:')

Py Neural Partitioning Pyramids for Denoising Monte Carlo
Renderings
Martin Balint Krzysztof Wolski Karol Myszkowski

Max Planck Institute for Informatics
Saarbruecken, Germany
karol@mpi-inf.mpg.de

Max Planck Institute for Informatics
Saarbruecken, Germany
kwolski@mpi-inf.mpg.de

Max Planck Institute for Informatics
Saarbruecken, Germany
mbalint@mpi-inf.mpg.de

Hans-Peter Seidel

Max Planck Institute for Informatics

Saarbruecken, Germany
hpseidel@mpi-inf.mpg.de

Noisy Input (4spp)

ONND (~100ms)
PSNR: 26.51 dB

Ours (~30ms)

PSNR: 29.63 dB Reference

Rafal Mantiuk
University of Cambridge
Cambridge, United Kingdom
rafal. mantiuk@cl.cam.ac.uk

Noisy Reference

ONND (Optix)

Figure 1: Result of our denoiser compared to noisy input generated with 4 samples per pixel (spp), a reference image generated
using 6144 spp, and a state-of-the-art ONND method (OptiX) [Nvidia 2022b]. Our solution produces better image quality in

significantly less time. Bistro © 2023 Amazon Lumberyard

ABSTRACT

Recent advancements in hardware-accelerated raytracing made
it possible to achieve interactive framerates even for algorithms
previously considered offline, such as path tracing. Interactive path
tracing pipelines rely heavily on spatiotemporal denoising to pro-
duce a high-quality output from low-sample-count renderings. Such
denoising is typically implemented as multiscale-kernel-based fil-
ters driven by lightweight U-Nets operating on pixels, and encoders
operating on samples. In this work, we present a novel kernel ar-
chitecture in the line of low-pass pyramid filters. Our architecture
avoids the issues with the low-frequency response of previous such
filters, resolving ringing, blotchiness, and box-shaped artefacts
while improving overall detail. Instead of using classical down-
sampling and upsampling approaches, which are prone to aliasing,
we let our weight predictor networks learn to partition the input
radiance between pyramidal layers, predict kernels for denoising

This work is licensed under a Creative Commons Attribution International
4.0 License.

SIGGRAPH ’23 Conference Proceedings, August 0610, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0159-7/23/08.

https://doi.org/10.1145/3588432.3591562

each partitioned and downscaled image, and then guide the up-
sampling process when combining layers. We present failure cases
of pyramidal scale-composition in previous work and, through
Fourier analysis, show how our method resolves them. Finally, we
demonstrate state-of-the-art denoising performance.

CCS CONCEPTS

« Computing methodologies — Image processing; Ray tracing.

KEYWORDS

Monte Carlo, denoising, kernel prediction, pyramidal filtering, ra-
diance decomposition, upsampling

ACM Reference Format:

Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel,
and Rafal Mantiuk. 2023. Neural Partitioning Pyramids for Denoising Monte
Carlo Renderings. In Special Interest Group on Computer Graphics and Interac-
tive Techniques Conference Conference Proceedings (SSIGGRAPH °23 Conference
Proceedings), August 06—10, 2023, Los Angeles, CA, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3588432.3591562

1 INTRODUCTION

Path tracing, despite its high computational cost, has become the
primary algorithm used for physically-based rendering through-
out the animation and visual effects industry due to its accuracy

https://orcid.org/0000-0001-6689-4770
https://orcid.org/0000-0003-2290-0299
https://orcid.org/0000-0002-8505-4141
https://orcid.org/0000-0002-1343-8613
https://orcid.org/0000-0003-2353-0349
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3588432.3591562
https://doi.org/10.1145/3588432.3591562
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3588432.3591562&domain=pdf&date_stamp=2023-07-23

SIGGRAPH 23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel, and Rafat Mantiuk

and flexibility. Current GPUs can produce noisy low-sample-count
renderings at interactive rates thanks to hardware-accelerated ray-
tracing and reconstruct clean images using neural denoising filters,
also accelerated using linear algebra hardware. While such efficient
pipelines have enormous potential to improve creative workflows
and unlock new applications of path tracing in the real-time domain,
the quality of spatiotemporal denoisers remains a bottleneck.

Many recent works in neural denoising rely on kernel prediction;
instead of predicting an output image directly, they map the final
activations of their neural networks to local, per-pixel filtering
kernels. Then, they compute their output by applying these kernels
to the noisy input image. Kernel-predicting methods have proven
to hold some significant advantages; they are more robust, train
faster and offer improved performance [Bako et al. 2017].

Denoising benefits from larger kernels as weighing and averag-
ing more pixels reduces variance. If the variance is sufficiently low,
larger kernels can be more selective, only picking pixels that form
local structures, thereby preserving details. Unfortunately, enlarg-
ing kernels quickly becomes impractical as the computational cost
of kernel prediction and application scales quadratically with the
kernel size. Hierarchical pyramid kernels provide a natural solu-
tion; by efficiently applying small, cascaded filtering kernels, these
methods can achieve large footprints at low computational costs
[Vogels et al. 2018].

Although pyramidal kernel prediction holds immense poten-
tial, predicting parameters for such filters with neural networks is
challenging. We identify some shortcomings of scale-composition,
which limit its overall performance. We propose a novel pyrami-
dal filter that avoids these issues by introducing jointly learnable
downsampling and upsampling stages. Our downsampler learns to
partition radiance between layers of our filtering pyramid, provid-
ing each layer with inputs matching their ideal noise characteristics.
In conjunction, our upsampler learns to reconstruct edges and high-
frequency details lost during downsampling, accurately aligning
each layer for recombination. By their combined effect, each layer
of our pyramid filter learns to denoise image structures of corre-
sponding sizes, which can be recombined by simply summing up
the upsampled output of each layer. Our filter is inherently energy-
preserving and numerically stable. Furthermore, we take special
care to use robust activation functions to predict our filtering pa-
rameters.

We also present considerable improvements to previous Monte
Carlo denoising pipelines by applying prominent ideas from re-
lated fields. By adapting backpropagation through time [Graves
2012] from recurrent neural networks, we train on 64-frame-long
sequences instead of 8, simultaneously increasing the patch size to
256 pixels compared to 128 in previous works. By motion compen-
sation of our training patches, we train our filter to better utilize
temporal coherency. We adapt architectures from image restoration
[Zamir et al. 2022] and large kernel convolution [Liu et al. 2022a]
methods to scale our weight predictor network to 30 million pa-
rameters, further improving denoising performance at interactive
to offline rates.

To summarise our contributions:

o We propose a pyramidal filter with learnable partitioning and
upsampling stages. Through Fourier analysis, we explore

how our filter resolves previous shortcomings and provides
further advantages.

e We adopt training techniques previously used for recurrent
networks and image restoration networks proposing small
and large weight predictor networks to drive our method.
We demonstrate state-of-the-art performance in multiple
timing categories.

e Our implementation and dataset are available under the MIT
license on our project website.!

2 RELATED WORK

Algorithms for denoising Monte Carlo renderings have actively
been developed in recent years, with numerous solutions successful
at different performance budgets. We group methods into three
categories: real-time denoisers processing 1-4 samples within 30
milliseconds, interactive denoisers processing 4-8 samples in a per-
formance budget between 30 and 100 milliseconds, and offline de-
noisers process over 8 samples in over 100 milliseconds. We focus
on recent works relevant to our work; for a wider overview, we re-
fer the reader to excellent surveys by Huo and Yoon [2021] on deep
learning-based methods and by Zwicker et al. [2015] on classical
methods.

Non-machine-learning-driven filters [Koskela et al. 2019; Ko-
zlowski and Cheblokov 2021; Nvidia 2022a; Schied et al. 2017; Zhdan
2021] are still commonly used for high framerate real-time applica-
tions. However, optimised kernel-predicting filters [Fan et al. 2021;
Meng et al. 2020; Thomas et al. 2022] take prominence when the
budget allows for inference using a lightweight neural network.
Most notably, Thomas et al. [2022] jointly solve denoising and
supersampling using a U-Net [Ronneberger et al. 2015] inspired
multiscale filter.

Neural kernel-predicting filters dominate interactive denoising
methods, with two general approaches emerging: pyramidal fil-
ters and generalised bilateral filters [Tomasi and Manduchi 1998].
Our work focuses on pyramidal filtering, with a detailed discus-
sion of its background in Section 3. As an alternative, some recent
works generalise bilateral filters and combine them with learning
components, building effective neural edge-preserving smoothing
filters. Meng et al. [2020] use a lightweight convolutional network
to guide a bilateral grid filter. Isik et al. [2021] further generalise bi-
lateral filtering, calculating the range kernel for eight-dimensional
per-pixel affinity features. Their approach avoids the issues with
pyramid methods but is computationally more expensive due to
higher memory bandwidth requirements and less cache-friendly
memory access patterns. In addition, orthogonal extensions such as
path-based filtering [Cho et al. 2021; Lin et al. 2021], compositional
filtering [Zhang et al. 2021], and self-supervised post-correction
denoising [Back et al. 2022] have been proposed.

Recent offline filters abandon kernel prediction for directly pre-
dicting the output image and instead focus on improving the under-
lying network architecture. The proposed ideas include transformer
blocks [Lu et al. 2020; Yu et al. 2021], deformable convolution [Wei
et al. 2021], conditioned feature modulation [Fu et al. 2021; Xu et al.
2019], dual-residual connections [Lu et al. 2021] and generative-
adversarial training [Lu et al. 2021, 2020; Xu et al. 2019; Yu et al.

Uhttps://github.com/balintio/nppd

https://github.com/balintio/nppd
https://github.com/balintio/nppd

Neural Partitioning Pyramids for Denoising Monte Carlo Renderings

2021]. Zheng et al. [2021] apply ensembles of such denoisers to
mitigate the artefacts produced by each individual denoiser. These
methods offer much larger receptive fields than those of kernel-
predicting architectures. However, we argue that denoising is still
a substantially easier task when done in the parameter space of
predicted linear denoising kernels; we show that our multiscale
filter does not incur the same limitations in terms of kernel size and
scales when driven by powerful networks, outperforming direct
predicting architectures.

3 PYRAMIDAL DENOISING

Pyramid hierarchical kernels allow for an efficient, cascaded appli-
cation of small denoising kernels [Hasselgren et al. 2020; Munkberg
and Hasselgren 2020; Vogels et al. 2018] while achieving the foot-
print of large, computationally expensive kernels [Bako et al. 2017].
In this section, we describe the background of previous filter archi-
tectures and the shortcomings of their neural adaptations. These
limitations serve as the core motivation for our filter design, which
we describe in Section 4.

We use various symbols to denote radiance processed at differ-
ent pipeline stages. Supplementary, Table 1 and Figure 4 offer an
overview to ensure clarity for our readers.

3.1 Low-pass filtering and downsampling

Pyramidal filters first need to generate a decimated low-pass pyra-
mid [Burt and Adelson 1987] serving as input for per-layer de-
noising. Although the original formulation uses Gaussian filters,
learning-based methods favour box filters or average pooling. In-
troducing our notation, we can formulate this operation in a closed
form:
2l (x+1)-1 2H(y+1) -1
L=)y 2 o L (1)
u=2!x v=2ly

where Ly, denotes the radiance of pixel (u,v) averaged over sam-
ples rendered for frame ¢ (and temporally accumulated for recent
frames, Equation 10), and I_,i ; denotes the radiance of the coarse
pixel (x,y) of the I-th layer of the low-pass pyramid, where [= 0
stands for the full-resolution and [= N the coarsest layer. We use
zero-based indexing for pixel coordinates in our notation. We use a
non-recursive pyramid formulation for reasons that will become
clear in Section 4.1.

3.2 Denoising kernels
Next, pyramidal filters suppress noise in each layer of the pyramid

by applying neurally predicted kernels K,ll which are unique

oxyt’
for each pixel (x,y) and cover its neighbourhood (u,v):
il il 1
nyt = Z Ly - O-Xy(Kuvxyt)’)
uo
where I:fcy[denotes the layered denoised radiance and oyy de-

notes softmax normalisation of the kernels along (x, y). Equation
2 corresponds to a kernel-splatting operation [Gharbi et al. 2019;
Munkberg and Hasselgren 2020] as x and y index the denoised
layers. Conversely, swapping xy and uv, essentially transposing
the operation, would denote a kernel-gathering operation, which

SIGGRAPH °23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA

Laplacian Pyramid Alpha Blending
I -

Denoised Layers Level Weights
> v

Input Output

Figure 2: Scale-composition as proposed by Vogels et al.
[2018]. The denoised layers contain residual low-frequency
noise. Converting the representation to a Laplacian pyramid
by subtracting subsequent layers cancels this residual noise.
However, small mismatches between the denoised layers
cause overshoots and ringing artefacts in the Laplacian pyra-
mid. The predicted blending weights control composition to
reduce these artefacts (lower weights give more conservative
composition). Zero-Day © 2023 Mike Winkelmann

is also commonly used by previous work [Hasselgren et al. 2020;
Vogels et al. 2018].

3.3 Upsampling and composition

After applying the predicted denoising kernels separately at each
scale, pyramidal filters need to upscale the coarse layers and com-
pose an output image. Unfortunately, each layer of the denoised
low-pass pyramid contains some residual low-frequency noise that
falls below the receptive field of the small denoising kernels. Thus,
denoising filters must solve a challenging task; fusing the clean
frequency bands from each layer.

Two approaches have been proposed in previous works. First,
Delbracio et al. [2014] convert the low-pass pyramid to a Laplacian
pyramid by subtracting subsequent layers to isolate the clean fre-
quency bands (shown in brackets in Equation 3). The sum of these
bands then gives a clean, full-resolution output. We formulate this
operation recursively, where i,xNyt = Iifyyt starts with the coarsest

layer, yielding the full-resolution output as i‘?{yt’ by applying the
following equation:
i’gcyt = [i‘gcyt - U(D(i'fcyt))] + U(i‘?—ylt)’ (3)

where U and D are shorthands for the two-by-two upsampling and
downsampling operators.

Delbracio et al. [2014] proposed this formulation of scale-com-
position for a classical method, applying their ray histogram fusion
filter to all layers. Matching the response of the filters applied to
each layer is critical for Laplacian pyramids, as inconsistencies
between the layers where the filters’ response overlaps can cause

SIGGRAPH 23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel, and Rafat Mantiuk

ringing and over-blurring artefacts. Such consistency is difficult to
guarantee between neurally predicted kernels; thus, Vogels et al.
[2018], when adapting scale-composition for neural kernel predic-
tion, proposed a neurally predicted per-pixel blending weight, afcy,,
that can control composition in specific regions to reduce artefacts:

il il 1 il 1 Fl+1
nyt = nyt - axth(D(nyt)) + axth(Lx+yt)' (4)

While they show this workaround to be reasonably effective, it
illustrates a fundamental incompatibility between Laplacian pyra-
midal denoising and neural kernel prediction. Figure 2 shows the
Laplacian pyramid layers and blending weights for an example
scene.

Recently, Munkberg and Hasselgren [2020] proposed upscaling
layers to full-resolution and taking their weighted sum by neurally
predicted weights. While these weights can cancel the residual
noise without resorting to Laplacian pyramids, learning the resid-
ual noise’s characteristics still poses a challenging task for the
weight predictor network. In the following section, we present our
pyramidal filter design that prevents the creation of such residual
noise in the first place.

4 PARTITIONING PYRAMIDS

An overview of our pyramidal denoising is shown in Figure 4 as
a grey-colored inset. While its three-stage structure is similar to
existing solutions (Section 3), we propose the following innovations.

By letting our downsampler partition the input pixel radiance in
a learnable manner, our weight predictor network learns to provide
denoising kernels with radiance better suited for their receptive
field. This way, compositing becomes as simple as summing up
each layer. Our upsampler applies neurally predicted splatting ker-
nels instead of bilinear upsampling, enhancing coarse layers with
edge-preserving capabilities, which are utilised thanks to our neu-
ral partitioning stage, enhancing the reconstructed detail in noisy
areas.

In this section, we introduce our partitioning downsampler and
our splatting upsampler, explaining the unique properties of each
and how they work in tandem to improve denoising performance.

4.1 Partitioning downsampler

Previous works combine their pyramidal layers after denoising
through learnable composition [Hasselgren et al. 2020; Munkberg
and Hasselgren 2020; Vogels et al. 2018]. We aim to simplify this
weighting task by bringing it to the front of our denoising filter.
We use the per-layer weights to partition the radiance of each
pixel before downsampling and denoising. Compared to learnable
composition, our partitioning task is more straightforward as it is
independent of the following denoising kernels and is not prone to
ringing and blurring artefacts.

The softmax function is widely used as the final activation layer
of neural networks to partition probability spaces as it provides
a smooth mapping from a vector with arbitrary components to a
vector whose components fall on the interval (0, 1) and which sum
up to one [Goodfellow et al. 2016; Sutton and Barto 2018]. Similarly,
we can multiply the resulting weights with a signal to partition said
signal; Munkberg and Hasselgren [2020] used softmax normalised
weights to partition sample radiances between depth-wise layers for

yA \
L A\
" X h
\ 1
Y/ 1
I+1 % * @Kuvxqt
[| ’
u

Figure 3: We splat each coarse pixel (blue) to its four-by-
four neighbourhood of one-layer finer-resolution pixels (red)
according to predicted kernels k, unique to each coarse pixel.

denoising defocus and motion blur, albeit without improvements
beyond two layers. Nevertheless, we use a similar operation and
do not observe such limitations in our application.

First, we predict partitioning weights w,lwt, all at full-resolution,
which we then softmax normalise along pyramid layers. Then, we
partition the radiance across the layers and downsample by average
pooling the resulting partitions to produce the multiscale images
ready for denoising. We formulate our operation by adding the
highlighted part to Equation 1:

2l (x+1)-1 2t (y+1)—1

) 1] _

u=2!x v=2ly

where o7 denotes softmax normalisation along layers. The leftmost
side of Figure 6 shows the predicted partition weights for a demon-
stration scene and the resulting radiance partitions. Intuitively,
the partitions separate image features based on scale and noise
characteristics, directing smaller or less noisy features to finer lay-
ers. Denoising each feature at the finest layer with the minimum
required kernel size is beneficial as it frees up coarser layers for
larger, noisier features. We show partitions for further test images
in Supplementary, Fig. 3.

Once radiance is partitioned, we apply the learned kernels Kllwx yt

to the radiance I,fcyt in the denoising kernel stage, as described
in Section 3.2 and shown in Figure 4 (grey-colored area). Specifi-
cally, we perform a 5 X 5 kernel-splatting operation (Equation 2)
as proposed by Gharbi et al. [2019] and Munkberg and Hasselgren
[2020].

4.2 Splatting upsampler

If the coarse layers of the pyramid are naively upsampled, for ex-
ample, using bicubic interpolation, their utility is much limited —
they cannot convey information beyond the Nyquist frequency of
the given layer. Previous works [Hasselgren et al. 2020; Munkberg
and Hasselgren 2020; Vogels et al. 2018] address this problem by us-
ing learnable composition (Equation 4), as discussed in Section 3.3.
Here, we propose learnable upsampling kernels, which can bet-
ter preserve edges, are not prone to ringing and blurring, and are
convenient to predict using neural networks.

Our upsampling and compositing is performed in a coarse-to-
fine order. A finer layer is the sum of the corresponding denoised

Neural Partitioning Pyramids for Denoising Monte Carlo Renderings

layer and an upsampled coarser layer:

4
xyt = nyt’ (6)

T r Fl+1 1
Liyt=Liyt+Z4Lf;,t oxy(kbihy) for 1=3,21,0. (7)
uo

I+1
uoxy

noised layers, and L are the composed and layers. oxy denotes
softmax normalization performed. Our filter uses 5 layers, making
I = 4 our coarsest layer. We ablate this choice in Section 6.3. The
result of the operation is L°. Figure 3 shows the geometry of our
kernel application step. The prediction of the kernel Kll;;;yt will be
explained in Section 5.1.

Making the upsampling kernels learnable allows our method
to adopt edge-preserving strategies. These strategies are crucial
considering our method’s effective footprint; at the lowest resolu-
tion layer, one pixel corresponds to 16 X 16 full-resolution pixels,
and after applying the 5 X 5 denoising kernels and successive 4 X 4
upsampling kernels, our method reaches an effective footprint of
110 X 110 pixels. The edge-preserving properties of our filter let
it mitigate low-frequency noise and transport radiance over large
distances. Figure 5 and rightmost column of Figure 6 demonstrate
the edge-preserving capabilities of our upsampler.

where k ; is a 4 X 4 learned upsampling kernel, L are the de-

5 IMPLEMENTATION

Our work mainly focuses on the filtering stage, so we adapt most
of our overall pipeline from previous methods [Hasselgren et al.
2020; Isik et al. 2021]. However, we note some changes regarding
linear radiance and temporal processing. We propose two weight
predictor networks to drive our filter; first, we build a 15 million
parameter convolutional network (OURSSMALL), similar to previous
work [Isik et al. 2021; Munkberg and Hasselgren 2020], that we op-
timise to run in real-time using TensorRT 2 and XLA [Sabne 2020].
Second, we build a 30 million parameter network (OURSLARGE)
from ConvNext [Liu et al. 2022a] blocks in the Restormer [Zamir
et al. 2022] configuration, optimised for interactive to offline per-
formance. In the following section, we provide an overview of our
pipeline, with Supplementary, Sec. A including all the details of our
weight predictor networks and feature engineering.

5.1 Pipeline

Figure 4 presents major components of our denosing pipeline. Its
input is per-sample linear radiance L and a vector r including
base colour, normal in camera coordinates, and depth. We find that
additional features degrade test-time performance. First, following
Isik et al. [2021] and Munkberg and Hasselgren [2020] we use a
small fully-connected network, gy, to encode per-sample data and
then we average encodings for each pixel:

|-

exyt =

S
> go(reyse), (®)
s=1

where s denotes the sample index, and S stands for the total number
of samples per pixel. Similarly, we average the sample radiance

Zhttps://developer.nvidia.com/tensorrt

SIGGRAPH °23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA

values Ly ys¢ for each pixel in the current frame ¢:

S
1
nyt = § ; nyst-)

We compute all features at the primary ray intersection. Con-
sequently, samples visible through specular reflections and trans-
missions do not contribute to these features making their image
more difficult to denoise. Robustly handling such cases is an active,
orthogonal area of research that we touch on in Section 7.

We compute the accumulated radiance L and embeddings & over
time (refer to Figure 4). Neural temporal blending weights Ay
control such accumulation:

I_fxyt = (1= Axyt) Lyt + Axytoﬂftl_'xy,t—l, (10)
exyt = (1= Axyr)exyr + Ayt Weexy,r—1, (11)

where Y; is the warping operator, which warps and bilinearly
interpolates frame ¢ — 1 to frame t using backwards motion vectors
calculated at the centre of each pixel in frame ¢. We restrict Ay y; to
the range (0, 1) using sigmoid mapping.

Next, we predict parameters for our denoising filter using a
weight predictor network fy (refer to Figure 4). As input, we pro-
vide the radiance and embeddings from the current frame, and the
accumulated radiance and embeddings warped from the previous
frame:

I 1 —
Axyti Wyt Kuvxyt’ Kuoxyts Tuvxyta Hxyt =
fG(nyt, €xyt, OM/tI:xy,t—l» %éxy,t—l)- (12)

Then we apply our denoising filter as described in Equations 5,
2, and 7. Finally, we apply a secondary temporal loop to improve
temporal stability:

Oxyt =(1- ,nyt)i?(yt + Hxyt Z(Oﬂ/tot—l)uv : ny(Tuvxyt), (13)
uv

where fixy¢ is a secondary set of blending weights, similar to Ay,
and Tyoxy: is a 5 X 5 temporal kernel, applied similarly to K2, yt-
We adopt this mechanism from NTASD [Hasselgren et al. 2020],
as we find it is necessary to achieve good temporal stability; every
denoising filter we tested (see Section 6) produced intense flickering
without this secondary temporal loop.

5.2 Training procedure

Spatiotemporal processing. Many video super-resolution methods
rely on recurrent convolutional neural networks as their weight
predictors [Liu et al. 2022b]. Inspired by their success, we adopt one
of their key components; we use Backpropagation Through Time
(BPTT) [Graves 2012], taking staggered training iterations over
every two consecutive frames. Denoising does not offer delayed
rewards; our objective is to output the highest possible quality
frame in every iteration. Therefore, the greedy two-iteration BPTT
is well suited for training the temporal element of our denoiser.

Previous methods [Hasselgren et al. 2020; Isik et al. 2021] pro-
cess entire sequences in each training iteration. Backpropagating
through such iterations is extremely memory-consuming, limiting
these approaches to 8 frame sequences of 128 X 128 patches. In
contrast, we train our model on 64 frame sequences of 256 x 256

https://developer.nvidia.com/tensorrt

SIGGRAPH 23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel, and Rafat Mantiuk

S

)
¢
i
%

\ Sample Encoder
Geometric and Material
Sample Features

L‘(U\I

Weight Predictor
Network

>

2

Sample Radiance b

Ll

|Pa

Xyt
rtitioning Downsampler

g

il
. e xyt
| Denoising Kernels I_l

| Splatting Upsampler

— Current frame data
—= Previous frame data

@ Average @ Linear Blending @ Warping @ Sigmoid

Denoising Filter

— Radiance = Auxilary features
Neural parameters

Figure 4: Processing diagram for our denoiser. Sample radiance and geometric/material features are encoded and averaged over
each pixel. The per-pixel radiance and features for the current frame are then combined with those of the previous frame
(after motion compensation, Eqs. 10 and 11). The kernels of the per-pixel denoising filters and other parameters are predicted
by the weight predictor network (Eq. 12). To apply denoising kernels, the radiance is partitioned into a 5-layer pyramid (4.1),
then convolved with the kernels (Eq. 2), and finally the layers are combined using adaptive splatting upsampler (4.2). For better
temporal stability, the final radiance values are filtered using predicted temporal kernels (Eq. 13).

patches, exposing our model to substantially more spatiotemporal
information.

Dataset. Inspired by Hypersim [Roberts et al. 2021], we leverage
Evermotion’s Archinteriors and Archexteriors collections to build
our production-quality training dataset that exceeds the quality
and diversity of datasets used in previous works. Refer to the sup-
plementary Supplementary, Sec. B for more details on our training
dataset.

Loss function. Our loss function employs perceptual component
as proposed by Thomas et al. [2022], complemented with SMAPE
following Munkberg and Hasselgren [2020]. Both components con-
tribute also to the temporal loss that additionally involves the
warped previous frame, as we detail in the supplementary Sup-
plementary, Sec. C.

Training. We implement our pipeline in Tensorflow 2 [Abadi
et al. 2016]. We use the Adam [Kingma and Ba 2014] optimiser with
a batch size of 8. We begin training at a learning rate of 10~ and
exponentially decay the learning rate, halving it every 11 epochs.
We train on the full 256 X 256 patches included in our dataset,
augmented with flips and rotations. Training typically converges
after 50 epochs, taking 2-3 days on a single NVIDIA A40 GPU for
our small weight predictor, and 4-5 days on 4 A40s for our large
weight predictor.

6 EVALUATION

In this section, we compare our pipeline performance to state-
of-the-art techniques and run several ablations of our pyramidal
denoising.

Our test scenes include Kitchen, Dining-room, Bedroom [Bitterli
2016], Bistro [Nvidia 2017], and Zero-Day [Winkelmann 2019] (all
excluded from the training dataset). As our method and some com-
pared methods rely on temporal information, we allow a 16-frame
warm-up phase at the start of each sequence. We tonemap the
output frames based on the ACES guidelines [Hill 2022] to match

professional animations. We use the Falcor [Kallweit et al. 2022]
renderer to render our input samples and 6144 samples per pixel for
reference frames. We compute our reference frames as the median
of three uncorrelated 2048 spp estimates to suppress fireflies.

6.1 Baseline comparisons

We compare our full pipeline to state-of-the-art denoisers. We ren-
der our training dataset using Falcor. We compare against AFGSA
[Yu et al. 2021], Intel Open Image Denoise (OIDN) [Intel 2022]
version 1.4.3, and Nvidia OptiX Al-accelerated Denoiser (ONND)
[Nvidia 2022b] version 7.6, with temporal [Hasselgren et al. 2020]
and kernel-based [Bako et al. 2017] extensions enabled. OIDN and
AFGSA are high-quality offline denoisers with inference times on
the order over 500 milliseconds, while ONND is an optimised inter-
active denoiser taking roughly 100 milliseconds. We average our
per-sample albedo, normal and depth data as each competitor re-
quires per-pixel inputs. We retrain AFGSA and OIDN and use the
pre-trained, proprietary ONND included in OptiX. While version 5
of ONND was retrainable, it was based on early work by Chaitanya
et al. [2017], surpassed by more recent works [Bako et al. 2017; Xu
et al. 2019; Yu et al. 2021], and is unsupported on recent GPUs.

In our comparison, we consider commonly used image qual-
ity metrics such as per-pixel PSNR, structure-oriented SSIM and
MS-SSIM [Wang et al. 2003], perception-informed FovVideoVDP
3 [Mantiuk et al. 2021], Flip [Andersson et al. 2020], and tPSNR
[Banitalebi-Dehkordi et al. 2016]. Commonly used PSNR and SSIM
measure error per pixel or in a small sliding window. Meanwhile,
MS-SSIM and FovVideoVDP apply filter banks, capturing distor-
tions over large areas. Moreover, FovVideoVDP is a video quality
metric that captures temporal distortions, including popping and
flickering artefacts perceivable by human observers.

Table 1 presents the obtained results where the OURSLARGE
weight predictor (refer to Section 5) consistently outperforms all
competing solutions for all considered metrics. This observation

3FovVideoVDP v1.1.3, 37.84 ppd, 200 nit peak, 0.5979 nit black, non-foveated

Neural Partitioning Pyramids for Denoising Monte Carlo Renderings

holds for all numbers of input samples per pixel. OURSSMALL takes
32 milliseconds to denoise a full HD frame (1920 x 1080), which is
three times faster than ONND; OURSLARGE similar as OIDN requires
around 500 milliseconds, while AFGSA 5.5 seconds.

Figure 7 shows a visual comparison of denoising performance for
selected frames. We refer the reader to our supplementary material
for full-resolution images and videos of our animated sequences.

Table 1: Comparison of the baseline methods. Denoising
quality is measured using a number of well-established full-
reference metrics. We denote in bold the best quality score
and with a gray background the second-best score for a
given number of samples per pixel (spp). /| indicate that
higher/lower scores are better.

AFGSA OIDN OURsLARGE ONND OURSSMALL
method 8spp 32spp | 8spp 32spp | 8spp 32spp || 2spp 4spp | 2spp 4spp
PSNRT 29.33 31.58 | 29.22 30.90 | 30.99 32.41 || 2539 26.51 | 28.54 29.70
SSIMT 0.877 ~ 0.905 | 0.884 0.900 | 0.904 0.919 || 0.813 0.836 | 0.878 0.892

MS-SSIMT 0.960 0.974 | 0.963 0.973 | 0.976 0.980 || 0.920 0.940 | 0.960 0.969
FoVVDPT 7.867 8.156 | 7.878 7.986 | 8.456 8.505 || 7.153 7.554 | 7.806 8.146
FliP| 0.102 0.078 | 0.113 0.094 | 0.085 0.076 || 0.144 0.126 | 0.109 0.095
tPSNRT 27.00 29.16 | 27.10 28.60 | 29.01 30.49 || 23.87 24.80 | 26.55 27.58

Table 2: Pyramidal filter ablations. The interpretation of
columns follows Figure 5. Refer to the figure caption for
more details.

method OursSMALL | w/o Upsampler | 4 layers | 3 layers
PSNRT 29.70 29.47 29.47 29.23
SSIMT 0.892 0.890 0.891 0.888
MS-SSIMT 0.969 0.967 0.968 0.965
FoVVDP?T 8.146 8.089 8.098 8.006
FliP| 0.095 0.101 0.101 0.107
tPSNRT 27.58 27.53 27.59 27.47

Table 3: Replacements of our denoising filter. We evaluate
alternatives to our proposed denoising filter: weighted sum
[Munkberg and Hasselgren 2020], scale-composition [Vogels
et al. 2018], and affinity kernels [Isik et al. 2021]. We leave
the rest of our SMALL and LARGE pipelines, driven by OURsS-
MALL and OURSLARGE respectively, unchanged. The best and
second-best scores are marked separately for the SMALL and
LARGE weight predictors.

Ours Weighted sum Scale-comp. Affinity
method SMALL LARGE | SMALL LARGE | SMALL LARGE | SMALL LARGE
PSNRT 29.70 29.98 | 2933 2937 | 29.40 29.63 | 29.72 29.03
SSIMT 0.892 0.895 | 0.889 0.891 | 0.888 0.894 | 0.889 0.883

MS-SSIMT 0.969 0.971 | 0.967 0.968 | 0.967 0.969 | 0.967 0.966
FoVVDPT 8.146 8.213 | 8.075 8.092 8.099 8130 | 8.092 8.095
FliP| 0.095 0.094 | 0.103 0.105 0.103 0.105 0.096 0.098
tPSNRT 27.58 28.00 | 2742 27.68 2747 2798 | 27.65 2698

SIGGRAPH °23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA

6.2 Choice of denoising filter

We compare our denoising filter against several filters proposed in
previous works. We swap our denoising filter in our pipeline with
implementations of other filters, keeping the rest of our pipeline
the same for a fair comparison. We test each filter 4 spp inputs
using the OursSMALL weight predictor and the OURSLARGE weight
predictor to analyse each filter’s scalability. Table 3 shows several
metrics averaged for our test scenes.

Although metrics mostly show small differences, our denoising
filter scales well with respect to weight predictor size. As only
our filter shows the best overall performance with both weight
predictors, it is a reliable choice for general Monte Carlo noise
filtering.

6.3 Pyramidal filter ablations
Our Small w/o Upsampler 4 layers 3 layers

Reference Noisy

L\

A A - 3 o B
2 D \ \ _1. \ B N
. . .
[~ [N N o
20) K))

Figure 5: Pyramidal filter ablations. The OursSmMALL weight
predictor is considered and the role of: (1) learnable upsam-
pling (Section 4.2) that is replaced by a simple bilinear up-
sampling (the column “w/o Upsampler”) and (2) the number
of filter layers as shown in Figure 6 (3rd and 4th columns)
are considered. Our complete filter uses 5 layers. The last
two columns show the reference image and the noisy input.
Bistro © 2023 Amazon Lumberyard, Kitchen © 2023 Jay-Artist,
Bedroom © 2023 SlykDrako

To analyse each component’s role, we perform ablation studies.
We use the OurRsSMALL weight predictor network with 4 spp inputs.
We test our denoising filter with 3 and 4 layers instead of 5, we
substitute our learnable upsampling stage with bilinear upsampling.
Table 2 shows several metrics averaged for our test scenes, and
Figure 5 shows side-by-side qualitative comparisons.

Our learnable partitioning downsampler is a crucial component
of our denoising filter. The learnable upsampling stage, while hav-
ing a small impact on metrics, improves the denoising of low fre-
quencies and enhances sharp details. Dropping to 3 or 4 layers also
has little effect on metrics but limits the low-frequency denoising
capabilities of our filter. The computational cost savings in these
cases are negligible; therefore, we favour our full scheme.

SIGGRAPH 23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA

Important visual consequences of dropping learnable upsam-
pling can be observed in the 1st and 2nd row of Figure 5, where
bilinear upsampling leads to ringing and overshoot artifacts. In
general, reconstructed edges are more blurry in the second column.
Reducing the number of layers might lead to excessive washing out
of noisy low-contrast patterns and residual low-frequency noise as
can be seen in the 3rd and 4th row. The 5th layer is rarely utilised
but does occasionally help resolve artefacts as reflected by metrics.

7 LIMITATIONS AND FUTURE WORK

Our filter is affected by over-blurring and synthetic structural arte-
facts common to neural networks. When our filter cannot recon-
struct a clean, detailed image of the available samples, it inevitably
has to tradeoff between these artefacts. While perceptual loss func-
tions can somewhat control the learned strategy, our network oc-
casionally produces dissatisfactory results.

Relying on primary ray intersections diminishes our denoiser’s
performance in scenes with specular objects. However, path-based
denoising [Cho et al. 2021; Lin et al. 2021] and temporally reliable
motion vectors [Thomas et al. 2022] are orthogonal research areas
with good potential to resolve these issues.

Finally, we do not consider motion blur, depth of field, or other
distributed effects—however, the depth-wise layer decomposition
proposed by Munkberg and Hasselgren [2020] is orthogonal to our
work and could potentially alleviate this limitation.

8 CONCLUSION

In this work, we proposed a novel pyramidal filter that, combined
with a lightweight network, achieves close to real-time performance
while offering denoising quality comparable to previous offline so-
lutions. Combining the same pyramidal filter with a large network,
we obtain substantial improvements over previous work. Visually
comparing our denoised frames reveals better reproduction of high-
frequency details and a significant reduction of low-frequency noise
and artefacts.

Some of the improvements can be attributed to our training
strategies that adapt backpropagation through time, handling longer
frame sequences and larger patch sizes. Nevertheless, embedding
previously considered state-of-the-art filters into our training pipe-
lines and network architectures still diminishes performance.

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, lan Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangging
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng. 2016. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. (2016).

Pontus Andersson, Jim Nilsson, Tomas Akenine-Méller, Magnus Oskarsson, Kalle
Astrom, and Mark D. Fairchild. 2020. FLIP: A Difference Evaluator for Alternating
Images. Proc. ACM Comput. Graph. Interact. Tech. 3, 2, Article 15 (aug 2020), 23 pages.
https://doi.org/10.1145/3406183

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2022. Self-
Supervised Post-Correction for Monte Carlo Denoising. In ACM SIGGRAPH 2022
Conference Proceedings (Vancouver, BC, Canada) (SSIGGRAPH ’22). Association for
Computing Machinery, New York, NY, USA, Article 18, 8 pages. https://doi.org/10.
1145/3528233.3530730

Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NovaK, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-Predicting Convo-
lutional Networks for Denoising Monte Carlo Renderings. ACM Trans. Graph. 36,

Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel, and Rafat Mantiuk

4, Article 97 (jul 2017), 14 pages. https://doi.org/10.1145/3072959.3073708

Amin Banitalebi-Dehkordi, Maryam Azimi, Mahsa T. Pourazad, and Panos Nasiopoulos.
2016. Visual Saliency Aided High Dynamic Range (HDR) Video Quality Metrics. In
2016 IEEE International Conference on Communications Workshops (ICC). 486-491.
https://doi.org/10.1109/iccw.2016.7503834

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

Peter J Burt and Edward H Adelson. 1987. The Laplacian Pyramid as a Compact Image
Code. In Readings in computer vision. Elsevier, 671-679. https://doi.org/10.1016/
b978-0-08-051581-6.50065-9

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Recon-
struction of Monte Carlo Image Sequences Using a Recurrent Denoising Au-
toencoder. ACM Trans. Graph. 36, 4, Article 98 (jul 2017), 12 pages. https:
//doi.org/10.1145/3072959.3073601

In-Young Cho, Yuchi Huo, and Sung-Eui Yoon. 2021. Weakly-Supervised Contrastive
Learning in Path Manifold for Monte Carlo Image Reconstruction. ACM Trans.
Graph. 40, 4, Article 38 (jul 2021), 14 pages. https://doi.org/10.1145/3450626.3459876

Mauricio Delbracio, Pablo Musé, Antoni Buades, Julien Chauvier, Nicholas Phelps,
and Jean-Michel Morel. 2014. Boosting Monte Carlo Rendering by Ray Histogram
Fusion. ACM Trans. Graph. 33, 1, Article 8 (feb 2014), 15 pages. https://doi.org/10.
1145/2532708

Hangming Fan, Rui Wang, Yuchi Huo, and Hujun Bao. 2021. Real-Time Monte Carlo
Denoising with Weight Sharing Kernel Prediction Network. Computer Graphics
Forum 40, 4 (2021), 15-27. https://doi.org/10.1111/cgf.14338

Siyuan Fu, Yifan Lu, Xiao Hua Zhang, and Ning Xie. 2021. Monte Carlo Denoising
with a Sparse Auxiliary Feature Encoder. In SIGGRAPH Asia 2021 Posters (Tokyo,
Japan) (SA "21 Posters). Association for Computing Machinery, New York, NY, USA,
Article 10, 2 pages. https://doi.org/10.1145/3476124.3488631

Michaél Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019.
Sample-Based Monte Carlo Denoising Using a Kernel-Splatting Network. ACM
Trans. Graph. 38, 4, Article 125 (jul 2019), 12 pages. https://doi.org/10.1145/3306346.
3322954

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT press.

Alex Graves. 2012. Long Short-Term Memory. Springer Berlin Heidelberg, Berlin,
Heidelberg, 37-45. https://doi.org/10.1007/978-3-642-24797-2_4

J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and A. Lefohn. 2020. Neural Temporal
Adaptive Sampling and Denoising. Computer Graphics Forum 39, 2 (2020), 147-155.
https://doi.org/10.1111/cgf.13919

Stephen Hill. 2022. ACES Tone Mapping Operator.
https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl.

Yuchi Huo and Sung-eui Yoon. 2021. A Survey on Deep Learning-Based Monte
Carlo Denoising. Computational Visual Media 7, 2 (01 Jun 2021), 169-185. https:
//doi.org/10.1007/s41095-021-0209-9

Mustafa Isik, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaél
Gharbi. 2021. Interactive Monte Carlo Denoising Using Affinity of Neural Features.
ACM Trans. Graph. 40, 4, Article 37 (jul 2021), 13 pages. https://doi.org/10.1145/
3450626.3459793

Intel. 2022. Intel Open Image Denoise. https://www.openimagedenoise.org/.

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tom’a$ Davidovi¢, Kai-Hwa Yao, Theresa
Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Moller, Chris Wyman, Cyril
Crassin, and Nir Benty. 2022. The Falcor Rendering Framework. https://github.
com/NVIDIAGameWorks/Falcor https://github.com/NVIDIAGameWorks/Falcor.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
(2014).

Matias Koskela, Kalle Immonen, Markku Mikitalo, Alessandro Foi, Timo Viitanen,
Pekka Jiaskeldinen, Heikki Kultala, and Jarmo Takala. 2019. Blockwise Multi-Order
Feature Regression for Real-Time Path-Tracing Reconstruction. ACM Trans. Graph.
38, 5, Article 138 (jun 2019), 14 pages. https://doi.org/10.1145/3269978

P Kozlowski and T Cheblokov. 2021. ReLAX: A Denoiser Tailored to Work with the Re-
STIR Algorithm. https://www.nvidia.com/en-us/on-demand/session/gtcspring21-
$32759/

Weiheng Lin, Beibei Wang, Jian Yang, Lu Wang, and Ling-Qi Yan. 2021. Path-based
Monte Carlo Denoising Using a Three-Scale Neural Network. Computer Graphics
Forum 40, 1 (2021), 369-381. https://doi.org/10.1111/cgf.14194

Hongying Liu, Zhubo Ruan, Peng Zhao, Chao Dong, Fanhua Shang, Yuanyuan Liu,
Linlin Yang, and Radu Timofte. 2022b. Video Super-Resolution Based on Deep
Learning: A Comprehensive Survey. Artificial Intelligence Review 55, 8 (01 Dec
2022), 5981-6035. https://doi.org/10.1007/s10462-022-10147-y

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. 2022a. A ConvNet for the 2020s. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 11966-11976. https://doi.org/10.
1109/cvpr52688.2022.01167

Yifan Lu, Siyuan Fu, Xiao Hua Zhang, and Ning Xie. 2021. Denoising Monte Carlo
Renderings via a Multi-Scale Featured Dual-Residual GAN. The Visual Computer
37,9 (01 Sep 2021), 2513-2525. https://doi.org/10.1007/s00371-021-02204-4

YiFan Lu, Ning Xie, and Heng Tao Shen. 2020. DMCR-GAN: Adversarial Denoising
for Monte Carlo Renderings with Residual Attention Networks and Hierarchical

https://doi.org/10.1145/3406183
https://doi.org/10.1145/3528233.3530730
https://doi.org/10.1145/3528233.3530730
https://doi.org/10.1145/3072959.3073708
https://doi.org/10.1109/iccw.2016.7503834
https://doi.org/10.1016/b978-0-08-051581-6.50065-9
https://doi.org/10.1016/b978-0-08-051581-6.50065-9
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/3450626.3459876
https://doi.org/10.1145/2532708
https://doi.org/10.1145/2532708
https://doi.org/10.1111/cgf.14338
https://doi.org/10.1145/3476124.3488631
https://doi.org/10.1145/3306346.3322954
https://doi.org/10.1145/3306346.3322954
https://doi.org/10.1007/978-3-642-24797-2_4
https://doi.org/10.1111/cgf.13919
https://doi.org/10.1007/s41095-021-0209-9
https://doi.org/10.1007/s41095-021-0209-9
https://doi.org/10.1145/3450626.3459793
https://doi.org/10.1145/3450626.3459793
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1145/3269978
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32759/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32759/
https://doi.org/10.1111/cgf.14194
https://doi.org/10.1007/s10462-022-10147-y
https://doi.org/10.1109/cvpr52688.2022.01167
https://doi.org/10.1109/cvpr52688.2022.01167
https://doi.org/10.1007/s00371-021-02204-4

Neural Partitioning Pyramids for Denoising Monte Carlo Renderings

Features Modulation of Auxiliary Buffers. In SSIGGRAPH Asia 2020 Technical Com-
munications (Virtual Event, Republic of Korea) (SA 20). Association for Computing
Machinery, New York, NY, USA, Article 5, 4 pages. https://doi.org/10.1145/3410700.
3425426

Rafat K. Mantiuk, Gyorgy Denes, Alexandre Chapiro, Anton Kaplanyan, Gizem Rufo,
Romain Bachy, Trisha Lian, and Anjul Patney. 2021. FovVideoVDP: A Visible
Difference Predictor for Wide Field-of-View Video. ACM Trans. Graph. 40, 4, Article
49 (jul 2021), 19 pages. https://doi.org/10.1145/3450626.3459831

Xiaoxu Meng, Quan Zheng, Amitabh Varshney, Gurprit Singh, and Matthias Zwicker.
2020. Real-time Monte Carlo Denoising with the Neural Bilateral Grid. In Euro-
graphics Symposium on Rendering - DL-only Track, Carsten Dachsbacher and Matt
Pharr (Eds.). The Eurographics Association. https://doi.org/10.2312/sr.20201133

Jacob Munkberg and Jon Hasselgren. 2020. Neural Denoising with Layer Embeddings.
Computer Graphics Forum 39, 4 (2020), 1-12. https://doi.org/10.1111/cgf.14049

Nvidia. 2017. Amazon Lumberyard Bistro, Open Research Content Archive (ORCA).
http://developer.nvidia.com/orca/amazon-lumberyard-bistro

Nvidia. 2022a. NVIDIA Real-Time Denoisers. https://developer.nvidia.com/rtx/ray-
tracing/rt-denoisers.

Nvidia. 2022b. OptiX Al-Accelerated Denoiser. https://developer.nvidia.com/optix-
denoiser.

Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista,
Nathan Paczan, Russ Webb, and Joshua M. Susskind. 2021. Hypersim: A Pho-
torealistic Synthetic Dataset for Holistic Indoor Scene Understanding. In 2021
IEEE/CVF International Conference on Computer Vision (ICCV). 10892-10902. https:
//doi.org/10.1109/iccv48922.2021.01073

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention — MICCAI 2015, Nassir Navab, Joachim Hornegger,
William M. Wells, and Alejandro F. Frangi (Eds.). Springer International Publishing,
Cham, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28

Amit Sabne. 2020. XLA : Compiling Machine Learning for Peak Performance.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla
Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and
Marco Salvi. 2017. Spatiotemporal Variance-Guided Filtering: Real-Time Recon-
struction for Path-Traced Global Illumination. In Proceedings of High Performance
Graphics (Los Angeles, California) (HPG ’17). Association for Computing Machinery,
New York, NY, USA, Article 2, 12 pages. https://doi.org/10.1145/3105762.3105770

Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Introduction.
MIT press.

Manu Mathew Thomas, Gabor Liktor, Christoph Peters, Sungye Kim, Karthik
Vaidyanathan, and Angus G. Forbes. 2022. Temporally Stable Real-Time Joint

SIGGRAPH °23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA

Neural Denoising and Supersampling. Proc. ACM Comput. Graph. Interact. Tech. 5,
3, Article 21 (jul 2022), 22 pages. https://doi.org/10.1145/3543870

C. Tomasi and R. Manduchi. 1998. Bilateral Filtering for Gray and Color Images. In Sixth
International Conference on Computer Vision (IEEE Cat. No.98CH36271). 839-846.
https://doi.org/10.1109/iccv.1998.710815

Thijs Vogels, Fabrice Rousselle, Brian Mcwilliams, Gerhard Rothlin, Alex Harvill, David
Adler, Mark Meyer, and Jan Novak. 2018. Denoising with Kernel Prediction and
Asymmetric Loss Functions. ACM Trans. Graph. 37, 4, Article 124 (jul 2018), 15 pages.
https://doi.org/10.1145/3197517.3201388

Z. Wang, E.P. Simoncelli, and A.C. Bovik. 2003. Multiscale Structural Similarity for
Image Quality Assessment. In The Thrity-Seventh Asilomar Conference on Signals,
Systems & Computers, 2003, Vol. 2. 1398-1402 Vol.2. https://doi.org/10.1109/ACSSC.
2003.1292216

Xinyue Wei, Haozhi Huang, Yujin Shi, Hongliang Yuan, Li Shen, and Jue Wang. 2021.
End-to-End Adaptive Monte Carlo Denoising and Super-Resolution. arXiv (2021).

Mike Winkelmann. 2019. Zero-Day, Open Research Content Archive (ORCA). https:
//developer.nvidia.com/orca/beeple- zero-day

Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and Rui Tang.
2019. Adversarial Monte Carlo Denoising with Conditioned Auxiliary Feature
Modulation. ACM Trans. Graph. 38, 6, Article 224 (nov 2019), 12 pages. https:
//doi.org/10.1145/3355089.3356547

Jiagi Yu, Yongwei Nie, Chengjiang Long, Wenju Xu, Qing Zhang, and Guiging Li. 2021.
Monte Carlo Denoising via Auxiliary Feature Guided Self-Attention. ACM Trans.
Graph. 40, 6, Article 273 (dec 2021), 13 pages. https://doi.org/10.1145/3478513.
3480565

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
and Ming-Hsuan Yang. 2022. Restormer: Efficient Transformer for High-Resolution
Image Restoration. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 5718-5729. https://doi.org/10.1109/cvpr52688.2022.00564

Xianyao Zhang, Marco Manzi, Thijs Vogels, Henrik Dahlberg, Markus Gross, and
Marios Papas. 2021. Deep Compositional Denoising for High-quality Monte Carlo
Rendering. Computer Graphics Forum 40, 4 (2021), 1-13. https://doi.org/10.1111/
cgf.14337

Dmitry Zhdan. 2021. ReBLUR: A Hierarchical Recurrent Denoiser. Apress, Berkeley, CA,
823-844. https://doi.org/10.1007/978-1-4842-7185-8_49

Shaokun Zheng, Fengshi Zheng, Kun Xu, and Ling-Qi Yan. 2021. Ensemble Denoising

for Monte Carlo Renderings. ACM Trans. Graph. 40, 6, Article 274 (dec 2021),
17 pages. https://doi.org/10.1145/3478513.3480510

M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle, P. Sen, C.
Soler, and S.-E. Yoon. 2015. Recent Advances in Adaptive Sampling and Reconstruc-
tion for Monte Carlo Rendering. Computer Graphics Forum 34, 2 (2015), 667-681.
https://doi.org/10.1111/cgf.12592

https://doi.org/10.1145/3410700.3425426
https://doi.org/10.1145/3410700.3425426
https://doi.org/10.1145/3450626.3459831
https://doi.org/10.2312/sr.20201133
https://doi.org/10.1111/cgf.14049
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://doi.org/10.1109/iccv48922.2021.01073
https://doi.org/10.1109/iccv48922.2021.01073
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3543870
https://doi.org/10.1109/iccv.1998.710815
https://doi.org/10.1145/3197517.3201388
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1109/ACSSC.2003.1292216
https://developer.nvidia.com/orca/beeple-zero-day
https://developer.nvidia.com/orca/beeple-zero-day
https://doi.org/10.1145/3355089.3356547
https://doi.org/10.1145/3355089.3356547
https://doi.org/10.1145/3478513.3480565
https://doi.org/10.1145/3478513.3480565
https://doi.org/10.1109/cvpr52688.2022.00564
https://doi.org/10.1111/cgf.14337
https://doi.org/10.1111/cgf.14337
https://doi.org/10.1007/978-1-4842-7185-8_49
https://doi.org/10.1145/3478513.3480510
https://doi.org/10.1111/cgf.12592

SIGGRAPH 23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel, and Rafat Mantiuk

Reference Input Spectral analysis Output Spectral analysis
. ; 10-3 N

1072 1071 0.
Frequency [cycles/pixel]

Partition weights

AN

Paritioned radiance Downsampled Denoised Upsampled
Low-frequency passband Effective filter band High-frequency stopband
—— Signal Noise —— Reference

Figure 6: Fourier analysis of our filter. The plots show the power spectra of the entire image at consecutive processing stages.
The blue line represents the signal and the orange line represents noise (calculated by subtracting the reference image). The
range of values on both axes is identical in all the plots. Note that the rightmost column does not show L, but each layer
upsampled separately. The predicted partitions contain insignificant low-frequency noise below the denoising kernel’s effective
band in each layer (D, a mix of useful radiance and noise in the effective band 2), and primarily white noise in the higher
frequencies (3), later removed by downsampling @. The noise filtering stage reduces the noise in the effective band (), and the
upsampling stage reconstructs the small amount of useful high-frequency radiance lost during downsampling 6. Zero-Day ©
2023 Mike Winkelmann

Neural Partitioning Pyramids for Denoising Monte Carlo Renderings SIGGRAPH °23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA

Noisy Input OursSmall Ground Truth Ground Truth OursSmall ONND OIDN

PSNR: 26.48 PSNR: 23.72 PSNR: 23.44

b g

Real-time Denoising: 2spp

Noisy Input OursSmall Ground Truth

Real-time Denoising: 4spp

Noisy Input OursLarge Ground Truth Ground Truth

Offline Denoising: 8spp

OursLarge Ground Truth Ground Truth OurslLarge

PSNR: 27.24

Offline Denoising: 8spp

Figure 7: Our denoiser compared to state-of-the-art methods on four scenes: Bistro1, Bistro3, Kitchen, and Zero-Day. Our method
was able to remove noise effectively, as seen in the pink inset of the Bistrol scene. Other methods (ONND and OIDN) retained
some of high and low-frequency noise. Additionally, our method was able to preserve the contrast of the tree in the blue inset
of the Bistro1 scene. In the Bistro3 scene, our method was able to preserve high frequencies of caustics (as seen in the pink inset)
and provided better appearance of thin objects, without leading to extensive blurring (as in the case of ONND) or aliasing and
partial disappearing of the cutlery (as in the case of OIDN). In the Kitchen scene, our method was able to preserve geometrical
details of the window frame while other methods failed in this task. Additionally, the lampshade denoised by AFGSA was
highly contaminated by artifacts and OIDN changed its color. In the Zero-Day scene, all methods struggled with retrieving
reflections in glossy surfaces (as seen in the pink inset). Our method produced a smooth surface, which was plausible and
pleasing for the eye, while AFGSA and OIDN introduced low-frequency noise. The blue insets also shows that our method
preserves more details in the reflections than other methods. Bistro © 2023 Amazon Lumberyard, Kitchen © 2023 Jay-Artist,
Zero-Day © 2023 Mike Winkelmann

	Abstract
	1 Introduction
	2 Related work
	3 Pyramidal denoising
	3.1 Low-pass filtering and downsampling
	3.2 Denoising kernels
	3.3 Upsampling and composition

	4 Partitioning pyramids
	4.1 Partitioning downsampler
	4.2 Splatting upsampler

	5 Implementation
	5.1 Pipeline
	5.2 Training procedure

	6 Evaluation
	6.1 Baseline comparisons
	6.2 Choice of denoising filter
	6.3 Pyramidal filter ablations

	7 Limitations and future work
	8 Conclusion
	References

