

See figures D.19 and D.20
for other temperatures and
phases.

Figure 5.2.5 shows convergence with respect to simulation duration 𝑡

and simulation cell size 𝑁 at 300 K, figures D.19 and D.20 results for
other temperatures. The chosen ‘production’ settings, (1500, 1 ns), are
found to contain the results for higher 𝑁 and 𝑡0 within the associ-
ated standard error, with the exception of 1400 K in the monoclinic
phase. In that case, unsystematic convergence behaviour at 𝑁>324 is
observed, which may be due to the emerging instability of the mono-
clinic phase at that temperature. Nevertheless, differences between
the chosen settings and 𝜅 at higher 𝑁 and 𝑡0 do not exceed 10 %.

We conclude that (1500, 1 ns) is sufficient for the computation of
𝜅 across the temperatures and phases relevant for the present work.
Additionally, the ‘light’ settings (768, 0.5 ns) are found to provide an
acceptable estimate of the converged 𝜅 at reduced computational cost.

5.2.6 Summary

For 𝑁 and 𝑡0, the ‘production’ settings (1500, 1 ns) are used for most
results reported in section 5.3. In the case of computationally expens-
ive heat flux variations, ‘light’ settings (768, 0.5 ns) are used instead.
Additional choices are: 𝜔filter=1 THz for filtering, 𝑛hf=2 as spacing for
heat flux computation, and the usage of Jint in place of J.
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Section 5.3
Results for Zirconia

Having trained a GLP for zirconia, and having established a set of
GK settings, we are now finally in a position to consider the thermal
conductivity in zirconia across temperatures. First, however, we must
verify heat flux formulation derived in section 4.2.

Consequently, this section is split into two parts. First, heat flux
formulations are compared. Then, finally, the thermal conductivity is
computed across temperatures and phases, and compared with other
approaches.

5.3.1 Heat Flux

Figures 5.3.1 and 5.3.2 compares the linear-scaling ‘unfolded’ heat flux
Junfolded with the quadratically-scaling baseline Jmic. Additionally, the
purely local heat flux Jlocal is shown, which neglects all interactions
beyond the neighbourhood cutoff radius 𝑟c.
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Figure 5.3.1: 𝜅(𝜏) for selec-
ted heat flux formulations for
monoclinic zirconia at 300 K,
using a SchNet GLP (𝑀= 2,
𝑟c=5 Å). The vertical line in-
dicates the difference in determ-
ined 𝜅 for the respective heat
flux formulations, based on the
first zero crossing of the associ-
ated HFACF. Results are shown
for ‘light’ convergence settings
(768, 0.5 ns), with filtering with
𝜔filter=1 THz, but no removal of
a gauge term.

The results confirm that the efficient re-formulation of the heat flux,
Junfolded, is equivalent to Jmic, and therefore the full Hardy heat flux.
The local flux Jlocal is not, underestimating the thermal conductiv-
ity by approximately 40 % due to missing interactions beyond 𝑀=1.
These observations are found to be consistent across temperatures and
phases, as seen in figure 5.3.2. A similar effect has been observed when
formulations applicable to pairwise additive potentials are used for
many-body FFs [402, 404].

In figure 5.3.3, a SchNet model with𝑀=1 was used to recompute the
heat flux for the trajectories used for figure 5.3.1. The result confirms
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Figure 5.3.2: 𝜅(𝜏) for selected
heat flux formulations for tetra-
gonal zirconia at 1400 K. See fig-
ure 5.3.1 for details.

that in the case of 𝑀=1, the local heat flux Jlocal is equivalent to Jmic

and Junfolded. Figure D.25 further shows Jedges and Jsemi-local which are
equivalent as well. We can conclude that for 𝑀=1, all derived heat
flux formulations are equivalent and can be used interchangeably; the
most efficient choice, as seen in figure 4.2.2, is Jedges.
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Figure 5.3.3: 𝜅(𝜏) for selec-
ted heat flux formulations for
monoclinic zirconia at 300 K,
using a SchNet GLP (𝑀= 1,
𝑟c=5 Å). For this figure, the𝑀=1
model was used to recompute
the heat flux for the trajectories
used for figure 5.3.1. Other set-
tings are identical to that figure.

In summary, we verified the theoretical considerations of section 4.2:
For 𝑀>1, not all heat flux formulations are equivalent. The efficient
reformulation Junfolded, however, is equivalent to the general heat flux
Jmic. In the case of 𝑀=1, all considered formulations are equivalent.

5.3.2 Thermal Conductivity

We can now finally compute the thermal conductivity at a larger scale,
investigating multiple temperatures for zirconia.1

1 As discussed in section 5.1, the SchNet
GLP used in this part of the thesis can
be used for equilibrium MD simulations
up to 1800 K, but not for an accurate de-
termination of lattice parameters across
the tetragonal to monoclinic phase trans-
ition. For this reason, and since the fo-
cus of the present work is the heat flux,
we use experimentally determined lat-
tice parameters.

Values originate from references [420,
423], as reported in reference [163].
Lattice parameters are given in ap-
pendix D.6. At 1400 K, we report res-
ults for both the tetragonal and mono-
clinic phases, as both lattice paramet-
ers are available and monoclinic simula-
tions are sufficiently stable.

The result can be seen in figure 5.3.4. GLP predictions are in good
agreement with both experimental measurements in the monoclinic
phase, and theoretical MLIP predictions in the monoclinic and tetra-
gonal phases. As this work uses similar lattice parameters and the
same exchange-correlation functional as the work by Verdi et al. [163],
the observed close agreement is to be expected. Remaining differences
between the MLIP results may be due to larger simulation cells used in
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Figure 5.3.4: Thermal con-
ductivity across temperatures
computed with a SchNet GLP
(𝑀= 2, 𝑟c=5 Å) using exper-
imentally determined lattice
parameters [420, 423], com-
pared with another MLIP [163],
size-extrapolated ab initio
GK [143], a FF [416] based
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and experimental measure-
ments [424–426].
Error bars are shown as given
in the respective publications,
the present work provides the
standard error across trajector-
ies. ‘t’ and ‘m’ indicate tetra-
gonal and monoclinic phase.

the present work, enabled by the favourable scaling of computational
cost due to the efficient heat flux implementation, and the semi-local
nature of the employed GLP. Compared to experiment, both MLIPs
are found to systematically underestimate 𝜅 by approximately 10 % to
20 %, which may be related to the intrinsic approximation of a finite-
range MLIP, or the underlying density functional approximation.

Larger differences are observed with the size-extrapolated ab initio
GK results reported by Carbogno et al. [143], which, however, were
computed for the tetragonal phase at all temperatures. Additionally,
due to the high computational cost of first-principles calculations, only
three trajectories of 60 ps each were used, which is reflected in the lar-
ger statistical error.

The FF based on the Buckingham potential (see section 2.2.3) used
by Momenzadeh et al. [416] underestimates thermal conductivity at
300 K by approximately 35 %, where MLIP results are in better agree-
ment with experimental data. At higher temperatures, FF predictions
are in line with experimental and MLIP results.

Overall, predictions of the present work are consistent with other
MLIPs, as well as experimental measurements. We therefore conclude
that, for this material, a GLP can be used to compute fully size- and
time-converged thermal conductivity across temperatures and phases,
provided the potential remains stable.
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Section 5.4
Additional Materials

Sections 5.1 to 5.3 were dedicated to validating the heat flux formula-
tions developed in section 4.2 using the SchNet MPNN and zirconia.
We can now turn our attention to a more recently developed GLP, the
equivariant transformer So3krates [43],1 and other materials, to fur- 1 Implemented using jax in mlff [427].

ther explore the applicability of GLPs to the task of computing thermal
conductivities with the GK method.

In particular, we investigate the regime of high anharmonicity and
consequently low thermal conductivity with SnSe, and the regime of
low anharmonicity and high thermal conductivity with Si. The latter
case presents a challenge for the GK method, as low anharmonicity
implies long phonon lifetimes and mean free paths, and hence large
simulation duration and simulation cell size [428, 429]. It can there-
fore serve to probe the limits of the implementation of the GK method
developed for this thesis.

Additionally, alternative approaches for obtaining training data are
explored. For SnSe (section 5.4.1), we make use of a dataset created in
a recent work by Knoop et al. [411], who performed a large-scale study
of strongly anharmonic materials with the aiGK approach. They com-
puted 𝜅 at 300 K for 24 materials with experimentally measured ther-
mal conductivities, as well as 34 additional materials where no such
measurements are available. For each material, the dataset2 contains 2 Available on the NOMAD reposit-

ory [430].the trajectories used to computed thermal conductivities, i.e., differing
numbers of 𝑁𝑉𝐸 simulations with up to 60 ps duration each, as well
as short 𝑁𝑉𝑇 trajectories at different volumes with ≈ 3000 total calcu-
lations used for thermalisation and determination of lattice constants.
We use only the latter for training and validation,3 and then perform 3 Additionally, one of the 𝑁𝑉𝐸 trajector-

ies is used for comparing VDOS.GK calculations with the resulting GLPs. For Si (section 5.4.2), training
samples are created with a stochastic phase-space sampling scheme
that does not require aiMD at all.

5.4.1 Tin Selenide

The first investigated material is tin selenide (SnSe), which features low
thermal conductivity and high anharmonicity (𝜎A=0.35 at 300 K [142]).
In addition to the work by Knoop et al., this material has been previ-
ously investigated theoretically with a force constant potential (FCP)
by Brorsson et al. [431], a MLIP using MTPs by Liu et al. [375], as well
as in a number of experiments surveyed by Wei et al. [432].
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Model training for SnSe was carried out
by Florian Knoop. All presented results
were computed by me.

Training The model was trained on aiMD 𝑁𝑉𝑇 thermalisation tra-
jectories at 300 K, performed by Knoop et al. [411]. All trajectories were
combined, yielding an overall dataset of 3489 structures at four differ-
ent volumes. From that dataset, 2400 random samples were used for
training, 600 for validation, and the remainder for testing.

The number of interaction steps 𝑀 is varied from 𝑀=1 up to 𝑀=3.
We fix the cutoff radius to 𝑟c=5 Å, the embedding dimension to 𝐹=132
and the maximal degree in the equivariant branch to 𝑙max=3. Non-local
corrections in So3krates are not used, as the GLP framework as defined
in section 4.1 does not describe non-local models, and consequently,
no heat flux is available.

The model is trained by minimising a joint loss of the potential en-
ergy and forces with loss weightings of 0.01 and 0.99 respectively, us-
ing the ADAM optimiser [198]. The training is stopped after 2500
epochs, with a batch size of 10. After each epoch, the performance
of the current model is evaluated on the validation data and the best-
performing model is saved for production. The initial learning is set to
10−3 and is reduced every 100k steps using exponential learning rate
decay with a decay factor of 0.7. No early stopping is employed. Train-
ing times on a single Nvidia A100 40 GB GPU range from 2h54min for
𝑀=1 up to 6h46min for 𝑀=3.

Testing First, errors on the test set were evaluated. They can be found
in tables D.4 to D.6. For all 𝑀, errors are lower than reported by Liu
et al. [375]. While going from 𝑀=1 to 𝑀=2 yields a large improvement
in accuracy, 𝑀=3 only yields minor improvements.

To further test the model, the VDOS and phonon band structure
are compared with results obtained with FHI-aims. The results can
be seen in figures D.26 and D.27: For 𝑀=2, 3 So3krates is in excellent
agreement with results obtained with DFT.

Thermal Conductivity Finally, we can proceed to GK calculations. Fol-
lowing the overall workflow developed for the previous sections, ap-
proximately cubic simulation cells at different sizes were constructed
from the primitive cell at 300 K4 obtained by Knoop et al., and therm- 4 Lattice constants 11.634 Å, 4.196 Å, and

4.404 Å.alised in the 𝑁𝑉𝑇 ensemble for 0.2 ns. From the resulting trajectory,
starting configurations for 11 trajectories were extracted. Finding that
(864, 2 ns) yield converged results (see figure D.28), we ran 11 MD sim-
ulations using the glp package, computing J at every step (Δ𝑡=4 fs).

Table 5.4.1 shows the result: For 𝑀=2, 3, the GLP is in excellent
agreement with the work by Brorsson et al. [431], which uses a FCP.
A larger difference is observed with the work by Liu et al. [375], who,
however, use the PBE exchange-correlation functional, as opposed to
PBEsol, which was used for the present work. The observed ther-
mal conductivity is consistent with experiments,5 as well as the size-

5 The comparatively large variance in
quoted experimental values is due, in
part, to the difficulty of obtaining pure
single crystals of SnSe. For instance,
Zhao et al. [433] reported an ultralow
thermal conductivity, but later criticism
by Wei et al. [432] states that these res-
ults are not intrinsic to pure SnSe, as
sample density does not match the ex-
pected value.

extrapolated DFT result of Knoop et al. [411]. The anisotropy of κ in
SnSe is captured as well.
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Source Method 𝜅 in W/(m K) 𝜅x 𝜅y 𝜅z

This work So3krates, 𝑀=1 0.99± 0.10 0.53± 0.03 1.31± 0.13 1.12± 0.12
" So3krates, 𝑀=2 1.13± 0.07 0.48± 0.04 1.59± 0.07 1.20± 0.07
" So3krates, 𝑀=3 1.13± 0.10 0.56± 0.05 1.56± 0.15 1.32± 0.16

Brorsson et al. [431] FCP 1.12 0.57 1.46 1.32
Liu et al. [375] MLIP 0.86± 0.13 0.57± 0.05 1.25± 0.24 0.76± 0.08
Knoop et al. [411] DFT (extrapolated) 1.40± 0.39 – – –
Review by Wei et al. [432] Experiments 0.45 to 1.9 – – –

Table 5.4.1: Thermal conductiv-
ity of SnSe at 300 K. The right-
hand side of the table shows the
components of κ.

5.4.2 Silicon

After investigating a material with low thermal conductivity, we now
discuss Si, a material with high thermal conductivity and low anhar-
monicity (𝜎A = 0.18 at 400 K). Thermal transport in Si has been studied
extensively in the past, both theoretically with first-principles meth-
ods [143, 210, 434], FFs [143, 371, 406, 429, 435] and MLIPs [376, 378],
as well as experimentally [436–442]. And overview of reported values
for 𝜅 is given in table 5.4.2.

Convergence Convergence issues for the GK method FFs and aiGK
due to low anharmonicity have been discussed previously.

He et al. [429] review prior work with FFs and perform a conver-
gence study at 300 K with the Tersoff FF, finding that at least 𝑁=64000
atoms and on the order of 𝑡0=10 ns of simulation time per trajectory
are required. Also working with the Tersoff FF, Dong et al. [435] re-
port convergence with 𝑁=1728 and 𝑡0=10 ns at 300 K. Fan et al. [371]
observe no significant size dependence at 500 K with a total simula-
tion time6 𝑇0=200 ns. Carbogno et al. [143] report convergence with 6 𝑇0 ≔ 𝑛𝑡0.

approximately 12 ns and 𝑁=1728 at 300 K and 𝑁=4096 at 1000 K.
For the SW FF, Howell [406] find that 𝑁=1728 and𝑇0≥80 ns at 500 K

and 𝑇0=60 ns at 1000 K are sufficient. Also for the SW FF, Schelling
et al. [443] determine 𝑁=1728 and 𝑇0=3 ns to 6 ns as converged.

In the case of aiGK, Carbogno et al. [143] develop an extrapolation
scheme to correct finite-size effects, using 𝑁=96 atoms and a total sim-
ulation duration of 𝑇0=0.2 ns in the aiMD trajectories. The extrapola-
tion technique is stated to be responsible for up to 50 % of thermal
conductivity at low temperatures with these settings.

For MLIPs, Qian et al. [378] use a Gaussian approximation potential
(GAP) trained with data obtained via stochastic sampling of normal
modes, and compute thermal conductivity both with a BTE approach
and the GK method. No information on convergence is given. Another
MLIP work by Li et al. [376] uses a BTE approach [444] for temperatures
below 1000 K, and the GK method at 1200 K with 𝑁=20000; simulation
duration is not given.

In summary, no clear consensus on convergence for FFs and MLIPs
can be identified, beyond requiring at least 𝑁=1728 atoms and ap-
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proximately 10 ns of simulation time per trajectory. Anticipating chal-
lenging convergence behaviour, and aiming to compare with results
by Carbogno et al. [143], we therefore choose 400 K, rather than room
temperature, as target temperature.

Training Training data for Si was generated with a stochastic phase-
space sampling scheme described in reference [445], generating inde-
pendent samples at different temperatures based on harmonic normal
modes. For training data, samples were generated at 200 K to 800 K in
steps of 200 K, stretching a 216-atom supercell of the 0 K primitive cell
with 7 different uniform strains from 0.95 to 1.25. For each of the 28
possible combinations, 64 samples were generated, yielding a total of
1792 geometries, which were computed with FHI-aims, the light basis
sets, the PBEsol [70] exchange-correlation functional, and a 2× 2× 2 𝑘-
grid. As a test set, the same procedure was repeated for 300 K to 900 K
with 5 strains from 0.9 to 1.3 and 32 samples each, generating 320 test
structures. In total, approximately 2200 first-principles calculations
were performed. A similar scheme was used by Qian et al. [378].

Training proceeded as described previously for SnSe, using 1200
structures for training, and 300 for validation. The maximum number
of epochs was set to 3000. Training on an Nvidia V100 32 GB GPU took
2h52min for 𝑀=1, 5h28min for 𝑀=2, and 8h15min for 𝑀=3.

Testing Errors on the test set were evaluated first and are given in
tables D.7 to D.9. For 𝑀=2, 3, errors are comparable to GAP as re-
ported in reference [378], where the test set is sampled at the same
temperatures as training, and only two temperatures are used.

Next, the phonon band structure, displayed in figure D.29, is com-
puted for all three models. For𝑀=2, 3, good agreement withFHI-aims
is found. Anticipating high computational cost due to convergence re-
quirements, we therefore continue with 𝑀=2.

Thermal Conductivity With the final ‘production’ 𝑀=2 model, GK cal-
culations at 400 K were performed, using the 0 K lattice obtained with
FHI-aims for simplicity.7 From an 8-atom cubic primitive cell, su- 7 The lattice constant is 5.444 Å. De-

pendence of results on lattice paramet-
ers was checked; no strong impact was
observed.

percells with 512, 1728, and 4096 were constructed and thermalised
with the Langevin thermostat for 0.4 ns, extracting 11 starting config-
urations for GK runs. For each, 𝑁𝑉𝐸 MD with 20 ns duration and a
timestep of Δ𝑡=2 fs was run, computing the heat flux every 20 fs.8 8 With these settings, using glp and an

Nvidia V100 32 GB GPU, one trajectory
at 𝑁=4096 requires approximately 200
GPU hours. The calculation of the heat
flux, responsible for half the time, can
be parallelised across timesteps for effi-
ciency. 𝑁=1728 and 𝑁=512 require 100
and 50 GPU hours respectively.

Figure 5.4.1 shows convergence behaviour in both simulation cell
size 𝑁 and simulation duration 𝑡0. For sufficiently high values of 𝑡0,
a systematic increase of 𝜅 with simulation cell size is observed, which
has not yet terminated at the largest 𝑁 investigated. With the current
implementation of the heat flux in glp, and 32 GB of GPU memory,
larger simulation cells could not be studied.

Therefore, no converged value for 𝜅 at 400 K can be reported here.
The value obtained for 𝑁=4096 and 𝑡0=20 ns, (56 ± 4)W/(m K), un-
derestimates experimental values, as shown in table 5.4.2, by 45 % and
the extrapolated aiGK result by Carbogno et al. [143] by 55 %. An-
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Figure 5.4.1: 𝜅 for Si at 400 K
for different choices of 𝑁 and
𝑡0. Error bars indicate the stand-
ard error across trajectories. 𝑁 is
shown as 𝑁1/3, which is propor-
tional to the length scale of the
simulation cell. For each choice
of 𝑁 , 𝑡0 from 1 ns to 20 ns are
shown with a horizontal offset.
Largest simulation is indicated,
the associated standard error is
also shown as a shaded band.

other MLIP using the GK method, reported by Qian et al. [378], also
underestimates 𝜅, albeit by only 24 %.

References PES/Sample Method 𝜅 at 300 K 𝜅 at 400 K 𝜅 at 500 K

[436, 437, 439, 441, 442] Natural Si Experiment 148 101 75
[438, 441, 442] 28Si Experiment 153 94 74

Carbogno et al. [143] DFT (PBEsol) GK (extrapolated) – 127± 29 –
Carbogno et al. [143] DFT (LDA) GK (extrapolated) – 105± 25 –
Plata et al. [434] DFT (PBE) BTE 144 – –
Broido et al. [210] DFT BTE 156 – –

He et al. [429] Tersoff FF GK 197± 34 – –
Howell [406] SW FF GK – – 206± 8

Qian et al. [378] GAP MLIP GK 124± 22 77± 19 61± 17
Qian et al. [378] GAP MLIP BTE 137 99 77
Li et al. [376] DeepPot-SE MLIP BTE 140 100 64

This work So3krates MLIP GK (unconverged) – 56± 4 –

Table 5.4.2: Overview of repor-
ted thermal conductivity for Si.
Experimental values have been
averaged over references. Only
selected, representative, FF res-
ults are shown. Error bars for
reference [143] have been estim-
ated from the nearest data point.

Setting aside the issue of convergence, our model appears to underes-
timate thermal conductivity obtained via the GK method in this case.
Comparing BTE and GK approaches with the GAP MLIP, Qian et al.
observe a difference of around 22 % at 400 K, with the GK method
underestimating 𝜅 as well. As a similar sampling scheme is used in
their work, this may indicate a systematic bias due to not relying on
aiMD to generate samples. As all training and test data, as well as
the phonon band structure used for model validation, rely on the har-
monic approximation, biased representation of anharmonicity may
have gone unnoticed. A comparison of training methods, and calcu-
lation of results with BTE methods, or the extrapolation scheme by
Carbogno et al. [143] and Knoop et al. [411], is left for future work.
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Section 5.5
Summary

This chapter discussed the application of the methods developed in
chapter 4 in practice, studying thermal transport in selected materials
with two different GLPs.

Sections 5.1 to 5.3 discussed the prediction of thermal conductiv-
ity of zirconia (ZrO2) across temperatures using the SchNet [41, 391]
GLP. Using a simple training scheme based on 𝑁𝑝𝑇 aiMD simula-
tions was found to yield an MLIP that remains stable up to 1800 K,
but becomes unstable with the onset of oxygen diffusion at elevated
temperatures. Nevertheless, the potential was found to predict ther-
mal conductivities at lower temperatures in excellent agreement with
another MLIP [163], and in good agreement with experimental meas-
urements [424–426]. We also verified that the heat flux formulations
in section 4.2 are equivalent to the Hardy form, and that neglecting
semi-local interactions leads to an underestimation of 𝜅 by 40 %.

To study applicability in different settings, we then investigated
both a material with high anharmonicity, SnSe at 300 K, and a low-
anharmonicity material, Si at 400 K, with the So3krates [43] GLP. Good
agreement with other GK approaches [375, 411, 431], as well as exper-
iment [432], was achieved for SnSe, using So3krates GLPs trained on
thermalisation trajectories of a previous aiGK study [411]. For Si, us-
ing a So3krates model trained on samples generated via normal mode
sampling, size convergence could not be achieved with the present
implementation, and a likely underestimation of 𝜅 was observed.

Limitations

We identify a number of limits and challenges for GLP-driven GK sim-
ulations in practice.

First of all, as seen for Si, and to a lesser extent ZrO2 at low temper-
atures, materials with low anharmonicity, which require large simu-
lation cells and durations, pose a computational challenge for MLIPs,
where typically available implementations are not yet as scalable and
efficient as FFs. In such settings, the use of extrapolation methods
for GK, or thermal transport approaches based on the BTE, which are
suitable for harmonic systems, may be preferable.

Beyond convergence, which can in principle be tackled via an op-
timised implementation, we have also encountered a core challenge
with MLIPs: the procurement of suitable training data. In this thesis,
simple training schemes based on aiMD (ZrO2, SnSe) and stochastic



126 part 5: thermal conductivity with message-passing neural networks

sampling (Si) have been employed, which do not consider model un-
certainty and do not feature active learning. While good accuracy has
been achieved in the investigated cases, shortcomings of such methods
have become apparent: Stability of MD simulations at higher temper-
atures is compromised in ZrO2, where defect formation is not fully
modeled, and potential bias has been identified in Si.

This challenge is related to the question of model reliability. In a
practical setting, a measure of uncertainty in predictions is required
to avoid unphysical predictions, which lead to instabilities, or a biased
sampling of the PES. Such an uncertainty metric can then also be em-
ployed to select additional training data. A brief discussion of such
methods can be found in section 2.4.2.
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Chapter 6
Conclusion

Science is failing and taking notes.

–Cory Doctorow, Walkaway

In this final chapter, a summary of the thesis is presented, fol-
lowed by an outlook of extensions of the presented work. To conclude,
a general perspective on potential future developments is given.

Summary

Chapter 3 focused on the problem of representing atomistic systems
for ML. An overview of common techniques for constructing such rep-
resentations, a classification in terms of approaches to symmetry, and
a literature review of methods, was provided. Selected representa-
tions (SFs, MBTR, SOAP) were then compared empirically on bench-
mark datasets related to computational screening, controlling for other
factors such as regression method, HP optimisation, and data distri-
bution. The results showed that increased interaction order leads to
higher predictive accuracy across datasets, but also leads to higher
computational cost.

Chapter 4 discussed the application of semi-local MLIPs to the simula-
tion of thermal transport in solids. While such MLIPs are constructed
from local atomic environments, they admit interactions beyond them
through iterative message passing schemes, increasing their receptive
field while maintaining the efficiency of fully local models. A uni-
fied framework for describing such models, which we termed GLPs,
was developed and first applied to the calculation of forces and stress,
resolving previous ambiguities related to periodic boundary condi-
tions, and providing a straightforward way to implement these quant-
ities with AD.

Building on this framework, we then considered the definition of
the heat flux, the central quantity required for the calculation of ther-
mal conductivities with the GK method. Finding that previous for-
mulations of the heat flux cannot be efficiently applied to GLPs, or are
defined ambiguously for the periodic case, we re-derived the Hardy
formulation of the heat flux from the continuity equation, obtaining a
form that explicitly considers periodicity. In order to apply the result
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in practice, reformulations of the heat flux suitable to efficient imple-
mentation with AD were discussed, and a linear-scaling ‘unfolded’
form that applies to semi-local potentials was developed.

Chapter 5 verified and applied these theoretical contributions in
practice. To this end, we investigated the thermal conductivity of zir-
conia with a GLP based on the SchNet [41, 42] MPNN architecture. We
found that a simple training scheme based on 𝑁𝑝𝑇 MD simulations
yields an MLIP describing the dynamics of zirconia up to 1800 K, but
leads to instabilities once non-trivial dynamics related to oxygen dif-
fusion occurs. Nevertheless, the MLIP was found to be sufficient to
predict thermal conductivities with the GK method, with good agree-
ment with experimental measurements and other MLIP results.

Having verified our approach to the GK method, we then applied a
more recently developed equivariant GLP, So3krates [43], to the pre-
diction of the thermal conductivity of SnSe and Si. For SnSe, which is
highly anharmonic and exhibits consequently low thermal conductiv-
ity, So3krates results are in excellent agreement with other MLIPs and
extrapolated DFT results, as well as experimental values. In the case
of high thermal conductivity and low anharmonicity, Si, size conver-
gence proved to be challenging, and thermal conductivity was under-
estimated by approximately 45 %. With these experiments, the con-
struction of suitable training datasets, model stability in unseen situ-
ations, and convergence in settings of high thermal conductivity, were
identified as key challenges for future applications of GLPs to thermal
transport simulations.

Outlook

We discuss open questions and extensions of the presented work.

Doped and High-Temperature Zirconia In sections 5.1 to 5.3, pure zir-
conia in the monoclinic and tetragonal phases up to temperatures of
1800 K was investigated. While this system has served as a good bench-
mark case for the developed methods, it is of limited practical interest:
Industrial applications of zirconia typically focus on elevated temper-
atures and the tetragonal and cubic phases, stabilised through dop-
ing [203, 415].

Investigating the full space of dopants, dopant concentrations, and
temperatures of zirconia, in particular with the addition of active learn-
ing, would be a promising direction for future inquiry. In this context,
the role of oxygen diffusion and spontaneous defect formation [422],
observed in passing in section 5.1, could be investigated further. While
the typical dopant concentrations for thermal barrier coatings based
on zirconia, on the order of 9 mol%, are accessible with DFT, the gen-
eral case of lower dopant concentrations requires additional consid-
eration, discussed below. We also note that charged oxygen defects,
which emerge, for instance, from doping with yttria (Y2O3) [446–448],
may serve as a challenging test case for MLIPs, in particular those
which aim to model electrostatics and charge transfer. GLPs, which
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aim to implicitly model such behaviour, could also be benchmarked
further.

Active Learning and Reliability The instability encountered at elevated
temperatures in section 5.1, and potential biased sampling discussed
in section 5.4.2, highlight the difficulty of using MLIPs for practical
investigations: MLIPs are inherently limited by the available training
data, and hence cannot be expected to accurately model unseen be-
haviour. Yet, such behaviour is often the object of scientific inquiry,
and the training data required for good performance is therefore not
always known in advance. While this problem is intractable in prin-
ciple, practical approaches based on uncertainty quantification and
active learning exist and are a rapidly evolving field of research (see
section 2.4.2). However, closely related to the considerations in the
previous paragraph, workflows based on active learning and on-the-
fly refinement of a MLIP are typically available only for specific mod-
els, MD simulation environments, or electronic structure codes.1 This 1 For instance, the Vienna Ab initio Sim-

ulation Package (VASP) [287, 449], used
for zirconia by Verdi et al. [163].

complicates the evaluation of novel MLIPs; more modular and gen-
eric approaches are required. Their development is another promising
route for subsequent work.

Large-Scale Validation of GLPs for Thermal Transport This thesis presen-
ted results for three out of approximately 100 materials previously
investigated with the aiGK approach. While the results are encour-
aging, further investigation of more materials is needed to determine
whether this approach scales across the full dataset. Additionally, the
generalisation of MLIPs across temperatures could also be tested. Any
failure cases encountered in this large-scale validation could be used
to guide the development of more advanced approaches.

Heat Flux for Non-Local Models While the general heat flux in equa-
tion (4.2.15) is applicable to any potential decomposed into atomic en-
ergy contributions, the linear-scaling formulations ready for imple-
mentation with AD are restricted to potentials with a finite interac-
tion cutoff radius 𝑟eff

c . This represents a challenge for the recently
developed models, discussed briefly below, that include long-range
and non-local interactions. Furthermore, this restriction even excludes
simple pairwise electrostatics or dispersion corrections. In the latter
case, assuming that charges and other parameters are held fixed, the
evaluation of the heat flux can in principle proceed through Ewald
summation [409]. If charges are modeled with semi-local or local mod-
els, the approach of section 4.2 may still be applied to evaluate inner
derivatives. In the case of charge equilibration, AD-based implicit dif-
ferentiation [450] could be used to obtain inner derivatives. The devel-
opment of an efficient heat flux formulation for such cases represents
another direction for future work.

Explicit Jacobians for GLPs The ‘unfolded’ heat flux from section 4.2
aimed to avoid explicitly computing the Jacobian 𝜕𝑈𝑖/𝜕r 𝑗 , as its dir-
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ect evaluation scales2 as 𝑂(𝑁2). However, this computational scaling

2 The overhead of computing the Jac-
obian in the worst case is min (𝑁 , 3𝑁)=𝑁
as the input dimension is 3𝑁 and the
output dimension is 𝑁 ; see [39, ch. 7].
We assume linear scaling of the compu-
tation of the set of 𝑈𝑖 .

represents the fully general case, where no internal structure of the
target Jacobian is known. In GLPs its sparsity pattern is known ahead
of time, as it is determined by the effective interaction cutoff radius
𝑟eff
c ; only a linear-scaling number of entries are nonzero. Therefore,

techniques for the calculation of sparse Jacobians [39, ch. 7] are read-
ily applied to this case. AD systems commonly used for MLIPs do
not yet generally support such techniques, but a sparse Jacobian func-
tionality for jax [37] is being developed3 at the time of writing. The 3 https://github.com/mfschubert/

sparsejac.ability to compute full Jacobians, and potentially higher-order deriv-
atives [200], may be useful in the context of calculating force constants,
or for higher-order optimisation techniques. It would also provide an
alternative to the ‘unfolded’ heat flux, avoiding the modification of the
computation of the potential energy.

Dynamics Benchmarks and Infrastructure While energy or force errors
are often reported for newly proposed MLIPs, it has been shown that
such errors can only provide a rough estimate of model performance
in practice [126]; this has also been observed in section 5.1 of this thesis.
While more comprehensive benchmarks based on MD simulations are
available [126, 341], they are not yet widely adopted in the MLIP com-
munity.4 In addition to other factors, such as the expertise required to

4 A recent review by Isayev and Anstine
provides a concise summary [451]:

. . . the number of differ-
ent [MLIP] models greatly
exceeds the cases in which
they have been uniquely suc-
cessful for understanding a
chemical or materials science
challenge. Most [MLIPs]
have only been tested on a
handful of systems in simple
trial studies, and as a con-
sequence, the area of applied
[MLIP] modeling lags behind
model development.

run MD simulations, we would like to suggest that this situation is also
a consequence of a lack of appropriate tools: While interfaces between
MD packages and MLIPs exist,5 they are typically tightly coupled to a

5 Thenequip code [393], for instance, fea-
tures LAMMPS integration.

particular MLIP.
As we have argued in section 4.1, this tight integration is not al-

ways required: Any potential that follows the overall architecture of
a GLP can be treated on equal footing when computing forces and
stress, the core quantities required for MD simulations.6 The glp [410] 6 Indeed, from the perspective of MD,

any potential can be treated on an equal
footing, since only derivatives of 𝑈 are
required, which can in principle be com-
puted with AD. However, in practice,
management of implementation details
such as neighbourlists or the particular
implementation of the MIC is required,
and is conveniently handled at the ab-
straction of a GLP.

framework developed for this thesis aims to contribute to making such
application-oriented benchmarks more accessible for ML researchers.

Importance and Meaning of Semi-Local Interactions In this thesis, much
work has been devoted to implementing the heat flux for semi-local
GLPs, enabling GK calculations with this class of models. However,
the importance of such interactions in practice remains an open ques-
tion. In this work, we have observed lower errors for models with
𝑀>1, for instance in figure 5.1.2 and tables D.4, D.5, D.7 and D.8,
as well as improvements in VDOS and phonon band structures (fig-
ures D.26, D.27 and D.29) and predictions of κ (table 5.4.1), but im-
provements beyond 𝑀=2 are often marginal.

The relative importance of the larger receptive field afforded by
semi-local interactions, as opposed to the construction of interactions
with increasingly high body-order through message-passing iterations,
also remains uncertain at present. Recent work aimed at decoupling
the two mechanisms [335] indicates that the impact of body-order dom-
inates. However, at the time of writing, no such results are available for
solids. An additional complication arises through the restricted size

https://github.com/mfschubert/sparsejac
https://github.com/mfschubert/sparsejac
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of simulation cells. For instance, the simulation cells used for training
in this thesis admit two to three interaction steps before symmetrically
equivalent atoms are reached.

Beyond such empirical considerations, the question of what kinds
of physical interactions can be expressed with message-passing mech-
anisms must also be considered. The information bottleneck induced
by such mechanisms, where information about atomic environments
must be compressed into a feature vector on each atom, restricts the
types of interaction that can be modeled.7 Further restrictions are im- 7 In the ML literature, these problems

are discussed as oversquashing [452] of
long-distance messages, and oversmooth-
ing [453, 454], where node states become
indistinct as 𝑀 increases.

posed by symmetry. To further improve such models, a systematic in-
vestigation of relevant physical mechanisms and the ability of MPNNs
to capture them is required.

Perspective

We conclude this thesis by outlining general challenges and develop-
ments related to modeling periodic systems with long-range effects.

An early mathematical perspective
on the question of generalisation
to large simulation cells is given in
reference [455].

Training with Extended Systems The training of MLIPs for solids with
defects and dopants, or more general disruptions of periodicity, at
low concentrations presents a number of challenges. Even assuming
that first-principles calculations are feasible for the phenomenon of in-
terest, large simulations calls may be required, limiting the amount of
available training data. It may therefore be required, in the spirit of the
GEMS approach recently developed to model large bio-molecules [131]
with a MLIP based on SpookyNet [130], to train jointly on few large-
scale ‘top-down’ calculations to capture long-range behaviour, and
‘bottom-up’ calculations in smaller simulation cells to obtain sufficient
data for local interactions.

However, consistent training in such settings requires models with
awareness of long-range structure: Local and semi-local models are
unaware of structure changes outside of the effective interaction radius
𝑟eff
c , and can therefore not be expected to effectively learn in such a

setting. This motivates the use of global models, discussed below.
An additional consideration is the treatment of different energy

scales arising from short- and long-range contributions. Effective train-
ing, especially if models with separate components for different ranges
are employed, may require range-separated energy and force labels,
which are not generally available in electronic structure codes.

See reference [456] for a recent review of
models for extended systems.

Global Models in Solids Local and semi-local models retain a local-
ity assumption through the cutoff radius 𝑟c. Beyond this assumption,
global, or long-range, models have been proposed. Here, it is instruct-
ive to distinguish between long-range (pairwise) energy contributions,
for instance through electrostatics or pairwise approximations to van
der Waals interactions, and non-local or global models [43, 127, 130]
that can consider all atoms in the system at once.

While methods are available to evaluate the former, for instance
through Ewald summation [99, 100] or fast multipole methods [101,
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102], which are routinely employed in many FFs, the latter presents
a challenge in solids. In that case, a formally infinite number of posi-
tions must be considered. One way to approach this task may be taking
inspiration from Ewald summation and evaluate the required expres-
sions in reciprocal space. Such approaches have been used to compute
descriptors for periodic systems [168, 169, 457], and have recently been
proposed for MPNNs [458]. An alternative is to retain physical inter-
actions, where approaches for periodic systems have been developed
already. Two routes present themselves at this point: The first ap-
proach is predicting parameters for physically-known energy expres-
sions, for instance charges for electrostatics [385], in which case the
parameters do not depend on such interactions, and some of the lim-
its of locality are retained. The second approach is to allow iterative
optimisation of parameters based on long-range energy, for instance
in NNs that incorporate charge equilibration [114].

Solvers in Models Beyond the direct modeling of physical interactions,
the combination of numerical solvers, differential equations [197], and
NNs presents intriguing possibilities. In essence, it enables the use
of physical mechanisms as general interactions in NNs. For instance,
the use of physics-inspired interactions for MPNNs has recently been
proposed. In one example, interactions steps then play the rule of suc-
cessive iterations of solving a problem of coupled harmonic oscillat-
ors [459]. Such systems also emerge in recent treatments of many-body
dispersion [460, 461]; techniques could potentially be shared.

In this context, AD-based implicit differentiation [450] can also play
an important role to obtain derivatives. The ability to include differ-
ential equations and dynamics into NNs may also open the road to
a tighter coupling between quantum chemistry and machine learning
methods, allowing learned functional forms to replace hand-tuned ap-
proximations, and conversely, using well-understood physical mech-
anisms as building blocks for novel NN architectures.
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Sometimes what goes without saying is best said anyway.

– Ian M. Banks, The Hydrogen Sonata
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Appendix A
Conventions and Notation

A.1 Conventions

• Latin indices 𝑖, 𝑗, 𝑘, 𝑙, ...: Such indices are used for atoms.

• Latin indices 𝑝, 𝑞, 𝑟, 𝑠, ...: Used for electrons.

• Greek indices 𝛼, 𝛽, ...: Used for cartesian directions and to enumer-
ate lattice vectors.

A.2 Notation

General Notation

• Calligraphic symbols like 𝒜 are used for sets and other collections
of objects. Occasionally, also used to denote abstract objects, as op-
posed to fixed-size array-like representations.

• x indicates a column vector, uppercase M a matrix. In most cases,
these objects are restricted to R𝑛 and R𝑛×𝑚 respectively, but may oc-
casionally be used for more general vector- and matrix-like objects,
such as elements of and operators acting in a Hilbert space.

• M𝑖 𝑗 : Entry in row 𝑖 and column 𝑗 of matrix. Can be used to define
a matrix via its matrix elements.

• · used for bold symbols indicates a matrix-matrix, vector-matrix, or
matrix-vector product; otherwise, it is used to emphasise multiplic-
ation, for instance in multi-line expressions. We also use it to signify
a placeholder in another expression.

• × used to indicate the cross product between vectors, or multiples
in the context of supercells and 𝑘-point grids.

• [ 𝑎 | 𝑏 ]⊤ defines a column vector with entries given by 𝑎 evaluated
over 𝑏. If the 𝑎 are column vectors, the result is a matrix where the
𝑎 define the rows.

• [ 𝑎 | 𝑏 ] same as above, but the result is a row vector, or a matrix
where 𝑎 define the columns.

• 𝑂( 𝑓 (𝑛)) indicates that the computational cost 𝑐(𝑛) (or other quant-
ity) scales with 𝑛 such that ∃𝑛0, 𝑘 > 0 : 𝑐(𝑛) < 𝑘 𝑓 (𝑛) ∀𝑛 > 𝑛0. If
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𝑓 (𝑛) = 𝑛, for instance, the cost 𝑐(𝑛) is said to be asymptotically lin-
ear. [462] In the case of the number of atoms 𝑁 , the limit is taken
at constant density, and assuming homogeniety, such that the size of
atomic neighbourhoods remains approximately constant with in-
creasing 𝑁 .

• | · | denotes the absolute value for scalars, the vector norm
√

x · x
for vectors, and the cardinality for sets. Used in other contexts, it
denotes a general norm, with the particular type of norm indicated
by a subscript.

• R: The real numbers.

• Z: Integers, including negatives and zero.

• 1: Matrix with diagonal 1.

Symbols Related to Green-Kubo Method

• κ: Thermal conductivity tensor. (Scalar: 𝜅 = tr(κ)/3).

• C(𝑡): HFACF at 𝑡. (Scalar: 𝐶.)

• κ(𝜏): Integral of HFACF at upper integration limit 𝜏. (Scalar: 𝜅(𝜏).)

• 𝑡0: MD simulation duration.

• 𝑛: Number of trajectories.

• 𝑇0: Total simulation time 𝑛𝑡0.

• 𝜎A: Anharmonicity score defined in reference [417].

Atomistic Systems

• 𝑁 : Number of atoms in a given system.

• 𝒜: Abstract notation for an atom.

• ℳ = { 𝒜𝑖 | 𝑖 = 1...𝑁 }: Abstract notation for a system.

• P𝑖 : General property of atom 𝑖.

• 𝑍𝑖 : Atomic number, i.e. the charge of the given nucleus. An ex-
ample for an atomic property, and the only one explicitly featured
in this thesis.

• 𝒵: All 𝑁 charges for the atoms in a system.

• ℬ: See below; the lattice vectors for a periodic system.

• ℛ: All 𝑁 positions of the system. In a periodic system, in most cases
taken to be ℛsc.

• (ℛ,𝒵,ℬ): The main properties of a system relevant to this thesis,
as these define the input for electronic structure methods and rep-
resentations.
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• 𝒫 = { p𝑖 | 𝑖 = 1...𝑁 }: All 𝑁 momenta in a system.

• Γ𝑡 : Phase-space point (ℛ(𝑡),𝒫(𝑡)) at time 𝑡. In the context of MD,
this is taken to indicate that the system has evolved from some start-
ing time 𝑡 = 0 to the given 𝑡. Used as alternative to the 3-tuple
defined above in cases where different position/momentum con-
figurations of an otherwise identical system occur.

• r𝑖 𝑗 = r 𝑗 − r𝑖 : Atom-pair vector. Also called ‘displacement’ vector. In
this definition r𝑖 𝑗 points from 𝑖 to 𝑗. 𝑟𝑖 𝑗 is defined as |r𝑖 𝑗 |. 𝑟 is used
as a general distance if no particular atoms are specified.

• |rmic
𝑖 𝑗

| = minn∈Z3 |r 𝑗n − r𝑖 | 𝑖, 𝑗 ∈ ℛsc: Minimum image convention.
Note that rmic

𝑖 𝑗
indicates r 𝑗n − r𝑖 with n chosen such that |rmic

𝑖 𝑗
| is the

MIC distance. In this thesis, the MIC is assumed to be implemented
such that derivatives match this definition; this does not hold, for
instance, if it is implemented via fractional coordinates.

Periodic Systems

Notation for periodic systems is defined in detail in section 2.3. Selec-
ted symbols:

• ℛsc: Positions in simulation cell.

• ℛall: Positions in bulk.

• ℬ: Collection of lattice vectors b.

• 𝒜: Collection of reciprocal lattice vectors a.

• 𝑟max
c : Maximum cutoff radius for a given simulation cell that avoids

double interactions. In orthorhombic systems, half the smallest lat-
tice constant. For an implementation of the MIC that uses fractional
coodinates, neighbours beyond this distance may be miscounted.

A.3 Loss Functions and Error Metrics
An overview of error metrics can be
found in [463], which also supplies the
definitions collected here.

In this section, 𝑦𝑖 denote labels and 𝑓𝑖 the corresponding model pre-
diction. 𝑒𝑖= 𝑓𝑖 − 𝑦𝑖 are the residuals from which most loss functions are
constructed. We take 𝑛 to be the number of labels and predictions.

Absolute Error The absolute error (AE) is simply

AE = |𝑒𝑖 | ; (A.1)

it is used as the basis for aggregate losses. The mean absolute error
(MAE) is

MAE =
1
𝑛

𝑛∑︂
𝑖=1

|𝑒𝑖 | . (A.2)

The maximum absolute error (maxAE) is

maxMAE = max
𝑖=1...𝑛

|𝑒𝑖 | . (A.3)
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Root Mean Squared Error The root mean squared error (RMSE) is

RMSE =

√︄
1
𝑛

𝑛∑︂
𝑖=1

𝑒2
𝑖

(A.4)

The relative root mean squared error (rRMSE) is then

rRMSE =
RMSE√︂

1
𝑛

∑︁𝑛
𝑖=1(𝑦𝑖 − �̄�)2

=
RMSE
𝜎𝑦

=
RMSE
RMSE∗ , (A.5)

where �̄� = 1
𝑛

∑︁𝑛
𝑖=1 𝑦𝑖 is the mean of the ground truth labels and 𝜎𝑦 is

their standard deviation. The rRMSE can be seen as RMSE relative to
the RMSE of a baseline model RMSE∗ that always predicts the mean
of the labels.1 1 Note, however, that the baseline model

would more naturally predict the mean
of the training data. As long as the as-
sumption of i.i.d. data holds, either
should yield similar results.

We note that the RMSE is an upper bound to the MAE; it is more
sensitive to outliers, and a large difference between the two metrics
can be used to detect the present of predictions with large error.

Percentage Errors In some situations, it is useful to use error metrics
that can be compared across datasets, where the overall scale of la-
bels can differ significantly. One approach to this is to use percentage
errors. The absolute percentage error (APE) is defined as

APE = | 𝑦𝑖 − 𝑓𝑖

𝑓𝑖
| . (A.6)

The mean absolute percentage error (MAPE) and maximum absolute
percentage error (maxAPE) are the mean and maximum over the da-
taset, respectively. Note that the division by predictions 𝑓𝑖 implies that
percentage errors suffer from numerical issues for small values, and
diverge at 0.

Coefficient of Determination Another scale-independent metric is the
coefficient of determination. Denoting �̄� as the mean of labels,

𝑅2 =

(︄
1−

∑︁𝑛
𝑖=1(𝑦𝑖 − 𝑓𝑖)2∑︁𝑛
𝑖=1(𝑦𝑖 − �̄�)2

)︄
. (A.7)

In this thesis 𝑅2 is always implemented in this form, and usually given
in %.
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Appendix B
Review and Benchmark of Representations
of Molecules and Materials

This appendix collects additions to chapter 3. Additional information,
for instance HP search spaces and details of the employed methods,
can be found in the supplementary information to reference [44].

Here, only additions, and figures and tables required for discussion,
are included.

B.1 Extensive and Intensive Properties

A property whose magnitude is independent of the size of an object
is called intensive, whereas a property that is additive in size is called
extensive [464, 465]. For example, internal energy is an extensive prop-
erty, band gap energy an intensive one.

For finite systems such as molecules, a property 𝑝 is extensive if for
any two non-interacting systems 𝐴 and 𝐵, 𝑝(𝐴+ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵), [466]
and intensive if 𝑝(𝐴) = 𝑝(𝐴 + 𝐴). For periodic systems such as bulk
crystals, we take 𝐴 and 𝐵 to be supercells of the same unit cell. In this
minimal sense, total and atomisation energy of atomistic systems are
extensive.

However, energies are not additive for general changes in a system,
such as changes in atomic position, and addition or removal of atoms.
Once interactions are included, extensivity is no longer ensured. Nev-
ertheless, with respect to the requirements in section 3.1, ML models
for energies should be size-extensive in the (minimal) sense above. For
global representations, this can be achieved via normalisation in con-
junction with the linear kernel [466], whereas local representations as
described in section 3.1, FFs of the form in equation (2.2.10), which in-
cludes the GLPs in section 4.1, automatically satisfy this requirement.

B.2 Related Benchmarks

In addition to the studies in table 3.3.1, Poelking et al. [467] intro-
duce a benchmarking framework for representations, including auto-
matic HP optimisation, and report learning curves for a large number
of datasets and representations, including qm9 and ba10. A number
of recent studies on MLIPs have also appeared. Fu et al. [126] and
Stocker et al. [468] probe the limits of MLIPs in practice, finding that
stability of simulations is not always correlated with force error.



174 appendices

B.3 Additional Figures and Tables
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Figure B.1: Learning curve
(top, see figure 3.3.2) and
error/runtime plot (bottom,
see figure 3.3.3) for selected
representations on dataset
nmd18u.
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Figure B.2: Equivalent to fig-
ure B.1, but using MAE.
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Figure B.3: Learning curves
for selected representations on
datasets qm9 (top), ba10 (centre),
and nmd18r (bottom). Shown
are MAE and rMAE of energy
predictions on out-of-sample-
data as a function of training
set size. Boxes, whiskers, bars,
crosses show interquartile
range, total range, median,
mean, respectively. Lines are
fits to theoretical asymptotic
MAE.

See figure 3.3.2 for RMSE.
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Figure B.4: Compute times
of selected representations for
datasets qm9 (top), ba10 (centre),
and nmd18r (bottom). Shown
are MAE and rMAE of energy
predictions on out-of-sample-
data as a function of the time
needed to compute all repres-
entations in a training set. Lines
indicate Pareto frontiers; inset
numbers show training set sizes.

See figure 3.3.3 for RMSE.
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Literature Values

Error in kcal/mol

Reference MAE RMSE 𝑁 Method

[314] 1.5 2.8 5 k IDMBR
[313] 0.72 — 10 k SOAP
[42] 1.27 — 10 k SchNet
[312] 0.44 — 10 k FCHL b

[313] 0.66 — 10 k FCHL c

[469] 0.14 — 100 k SOAP d

[470] 0.35 0.94 100 k SchNet
[309] 0.58 — 118 k HDAD
[467] — 2.11 12 k SOAP
[467] — 1.43 102 k SOAP
[471] 0.15 — 110 k DimeNet++
[386] 0.15 — 110 k PaiNN
[472] 0.11 — 110 k Allegro

here 0.49 0.90 10 k SOAP

Table B.1: Selected perform-
ance estimates for qm9 from the
literature.
a original FCHL18 version [312]
b revised FCHL19 version [313]
c radial-scaling modification

Error / meV/atom

Ref. MAE RMSE rRMSE in % 𝑁 Method

[308] 5.3 — — 10 k MBTR
[308] 3.4 — — 10 k MTP
[467] 80.0a — 0.53a 12 k SOAP

here 2.8 4.6 2.60 10 k SOAP

Table B.2: Selected perform-
ance estimates for ba10 from
the literature.
a report RMSE for total energy,
as opposed to formation energy
per atom. For rRMSE, we divide
by standard deviation of total
energy over entire dataset.

Error / meV/cation

Ref. MAE RMSE 𝑁 Method

[354] 13 — 2 400 SOAP

here 14–15 24–26 1 600 all

Table B.3: Selected perform-
ance estimates for nmd18u from
the literature. Here, all rep-
resentations performed roughly
equally. At the time of printing,
no published results existed for
the relaxed nmd18r version.
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Appendix C
Heat Flux for Semi-Local Machine-Learning Potentials

C.1 Testing Forces and Stress

In order to verify the approach described in section 4.1, and to test the
glp framework, potential energy, forces, and stress for the Lennard-
Jones potential were compared with the implementation in ASE, where
derivatives are computed analytically, and all operations are performed
in double precision arithmetic.

The experiment consists of computing these properties for 100 ran-
domly perturbed simulation cells of Lennard-Jones argon as defined
in appendix C.2, starting from an 8× 8× 8 supercell of the face-centred
cubic primitive cell with lattice parameter 3.72 Å and angle 60◦.

Positions are then perturbed slightly, with perturbations drawn from
a normal distribution with 𝜎=0.01 Å; a random strain with each com-
ponent drawn from a uniform distribution over [−0.1, 0.1] is also ap-
plied. For each such structure, energy, forces, and stress are computed
using a number of different approaches

• The analytical implementation in ASE,

• glp implementation where 𝒢 is constructed using the MIC in frac-
tional coordinates,

• glp implementation where 𝒢 is constructed using the MIC using
explicit offsets,

• glp implementation using the ‘unfolded’ graph construction where
no MIC is applied,

• Finite differences using a glp calculator, where the displacements
have been chosen to minimise the deviation from ASE, see figure C.1.

For the forces, we compare approaches where gradients are computed
with respect to positions directly, and those where gradients are com-
pared with respect to edges. For the stress, equations (4.1.15) to (4.1.20)
are compared, using the graph construction required to produce the
correct stress.

Tables 4.1.1 and C.1 to C.3 show the result. For the forces, all MIC-
based implementation approaches are equivalent and in excellent agree-
ment with the analytical implementation. For the stress, all given for-
mulations are found to be equivalent as well. In single precision arith-
metic, the AD-based implementations are more accurate than finite
differences, in double precision, errors are similar.
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Comment Grads MAE in eV/Å maxAE in eV/Å

MIC (offset) edges 2.72× 10−7 2.07× 10−6

MIC (frac.) edges 2.58× 10−7 1.88× 10−6

MIC (offset) direct 2.72× 10−7 2.07× 10−6

MIC (frac.) direct 2.58× 10−7 1.89× 10−6

Unfolded direct 1.76× 10−7 1.64× 10−6

Table C.1: Comparison of
deviations in forces for differ-
ent GLP implementations of the
Lennard-Jones potential, com-
pared with the implementation
in ASE. Results are shown for
single precision arithmetic.

Comment Grads MAE in eV/Å maxAE in eV/Å

MIC (offset) edges 3.58× 10−10 2.21× 10−9

MIC (frac.) edges 3.58× 10−10 2.21× 10−9

MIC (offset) direct 3.58× 10−10 2.21× 10−9

MIC (frac.) direct 3.58× 10−10 2.21× 10−9

Unfolded direct 3.58× 10−10 2.21× 10−9

Table C.2: Comparison of
deviations in forces for differ-
ent GLP implementations of the
Lennard-Jones potential, com-
pared with the implementation
in ASE. Results are shown for
double precision arithmetic.

Equation MAE in eV maxAE in eV MAPE in % maxAPE in %

Fin. diff. 1.13× 10−6 7.49× 10−6 1.18× 10−4 8.55× 10−3

4.1.15 3.15× 10−6 1.04× 10−5 3.69× 10−4 2.72× 10−2

4.1.16 3.15× 10−6 1.04× 10−5 3.69× 10−4 2.72× 10−2

4.1.17 3.15× 10−6 1.04× 10−5 3.69× 10−4 2.72× 10−2

4.1.18 3.15× 10−6 1.04× 10−5 3.69× 10−4 2.72× 10−2

4.1.19 3.15× 10−6 1.04× 10−5 3.69× 10−4 2.72× 10−2

4.1.20 3.15× 10−6 1.04× 10−5 3.69× 10−4 2.72× 10−2

Table C.3: Error in stress
for Lennard-Jones argon, com-
paring different formulations,
as well as finite differences,
with a baseline implementa-
tion in ASE. Results are shown
for double precision arithmetic,
and for σ ·𝑉 in place of σ.
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Figure C.1: MAE of stress ob-
tained via finite differences com-
pared to the analytical imple-
mentation for different choices
of displacement, for single and
double precision. The min-
imum is marked with a dot.

C.2 Lennard-Jones Argon

The following parameters are used to model Lennard-Jones argon, fol-
lowing reference [473]: 𝜎=3.405 Å, 𝜖=0.010 42 eV, 𝑟c=10.5 Å, 𝑟o=9.0 Å,
where 𝑟o is the ‘onset’ parameter of the cutoff function 𝑓c that ensures
that forces smoothly decay to zero as the cutoff radius 𝑟c is approached.
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This cutoff function is multiplied onto 𝑈(𝑟𝑖 𝑗) and is defined as

𝑓c(𝑟) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for 𝑟 < 𝑟o
(𝑟2

c−𝑟2)2(𝑟2
c+2𝑟2−3𝑟2

o)
(𝑟2

c−𝑟2
o)3

for 𝑟o ≤ 𝑟 ≤ 𝑟c

0 for 𝑟 > 𝑟c .

(C.1)

C.3 Efficient Unfolding

In order to implement the unfolded heat flux, we must be able to effi-
ciently construct ℛunf from ℛsc and ℬ. We present a simple and vec-
torisable approach.

Consider our objective: For each position ℛsc, we must determine
(a) whether it requires replication at all, and (b) if yes, in which direc-
tions. Both can be achieved by breaking the task down into a series of
steps.

1. For each position 𝑖 ∈ ℛsc, determine whether it lies within 𝑟eff
c of

any of the six faces of the simulation cell. If this is the case, 𝑖 is
said to have a collision with that boundary. (See appendix C.4 for
a discussion of the non-orthorhombic case.).

2. From the resulting collisions, compute which replicas of each 𝑖 must
be constructed. There are 26 possibilities:

(a) If 𝑖 collides with a boundary, it is replicated in the opposite dir-
ection of that boundary (6 cases).

(b) If it collides with two, it collides with an edge and must therefore
also be replicated diagonally (12 cases).

(c) If it collides with three boundaries, it collides with a corner and
must also be replicated diagonally (8 cases).

3. Construct the replicas from this prescription.

Separating steps two and three allows the determination of the un-
folding outside the computational graph, and also enables the caching
of results: by increasing the cutoff used for unfolding by a tolerance
𝑟tol, it must only be recomputed if the distance of any position to the
boundary changes by more than 𝑟tol/2. While the unfolding is typ-
ically not a bottleneck in the systems investigated in this work, this
caching also avoids oscillations of atoms close to the cutoff boundary,
which in turn avoids cache misses in the neighbourlist construction.

C.4 Unfolding for Non-Orthorhombic Systems

The simulation cell is spanned by ℬ = (b1, b2, b3), forming a paral-
lelpepiped. Our task is to determine the sets of points within1 this 1 We assume that in a pre-processing

step, every positions has been wrapped
into the simulation cell.

parallelpepiped that lie within 𝑟eff
c of each of the six faces. There are

two straightforward approaches to solving this problem: We can pro-
ject all positions onto the surface normals of the faces, directly meas-
uring the distances to the faces, or we can transition to fractional co-
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ordinates, where distances to the faces can be obtained by inspecting
the components of the resulting coordinates. We choose the former of
these two equivalent approaches.

As a first step, we therefore obtain the surface normals a1, a2, a3,
which are simply the normalised reciprocal lattice vectors.2 The sur- 2 In particular

a1 ∝ b2 × b3

a2 ∝ b3 × b1

a3 ∝ b1 × b2 .

face normals are oriented inwards, in the direction of, but in general
not parallel to, the basis vector that shares the same index.

Then, we compute the distances 𝑑𝑖 between opposite faces by pro-
jecting the basis vectors onto the surface normals, 𝑑𝛼 = b𝛼 · a𝛼. Sim-
ilarly, for each position r𝑖 we compute the components along the sur-
face normals, yielding projected positions 𝑟′𝛼

𝑖
= r𝑖 · a𝛼. Now, colli-

sions with the two surfaces in direction 𝛼 can be detected by checking
𝑟′𝛼
𝑖

≤ 𝑟eff
c or 𝑟′𝛼

𝑖
≥ 𝑑𝛼 − 𝑟eff

c .

C.5 Size of Unfolded System

(1) (2)

(3)

Figure C.2: Sketch of collision
areas, viewing the face of a cubic
simulation cell.

We compute the number of replica positions generated during unfold-
ing, assuming a constant number density 𝜌 = 𝑁/𝑉 . For simplicity, we
consider a cubic system, but note that the result can be readily gener-
alised to other systems. In such a system 𝑉 = 𝐿3, where 𝐿 = |b𝑎 |. We
define 𝑐 ≔ 𝑟eff

c .
We first calculate the volumes of the three different collision areas:

1. Corners have volume 𝑐3.

2. Edges, excluding corners, have volume (𝐿 − 𝑐)𝑐2.

3. Remaining collision areas on the surfaces have volume (𝐿 − 𝑐)3.

The total replicated volume is therefore

𝑉rep = 8𝑐3 + 12(𝐿 − 𝑐)𝑐2 + 6(𝐿 − 𝑐)2𝑐 , (C.2)

the number of replicated atoms is 𝜌𝑉rep. It scales quadratically with
𝐿, and therefore is proportional to 𝑉2/3 or, equivalently, 𝑁2/3. This
is asymptotically dominated by 𝑁 , and therefore, the number of total
positions after unfolding is 𝑂(𝑁). Note that the additional number of
atoms scales cubically with 𝑐.

Table C.4 shows real-world numbers for the size of unfolded simu-
lation cells for materials used in this work. As 𝑁 increases, at constant
density, the relative increase in positions to be considered decreases.

Si (400 K) ZrO2 (300 K)
𝑁 𝑁unf % increase 𝑁 𝑁unf % increase

512 3736 630 768 5888 667
1728 7430 330 1500 8424 462
4096 12 996 217 4116 15 488 276
8000 20 818 160 8748 25 688 194

Table C.4: Number of atoms 𝑁

in the simulation cell, number
of atoms in the unfolded system
𝑁unf, and increase in % for Si
and ZrO2 simulation cells used
in this work, for 𝑟eff

c =10 Å.
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C.6 Heat Flux in the Literature

We provide a brief overview of selected heat flux formulations in the
literature, focusing on those that provide a closed form suitable for
implementation with MD, which excludes, for instance, the work by
Irving and Kirkwood [396].

Noll (1955)

Noll [397]3 provides a reformulation of the work by Irving and Kirk- 3 An English translation can be found in
reference [474].wood, avoiding infinite series. In the notation of this thesis,4 the heat
4 We drop the velocity density, as it is
not relevant for solids. We also re-
place Noll’s notation for expectation val-
ues with Hardy’s [398] localisation func-
tions.

current density [397, eq. 2.13-2.16] for a pair potential 𝑈 = 1/2 ∑︁
𝑖 𝑗 𝑈𝑖 𝑗

is given by

j(r) = jkinetic(r) + jtransport(r) + jinteraction(r) (C.3)
jkinetic(r) =

∑︂
𝑖

𝑇𝑖v𝑖Δ(r − r𝑖) (C.4)

jtransport(r) =
∑︂
𝑖

𝑈𝑖v𝑖Δ(r − r𝑖) (C.5)

jinteraction(r) = −
∑︂
𝑖

r𝑖 𝑗𝑈′
𝑖 𝑗

(︃
𝒓 𝑖 𝑗 ·

v𝑖 + v𝑗

2

)︃
Λ𝑖 𝑗(r) ; (C.6)

for jinteraction we have used that only terms in [397, eq. 2.16] where
z = r𝑖 𝑗 and x on the line segment between 𝑖 and 𝑗 contribute. jkinetic +
jtransport yield the second term in equation (4.2.11). jinteraction, describes
the exchange of potential (not total) energy, which gives rise to the dif-
ferent expression.

The work by Noll provides the foundation for the later work by
Hardy [398] that section 4.2 relies on. However, it only considers addit-
ive pairwise potentials, and does not discuss periodicity, and is there-
fore not sufficient for the present work.

Hardy (1963)

Hardy, in his earlier work in 1963, reference [381] set out to derive
a quantum-mechanical operator for heat flux in a periodic quantum
system. It reads [381, eq. 2.14]: ‘H.c.’ denotes the Hermitian conjugate

and square brackets a commutator [48].
1
2
∑︂
𝑖

p̂𝑖

𝑚𝑖

(︃
p̂𝑖 · p̂𝑖

2𝑚𝑖
+ �̂� 𝑖

)︃
+

∑︂
𝑖 𝑗

(r̂𝑖 − r̂ 𝑗)
1
𝑖 ℎ̄

[︃
p̂𝑖 · p̂𝑖

2𝑚𝑖
, �̂� 𝑗

]︃
+H.c. . (C.7)

The classical equivalent is shown [371] to be∑︂
𝑖

𝐸𝑖v𝑖 +
∑︂
𝑖 𝑗

r𝑖 𝑗
𝜕𝑈 𝑗

𝜕r𝑖
· v𝑖 , (C.8)

the ‘Hardy’ heat flux in equation (4.2.14), once 𝑖 and 𝑗 are exchanged.
However, equation (C.8) does not yet immediately provide inform-

ation of the range of the sum over 𝑖 and 𝑗 in the second, potential, term,
which hinders its unambiguous implementation for periodic systems:
If they run over the simulation cell, the second term in equation (C.8)
is a total time derivate and contributes no thermal conductivity due to
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the gauge principle. Introducing the MIC to the r𝑖 𝑗 prefactors provides
an ad-hoc solution, provided the range of the involved potentials ad-
mits treatment with the MIC, see section 4.2.7. The general solution,
however, is to restrict one sum to ℛsc and let one run over the bulk ℛall,
which is obtained in section 4.2.4.

Apart from this difficulty, as discussed in section 4.2.6, a direct im-
plementation of this heat flux requires explicit access to the Jacobian, in
other words, all derivatives 𝜕𝑈𝑖/𝜕r 𝑗 . Without making use of the struc-
ture of this Jacobian, evaluation scales linearly with either the number
of input or putput dimensions (see section 2.4.6), and therefore quad-
ratically with 𝑁 .

Hardy (1983)

The later work by Hardy, from 1983, aimed to provide a formulation
of the heat current density, as well as other quantities, suitable for MD.
Using similar techniques as Noll [397], two contributions to the heat
current density are given, also under the assumption of a pairwise
additive potential:5 5 As before, we discard velocity (or mo-

mentum) density.

jkinetic(r) =
∑︂
𝑖

1
2𝐸𝑖v𝑖Δ(r − r𝑖) (C.9)

jpotential(r) =
∑︂
𝑖 𝑗

1
2 r 𝑗𝑖

(︃
−
𝜕𝑈𝑖 𝑗

𝜕r𝑖
· v𝑖

)︃
Λ𝑖 𝑗(r) , (C.10)

with renaming of indices, equation (4.2.11) restricted to additive pair-
wise potentials is obtained. This work also provides the necessary
argument for integrating the heat current density in the periodic case,
used in section 4.2.4 and was therefore used as starting point for sec-
tion 4.2, which extends it to non-additive pairwise potentials.

Fan et al. (2015)

Fan et al. [371] aim to unify previous formulations of the heat flux for
many-body FFs, in particular the Tersoff and SW FFs. Arguing that all
such potentials can be written as a sum over atomic potential energy
contributions that depend only on atom-pair vectors,

𝑈𝑖 = 𝑈𝑖(
{︁

r𝑖 𝑗
|︁|︁ 𝑗 ∈ 𝒩(𝑖)

}︁
) (C.11)

they obtain∑︂
𝑖

𝐸𝑖v𝑖 +
∑︂
𝑖 𝑗

r 𝑗𝑖
𝜕𝑈𝑖

𝜕r𝑖 𝑗
· v𝑗 , (C.12)

which is equation (C.8) with indices renamed and 𝜕𝑈𝑖/𝜕r 𝑗 = 𝜕𝑈𝑖/𝜕r𝑖 𝑗 ,
which is a consequence of the definition of the functional dependence
of 𝑈𝑖 in equation (C.11).

In this form, the ambiguity in periodic systems has been resolved:
The sum over 𝑗 is restricted to neighbours of 𝑖, while the sum over 𝑖

runs over the simulation cell. However, this form is not directly suit-
able for GLPs, as equation (C.11) does not hold for 𝑀>1. In principle,
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neighbourhoods could be extended to include all interacting neigh-
bours, recovering equation (C.11), but this negates the computational
advantages of a GLP architecture, and is therefore not pursued.

Carbogno et al. (2017)

Carbogno et al. [143] provide a heat flux for DFT. In essence, their ap-
proach is based on the observation that the electronic Hamiltonian
in equation (2.1.6), which consists of one- and two-body terms in-
volving atomic and electronic degrees of freedom, together with the
Hellmann-Feynman theorem, lends an all-to-all pairwise structure to
the forces in DFT. This structure can then be used to derive a form of
Jpot composed of terms that appear in the definition of the stress, and
are therefore readily computed in DFT, without requiring an explicit
partitioning of the potential energy into atomic contributions.

In the context of GLPs, this approach cannot be used: It relies on
all-to-all pairwise interactions, which is combined with a many-body
electron density to yield a many-body PES. In the MLIPs investigated
in this thesis, the PES is approximated as local, potentially many-body,
function of positions, which does not feature all-to-all interactions.

C.7 Identities for Localisation Functions

We start by defining

x = 𝜆r𝑖 + (1−𝜆)r 𝑗 − r . (C.13)

We then compute the derivative of Δ(·) with respect to 𝜆:

d
d𝜆Δ(x) = (r𝑖 − r 𝑗) ·∇xΔ(x) (C.14)

= −(r𝑖 − r 𝑗) ·∇rΔ(𝜆r𝑖 + (1−𝜆)r 𝑗 − r) (C.15)
= r𝑖 𝑗 ·∇rΔ(𝜆r𝑖 + (1−𝜆)r 𝑗 − r) , (C.16)

where the last line can be easily verified by comparing ∇rΔ(·) and
∇xΔ(·). Then, we simply substitute this relation into

r𝑖 𝑗∇rΛ𝑖 𝑗(r) = r𝑖 𝑗∇r

(︃∫ 1

0
d𝜆Δ(𝜆r𝑖 + (1−𝜆)r 𝑗 − r)

)︃
(C.17)

=

∫ 1

0
d𝜆 d

d𝜆Δ(𝜆r𝑖 + (1−𝜆)r 𝑗 − r) (C.18)

= Δ(r𝑖 − r) −Δ(r 𝑗 − r) . (C.19)
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C.8 Time-Derivative of the Energy Density

We begin by considering the time derivative of 𝐸𝑖 .

d
d𝑡 𝐸𝑖 =

d
d𝑡𝑈𝑖 +

d
d𝑡 𝑇𝑖 (C.20)

=
∑︂
𝑗

𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗 +

𝑁∑︂
𝑖=1

𝐹𝑖 · v𝑖 (C.21)

=
∑︂
𝑗

𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗 −

𝑁∑︂
𝑖=1

𝜕𝑈

𝜕r𝑖
· v𝑖 . (C.22)

Then, we re-arrange it in a pair-wise form

𝑁∑︂
𝑖=1

(︃
d
d𝑡 𝐸𝑖

)︃
Δ(r𝑖 − r) (C.23)

=

𝑁∑︂
𝑖=1

(︄∑︂
𝑗

𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︄
Δ(r𝑖 − r) −

𝑁∑︂
𝑖=1

(︃
𝜕𝑈

𝜕r𝑖
· v𝑖

)︃
Δ(r𝑖 − r) (C.24)

=

𝑁∑︂
𝑖,𝑗=1

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃
Δ(r𝑖 − r) −

𝑁∑︂
𝑖=1

(︃
𝜕(∑︁𝑗 𝑈 𝑗)

𝜕r𝑖
· v𝑖

)︃
Δ(r𝑖 − r) (C.25)

=

𝑁∑︂
𝑖,𝑗=1

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃
Δ(r𝑖 − r) −

𝑁∑︂
𝑖,𝑗=1

(︃
𝜕𝑈 𝑗

𝜕r𝑖
· v𝑖

)︃
Δ(r𝑖 − r) (C.26)

=

𝑁∑︂
𝑖,𝑗=1

[︃(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃
Δ(r𝑖 − r) −

(︃
𝜕𝑈 𝑗

𝜕r𝑖
· v𝑖

)︃
Δ(r𝑖 − r)

]︃
(C.27)

=

𝑁∑︂
𝑖,𝑗=1

[︃(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃
Δ(r𝑖 − r) −

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃
Δ(r 𝑗 − r)

]︃
(C.28)

=

𝑁∑︂
𝑖,𝑗=1

[︃(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃ (︁
Δ(r𝑖 − r) −Δ(r 𝑗 − r)

)︁ ]︃
, (C.29)

C.9 Heat Flux in Solids
Similar arguments appear in [212, 367].

In solids, atomic positions are bounded over time. In other words,
atomic positions r𝑖(𝑡) can be split into a fixed reference position r0

𝑖
and

a time-dependent displacement from that position u𝑖(𝑡):

r𝑖(𝑡) ≔ r0
𝑖 + u𝑖(𝑡) 𝑖 ∈ ℛall (C.30)

If we choose r0
𝑖

such that it contains the information about which rep-
lica 𝑖 belongs to,6 we obtain: 6 For instance by choosing positions in

the pristine supercell, or r0
𝑖
= r(𝑡 = 0),

or r0
𝑖
= ⟨r(𝑡)⟩ over the simulation run.

r𝑖n(𝑡) = r0
𝑖n + u𝑖(𝑡) (C.31)

⇒ ṙ𝑖n(𝑡) = v𝑖(𝑡) . (C.32)

In other words, the displacements and velocities are shared between
all replicas of 𝑖. Substituting into equation (4.2.15), we obtain:



appendix c: heat flux for semi-local machine-learning potentials 187

J =
∑︂
𝑖∈ℛsc
𝑗∈ℛall

(︃
r0
𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃
+ u 𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
+

∑︂
𝑖∈ℛsc

𝐸𝑖v𝑖 (C.33)

=
∑︂
𝑖∈ℛsc
𝑗∈ℛall

(︃
r0
𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
+

∑︂
𝑖∈ℛsc

u𝑖�̇�𝑖 +
∑︂
𝑖∈ℛsc

𝐸𝑖v𝑖 (C.34)

=
∑︂
𝑖∈ℛsc
𝑗∈ℛall

(︃
r0
𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
+ d

d𝑡
∑︂
𝑖∈ℛsc

u𝑖𝐸𝑖 (C.35)

≕ Jint + Jdisp ≕ Jfull . (C.36)

Since the displacements are, by definition, bounded over time, and 𝐸𝑖

The details of rewriting the middle term
are given in appendix C.10.

is bounded by the total energy, Jdisp is the time-derivative of a bounded
quantity. By the gauge invariance principle, it does not contribute
to the thermal conductivity, and can therefore be neglected. The re-
maining term, Jint, solely determines the thermal conductivity, which
occurs through the interaction, i.e. energy exchange, between atoms,
rather than through displacement of the atoms themselves [151, 212].

C.10 Displacement Term in Heat Flux for Solids

Our task is to re-arrange:∑︂
𝑖∈ℛsc
𝑗∈ℛall

(︃
u 𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
(C.37)

into the form∑︂
𝑖∈r𝑢 𝑐

u𝑖

(︁
�̇� 𝑖 + �̇� 𝑖

)︁
. (C.38)

To achieve this, we first decompose into two terms:∑︂
𝑖∈ℛsc
𝑗∈ℛall

(︃
u𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
−

∑︂
𝑖∈ℛsc
𝑗∈ℛall

(︃
u 𝑗

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
(C.39)

The sum over 𝑗 in the first term is simply the time-derivative of 𝑈𝑖 . In
the second term, we can move the sum over 𝑖 inside the derivative,

=
∑︂
𝑖∈ℛsc

u𝑖�̇� 𝑖 −
∑︂
𝑗∈ℛall

(︃
u 𝑗

(︃
𝜕𝑈

𝜕r 𝑗
· v𝑗

)︃)︃
(C.40)

We are done with the first term. In the second term, we split the sum
over 𝑗 ∈ ℛall into 𝑗 ∈ ℛsc and its replicas 𝑗n. For a fixed 𝑗 in the unit
cell, the sum will collect contributions from all replicas that interact
with the unit cell. u 𝑗 and v𝑗 are identical across replicas, so therefore:

−
∑︂
𝑗∈ℛsc

(︄
u 𝑗

(︄∑︂
n∈Z

[︃
𝜕𝑈

𝜕r 𝑗n

]︃
· v𝑗

)︄)︄
(C.41)

=
∑︂
𝑗∈ℛsc

u 𝑗

(︁
F𝑗 · v𝑗

)︁
(C.42)

=
∑︂
𝑖∈ℛsc

u𝑖�̇� 𝑖 . (C.43)
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C.11 Unfolded Heat Flux

The remaining task is to rewrite equation (4.2.25) to take advantage of
AD. We begin by splitting the atom-pair vector r𝑖 𝑗 :

Jpot =
∑︂
𝑖∈ℛsc
𝑗∈ℛunf

(︃
r 𝑗𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
(C.44)

=
∑︂
𝑖∈ℛsc
𝑗∈ℛunf

(︃ [︁
r𝑖 − r 𝑗

]︁ (︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
(C.45)

=
∑︂
𝑖∈ℛsc
𝑗∈ℛunf

(︃
r𝑖

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
−

∑︂
𝑖∈ℛsc
𝑗∈ℛunf

(︃
r 𝑗

(︃
𝜕𝑈𝑖

𝜕r 𝑗
· v𝑗

)︃)︃
(C.46)

≕ J1 − J2 . (C.47)

To use AD efficiently, we now rewrite the resulting expressions in a
way that allows us to execute the sum over 𝑖 before taking derivatives.
For J1, we simply define

Here rconst
𝑖

denotes positions that are nu-
merically identical to r𝑖 but are treated as
constants during the calculation of de-
rivatives.

B ≔
∑︂
𝑖∈ℛsc

rconst
𝑖 𝑈𝑖 (C.48)

and obtain
Note that the dot product is taken
between r 𝑗 and v𝑗 .J1 =

∑︂
𝑗∈ℛunf

𝜕B
𝜕r 𝑗

· v𝑗 . (C.49)

We note that if rconst are replaced with fixed reference positions r0, J1
is a total time derivative. Therefore, in that case, this term does not
contribute to the thermal conductivity. We nevertheless retain this
term for equivalence with other formulations, and for non-solids.

The case of J2 is straightforward, since the sum over 𝑖 yields 𝑈 ,

J2 =
∑︂
𝑗∈ℛunf

r 𝑗

(︃
𝜕𝑈

𝜕r 𝑗
· v𝑗

)︃
. (C.50)

Both terms can be obtained efficiently with AD: For J1, we require one
JVP, or three JVPs, and for J2, a single evaluation of either is sufficient.
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Appendix D
Thermal Conductivity with Message-Passing Neural Networks

D.1 Anharmonicity Scores

To inform the selection of materials in chapter 5, the anharmonicity
score by Knoop et al. [417] has been employed. While the value for
SnSe at 300 K has been obtained from reference [142], values for Si at
400 K and ZrO2at 300 K and 1400 K were computed.

For ZrO2, anharmonicity scores were obtained based on the har-
monic sampling technique from reference [417], using FHI-aims and
30 samples in the 324-atom supercell used for phonon band structure
calculations in figure 5.1.4.

For Si, 𝜎A was computed based on an aiMD trajectory of 4 ps dur-
ation, using the same settings as the training data used for Si in sec-
tion 5.4. Force constants were obtained from the phonon band struc-
ture calculation reported in figure D.29.
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D.2 Model for Zirconia
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Figure D.1: Magnitude of lat-
tice vectors for the zirconia 𝑁𝑝𝑇

dataset. The vertical line separ-
ates the samples used for train-
ing from those used for valida-
tion.
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Vibrational Density of States
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Figure D.2: Comparison of
VDOS for MPNNs (𝑀=1) with
different cutoff radii compared
to a baseline computed with
FHI-aims. The chosen produc-
tion cutoff radius is highlighted
in red. Vertical lines indicate
peaks in the FHI-aims result.
Constant vertical offsets are
applied to distinguish curves.
Results are averaged over three
trajectories of 60ps (Δ𝑡=4 fs), in
the tetragonal phase at 300 K,
with matching initial configura-
tions. Shaded areas indicate the
minimum and maximum.

The corresponding figure
with 𝑀=2 can be found in
figure 5.1.3.
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Phonon Band Structures
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Figure D.3: Phonon band
structure and density of states
in the monoclinic (top) and
tetragonal (bottom) phases,
using alternate SchNet MLIPs
with 𝑀=1 and different cutoff
radii, compared to a FHI-aims
reference calculation. Results
are shown for a 324-atom super-
cell. Convergence with respect
to supercell size was checked.

Production settings, 𝑀=2
and 𝑟c=5.0 Å are shown in
figure 5.1.4.
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Figure D.4: Phonon band
structure and density of states
in the monoclinic (top) and
tetragonal (bottom) phases,
using alternate SchNet MLIPs
with 𝑀=2 and different cutoff
radii, compared to a FHI-aims
reference calculation. Results
are shown for a 324-atom super-
cell. Convergence with respect
to supercell size was checked.

Production settings, 𝑀=2
and 𝑟c=5.0 Å are shown in
figure 5.1.4.
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Displacements
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Figure D.5: Maximum dis-
placement across oxygen atoms
with respect to average po-
sitions over the course of a
single trajectory at different
temperatures in the monoclinic
phase, computed with the 𝑀=2
and 𝑟c=5.0 Å production SchNet
MLIP. The top plot shows the
full range of data, while the
lower displays details.
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Figure D.6: Maximum dis-
placement across oxygen atoms
with respect to average po-
sitions over the course of a
single trajectory at different
temperatures in the tetragonal
phase, computed with the 𝑀=2
and 𝑟c=5.0 Å production SchNet
MLIP.
This figure includes a trajectory
at 2000 K where an instability is
encountered: After significant
oxygen diffusion, the potential
becomes unstable and displace-
ments, along with energy and
temperature, diverge.
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Figure D.7: Maximum dis-
placement across oxygen atoms
with respect to average po-
sitions over the course of a
single trajectory at different
temperatures in the tetragonal
phase, computed with the 𝑀=2
and 𝑟c=5.0 Å production SchNet
MLIP. The top plot shows the
full range of data, while the
lower displays details.
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Figure D.8: Maximum dis-
placement across oxygen atoms
with respect to average positions
for the trajectories in the training
data, computed with FHI-aims.
The top plot shows the full range
of data, while the lower displays
details.
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D.3 Green-Kubo Convergence

Noise Removal

0

1

2

3

κ
in

W
/m

K

Filter × Gauge × Filter × GaugeX FilterX Gauge × FilterX GaugeX

0 2.5 5 7.5 10 12.5 15 17.5 20
Time in ps

H
FA

C
F
(a
rb
.u

ni
ts
)

Figure D.9: 𝜅(𝜏) (top) and 𝐶(𝜏)
(bottom) for monoclinic zir-
conia at 300 K for ‘unconverged’
parameter choices (96, 0.1 ns),
comparing different compon-
ents of the noise reduction
approach. The vertical lines
in the bottom plot indicate the
cutoff time.

Figure for ‘production’ set-
tings in figure 5.2.4.
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Figure D.10: 𝜅(𝜏) (top) and𝐶(𝜏)
(bottom) for monoclinic zirconia
at 1400 K for ‘production’ para-
meter choices (1500, 1 ns), com-
paring different components of
the noise reduction approach.
The vertical lines in the bottom
plot indicate the cutoff time.
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Filter Frequency
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Figure D.11: 𝜅(𝜏) and 𝜅 as
determined from the HFACF
for different choies of 𝜔filter for
monoclinic zirconia at 300 K
with ‘production’ settings
(1500, 1 ns). Shaded areas
indicate standard error over
trajectories, lines the mean.
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Figure D.12: 𝜅(𝜏) and 𝜅 as
determined from the HFACF
for different choies of 𝜔filter for
tetragonal zirconia at 1400 K
with ‘production’ settings
(1500, 1 ns). Shaded areas
indicate standard error over
trajectories, lines the mean.
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Figure D.13: 𝜅(𝜏) and 𝜅 as
determined from the HFACF
for different choies of 𝜔filter
for monoclinic zirconia at 300 K
with ‘light’ settings (768, 0.5 ns).
Shaded areas indicate standard
error over trajectories, lines the
mean.
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Figure D.14: 𝜅(𝜏) and 𝜅 as
determined from the HFACF
for different choies of 𝜔filter
for tetragonal zirconia at 1400 K
with ‘light’ settings (768, 0.5 ns).
Shaded areas indicate standard
error over trajectories, lines the
mean.
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Spacing
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Figure D.15: 𝜅(𝜏) and final 𝜅 for
different choies of 𝑛hf for mono-
clinic zirconia at 300 K with
‘light’ settings (768, 0.5 ns). The
upper edges of the labels indic-
ating 𝑛hf are aligned with hori-
zontal lines indicating the value
for 𝜅 chosen by the first dip of
the corresponding HFACF.
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Figure D.16: 𝜅(𝜏) and final 𝜅 for
different choies of 𝑛hf for mono-
clinic zirconia at 1400 K with
‘light’ settings (768, 0.5 ns). The
upper edges of the labels indic-
ating 𝑛hf are aligned with hori-
zontal lines indicating the value
for 𝜅 chosen by the first dip of
the corresponding HFACF.
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Number of Trajectories
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Figure D.17: 𝜅(𝜏) and final 𝜅
for different number of trajector-
ies 𝑛 for monoclinic zirconia at
300 K with ‘production’ settings
(1500, 1 ns). Horizontal lines in-
dicate the value for 𝜅 chosen by
the first dip of the correspond-
ing HFACF.
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Figure D.18: 𝜅(𝜏) and final 𝜅
for different number of traject-
ories 𝑛 for tetragonal zirconia
at 1400 K with ‘production’ set-
tings (1500, 1 ns). Horizontal
lines indicate the value for 𝜅

chosen by the first dip of the cor-
responding HFACF.
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Size and Time
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Figure D.19: 𝜅 for monoclinic
zirconia at 1400 K for different
choices of 𝑁 and 𝑡0. Error bars
indicate the standard error
across trajectories. 𝑁 is shown
as 𝑁1/3, which is proportional
to the length scale of the simu-
lation cell. For each choice of
𝑁 , 𝑡0 from 0.1 ns to 2.0 ns are
shown with a horizontal offset.
‘Production’, ‘light’, ‘uncon-
verged’ and ‘tight’ choices are
indicated; for the ‘production’
setting, the associated standard
error is also shown as a shaded
band.

Figure 5.2.5 shows 300 K.
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Figure D.20: 𝜅 for tetragonal
zirconia at 1400 K for different
choices of 𝑁 and 𝑡0. Error
bars indicate the standard error
across trajectories. 𝑁 is shown
as 𝑁1/3, which is proportional to
the length scale of the simula-
tion cell. For each choice of 𝑁 ,
𝑡0 from 0.1 ns to 2.0 ns are shown
with a horizontal offset. ‘Pro-
duction’, ‘light’, ‘unconverged’
and ‘tight’ choices are indicated;
for the ‘production’ setting, the
associated standard error is also
shown as a shaded band.

The outliers at low 𝑡0 for 𝑁=4116 in figure D.20 are due to the HFACF
narrowly avoiding a zero crossing that emerges at higher 𝑡0. It high-
lights that results for singular choices of 𝑁 and 𝑡0 must be carefully
investigated, as they may emerge from such an artefact. The impact of
such events can be reduced by choosing 𝑡c not as the first zero crossing,
𝐶(𝑡c) = 0, but rather at a small positive number, 𝜖c, such that 𝐶(𝑡c)=𝜖c.
In this thesis, this is not done to avoid an additional parameter in the
GK method.

Alternatively, more sophicistaced methods for the determination of
𝑡c can be employed, for instance by fitting a functional form [473, 475].
𝜅 can also be determined by averaging over 𝜅(𝜏) after 𝑡c [371], or via
spectral methods [476].
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D.4 Gauge Term

As shown by Knoop et al. [144], it is advantageous to subtract a non-
diffusive ‘gauge term’ from the instantaneous heat flux J(𝑡) to reduce
noise. This term takes the form

Jgauge =
∑︂
𝑖∈ℛsc

𝛀𝑖 · v𝑖 (D.1)

with a constant 3× 3 matrix𝛀𝑖 for each atom, which is computed from
the terms preceding the velocities in Jpot in equation (4.2.15). As 𝛀𝑖 is
constant, Jgauge is a total time derivative, and by the gauge principle,
does not contribute to the final thermal conductivity. However, as seen
in section 5.2.3, removing this term from J can reduce noise.

In the original formulation, the ‘virials’1 are computed as time av- 1 We note in passing that in this defini-
tion, the terms 𝛀𝑖 do not add up to the
total stress in all cases.

erages over the trajectory,

𝛀original
𝑖

= ⟨r 𝑗𝑖 ⊗
𝜕𝑈𝑖

𝜕r 𝑗
⟩ . (D.2)

As has been discussed in section 4.2, an efficient heat flux formulation
for GLPs does not necessarily yield 𝜕𝑈𝑖/𝜕r 𝑗 at every timestep, as the
heat flux is directly computed with AD. Instead, we compute 𝛀𝑖 once
for a reference structure, and in particular the supercell for a given
temperature and phase as obtained in appendix D.6. In this formu-
lation, Jpot and Jint can be treated interchangeably, assuming that the
reference structure used for r0 is the one used for 𝛀𝑖 .

These two approaches are compared in figures D.21 and D.22. No
significant differences between both methods are observed. Indeed,
if filtering is applied (not shown), any remaining differences vanish
entirely.
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Figure D.21: 𝜅(𝜏) for dif-
ferently computed gauge terms
for monoclinic zirconia at 300 K
with ‘light’ settings (768, 0.5 ns).
No filtering is applied. Heat flux
is computed every 𝑛hf=2 simula-
tion steps.
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Figure D.22: 𝜅(𝜏) for differ-
ently computed gauge terms for
monoclinic zirconia at 1400 K
with ‘light’ settings (768, 0.5 ns).
No filtering is applied. Heat flux
is computed every 𝑛hf=2 simula-
tion steps.
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D.5 Potential and Convective Flux

In section 4.2.5, we discussed the distinction between the decomposi-
tion of the total heat flux into

J = Jpot + Jconv (D.3)

and

J = Jint + Jdisp , (D.4)

finding that J and Jint should be equivalent if atomic positions are
bounded over the course of the simulation. This is verified for zir-
conia in figure D.23; Jint and J are found to be equivalent, while Jpot
is not. Jconv is non-vanishing, but yields a significantly smaller ther-
mal conductivity on its own. At increased temperature, where atoms
become more mobile, the magnitude of Jconv and hence the difference
between J and Jpot becomes more pronounced.

We can therefore conclude that Jint can be used in place of J for
zirconia at the investigated range of temperatures and phases.
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Figure D.23: 𝜅(𝜏) for differ-
ent terms in the heat flux for
zirconia at different temperat-
ures and in different phases,
using ‘production’ settings
(1500, 1 ns). Filtering with
𝜔filter=1 THz is applied; no
gauge term is removed.
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D.6 Lattice Vectors and Supercells

As discussed in section 5.1, the employed MLIP displays limited ac-
curacy when predicting lattice constants and treating the monoclinic
to tetragonal phase transition. Since the focus of the present work is
the heat flux, and since results are compared to experimental measure-
ments, experimental lattice parameters are therefore used. The used
lattice parameters, as presented by Verdi et al. [163], based on refer-
ences [420, 423], can be found in tables D.1 and D.2.

The workflow to obtain supercells at a given temperature 𝑇 and
number of atoms 𝑁 is as follows: The starting point is always a 12-
atom unit cell. Lattice parameters are applied to this original cell,
leaving atomic positions in fractional coordinates unchanged. From
the resulting cell, simple 𝑘 × 𝑘 × 𝑘 supercells are constructed such that
𝑁 = 12𝑘3.

Temperature in K 𝑎 in Å 𝑏 in Å 𝑐 in Å 𝛽 in ◦

300 5.147 5.209 5.311 99.30
350 5.150 5.209 5.315 99.28
400 5.152 5.211 5.318 99.27
450 5.154 5.211 5.322 99.26
600 5.161 5.213 5.330 99.17
750 5.165 5.213 5.340 99.07
900 5.172 5.215 5.349 98.99
1050 5.179 5.216 5.356 98.86
1200 5.193 5.237 5.386 98.74
1400 5.196 5.219 5.388 98.69

Table D.1: Lattice parameters
for monoclinic zirconia based on
references [163, 420, 423].

Temperature in K 𝑎 in Å 𝑏 in Å

1400 5.149 5.278
1500 5.155 5.284
1650 5.165 5.295
1800 5.174 5.305

Table D.2: Lattice parameters
for tetragonal zirconia based on
references [163, 420, 423].
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D.7 Additional Results for Zirconia
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Figure D.24: 𝜅(𝜏) for all heat
flux formulations for monoclinic
zirconia at 300 K, using a SchNet
GLP (𝑀= 2, 𝑟c=5 Å). See fig-
ure 5.3.1 for details.
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Figure D.25: 𝜅(𝜏) for all heat
flux formulations for monoclinic
zirconia at 300 K, using a SchNet
GLP (𝑀= 1, 𝑟c=5 Å). See fig-
ure 5.3.3 for details.
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D.8 Measurements of Thermal Conductivities of Zirconia

A number of experimental measurements of the thermal conductivity
of ZrO2 have been undertaken. [424–426, 477] In all cases, 𝜅 is determ-
ined indirectly, based on measurements of the thermal diffusivity 𝛼,
the specific heat capacity 𝑐, and the density 𝜌, as 𝜅 = 𝛼𝜌𝑐.

The standard method for measuring
thermal diffusivity, used in refer-
ences [424, 426, 477], is the ‘laser flash
technique’, where one end of a sample
is briefly heated, and the temperature
change at the opposite end is observed.
However, the method probes a large
area of the sample, which may in-
clude imperfections that can hinder
thermal transport, prompting the
development of alternative techniques,
such as the ‘spatially resolved infrared
thermography’ method used in [425].

Hasselman et al. [477] investigate polycrystalline samples with vary-
ing MgO (magnesia) and Y2O3 (yttria) content at room temperature,
estimating results for pure samples in different phases with an ansatz
based on composite theory. For the tetragonal phase, 𝜅 = 4.82 W/mK,
and for the monoclinic phase 𝜅 = 5.2 W/mK, indicating that different
phases, at least at room temperature, display comparable thermal con-
ductivities. As this study does not use pure samples, it has not been
included in figure 5.3.4.

Raghavan et al. [424] measure pure and yttria-stabilised ZrO2 nano-
particles in the monoclinic phase from 100 ◦C to 1000 ◦C. They observe
a strong, approximately 1/𝑇, temperature dependence of 𝜅 for the pure
sample, but not for samples with significant yttria content.

Bisson et al. [425] study pure and yttria-stabilised single crystals
at room temperature, measuring 𝜅 = 8.2 W/mK for pure monoclinic
zirconia.2 The higher value for 𝜅 obtained here may be attributed to

2 An uncertainty of ‘the order of 10 %’ is
mentioned.

a different methodology for determining 𝛼, which is less sensitive to
grain boundaries. No significant anisotropy is found for 𝜅.

Finally,3 Mévrel et al. [426] determine 𝜅 for pure (monoclinic) and

3 Youngblood et al. [478] is not included
in the summary, as the work does not
consider undoped zirconia. We also ex-
clude studies of porous samples.

yttria-stabilised (tetragonal, cubic) single crystals from room temper-
ature to 1100 ◦C. An amended model4 for the temperature dependence 4 The model, based on the assump-

tion that the phonon mean free path
is bounded from below by the min-
imum neighbour distance, gives 𝜅(𝑇) =
𝐴/𝑇

[︂
2
√
𝑇1/3

√
𝑇 + 𝑇/3𝑇1

]︂
with fit paramet-

ers 𝐴 and 𝑇1.

of 𝜅 is also given.

Phase Single Pure 𝜅(𝑇)

[477] t,m × × ×
[424] m × ✓ ✓
[425] m ✓ ✓ ×
[426] m ✓ ✓ ✓

Table D.3: Experiments meas-
uring 𝜅 for pure ZrO2. Single
= single crystal samples used,
pure = undoped sample dir-
ectly measured, 𝜅(𝑇) = meas-
ured temperature dependence.

Measurement results for the thermal conductivity of ZrO2 are in-
cluded in figure 5.3.4, experimental setups are tabulated in table D.3.
At low temperatures, references [424–426] report similar values. Has-
selman et al. provide a lower estimate, which is, however, not based on
direct measurement, and therefore not included. As temperature in-
creases, Mévrel et al. measure a more rapid decrease in 𝜅 compared to
Raghavan et al., despite performing measurements on single crystals.
The reason for this behaviour is unclear, as polycrystalline samples
are expected to display reduced thermal conductivity due to phonon
scattering at grain boundaries.
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D.9 Tin Selenide

Testing

Property RMSE MAE maxAE 𝑅2 in %

Energy in meV 94.5029 73.6968 307.2220 95.8476
Forces in meV/Å 52.1557 41.3036 321.0409 97.4306

Table D.4: Test set errors for
So3krates for SnSe, with 𝑀=1.

Property RMSE MAE maxAE 𝑅2 in %

Energy in meV 28.2936 22.4426 78.1010 99.6278
Forces in meV/Å 19.7130 15.5923 148.4874 99.6329

Table D.5: Test set errors for
So3krates for SnSe, with 𝑀=2.

Property RMSE MAE maxAE 𝑅2 in %

Energy in meV 17.0437 13.4452 47.9379 99.8649
Forces in meV/Å 13.5658 10.7136 85.0041 99.8262

Table D.6: Test set errors for
So3krates for SnSe, with 𝑀=3.
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Figure D.26: Comparison of
VDOS in SnSe for So3krates
with varying values of 𝑀 com-
pared to a baseline computed
with FHI-aims. Vertical lines
indicate peaks in the FHI-aims
result. Results are shown for
one trajectory of 30ps (Δ𝑡=4 fs)
at 300 K in a supercell containing
256 atoms, with matching initial
configurations.
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Figure D.27: Comparison
of phonon band structure and
density of states in SnSe for
So3krates with varying values of
𝑀 compared to a baseline com-
puted with FHI-aims. Results
are showsn for a supercell con-
taining 256 atoms, with match-
ing lattice and positions relaxed
to the 0 K configuration.
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Green-Kubo Convergence
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Figure D.28: 𝜅 for tin selen-
ide at 300 K for different choices
of 𝑁 and 𝑡0 using a So3krates
model with 𝑀=2. Error bars in-
dicate the standard error across
trajectories. 𝑁 is shown as
𝑁1/3, which is proportional to
the length scale of the simula-
tion cell. For each choice of 𝑁 ,
𝑡0 from 0.1 ns to 4.0 ns are shown
with a horizontal offset. ‘Pro-
duction’ settings are indicated,
the associated standard error is
also shown as a shaded band.
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D.10 Silicon

Property RMSE MAE maxAE 𝑅2 in %

Energy in meV 92.4688 71.8210 295.3312 99.9784
Forces in meV/Å 45.5592 35.1807 330.7921 99.7029
Stress in kbar 0.8973 0.6349 2.5944 99.8320

Table D.7: Test set errors for
So3krates for Si, with 𝑀=1.

Property RMSE MAE maxAE 𝑅2 in %

Energy in meV 42.3110 33.1063 153.6074 99.9955
Forces in meV/Å 23.6281 18.0433 274.2255 99.9201
Stress in kbar 0.9403 0.6905 2.2113 99.8155

Table D.8: Test set errors for
So3krates for Si, with 𝑀=2.

Property RMSE MAE maxAE 𝑅2 in %

Energy in meV 34.6730 25.9488 150.2103 99.9970
Forces in meV/Å 16.7011 12.6485 142.6790 99.9601
Stress in kbar 0.9720 0.6784 2.9101 99.8029

Table D.9: Test set errors for
So3krates for Si, with 𝑀=3.
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Figure D.29: Comparison
of phonon band structure
and density of states in Si for
So3krates with varying values
of 𝑀 compared to a baseline
computed with FHI-aims. Res-
ults are showsn for a supercell
containing 216 atoms, with
matching lattice and positions
relaxed to the 0 K configuration.
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Appendix E
Software

Nothing is yours. It is to use. It is to share.
If you will not share it, you cannot use it.

– Ursula K. LeGuin, The Dispossessed

The work presented in this thesis required the development of a num-
ber of different software libraries, which are presented briefly in this
appendix. All software has been made publicly available under per-
missive open source licences.

E.1 cmlkit

cmlkit [479] is a framework developed for the benchmark presen-
ted in section 3.3. It implements a general architecture for construct-
ing ML models for atomistic problems that are composed of a repres-
entation and a regressor. Components of such models are represen-
ted as stateless objects, which can be descibes as dicts. An interface
to the hyperopt package, which implements TPE-based HP optim-
isation, was implemented, as well as interfaces to RuNNer [480] (for
SFs), quippy [481] (for SOAP), qmmlpack [482] (for MBTR), as well as
dscribe [276].

E.2 Green-Kubo Pytorch Infrastructure

As we have seen in section 5.2, studying convergence in the GK method
requires large-scale simulations, beyond the ability of FHI-vibes. In
order to enable the simulations performed in this thesis, I consequently
adapted FHI-vibes and its underlying infrastructure.

In FHI-vibes, MD simulations are logged into the .son file format,
which consists of a series of json dictionaries separated by a particu-
lar delimiter. For post-processing, this format is then converted into
xarray datasets backed by netcdf. This post-processing backend, ori-
ginally developed for aiMD, was unable to process the files produced
by MLIP MD, which generated hundreds of TiB of data. In order to
process datasets of this size, some changes were made:

• son, the implementation of the .son format, was re-written entirely
to allow for stream-based processing, rather than loading full tra-
jectories into memory. This rewrite is used by FHI-vibes.
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• I developed an alternative post-processing backend for FHI-vibes,
code-namedstepson, which relies ondask to perform parallel chunked
post-processing of son trajectories. This allows the processing of da-
tasets far exceeding the available memory. stepson is planned be
included in a future release of FHI-vibes.

Additionally, I developed extensions for schnetpack [391] to imple-
ment the heat flux formulations from section 4.2, and to enable effi-
cient MD with FHI-vibes, available at
https://github.com/sirmarcel/gknet-archive.

E.3 Green-Kubo JAX Infrastructure

In order to use So3krates models, which are implemented inmlff [427],
which in turn relies on jax [37], new infrastructure was required. I
therefore developed glp [410], which implements the heat flux formu-
lations from section 4.2, as well as the stress formulas from section 4.1,
for any potential of the GLP type, i.e., mapping a graph of atom-pair
vectors to a set of atomic potential energy contributions. To efficiently
run MD with GLP, I also wrote gkx [483], which runs 𝑁𝑉𝐸 MD en-
tirely on the GPU, or potentially other accelerator devices, and directly
emits netcdf datasets, rather than requiring .son files.

Thank you for reading. Have a nice day!

https://github.com/sirmarcel/gknet-archive
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