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Two-dimensional terahertz spectroscopy (2DTS), a terahertz analogue of nuclear magnetic reso-
nance, is a new technique poised to address many open questions in complex condensed matter sys-
tems. The conventional theoretical framework used ubiquitously for interpreting multidimensional
spectra of discrete quantum level systems is, however, insufficient for the continua of collective ex-
citations in strongly correlated materials. Here, we develop a theory for 2DTS of a model collective
excitation, the Josephson plasma resonance in layered superconductors. Starting from a mean-field
approach at temperatures well below the superconducting phase transition, we obtain expressions
for the multidimensional nonlinear responses that are amenable to intuition derived from the con-
ventional single-mode scenario. We then consider temperatures near the superconducting critical
temperature Tc, where dynamics beyond mean-field become important and conventional intuition
fails. As fluctuations proliferate near Tc, the dominant contribution to nonlinear response comes
from an optical parametric drive of counter-propagating Josephson plasmons, which gives rise to 2D
spectra that are qualitatively different from the mean-field predictions. As such, and in contrast to
one-dimensional spectroscopy techniques, such as third harmonic generation, 2DTS can be used to
directly probe thermally excited finite-momentum plasmons and their interactions. Our theory pro-
vides a clear interpretation of recent 2DTS measurements on cuprates, and we discuss implications
beyond the present context of Josephson plasmons.

I. INTRODUCTION

Since its inception over half a century ago, nuclear
magnetic resonance (NMR) [1, 2] has not only become
a standard tool in the fundamental sciences for resolv-
ing structure and interactions in both molecular [3] and
solid-state systems [4], but has also become indispensable
to modern technologies as diverse as magnetic resonance
imaging [5] and plant analysis [6]. In recent years, opti-
cal analogues of nuclear magnetic resonance that inter-
rogate the electronic constituents of matter, termed mul-
tidimensional coherent spectroscopies [7, 8], have come
to the fore. With unique capabilities to, for example,
identify coupling between different resonances, disentan-
gle homogeneous and inhomogeneous broadening mecha-
nisms, and resolve energy transfer pathways, these tech-
niques have revolutionized our understanding of complex
atomic [9], chemical [10], and biological [11] systems, with
growing applications for condensed matter systems [12].
However, the potential of these techniques extends far
beyond these cases for which they were originally envi-
sioned.

Indeed, the characteristics of systems in which these
multidimensional spectroscopies excel, disordered sys-
tems with numerous interacting degrees of freedom, are

∗ These authors contributed equally to this work.

shared by strongly correlated ‘quantum materials’ [13].
Loosely defined, quantum materials comprise systems for
which even a qualitative understanding of their prop-
erties requires a quantum mechanical treatment. Dis-
cerning their complex nature and harvesting their unique
properties holds tremendous promise for future technolo-
gies [14]. Many open questions remain in regards to
these materials, both to the physical phenomena underly-
ing their properties and to practical applications, includ-
ing rational design and device implementation. Some of
these questions, while impervious to conventional probes,
could be addressed by multidimensional techniques. Yet
the typical low energy scales of collective excitations in
such systems have hampered previous efforts. These en-
ergy scales are often in the terahertz optical domain [15],
and the traditional challenge of generating strong, co-
herent radiation at these frequencies is well-known as
the ‘terahertz gap’ [16]. Fortunately, this terahertz gap
is now closing and recent developments in intense low-
frequency light sources [15, 17] have enabled so-called
two-dimensional terahertz spectroscopies (2DTS) [18, 19]
that probe quantum materials on their fundamental en-
ergy scales.

In recent years, an increasing number of groups have
applied 2DTS to a wide range of condensed matter sys-
tems, ranging from superconductors [20–22] to ferroics
[23–25], and even topological materials [26]. However,
the interpretation of their 2DTS spectra often relies on
intuition derived from localized, discrete, single-particle
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excitations in atoms, molecules, and other quantum-
confined systems [27]. This is fundamentally different
from delocalized, collective excitations, characterized by
a continuous dispersion. Upon recognizing this point,
many questions arise concerning their optical nonlinear-
ities. How do we transition from the nonlinear optical
response of discrete quantum states to an energy band
continuum? What are the signatures of parametric cre-
ation and annihilation processes [28, 29], and the corre-
lations that result? What is the effect of an interface
that spectrally shapes the optical response? These and
other salient questions have yet to be addressed in a uni-
fied manner, which calls for a reformulation of the ubiq-
uitious theoretical framework used to interpret conven-
tional multidimensional spectra [7, 10, 30]. Here, we ad-
dress these questions theoretically using the well-known
Josephson plasma resonance in layered superconductors
[31] as a model collective excitation that exhibits strong
sine-Gordon nonlinearities. This choice is motivated by
recent experimental reports applying 2DTS to the lay-
ered cuprate superconductor La2−xSrxCuO4 [22, 32], as
well as the fundamental and technological importance
of high-Tc cuprates. While Josephson plasmons rep-
resent a specific system, their electrodynamics is quite
generic [33], allowing us to infer a broader insight into 2D
spectroscopy of collective excitations (expanded upon in
Appendix A).

This paper presents three main results. The first is a
derivation of the third order optical response of Joseph-
son plasmons within mean-field theory (see Sec. II and
Eq. (30)), applicable at low temperatures T ≪ Tc deep in
the superconducting phase. This response exhibits both
analogies and important differences to the optical proper-
ties of quantum level systems – one such difference is the
presence of air-superconductor interface which we care-
fully take into account via the Fresnel formalism. We find
that the Josephson plasmon optical nonlinearity Eq. (30)
descends from the linear optical response, a feature that
we argue is generic to mean-field approaches (see also
Appendix A).

Our second result is detailed in Sec. III, where we in-
troduce the technique of 2DTS and present expressions
for the measured multidimensional nonlinear responses
(Eqs. (33) and (34)). We discuss additional important
considerations that, while not relevant for quantum level
systems, need to be taken into account when analysing
and designing 2DTS measurements of complex solids.
Simulations of 2D THz spectra are then presented and
resultant two-dimensional lineshapes are carefully ana-
lyzed. These lineshapes are found to remarkably preserve
information about line-broadening mechanisms naively
expected from a single-mode picture. We remark that
revealing these mechanisms is among the most useful and
unique capabilities of 2DTS.

Finally in Sec. IV, we go beyond mean-field theory
and consider the scenario of optical nonlinearities near
a phase transition T ≲ Tc. In this regime fluctuations
proliferate and therefore can no longer be neglected –

their correction within the Gaussian approximation to
the nonlinear susceptibility is encoded in Eq. (66). The
key nonlinear process that one needs to take into account
as T increases is an optical parametric drive of counter-
propagating Josephson plasmons [29, 34] – this process
results in characteristic 2D maps qualitatively different
from the mean-field ones, thereby allowing us to isolate
the non-mean-field nonlinearities. The resulting 2DTS
signatures, absent in the linear optical response, defy in-
tuition derived from conventional spectroscopy of disper-
sionless quantum level systems. We argue that 2DTS, in
contrast to one-dimensional nonlinear spectroscopy tech-
niques such as third harmonic generation, allows us to
probe finite-momentum thermal fluctuations and their
interactions. Our theory is validated by, and provides a
natural interpretation of recent 2DTS measurements re-
ported in Ref. [32]. Implications beyond the context of
Josephson plasmonics are then discussed.

II. NONLINEAR MEAN-FIELD RESPONSE OF
LAYERED SUPERCONDUCTORS

One of the key aspects of layered cuprate supercon-
ductors is the strong anisotropy which renders the c-axis
Josephson plasma modes to be primary low-energy col-
lective excitations in the system [35], with frequencies
typically in the terahertz range. Motivated by recent ex-
perimental developments in the field of 2DTS [22, 32],
which allows one to study nonlinearities of the Joseph-
son plasmons in cuprates, here we develop the theory
of nonlinear electrodynamics of layered superconductors,
which extends the framework of Ref. [36] to account for
the air-superconductor interface (see Fig. 1).
Specifically, analysis in this section is based on mean-

field theory, valid for T ≪ Tc. The central result here
is Eq. (30), which relates the third-order susceptibility
χ(3)(ω1, ω2, ω2) to the linear optical response of the sys-
tem. While the relation (30) was derived for a specific
model, it is argued to be generic to nonlinear many-body
systems that can be describable via mean-field equations
of motion (see Appendix A).
In the following sections we will analyse 2DTS in de-

tail, as it directly probes χ(3). We will also go beyond the
mean-field analysis and consider the plasma squeezing
mode, expected to play a prominent role near the transi-
tion temperature. Throughout the paper, we discuss the
additional information 2DTS measurements bring com-
pared to, for instance, linear optical spectroscopy and
nonlinear third harmonic generation.

A. Equations of motion

To describe the nonlinear electromagnetic response of
layered superconductors we employ the two-fluid model
developed in Ref. [36]. The layered superconductivity is
described using the Lawrence-Doniach model [37], which
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neglects the dynamics of the order parameter amplitude
∆ because it assumes that ω ≪ ∆, where ω is the typi-
cal probe frequency. In other words, the superconducting
response is fully encoded in the dynamics of the order pa-
rameter phase φn(r, t), where n is the layer index and r
is the in-plane coordinate. The normal fluid is described
via phenomenological Ohm’s law. As such, within this
two-fluid model, the z-axis current density between lay-
ers n and n+ 1 is given by:

Jz;n,n+1 = J0 sinφn,n+1 + σ0Ez;n,n+1, (1)

where J0 is the Josephson critical current and

φn,n+1 = φn − φn+1 −
2π

Φ0

∫ (n+1)s

ns

dz Az (2)

is the gauge-invariant phase difference between layers n
and n+1. Here s is the distance between adjacent layers,
σ0 is the z-axis normal conductivity (for an additional
discussion about σ0, see Ref. [36]), and Φ0 = 2πc/(2e)
(throughout the paper, we set ℏ = kB = 1). We also
defined:

Ez;n,n+1 =
1

s

∫ (n+1)s

ns

dz Ez, (3)

etc. The two constituent fluids are coupled to each other
via Maxwell’s equations, which ensure that the Coulomb
screening effects are taken into account. When work-
ing with the electromagnetic field, we employ the gauge
for which the scalar potential is zero, i.e., E(r, z, t) =
−∂tA(r, z, t)/c and B(r, z, t) = ∇ × A(r, z, t), with c
being the speed of light and A being the vector poten-
tial. Inside the sample, we have:

ε∞∇ ·E(r, z, t) = 4πρ(r, z, t), (4)

∇×B(r, z, t) =
ε∞
c
∂tE(r, z, t) +

4π

c
J(r, z, t), (5)

where ρ and J are the three-dimensional charge and cur-
rent densities, respectively, related to each other via the
continuity relation; ε∞ is the high-frequency c-axis di-
electric constant. For the in-plane current densities, we
write the London relation

Jn(r) = −J0κ2s
[
∇φn(r) +

2π

Φ0
An(r)

]
, (6)

where κ ≫ 1 is the anisotropy parameter. We also write
the Josephson relation

∂tφn,n+1 = 2esEz;n,n+1, (7)

expected to hold at low temperatures when one can ne-
glect the presence of pancake vortices.

Combining all of the above equations and in the limit
(ωλab/c)

2 ≪ 1, where λab is the London penetration
depth for the in-plane currents, one obtains [36, 38]
(ψn ≡ φn,n+1):

(∂2t + γ∂t)ψn −∇2Lnmψm + Λ0 sinψn = 0, (8)

with γ = 4πσ0/ε∞, Λ0 = c20/λ
2
J , and

Lnm =
c20
N

∑
k

eik(n−m)

2(1− cos k) + s2/λ2ab
. (9)

Here N is the total number of layers (k = 2πn/N , with
n being integer), λJ = κs, and c0 = cs/(λab

√
ϵ∞) is the

Swihart velocity.

B. Boundary conditions

In optical experiments, both linear and nonlinear, one
sends light onto the superconducting sample and then
measures, for instance, the reflected light (see Fig. 1). In
practice, to evaluate the latter, one can separately solve
Maxwell’s equations in the air and the material, Eq. (8),
and then match the solutions using the Fresnel boundary
conditions. We assume i) normal incidence and ii) the
incident light is homogeneous along the yz-plane with
the electric field being parallel to the z-axis (see Fig. 1).
As such, the boundary conditions at x = 0 are given by:

Ein
z (y, t) + Er

z(y, t) = Et
z(y, t), (10)

Bin
y (y, t) +Br

y(y, t) = Bt
y(y, t). (11)

Here, the superscripts r and t refer to the incoming, re-
flected, and transmitted light, respectively. For future
reference, we note that, due to the homogeneity of the in-
coming light pulses along the z-axis, the gauge-invariant
phase difference ψn = ψ does not depend on the layer
index n.
Inside the sample, the Josephson relation (7) is under-

stood as Et
z = ∂tψ/(2es). For the magnetic field, one

generically has [36]

ẑ ×Bn,n+1 =
4πλ2ab
cs

(Jn+1 − Jn)−
Φ0

2πs
∇φn,n+1. (12)

However, the z-axis homogeneity of the incoming radia-
tion implies that Jn+1 = Jn so that

Bt =
Φ0

2πs
ẑ ×∇ψ. (13)

For the normal incidence we consider here, the bound-
ary conditions (10) and (11) further simplify to:

1

4es
∂tψ − Φ0

4πs
∂xψ = Ein

z (x = 0, t). (14)

This result follows from relations (7) and (13), and the
fact that in the air we have

Bin
y (r, t) = −Ein

z (r, t), Br
y(r, t) = Er

z(r, t). (15)

Equation (14) is particularly useful as it directly relates
the incoming light to how it affects the dynamics inside
the sample. The reflected light, which encodes the pri-
mary observable of interest below, is then given by:

Er(x = 0, t) =
1

4es
∂tψ +

Φ0

4πs
∂xψ. (16)
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C. Nonlinear third-order susceptibility

We now assume that the incident light is weak enough
so that we may carry out a perturbative analysis in Ein,
but strong enough so that the resulting nonlinearities are
measurable. Hence, we write:

ψ(x, t) = ψ(1)(x, t) + ψ(3)(x, t) + . . . (17)

We limit ourselves to the third-order response ψ(3)(x, t),
as the second-order response is zero. From Eq. (8), we
obtain the following coupled set of equations:

(∂2t + γ∂t − L∂2x + Λ0)ψ
(1) = 0, (18)

(∂2t + γ∂t − L∂2x + Λ0)ψ
(3) =

Λ0

6

(
ψ(1)

)3

, (19)

where L =
∑
m Lnm = c2/ε∞. As follows from Eq. (14),

the boundary conditions for ψ(1) and ψ(3) now read

∂tψ
(1)(0, t)− c∂xψ

(1)(0, t) = 2E in(t), (20)

∂tψ
(3)(0, t)− c∂xψ

(3)(0, t) = 0, (21)

where we have defined for notational convenience
E in(t) = 2esEin(x = 0, t). The leading term ψ(1)(x, t)
describes the linear response which then acts as a drive
for ψ(3)(x, t).

Since ψ(1)(x, t) satisfies the linear wave equation (18),
one can generically write:

ψ(1)(x, t) =

∫
dω

2π
ψ̃(1)(ω)eikx(ω)x−iωt, (22)

where

Lk2x(ω) = ω2 + iγω − Λ0. (23)

The root kx(ω) in Eq. (23) is chosen such that it corre-
sponds to waves propagating away from the surface with
Im kx(ω) > 0. The amplitudes ψ̃(1)(ω) are found using
the boundary condition (20) at x = 0:

ψ̃(1)(ω) =
2iE in(ω)

ω + ckx(ω)
=

i

ω
t(ω)E in(ω). (24)

Here t(ω) = 2/(1 +
√
ϵ(ω)) is nothing but the trans-

mission coefficient with
√
ϵ(ω) = ckx(ω)/ω. Indeed, us-

ing the Josephson relation (7), one can recover the usual
Fresnel transmission relation given by:

Et(x = 0, ω) =
2

1 +
√
ϵ(ω)

Ein(x = 0, ω). (25)

Having determined the leading harmonic ψ(1)(x, t), we
turn to compute ψ(3)(x, t). Since Eq. (19) is linear as
well, one can generically write ψ(3)(x, t) as:

ψ(3)(x, t) =

∫
dω

2π
ψ̃(3)(ω)eikx(ω)x−iωt + ψdr

3 (x, t), (26)

where the first term encodes the generic solution of the

homogeneous part of Eq. (19) and ψ
(3)
dr (x, t) is given by:

ψ
(3)
dr (x, t) =

Λ0

6

∫
dω

2π

∫
dk

2π

eikx−iωt

−ω2 − iγω + Lk2 + Λ0

∫
dω1

2π

dω2

2π

dω3

2π
2πδ(ω1 + ω2 + ω3 − ω)

× 2πδ(kx(ω1) + kx(ω2) + kx(ω3)− k)ψ̃(1)(ω1)ψ̃
(1)(ω2)ψ̃

(1)(ω3). (27)

The amplitudes ψ̃(3)(ω) are obtained from the boundary condition (21):

ψ̃(3)(ω) =
−ωψ(3)

dr (x = 0, ω) + ic∂xψ
(3)
dr (x = 0, ω)

ω + ckx(ω)
= −Λ0

6

∫
dk

2π

1

−ω2 − iγω + Lk2 + Λ0

ω + ck

ω + ckx(ω)

×
∫
dω1

2π

dω2

2π

dω3

2π
2πδ(ω1 + ω2 + ω3 − ω)2πδ(kx(ω1) + kx(ω2) + kx(ω3)− k)ψ̃(1)(ω1)ψ̃

(1)(ω2)ψ̃
(1)(ω3). (28)

For ease of notations, we define ω̄ = ω1 + ω2 + ω3 and kx(ω1, ω2, ω3) = kx(ω1) + kx(ω2) + kx(ω3). For the reflected
light at x = 0, we then get:

E(3)
r (t) =

∂tψ
(3)(0, t) + c∂xψ

(3)(0, t)

2
=

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
e−iω̄tχ(3)(ω1, ω2, ω3)E in(ω1)E in(ω2)E in(ω3). (29)

Notably, we find that the third-order susceptibility

χ(3)(ω1, ω2, ω3) =
Λ0ϵ∞
12

1

ckx(ω1, ω2, ω3)/ω̄ +
√
ϵ(ω̄)

× t(ω̄)

ω̄

t(ω1)

ω1

t(ω2)

ω2

t(ω3)

ω3
(30)

is expressed solely through the dielectric function ϵ(ω),
which is fully determined by the linear response func-
tion (24). Such factorization holds only within mean-
field approximation; nevertheless, the form in Eq. (30)
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seems to be generic to any classical nonlinear reflectiv-
ity problem (see also Appendix A). We interpret various
terms entering in Eq. (30) as follows: i) the last three
factors of t(ωi) take into account the three transmission
coefficients for the three incoming electric fields, ii) the
term in the first row of Eq. (30) encodes the dynamics
of the 3-wave-mixed phase, and iii) the factor of t(ω̄)
accounts for the transmission of this 3-wave-mixed field
from the inside to the outside of the sample. Various fac-
tors of ω come from the Josephson relations between the
phases and corresponding electric fields. Equipped with
Eq. (30), we move on to analyse 2D THz spectroscopy
experiments.

III. 2DTS OF COLLECTIVE MODES

This section is dedicated to developing an intuitive the-
oretical understanding of 2DTS in the context of col-
lective excitations, in particular Josephson plasmons in
layered superconductors. In Sec. III A, we describe the
typical 2DTS protocol, whereby a sequence of terahertz
pulses is sent onto the sample and a wave-mixing sig-
nal emitted either in the reflected or transmitted direc-
tions is measured (Figs. 1(a,b)). We discuss how such
a protocol enables one to probe salient features of the
third-order susceptibility. We also point out additional
2DTS considerations one must take into account when
studying many-body systems. Subsequently in Secs. III B
and III C, we clarify the applicability and shortcomings
of the mean-field description developed in the preceding
section when dealing with real condensed matter systems.
Comparisons to the single-mode theory are drawn, which
should guide the use of conventional intuition developed
from atomic and molecular systems to collective modes
in solids.

A. Basic considerations of 2DTS in the many-body
context

1. 2DTS protocol

We first discuss the 2DTS protocol applied to a layered
superconductor (Fig. 1(a)). We assume the incident field
Ein is polarized along the out-of-plane z-direction and
propagates along the in-plane x-direction. Resultant re-
flected and transmitted fields Er and Et are likewise po-
larized along the z-axis. The incident field consists of
two identical excitation pulses, denoted EA and EB , sep-
arated by a time delay τ as illustrated in Fig. 1(b). More
precisely, the total incident electric field at the sample
surface at the measurement time t+ τ can be written as
(zero of time is set to be the arrival of the first A-pulse):

Ein(x = 0, t+ τ ; τ) = EA(t+ τ) + EB(t). (31)

After interaction with both excitation pulses, the sys-
tem is left to evolve unperturbed along time t, dur-
ing which a nonlinear electric field Enl (either reflected
or transmitted) is measured (Fig. 1(b)). This nonlin-
ear electric field emission is also measured as a func-
tion of the inter-pulse delay τ , with sampling density
and range parameters chosen according to the frequencies
and linewidths of interest, and a two-dimensional array
of measured values Enl(t + τ ; τ) is obtained. A Fourier
transform with respect to both τ and t defined as

Enl(ωt, ωτ ) =

∫ ∞

0

dt

∫ ∞

0

dτ Enl(t+τ ; τ) e
iωtt+iωττ (32)

returns a two-dimensional spectrum Enl(ωτ , ωt), some-
times referred to as a ‘2D map’. Note that the integra-
tion in Eq. (32) starts at t = τ = 0 – such definition
ensures the causal relation τ > 0 so that the A-pulse
arrives first. A schematic (absolute-value) 2D map for a
third-order nonlinearity of the Josephson plasmon is plot-
ted in Fig. 1(c). As implied by the labels in Fig. 1(c),
linear signals proportional to EA and EB as well as self-
nonlinearities proportional to E3

A and E3
B are typically

filtered out in experiments, leaving behind the mixing
terms proportional to E2

AEB and EAE
2
B . These terms

are related to the third-order susceptibility as:

E
(3)
AAB(ωt, ωτ ) = 3 lim

δτ→0
δt→0

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
χ(3)(ω1, ω2, ω3)

EA(ω1)EA(ω2)

i(ωτ − ω1 − ω2)− δτ

EB(ω3)

i(ωt − ω1 − ω2 − ω3)− δt
, (33)

E
(3)
ABB(ωt, ωτ ) = 3 lim

δτ→0
δt→0

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
χ(3)(ω1, ω2, ω3)

EA(ω1)

i(ωτ − ω1)− δτ

EB(ω2)EB(ω3)

i(ωt − ω1 − ω2 − ω3)− δt
. (34)

The relations (33) and (34) are generic and represent
the starting point of our subsequent analyses. In the re-
mainder of this section we discuss additional considera-

tions that arise when transitioning from the conventional
single-mode picture to a many-body system. Here we pri-
marily focus on the mean-field nonlinearities encoded in
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FIG. 1. Schematic of the setup. (a) Terahertz light Ein is sent
onto the layered superconductor – in 2D spectroscopy exper-
iments specifically, one uses two pulses EA and EB separated
from each other by time τ (b). The resulting reflected radi-
ation Er is then measured at time t after the arrival of the
second pulse. (c) Typical 2D map. Up to third-order non-
linearities, it exhibits four distinctive peaks, each of which
contains important information about Josephson plasma in-
teractions.

Eq. (30) and consider fluctuation corrections to χ(3) in
Sec. IV.

2. Pulse frequency filtering

As follows from Eqs. (33) and (34), the excitation spec-
tra EA(ω) and EB(ω) act to filter out particular compo-
nents of the third-order susceptibility. For conventional
multidimensional spectroscopies of single-mode systems,
the excitation pulse spectrum is typically far broader
than any characteristic frequencies of the probed optical
response. This permits approximating each excitation
pulse as the idealized δ(t)-function that directly samples
the full nonlinear optical response function. This condi-
tion is therefore referred to as the ‘impulsive limit’.

In 2DTS experiments this condition is less well-defined,
as for many-body systems one typically must take into ac-
count a continuum of collective excitations, each of which
can also have its own lifetime. For the mean-field case
considered in this section, finite pulse effects are of no
real utility. However, the filtering property of such finite
pulses may become useful when physics beyond mean-
field become prominent, which will be discussed in the
following section (see Fig. 6).

3. Effects due to the Boundary

Another crucial difference between single-mode and
many-body systems is the environment-sample interface.
An immediate consequence of this interface is that only
the magnitude and in-plane component (parallel to the

interface) of momentum are conserved in the nonlinear
wave-mixing processes. This consideration, due to sym-
metry breaking by the interface, is not important in the
co-linear geometry considered here, but is crucial to de-
termining emission wavevectors in a non-collinear excita-
tion geometry [22]. An additional consequence of the in-
terface follows from Eq. (30), with the incoming (and out-
going) electric fields being further weighted by a trans-
mission coefficient t(ω). As such, t(ω) acts as an addi-
tional ‘many-body filtering’ on top of the aforementioned
pulse frequency filtering. Let us illustrate this important
interplay between the pulse-excitation and optical prop-
erties of the sample using the mean-field description of
layered superconductivity developed above. For the one-
dimensional polaritonic mode encoded in Eq. (23), the
dielectric function is given by:

ϵ(ω;T ) = ϵ∞

(
1− (ωJP(T ))

2

ω(ω + i0+)
− γ(T )

iω

)
, (35)

where ωJP(T ) =
√
Λ0(T ) is the Josephson plasmon reso-

nance frequency and γ(T ) is the intrinsic decay rate, and
both quantities generally depend on temperature T . For
future reference, the reflection coefficient R(ω) and loss
function L(ω) are related to ϵ(ω) through:

R(ω) =

∣∣∣∣∣1−
√
ϵ(ω)

1 +
√
ϵ(ω)

∣∣∣∣∣
2

, L(ω) = − Im{ϵ−1(ω)}. (36)

It is worth pointing out that Eq. (35) could be used for
fitting linear spectroscopy measurements to extract ωJP

and γ. In fact, one of the appeals of the Bulayevskii
framework we use here is that the fitting form (35) accu-
rately captures actual experimental data [38–41]. When
determining the filtering properties of the mean-field
transmission coefficient t(ω), two considerations are rele-
vant – the density of states and dispersion of the polari-
tonic mode (23) and its decay rate γ. At low tempera-
tures, where the latter can be disregarded γ ≪ ωJP, t(ω)
is sharply peaked at ωJP, which, in particular, implies
that i) the pulse frequency profile should be carefully
chosen to have an appreciable spectral overlap with t(ω)
and ii) the relevant probed frequencies are centered at
ωJP. At high temperatures, we instead expect γ ≳ ωJP

and, as such, a featureless t(ω) such that the many-body
filtering due to the interface is no longer that important.
We further discuss this picture in Sec. III C.

4. Typical 2D maps

We turn to briefly describe a typical 2D map of an an-
harmonic (classical or quantum) oscillator [2, 7, 10, 30],
which well captures the low-temperature behavior of
Josephson plasmon nonlinearities. Throughout the re-
mainder of the paper, we set ω0

JP = ωJP(T = 0) to be
the unit of energy. Since E(t) is a real variable, one
gets E(−ω) = [E(ω)]∗ – for this reason, we will discuss
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positive frequencies only and use complex conjugates for
negative frequencies.

Equations (33) and (34) give rise to four nonlinearities
that radiate out at the fundamental Josephson plasma
frequency ω0

JP. Each of them corresponds to a unique
combination of electric field interactions and, as such,
appears as a distinct peak in the 2D map (see Fig. 1(c)).
Each peak in Fig. 1(c) is labeled by its corresponding
field interactions, which determine its position in the fre-
quency space by multiplying the on-resonance phase fac-

tors EA ∝ e−iω
0
JP(t+τ) and EB ∝ e−iω

0
JPt.

We first address the peaks labeled ‘2-quantum’ and
‘pump-probe’. One may intuitively understand the ori-
gin of each feature by first examining their interaction
with the first excitation pulse EA, which determines their
position along the vertical frequency axis. From the per-
spective of the classical sine-Gordon nonlinearity, the 2-
quantum and pump-probe peaks arise from parametric
modulation (scaling with EAEA) and rectification (scal-
ing with EAE

∗
A) of the resonance frequency, respectively.

We point out that in the quantum oscillator picture (with
initial state being vacuum), the 2-quantum peak arises
from a coherence between the ground state and sec-
ond excited state generated by the two field interactions
EAEA, while the pump-probe peak arises from popula-
tions in either the ground or first excited state generated
by EAE

∗
A.

In contrast, the peaks labeled ‘non-rephasing’ and
‘rephasing’ involve only a single interaction with the first
excitation pulse – with EA or E∗

A, respectively. From
the classical perspective such interaction simply corre-
sponds to displacing the Josephson plasmon coordinate,
while from the quantum perspective it corresponds to
generating a coherence between the ground state and
first excited state. The difference between the two non-
linearities could be understood in terms of the relative
phase of oscillations induced by the A-pulse to those of
the subsequent emission induced by the B-pulse. In the
non-rephasing case, since the system oscillates with the
same frequency ωJP after interacting with both pulses,
this phase accumulates following each excitation.

For the rephasing nonlinearity, the interaction with the
first pulse gives rise to oscillations during time τ at −ω0

JP.
After two interactions with the second pulse, the state is
then brought into a time-reversed superposition, which
oscillates during time t at ω0

JP, implying instead the can-
cellation of the relative phase. This change of the fre-
quency sign also implies that the initial state is restored
whenever τ = t, known as the celebrated ‘echo’ phe-
nomenon, which we turn to discuss in the many-body
setting.

B. The rephasing nonlinearity

The utility of rephasing ‘echoes’ comes from the ability
to disentangle energy disorder, as commonly performed
with spin echoes in NMR and photon echoes in optical

four-wave mixing [42–44] of atomic and molecular sys-
tems. For a single-mode representation of the Josephson
plasma resonance, such static energy disorder may be
understood as ω0

JP is spanning a range of resonance fre-
quencies (see Fig. 2(a)), introducing an inhomogeneous
linewidth σJP in addition to the linewidth γ from intrin-
sic level broadening.
For collective excitations, the duration of terahertz op-

tical pulses may become considerable with respect to the
timescale of dynamics involved. For concreteness, from
now on we model excitation pulses via:

EA,B(t) = Θ(t)EA,Be
−σt cosωdt, (37)

where ωd is the pulse carrier frequency and σ defines the
spectral bandwidth of the excitation pulses (Fig. 2(b)).
The choice of the form (37) is natural for two reasons:
i) in the frequency domain, these pulses become simple
Lorentzians, which facilitates analytical and numerical
analyses, and ii) essentially any realistic pulse shape can
be represented as a sum of Lorentzians.
The single-mode simulations presented in Figure 2(c)

reproduces the conventional wisdom: As inhomogenous
broadening σJP is tuned, the rephasing peak evolves from
having a symmetric ‘star’ shape when the intrinsic broad-
ening dominates γ ≫ σJP to being ‘almond’-shaped when
σJP becomes appreciable. The values of γ and σJP can
then be directly obtained by simultaneously fitting the
linecuts along the ‘diagonal’ (ωτ = ωt) and perpendicu-
lar ‘cross diagonal’ directions of the (1,−1)-peak, using
the fitting forms of Refs. [42, 44].

This unique capability of the rephasing nonlinearity
is clearly relevant to studying a wide range of quantum
materials for which disorder plays an overt role in their
properties. We remark that a reasonable starting point
to understand how disorder affects Josephson plasmons
is to consider static spatial inhomogeneities in the super-
fluid density – this picture provided a clear interpreta-
tion to recent measurements of the rephasing nonlinear-
ity in La2−xSrxCuO4 (LSCO) [22]. However, how such
disorder manifests in optical nonlinearities is a challeng-
ing many-body problem that might require developments
based on the Keldysh and disorder-averaging techniques
– a task left for future work. Here we instead consider
a static distribution of resonant frequencies ω0

JP in antic-
ipation that, as it is the case for atomic and molecular
systems, such modeling will prove useful to interpret fu-
ture 2DTS experiments. Nevertheless, we still get an
interesting nontrivial interplay between σJP, γ, and the
polariton dispersion (23), which makes our analysis of the
many-body problem fairly distinct from the single-mode
picture.

Quite strikingly, we find that, in the full contin-
uum simulations presented in Fig. 2(d), the many-body
rephasing peak essentially follows the single-mode phe-
nomenology in Fig. 2(c). To quantitatively examine the
agreement between these two scenarios, we use the single-
mode fitting forms [42, 44] to extract γ and σJP from
the continuum 2D maps. Figure 2(e) shows the simu-
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FIG. 2. The rephasing nonlinearity. (a) Sketch of the homogeneous (intrinsic) γ and inhomogeneous σJP broadenings. The
latter is modeled as a static Gaussian distribution of the JP resonance, while the plasmon lifetime is kept fixed γ/ω0

JP = 0.05.
(b) Pulse in Eq. (37) is chosen to have ωd/ω

0
JP = 1 and σ/ω0

JP = 0.5. (c)-(d) Evolution of the rephasing peak with increasing
inhomogenous disorder σJP for (c) single mode and (d) continuum of collective modes. In both cases, we observe that the
star-shaped peaks turn into almond-shaped ones. (e) Slices across the diagonal (red) and cross-diagonal (green) lines of the
continuum rephasing nonlinearity for σJP/ω

0
JP = 0.1. Simultaneous fit of these two slices using single-mode functional forms

of Ref. [42] enables one to estimate homogeneous and inhomogeneous broadenings: γfit/ω0
JP = 0.05, and σfit

JP/ω
0
JP = 0.098. (f)

Such fitting is found to be reliable so long as σJP/ω
0
JP ≲ 0.1 (shaded area).

lated lineshapes (taken along the corresponding arrows
in Fig. 2(d)), and we find remarkable accuracy of such
fitting. This agreement of the fitted disorder linewidth
σfit
JP is further examined quantitatively in Fig. 2(f), which

returns the true linewidth to great accuracy for values
of the disorder up to σJP/ω

0
JP ≈ 0.1, above which the

disorder linewidth approaches the excitation bandwidth
and fitted values begin to underestimate the disorder
linewidth. In addition, we mention that our simplified
modeling here well-captures both quantitative and qual-
itative aspects, including the peak shape as well as the
extracted values of linewidths γ and σJP, of the reported
rephasing nonlinearity of LSCO [22].

C. Approaching the phase transition

An interesting question we turn to address is the evolu-
tion of 2D maps with increasing temperature towards Tc.
We will argue that the many-body filtering mentioned in
Sec. III A will explicitly manifest, which is particularly
appealing for the experimental verification of our predic-
tions.

As T is increased from T = 0 up to Tc, the ini-
tially sharp Josephson plasma resonance with γ ≪ ω0

JP
not only softens but also significantly broadens so that
γ ≳ ωJP for T ≈ Tc – this behavior is shown in
Fig. 3(a), where the zero-temperature reflectivity plasma
edge eventually becomes featureless, in qualitative agree-
ment with the reflectivity experiments in LSCO [40, 41].

The corresponding 2D maps, where the pulse spectra
are chosen such as to have a substantial spectral overlap
with the loss function [32], are shown in Fig. 3(b). Along
the vertical frequency axis ωτ , each peak is pinned by the
peak frequency of the excitation spectrum and remains
at the same position irregardless of temperature. Along
the horizontal emission frequency axis ωt, however, the
spectral weight of the peaks directly follow the linear
response loss function due to the filtering property of the
environment-sample interface. Let us remark that in the
single-mode picture, where one is in the impulsive limit
and uses identical excitation pulse spectra, one gets peaks
arranged in the strict pattern shown in Fig. 1(c) so that
these peaks would soften towards the origin ωτ = ωt = 0
with decreasing plasma frequency.

We finally mention two recent 2DTS experiments on
NbN [45] and LSCO [32]. While NbN is not a layered su-
perconductor, its nonlinearities are reasonably captured
within mean-field theory, and, as such, the observations
reported in Ref. [45] are found to be consistent with
Fig. 3(b). Our theory also captures the low-temperature
2D maps of LSCO [32], but fails to explain the observa-
tions near T ≈ Tc. Close to Tc, however, superconducting
fluctuations become prominent, implying that the mean-
field description can break down – we consider the role
of plasma fluctuations in the following section and show
that their correction to the third-order susceptibility ex-
plains the data of Ref. [32] near Tc.
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FIG. 3. Evolution of 2D maps with temperature. (a) As
T increases, the JP resonance ωJP(T ) softens and the decay
γ(T ) grows, as can be deciphered from the linear reflectiv-
ity R(ω) and loss function L(ω), Eq. (36). (b) This behav-
ior manifests in the mean-field 2D maps as horizontal slid-
ing of the four peaks as well as their broadening. Here we
fixed σ/ω0

JP = 0.15; the chosen temperatures correspond to
ωJP/ω

0
JP = {1, 0.75, 0.5} and γ/ω0

JP = {0.05, 0.25, 0.5}, re-
spectively.

IV. DYNAMICAL ELECTROMAGNETIC
BACKGROUND

The Josephson plasma resonance softening as T ap-
proaches Tc is accompanied by proliferation of thermally
excited plasmons, indicating that the above simplified
modeling becomes insufficient. An intriguing possibility
to explain the observed 2D maps of LSCO near Tc could
then be that the signal is dominated by the nonlinear
process where the optical pulses give rise to a parametric
drive of counter-propagating plasmon pairs of equal but
opposite momenta – a scenario we turn to investigate in
this section. We remark that this process is at the heart
of the plasmon squeezing proposal [29] for light-induced
superconductivity [46].

To account for the effects of dynamical electromagnetic
background, we consider the Johnson-Nyquist normal-
fluid noise [29], which modifies Eq. (1) to

Jz;n,n+1 = J0 sinφn,n+1 + σ0Ez;n,n+1 + ξn. (38)

The fluctuation-dissipation theorem further imposes [47]:

⟨ξn(r, t)ξm(r′, t′)⟩ = 2σ0T

s
δnmδ(r − r′)δ(t− t′). (39)

Equation (8) then acquires the Langevin form:

(∂2t + γ∂t)ψn −∇2Lnmψm + Λ0 sinψn = ξψn , (40)

with

⟨ξψn (r, t)ξψm(r′, t′)⟩ = 2γT̃ δnmδ(r − r′)δ(t− t′), (41)

where T̃ = 16πe2sT/ε∞. We note that Eq. (40) is de-
rived under the assumption that the order parameter dy-
namics follows Eq. (7), which might no longer hold near
Tc due to, for instance, proliferation of pancake-like vor-
tices. However, even if one considers overdamped or-
der parameter dynamics (model-A in the classification of
Ref. [48]), the Josephson plasma modes can remain long-
lived excitations even above Tc [29]. Additionally, the
experimental analysis of the rephasing peak in optimally-
doped LSCO [22] showed that the intrinsic broadening γ
dominates over disorder effects for T ≲ Tc (in Ref. [22],
T ≲ 0.7Tc). This suggests that pancake vortices are ei-
ther nonessential or their effects can be well captured via
a simple renormalization of the decay rate γ(T ), at least
for temperatures not too close to Tc. In the immediate
vicinity of T ≈ Tc, we expect that the Bulayevskii frame-
work in Sec. II might become insufficient and should be
revisited (we comment on this below). We, thus, shall
proceed with analysing Eq. (40), as we expect that it
should adequately describe the correct physics as T ap-
proaches Tc.

A. Gaussian fluctuations and equations of motion

In the remainder of the paper, we treat the fluctuations
within the Gaussian approximation and our derivations
closely follow Refs. [29, 49]. In this section, we will also
assume that external perturbations are homogeneous in
space – this will dramatically simplify our analysis, fa-
cilitating the understanding of the nonlinear physics due
to the fluctuating electromagnetic background [50]. As a
first step, we reduce the second-order differential equa-
tion (40) to coupled first-order ones by introducing the
real-field πn(r, t) = ∂tψn(r, t):

∂tψn = πn, (42)

∂tπn + γπn −∇2Lnmψm + Λ0 sinψn = ξψn . (43)

The advantage of this simple reduction is that it allows
us to promote the stochastic Langevin-like equations to
the Fokker-Planck equation on the cumulative distribu-
tion function P[ψn(r), πn(r); t]. Within the Gaussian ap-
proximation, this time-dependent distribution function
P[ψn(r), πn(r); t] remains Gaussian even after photoex-
citation. This, in particular, implies that the system’s
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dynamics is fully characterized by the one- and two-point
instantaneous correlation functions.

The two one-point correlators, which are position inde-
pendent due to translational invariance ψ(t) = ⟨ψn(r, t)⟩
and π(t) = ⟨πn(r, t)⟩, satisfy:

∂tψ = π, ∂tπ + γπ + Λ(t) sinψ = jz(t), (44)

where jz(t) encodes an external driving term assumed to
be in the form of a charge current. The time-dependent
coupling Λ(t) is given by:

Λ(t) ≡ Λ0(t)⟨cos δψn(r, t)⟩

= Λ0(t) exp
[
− 1

2AN
∑
q,qz

Dψψ
q,qz (t)

]
. (45)

The bare coupling Λ0(t) might be directly affected by the
laser pulses, as we elaborate upon below. Here we have
introduced the fluctuating field δψn(r, t) = ψn(r, t) −
ψ(t) and its instantaneous two-point correlator Dψψ

q,qz :

Dψψ
q,qz (t) = ⟨δψ(−q,−qz; t)δψ(q, qz; t)⟩. (46)

Interestingly, the time-dependent fluctuating background
dynamically renormalizes the interaction strength Λ0 →
Λ(t) so that the effective model reminds the parametri-
cally driven sine-Gordon.

Equations of motion for the two-point correlation func-
tions, introduced as in Eq. (46), read:

∂tDψψ
q,qz = 2Dψπ

q,qz , (47)

∂tDψπ
q,qz = Dππ

q,qz − γDψπ
q,qz

− [(q2x + q2y)L(qz) + Λ cosψ]Dψψ
q,qz , (48)

∂tDππ
q,qz = 2γT̃ − 2γDππ

q,qz

− 2[(q2x + q2y)L(qz) + Λ cosψ]Dψπ
q,qz . (49)

Here we have utilized the fact that all these correlation
functions are real and Dπψ

q,qz = Dψπ
q,qz .

B. The plasmon squeezing mode and response
functions

We begin our analysis of the derived equations of mo-
tion (44), (47)-(49) by examining the equilibrium correla-
tion functions. In the absence of external time-dependent
perturbations, we get ψ = π = Dψπ

q,qz = 0 and

D̄ππ
q,qz = T̃ , D̄ψψ

q,qz =
T̃

(q2x + q2y)L(qz) + Λeq
, (50)

where the equilibrium coupling Λeq is to be determined
self-consistently:

Λeq = Λ0 exp
[
− 1

2AN
∑
q,qz

D̄ψψ
q,qz

]
, (51)

We find that the Josephson plasma resonance ω2
JP(T ) =

Λeq(T ) softens with increasing T , even if we assume that
the bare model parameters are temperature independent.
In fact, within the Gaussian approximation we employ
here, the transition temperature at which the Josephson
coupling is fully suppressed by fluctuations is found to
be – see Appendix B:

T̃c =
8πc2s2/λ2ab

ϵ∞ (2 + s2/λ2ab)
. (52)

We remark, however, that this result does not take into
account the fact that the Bulayevskii framework in Sec. II
can become insufficient near the phase transition. In
what follows, T̃c is used as the reference temperature.
As follows from Eq. (50), which reflects the equipartition
theorem, the softening can also be understood as prolifer-
ation of plasma fluctuations. For low temperatures, these
plasma modes are barely populated and, thus, cannot
manifest in response functions; as T̃ increases towards
T̃c, their role can no longer be ignored.
We now turn to analyse collective excitations on top of

the equilibrium state. Explicit linearization of the equa-
tions of motion (44), (47)-(49) shows that the dynamics
of one-point correlators ψ and π is decoupled from that of
the D-correlators. This can be understood as the fields ψ
and π are IR-active since they directly couple to the ex-
ternal electric field drive and change sign under inversion;
in contrast, the D-correlators are Raman-active, remain
intact under inversion, and, thus, cannot be excited via
a single photon.
Not surprisingly, the linearized dynamics of ψ and π

encodes nothing but the Josephson plasmons. To see this
explicitly, one can compute the leading order response
ψ(1)(ω) = χψ(ω)jz(ω) to the jz(t)-drive, cf. Eq. (44):

χψ(ω) =
1

−ω2 − iγω + Λeq
. (53)

As in the preceding sections, this response function is
sharply peaked in frequency at the Josepshon plasma res-
onance ωJP(T ) – see also Fig. 4.
We turn to discuss the linearized dynamics of the two-

point correlation functions. For reasons that will become
more clear below and keeping in mind that an intense
laser pulse might partially evaporate the superconduct-
ing condensate, we consider the following type of pertur-
bations:

Λ0 → Λ0 + δΛ0(t). (54)

While such a perturbation of the bare coupling constant
leaves the one-point correlators intact ψ = π = 0, it
can result in a nontrivial dynamics of the two-point cor-
relators Dαβ(t) = D̄αβ + δDαβ(t) and, as such, of the
renormalized coupling Λ(t) = Λeq + δΛ(t). To the lead-
ing order in δΛ0(t), we get

δΛ(t) = Λeq

[δΛ0(t)

Λ0
− 1

2AN
∑
q,qz

δDψψ
q,qz (t)

]
. (55)
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FIG. 4. Cartoon of the relevant (a) IR- (one-photon) and
(b) Raman-like (two-photon) processes that determine opti-
cal properties of the sample. The Raman drive at Ωd ex-
cites a pair of counter-propagating plasmons, each of which
has frequency Ωd/2. (c) One-photon χψ(ω) and two-photon
χΛ(ω) response functions. Most notably, we find that χΛ(ω),
Eq. (60), is peaked in frequency at twice the Josephson plasma
resonance 2ωJP. This is because the Raman process in (b) is
amplified for Ωd = 2ωJP, i.e., near the bottom of the plasmon
band. Additionally, Im[χΛ(ω)] is larger than Im[χ0

Λ(ω)] for
ω ≲ 2ωJP – an effect attributed to plasmon-plasmon interac-
tions. All the responses are normalized by the maximum of
Im[χψ(ω)].

This expression written in the frequency domain

δΛ(ω) = [1 + χΛ(ω)]δΛ0(ω)Λeq/Λ0 (56)

allows us to introduce the response function χΛ(ω), the
central object of the upcoming discussion. Linearization
of Eqs. (47)-(49) gives:

−iωδDψψ
q,qz = 2δDψπ

q,qz , (57)

−i(ω + 2iγ)δDππ
q,qz = −2[q2L(qz) + Λeq]δDψπ

q,qz , (58)

and

−i(ω + iγ)δDψπ
q,qz = δDππ

q,qz − [q2L(qz) + Λeq]δDψψ
q,qz

− δΛ(ω)D̄ψψ
q,qz . (59)

Solving these coupled equations (55)-(59), we obtain (see
Appendix C for details):

χΛ(ω) =
χ0
Λ(ω)

1− χ0
Λ(ω)

, (60)

where

χ0
Λ(ω) = − 2T̃Λeq

T̃cω(ω + iγ)
log

(
1− i

γω

2Λeq
− ω2

4Λeq

)
. (61)

While during Raman perturbations, such as in Eq. (54),
the average electromagnetic field remains zero (ψ = π =
0), the dynamics of the average electromagnetic energy
density, encoded in the D-correlators, can be nontriv-
ial. This is the reason the response functions χ0

Λ(ω) and
χΛ(ω) are associated with the Josephson plasmon squeez-
ing (for additional discussion, see Ref. [29]).

The response function χ0
Λ(ω) has a rather involved and

interesting structure shown in Fig. 4(a). Most remark-
ably, we find that Im[χ0

Λ(ω)] is peaked in frequency at
around 2ωJP. To understand this feature, we note that
a Raman drive at frequency Ωd, as in Eq. (54), neces-
sarily excites a pair of counter-propagating Josephson
plasmons, each with a frequency of Ωd/2 (see Fig. 4(b)).
Such a Raman process is enhanced when Ωd/2 matches
the bottom of the plasmon band Ωd = 2ωJP, i.e., where
the density of states exhibits a van Hove singularity (see
Fig. 4).

Other interesting features of Im[χ0
Λ(ω)] include a hump

at small frequencies ω ≲ ωJP and a slow ∼ 1/ω2 decay at
large frequencies ω ≳ 2ωJP. Both these effects originate
from the interplay between the plasmon density of states,
which grows with ω for ω ≥ ωJP, and ω-dependent ma-
trix elements, associated with the plasmon propagation
(see also Eq. (7)), that decrease with ω, as can be in-
ferred from the prefactor of Eq. (61). Indeed, for small
frequencies, while the plasmon pair generation appears
highly off-resonant, the mentioned matrix elements di-
verge for ω → 0 so that the net effect manifests as the
non-monotonic hump seen for ω ≲ ωJP. Similarly, for
large frequencies, these matrix elements decay faster than
the growth of the density of states so that Im[χ0

Λ(ω)] de-
creases with ω for ω ≳ 2ωJP.

One can intuitively think of χ0
Λ(ω) as the response

function when the plasmon-plasmon interactions are ne-
glected and of χΛ(ω) as it takes into account these inter-
actions within the RPA (see also Appendix C). We find
that the overall behavior of χΛ(ω) is similar to χ0

Λ(ω), ex-
cept Im[χΛ(ω)] is a bit enhanced compared to Im[χ0

Λ(ω)]
for ω ≲ 2ωJP (see Fig. 4(c)). This effect originates from
the fact that the attractive plasmon-plasmon interactions
can give rise to a bi-plasmon binding. However, for pa-
rameters relevant for cuprate superconductors, the bind-
ing energy is found to be negligibly small, manifesting
only as the mentioned enhancement of Im[χΛ(ω)]. For
this reason, we will further discuss 2DTS signatures of the
bi-plasmon binding elsewhere. Most of our conclusions
can be intuitively understood by neglecting the plasmon
interactions.
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FIG. 5. Josephson plasmon squeezing and 2D spectroscopy. (a) 2D maps of the single mode, Eq. (65), and squeezing channel,
Eq. (66). The single mode 2D map (left) is in agreement with Fig. (3), as it reveals an elongated shape along the ωτ -axis. The
squeezing 2D map (right) exhibits a resonance centered at ωt ≈ ωτ ≈ ω0

JP (the (1,1)-peak), even when the plasma frequency
ωJP has appreciably softened, as evidenced by the featureless plasma edge in the linear reflectivity (b). (c) Cartoon explaining
the origin of this peaked behavior. We note that the Raman driving (see text and Fig. 4) occurs at Ωd = 2ωd, where ωd ≈ ω0

JP

is the pulse frequency (b). While the plasmons soften as T approaches Tc, their dispersion is barely affected near ω0
JP, in turn

explaining why the squeezing peak position is not sensitive to T .

C. Plasma fluctuations in 2DTS

In this subsection, we argue that the fluctuating elec-
tromagnetic background, while negligible at low temper-
atures, dramatically affects the 2DTS signal as T ap-
proaches Tc. In particular, such measurements give ac-
cess to the squeezing response function χΛ(ω), which is
then shown to provide a natural interpretation of ex-
perimental 2D maps. Even more strikingly, the pulse
filtering properties discussed in Sec. III enable us to un-
ambiguously distinguish the non-mean-field squeezing re-
sponse from the mean-field nonlinearities – this, in turn,
is argued to enable us to probe thermally excited finite-
momentum plasmons.

To mimic 2DTS experiments, we evaluate the third-
order response to current perturbations as in Eq. (44).
Specifically, a train of light pulses, Eq. (31), is now mod-
eled via

j(t+ τ ; τ) = jA(t+ τ) + jB(t), (62)

with

jA,B(t) = j0Θ(t)e−σt cos (ωdt). (63)

The third-order response can be split into two contri-

butions:

ψ(3)(t) = ψ
(3)
mf (t) + ψ(3)

sq (t). (64)

The first mean-field term ψ
(3)
mf is fully analogous to that

discussed in Sections II and III. Furthermore, the corre-
sponding nonlinear response function (see Appendix D)

χ
(3)
mf (ω1, ω2, ω3) =

Λeq

6
χψ(ω1 + ω2 + ω3)

χψ(ω1)χψ(ω2)χψ(ω3) (65)

can be written solely in terms of the linear response func-
tion χψ(ω), cf. Eq. (30). Since here we consider homo-

geneous perturbations, ψ
(3)
mf encodes only a single mode

with no momenta mixing, naturally present in the pre-
ceding analysis due to the environment-superconductor
interface. Nevertheless, we find that the resulting mean-
field 2D map near Tc qualitatively follows the discussion
in Sec. III C because we use pulse spectra that are nar-
rower than the intrinsic broadening (see Fig. 3(b)) – as

such, the term ψ
(3)
mf cannot explain the observed 2DTS

measurements for T ≲ Tc. The second term ψ
(3)
sq in

Eq. (64) is new and encodes the dynamics of a fluctuating
electromagnetic background. The corresponding third-
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FIG. 6. Disentangling the mean-field and non-mean-field nonlinearities. (a) Sketch of a carrier frequency ωd sweep for fixed
pulse width σ/ω0

JP = 0.15. (b) As ωd is tuned, the mean-field nonlinearity drifts vertically following ωτ = ωd and ωt = ωJP. In
contrast, the squeezing nonlinearity drifts diagonally and is centered at ωτ = ωt = ωd.

order response function is given by (see Appendix D):

χ(3)
sq (ω1, ω2, ω3) =

Λeq

6

∑
i=1,2,3

χψ(ω1 + ω2 + ω3) (66)

× χΛ(ω1 + ω2 + ω3 − ωi)χψ(ω1)χψ(ω2)χψ(ω3).

Most notably, χ
(3)
sq gives access to the squeezing response

function χΛ(ω), which is beyond both the linear opti-
cal response and preceding mean-field modeling. The
squeezing channel in Eq. (66) becomes relevant for 2DTS
only near Tc, where the thermal population of the plasma
modes is appreciable, cf. Eq. (50).

1. 2D maps as T approaches Tc

We now turn to discuss the unique signatures of the

non-mean-field nonlinearity χ
(3)
sq in 2DTS. In contrast to

the mean-field 2D maps that feature a peak that softens
following the linear loss function, the squeezing channel
manifests as a peak centered at ωt ≈ ωτ ≈ ωd regard-
less of T (Fig. 5(a)). The squeezing 2D maps exhibit i)
a dominant non-rephasing nonlinearity and ii) the corre-
sponding peak positions set by the carrier frequency ωd
are independent of temperature – these two features both
agree with and explain recent 2DTS measurements near
T ≈ Tc on optimally-doped LSCO [32].
This peaked behavior can be physically understood

as follows. We first note that close to Tc, the soften-
ing of the plasmon resonance ωJP is accompanied by a
dramatic increase in its intrinsic decay rate. As such,
for γ ≫ ωJP, reflectivity appears featureless (Fig. 5(b)).
Therefore, even off-resonant excitation at ωd ≫ ωJP can
launch a plasmon with the same frequency (more generi-
cally, this could be a virtual process) which, as we further
elaborate upon in Appendix D, can act as a Raman-like
driving ∼ ψ2(t) at frequency Ωd = 2ωd. From the per-
spective of the downconversion illustrated in Fig. 4, this
Raman drive parametrically excites counter-propagating

Josephson plasmons with frequency Ωd/2 = ωd (this pro-
cess can also be understood within Eq. (44), where Λ(t)
oscillates at Ωd). The squeezing nonlinearity therefore
leads to generating a continuum of plasmon pairs with
the frequency distribution set by the excitation spectrum,
which determines the peak position along the vertical
axis ωτ ≈ ωd. The featureless reflectivity spectrum then
leads to an emission spectrum that likewise follows the
excitation spectrum, centered at ωt ≈ ωd. We finally
note that for ωd ≫ ωJP, the plasmon dispersion near ωd
is barely affected by T (see Fig. 5(c)), further supporting
the robustness of the peak position to temperature.

2. Phenomenological model above Tc

Extending our approach to temperatures above Tc re-
quires additional considerations. There is strong experi-
mental evidence that in high-Tc cuprates local supercon-
ducting correlations remain finite even when long-range
order disappears [51–56]. Following Refs. [38, 57] we ex-
pect that in this case one can separate slow statistical
fluctuations ψstat

n of the phase of the order parameter and

fast fluctuations ψ̃n describing collective modes and re-
sponse to electromagentic probes. Starting from Eq. (8)

(∂2t + γ∂t)(ψ
stat
n + ψ̃n)−∇2Lnm(ψstat

m + ψ̃m)+

Λ0 sin
(
ψstat
n + ψ̃n

)
= 0, (67)

one is required to average over the statistical phase fluc-
tuations ψstat

n to obtain an effective model for ψ̃n, which
describes collective modes and terahertz electromagnetic
response. Plasmon type collective excitations are ex-
pected to persist above Tc, but they should become gap-
less and have stronger damping. We expect that effective
theory of such plasmons can be captured by a model of
the type:

(∂2t + γ̃∂t)ψ̃n −∇2Lnmψ̃m + Λ̃4ψ̃
3
n = 0. (68)
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FIG. 7. Probing finite-momentum thermal fluctuations. (a) Real and imaginary parts of the integrand of Eq. (69) (solid) and
the ‘background’ function fBG(ϵ, ω) in Eq. (71) (dashed). By subtracting one from the other (b), we get a signal that is well
represented by a single Lorentzian (dashed-dotted) that carries information about N (ωd)×nωd . Parameters used: γ/ω0

JP = 0.5,
ωd/ω

0
JP = 1, and ωJP/ω

0
JP = 0.1.

Linearized form of Eq. (68) gives a linearly dispersing
mode at small momenta, and the last term describes non-
linear interaction between plasmons.

It is useful to note that Eq. (68) can not be obtained
by simply setting Λ0 to zero in Eq. (8). While the lat-
ter naive approach gives a gapless plasmon spectrum, it
results in vanishing nonlinear interaction between plas-
mons, Eqs. (65) and (66). We postpone detailed discus-
sion of plasmons in the pseudogap regime until future
publication.

3. Disentangling the non-mean-field nonlinearity

We note that for a wide variety of parameters
the mean-field rephasing nonlinearity may obscure the
squeezing contribution, as can be seen in Fig. 5 and fur-
ther expanded upon below in the context of third har-
monic generation. An exciting possibility, rather unique
to 2DTS, is to exploit the filtering effect of the excita-
tion pulse spectrum discussed in Sec. III A in order to
unambiguously disentangle the non-mean-field response

χ
(3)
sq from the mean-field one χ

(3)
mf (see Fig. 6). Indeed,

following our discussion in Sec. III C, we expect that tun-
ing the carrier frequency ωd (Fig. 6(a)) will result in a
vertical shift of the non-rephasing mean-field nonlinear-
ity according to ωτ ≈ ωd (Fig. 6(b)), provided the pulse
frequency profile has appreciable spectral overlap with
the loss function. At the same time, as follows from
the preceding discussion, the squeezing peak is locked to
ωt ≈ ωτ ≈ ωd and, thus, upon tuning ωd, will shift diag-
onally (Fig. 6(b)), thereby separating the two responses
from each other.

4. Probing finite-momentum thermal fluctuations

This capability of 2DTS to disentangle the squeezing
nonlinearity can then be used to extract useful infor-
mation about thermally-excited plasmons at finite mo-
mentum. Intuitively one expects, and we demonstrate
this below, that a careful analysis of the non-rephasing
nonlinearity (see Fig. 6) gives access to N (ωd) × nωd

,
where N (ωd) is the plasmon density of states at ωd and
nωd

= T/ωd is the thermal occupation number of the
plasmons with energy ωd.
To this end, we rewrite χ0

Λ(ω) as (cf. Eq. (C12)):

χ0
Λ(ω) = −ω + 2iγ

ω + iγ

∫ ∞

0

dϵ
Λeq N (ϵ) D̄ψψ

ϵ

ω(ω + 2iγ)− (2ϵ)2
, (69)

where D̄ψψ
ϵ = T̃ /ϵ2, cf. Eq. (50), and

N (ϵ) = Θ(ϵ− ωJP) (2 + s2/λ2ab)
λ2abϵ∞
2πc2s2︸ ︷︷ ︸

≡ ν

ϵ. (70)

Following the preceding discussion (see also Eq. (66) and
Figs. 5 and 6), we are interested in evaluating χ0

Λ(ω) at
around ω = 2ωd for ωd ≫ ωJP. We note that the denom-
inator of the integrand in Eq. (69) suggests that we get a
Lorentzian peaked at ϵ = ωd; however, the 1/ϵ

2-behavior
of D̄ψψ

ϵ gives rise to a more complicated shape of this
integrand shown in Fig. 7(a) – in fact, the contribution
at small ϵ ≈ ωJP can obscure the peaked behavior near
ϵ = ωd that we are interested in. The latter can be iso-
lated via introducing the ‘background’ function (γ ≲ ωd)

fBG(ϵ, ω) = ΛeqνT
−ω2 + iγω

4ϵ3(ω2 + γ2)
tanh2

(
2ϵ

ω

)
(71)

that well captures the asymptotic behavior (both ϵ → 0
and ϵ → ∞) of the integrand of Eq. (69), as shown in
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Fig. 7(a). Assuming that both N (ϵ) and D̄ψψ
ϵ vary slowly

near ϵ = ωd (see Fig. 7(b)), we thus arrive at:

χ0
Λ(2ωd) ≃

∫ ∞

ωJP

fBG(ϵ, 2ωd) dϵ (72)

+ ΛeqN (ωd)D̄ψψ
ωd

∫ ∞

0

dϵ

2ωd(2ωd + i2γ)− (2ϵ)2
.

Performing the integral over the Lorentzian, we get:

χ0
Λ(2ωd) ≃

∫ ∞

ωJP

fBG(ϵ, 2ωd) dϵ−
iπΛeqN (ωd)D̄ψψ

ωd

8
√
ωd(ωd + iγ)

. (73)

We have thus shown that the response function χ0
Λ

can be decomposed into a well-defined background term∫∞
ωJP

fBGdϵ, that only weakly depends on ωd, and a term

that scales with N (ωd) × nωd
. A simple background

subtraction should therefore isolate the finite momentum
thermal fluctuations.

D. Third Harmonic Generation

One may also draw a comparison between 2DTS and
third harmonic generation (THG), which probes a sub-
set of the full nonlinearity accessible with 2DTS. THG is
a powerful one-dimensional spectroscopic technique that
has been extensively applied to study nonlinear optical
properties of cuprates. Examples include investigation
of striped superconductors with intertwined orders [58],
origins of light-induced superconductivity [59], out-of-
plane Josephson plasmons [60, 61], and Higgs mode sig-
natures [62, 63]. In such experiments, photoexcitation
consists of a narrowband pulse centered at the carrier
frequency ωd, while the experimental observable is light
emission at 3ωd:

Esignal(t) ∝ χ(3)(ωd, ωd, ωd)e
−i3ωdt + c.c. (74)

While THG gives partial access to χ(3), we find that the
contribution of squeezing nonlinearities to THG is diffi-
cult to separate from the mean-field one (see Fig. 8). In-
deed, both nonlinearities have similar THG spectral pro-
files, while the sensitivity to thermally excited plasmons,
as measured by the third harmonic spectral weight rel-
ative to the fundamental harmonic, decreases with tem-
perature. This result is in full agreement with Ref. [34]
and clearly illustrates the advantage of 2DTS in studying
dynamical effects beyond mean-field both in the context
of Josephson plasmonics and beyond.

V. CONCLUSION AND OUTLOOK

In this paper we developed a theory for 2DTS of the
Josephson plasma resonance in layered superconductors.
The nonlinear electrodynamics were cast in the form of
optical susceptibility, from which explicit expressions for
the 2D-spectra were obtained.
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FIG. 8. Third harmonic generation (THG). (a) Typical wave-
mixing signals (here T/Tc = 0.5) due to the mean-field and
squeezing nonlinearities appear to have a substantial spec-
tral overlap, which makes it difficult to isolate the squeezing
channel. (b) Temperature evolution of the ratio of the third
harmonic spectral intensity (integral under the shaded area
II) to that of the fundamental one (integral under the shaded
area I) shows that THG becomes less sensitive to thermally
excited plasmons as T approaches Tc. The driving frequency
is fixed to ωd/ω

0
JP = 1 for all temperatures.

For low temperatures, at which mean-field approxima-
tions hold, the spectra obtained remarkably follow intu-
ition derived from the conventional scenario of quantum
level systems [42]. We demonstrated that the rephasing
nonlinearity unambiguously separates homogeneous and
inhomogeneous broadening in the impulsive limit, and
that increasing temperature results in spectral peaks that
directly follow the softening of the loss function.
Near the phase transition however, the breakdown of

the mean-field picture results in qualitative changes to
the 2D-spectra that are both absent in the linear optical
response and unique to collective excitations and their
interactions. We found that non-mean-field corrections
to the nonlinear susceptibility, such as the ones due to
the parametric generation of squeezed plasmon pairs at
finite momenta, manifest as distinct signatures in 2D-
spectra and can be unambiguously isolated by proper
choice of excitation pulse spectra. Our theory provides
a natural interpretation to recent experimental observa-
tions [32], and paves the way for 2DTS to be an exper-
imental probe of finite-momentum thermal fluctuations.
By comparison, we found that third-harmonic generation
[59, 61], a one-dimensional nonlinear spectroscopy tech-
nique, is both ambiguous to the origin of the probed opti-
cal nonlinearity and also exhibits a decreasing sensitivity
to plasma fluctuations.
This comprehensive development of a theoretical

framework for 2DTS of a collective excitation immedi-
ately motivates a new range of directions for both the-
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oretical and experimental investigations. For example,
many of the most enigmatic quantum materials feature
coupling between several degrees of freedom [64, 65], and
theoretical exploration of how these couplings between
various collective excitations manifest in 2DTS remains
relatively unexplored. In this context, we are particu-
larly interested in striped superconducting phases due
to intertwined superconducting and charge (and possibly
other) orders, which exhibit frustrated linear optical re-
sponses but have previously been shown to retain optical
nonlinearities [58].

Such theoretical development could be particularly
important in the context of understanding the phe-
nomenon of light-induced superconductivity, interesting
both fundamentally and technologically. In cuprates,
coupling between Josephson plasmons and particular
phonon modes [28, 46, 66] has proven crucial to pu-
tative non-equilibrium superconductivity, but is often
poorly understood. In other instances, metastable photo-
induced superconductivity could originate from an inter-
play between competing orders such as superconductivity
and charge order [67, 68]. Understanding how various or-
der parameters and their associated collective modes cou-
ple will shed light on these intriguing phenomena, which
calls for a 2DTS probe to disentangle the complex un-
derlying physics.

Another important direction could be towards extend-
ing the presented model to incorporate optical cavities.
Resonant cavities have been proposed to strongly modify
the coupling of Josephson plasmons with light [31, 69] in
both interesting and functional ways, and these changes
should manifest in 2D-spectra as well [70, 71]. Beyond
the Josephson plasma resonance, this is also motivated
by recent experiments demonstrating spectacular control

of a phase transition using a terahertz cavity [72]. The
specific mechanisms leading to these effects remain un-
certain however, which also calls for a 2DTS probe to
clarify the underlying physics.
More broadly, we believe this work to be a valuable first

step towards a general theoretical description for 2DTS
of complex solids, and expect many of the results derived
here for the Josephson plasma resonance to apply gener-
ically for 2DTS of collective excitations. Phonons [73],
magnons [74], and charge density waves [75] are but a few
examples of such collective excitations for which nonlin-
earities play an essential role, and 2DTS should provide
invaluable insight into these important systems that were
previously accessible only via high-energy probes. The
general principles we demonstrate here for a model col-
lective excitation will further guide the design of future
2DTS experiments in targeting the most striking effects
of quantum materials.
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(Springer International Publishing, Cham, 2019) pp.
275–320.

[19] K. Reimann, M. Woerner, and T. Elsaesser, Two-
dimensional terahertz spectroscopy of condensed-phase
molecular systems, The Journal of Chemical Physics 154,
120901 (2021).

[20] M. Mootz, L. Luo, J. Wang, and l. E. Perakis, Visu-
alization and quantum control of light-accelerated con-
densates by terahertz multi-dimensional coherent spec-
troscopy, Communications Physics 5, 47 (2022).

[21] L. Luo, M. Mootz, J. H. Kang, C. Huang, K. Eom, J. W.
Lee, C. Vaswani, Y. G. Collantes, E. E. Hellstrom, I. E.
Perakis, C. B. Eom, and J. Wang, Quantum coherence
tomography of light-controlled superconductivity, Nature
Physics 19, 201 (2023).

[22] A. Liu, D. Pavicevic, M. H. Michael, A. G. Salvador, P. E.
Dolgirev, M. Fechner, A. S. Disa, P. M. Lozano, Q. Li,
G. D. Gu, E. Demler, and A. Cavalleri, Probing inhomo-
geneous cuprate superconductivity by terahertz joseph-
son echo spectroscopy (2023), arXiv:2308.14849 [cond-
mat.supr-con].

[23] J. Lu, X. Li, H. Y. Hwang, B. K. Ofori-Okai, T. Kurihara,
T. Suemoto, and K. A. Nelson, Coherent two-dimensional
terahertz magnetic resonance spectroscopy of collective
spin waves, Phys. Rev. Lett. 118, 207204 (2017).

[24] H.-W. Lin, G. Mead, and G. A. Blake, Mapping linbo3
phonon-polariton nonlinearities with 2d thz-thz-raman
spectroscopy, Phys. Rev. Lett. 129, 207401 (2022).

[25] Z. Zhang, F. Y. Gao, Y.-C. Chien, Z.-J. Liu, J. B. Cur-
tis, E. R. Sung, X. Ma, W. Ren, S. Cao, P. Narang,
A. von Hoegen, E. Baldini, and K. A. Nelson, Terahertz
field-driven magnon upconversion in an antiferromagnet
(2023), arXiv:2207.07103 [cond-mat.mtrl-sci].

[26] T. G. H. Blank, K. A. Grishunin, K. A. Zvezdin,
N. T. Hai, J. C. Wu, S.-H. Su, J.-C. A. Huang, A. K.
Zvezdin, and A. V. Kimel, Two-dimensional terahertz
spectroscopy of nonlinear phononics in the topological
insulator mnbi2te4, Phys. Rev. Lett. 131, 026902 (2023).

[27] W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser,
Phase-resolved two-dimensional spectroscopy based on
collinear n-wave mixing in the ultrafast time domain, The
Journal of Chemical Physics 130, 164503 (2009).

[28] M. H. Michael, M. Först, D. Nicoletti, S. R. U. Haque,
Y. Zhang, A. Cavalleri, R. D. Averitt, D. Podolsky,
and E. Demler, Generalized fresnel-floquet equations for
driven quantum materials, Phys. Rev. B 105, 174301
(2022).

[29] P. E. Dolgirev, A. Zong, M. H. Michael, J. B. Curtis,
D. Podolsky, A. Cavalleri, and E. Demler, Periodic dy-
namics in superconductors induced by an impulsive op-
tical quench, Commun. Phys. 5, 234 (2022).

[30] H. Li, B. Lomsadze, C. Smallwood, and S. Cundiff,
Optical Multidimensional Coherent Spectroscopy (Oxford
University Press, 2023).

[31] Y. Laplace, S. Fernandez-Pena, S. Gariglio, J. M.
Triscone, and A. Cavalleri, Proposed cavity josephson
plasmonics with complex-oxide heterostructures, Phys.
Rev. B 93, 075152 (2016).

[32] A. Liu et al., forthcoming, (2023).
[33] S. Savel’ev, V. A. Yampol’skii, A. L. Rakhmanov, and

F. Nori, Terahertz josephson plasma waves in layered
superconductors: spectrum, generation, nonlinear and
quantum phenomena, Reports on Progress in Physics 73,
026501 (2010).

[34] F. Gabriele, M. Udina, and L. Benfatto, Non-linear tera-
hertz driving of plasma waves in layered cuprates, Nature
Communications 12, 752 (2021).

[35] F. Gabriele, C. Castellani, and L. Benfatto, Generalized
plasma waves in layered superconductors: A unified ap-
proach, Phys. Rev. Res. 4, 023112 (2022).

[36] L. N. Bulaevskii, M. Zamora, D. Baeriswyl, H. Beck, and
J. R. Clem, Time-dependent equations for phase differ-
ences and a collective mode in josephson-coupled layered
superconductors, Phys. Rev. B 50, 12831 (1994).

[37] L. N. Bulaevskii, M. Ledvij, and V. G. Kogan, Vortices in
layered superconductors with josephson coupling, Phys.
Rev. B 46, 366 (1992).

[38] A. Koshelev and L. Bulaevskii, Fluctuation broadening
of the plasma resonance line in the vortex liquid state of
layered superconductors, Phys Rev. B 60, R3743 (1999).

[39] D. van der Marel, H.-U. Habermeier, D. Heitmann,
W. König, and A. Wittlin, Infrared study of the super-
conducting phase transition in YBa2Cu3O7−x, Physica
C: Superconductivity 176, 1 (1991).

[40] K. Tamasaku, Y. Nakamura, and S. Uchida, Charge dy-
namics across the CuO2 planes in La2−xSrxCuO4, Phys.
Rev. Lett. 69, 1455 (1992).

[41] A. B. Kuzmenko, N. Tombros, H. J. A. Molegraaf,
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Appendix A: Generalized reflectivity protocol

This Appendix discusses that our derivations of Josephson plasmon nonlinearities in Sec. II can be straightforwardly
extended to other types of collective modes. We begin by writing down Maxwell’s equations in the sample [76]

∇D = 0, ∇B = 0, ∇× E = −1

c

∂B

∂t
, ∇×H =

1

c

∂D

∂t
, (A1)

alongside with the constitutive relations

D = E + 4πP, H = B − 4πM, J =
∂P

∂t
+ c∇×M. (A2)

Taking the curl of Faraday’s law, we arrive at

∇×∇× E +
1

c2
∂2E

∂t2
= −4π

c2
∂J

∂t
. (A3)

If we are interested only in the polarization response of the system (M = 0), for the transverse component of the
electric field we then get

∇2E⊥ − 1

c2
∂2E⊥

∂t2
=

4π

c2
∂2P⊥

∂t2
. (A4)

Here, the polarization vector acts as a source for the electric field. We now split the polarization vector into its
linear part, proportional to the electric field, and non-linear part, containing higher orders of the electric field:
P = P (1)+PNL. The linear relation between P (1) and E(r′, t′) can be expressed via the response function χ(r−r′, t−t′)
as

P (1)(r, t) =

∫
ddr′

∫ t

0

dt′χ(r − r′, t− t′)E(r′, t′). (A5)

Plugging into (A3) and defining the dielectric function as ε(r − r′, t− t′) = δ(t− t′)δ(r − r′) + 4πχ(t− t′, r − r′), we
arrive at

∇×∇× E +
1

c2
∂2

∂t2

∫
ddr′

∫ t

0

dt′ ε(r − r′, t− t′)E(r′, t′) = −4π

c2
∂2PNL

∂t2
(A6)

and

∇2E⊥ − 1

c2
∂2

∂t2

∫
ddr′

∫ t

0

dt′ [ε(r − r′, t− t′)E(r′, t′)]
⊥
=

4π

c2
∂2P⊥

NL

∂t2
. (A7)

The nonlinear polarization PNL carries the complete microscopic information describing any nonlinear optical pro-
cess of interest; PNL is to be obtained from the microscopic dynamics of the system. Restricting ourselves to the
transverse sector and henceforth dropping ⊥, we can rewrite the previous equation in terms of the vector potential as

∇2A− 1

c2
∂2

∂t2

∫
ddr′

∫ t

0

dt′ ε(r − r′, t− t′)A(r′, t′) = −4π

c

∂PNL

∂t
. (A8)

Assuming normal incidence, the Fresnel boundary conditions are written as:

Ein
z (y, t) + Er

z(y, t) = Et
z(y, t) = −1

c
∂tA(r, t)

∣∣
x=0

, Bin
y (y, t) +Br

y(y, t) = Bt
y(y, t) = −∂xA(r, t)

∣∣
x=0

. (A9)

Equation (15) further yields:

2Ein(y, t) =
(
∂xA(r, t)−

1

c
∂tA(r, t)

)∣∣∣∣∣
x=0

and Er(y, t) = −1

2

(
∂xA(r, t) +

1

c
∂tA(r, t)

)∣∣∣∣∣
x=0

. (A10)

The presented equations are generic and represent the starting point for analysing nonlinearities of many-body systems.
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Following the derivation steps in Sec. II, we now illustrate how such nonlinearities could be evaluated in practice
using as an example the nonlinear Lorentz oscillator model:(

∂2t + Γ∂t − v2∂2x +m2
)
P (x, t) + gP 3(x, t) = E(x, t). (A11)

(Note that here, in order for P and E to have the same unit, frequencies have been rescaled to be dimensionless.) We
now expand the polarization vector in powers of the electric field P (x, t) = P (1)(x, t) + P (3)(x, t) + . . . :(

∂2t + Γ∂t − v2∂2x +m2
)
P (1)(x, t) = E(x, t), (A12)(

∂2t + Γ∂t − v2∂2x +m2
)
P (3)(x, t) = −g

(
P (1)(x, t)

)3

. (A13)

Eq. (A12) yields the response function and dielectric function to be given by:

χ(k, ω) =
−1

ω(ω + iΓ)− v2k2 −m2
, ϵ(k, ω) = 1− 4π

ω(ω + iΓ)− v2k2 −m2
. (A14)

The Fresnel boundary conditions for the vector potential then result in:

(
∂xA

(1)(x, t)− 1

c
∂tA

(1)(x, t)
)∣∣∣∣∣
x=0

= 2Ein(0, t),
(
∂xA

(3)(x, t)− 1

c
∂tA

(3)(x, t)
)∣∣∣∣∣
x=0

= 0. (A15)

The linear response can be related to the dielectric function as:

A(1)(x, t) =

∫
dω

2π
Ã1(ω)e

ikx(ω)x−iωt, (A16)

where kx(ω) is defined through

k2x =
ω2

c2
ϵ(kx, ω) ≈

ω2

c2
ϵ(k = 0, ω) ≡ ω2

c2
ϵ(ω). (A17)

This approximation is justified whenever v ≪ c, which is expected to hold for a typical solid-state system. The
amplitudes Ã(1)(ω) are determined from the boundary conditions (A15):

Ã(1)(ω) =
c

iω
t(ω)Ẽin(ω), where t(ω) =

2

1 +
√
ϵ(ω)

. (A18)

The linear polarization is then given by:

P (1)(x, t) ≃
∫
dω

2π
χ(ω)t(ω)Ein(ω)eikx(ω)x−iωt, (A19)

where again we have assumed v ≪ c and defined χ(ω) ≡ χ(k = 0, ω).
Having determined the leading harmonic P (1)(x, t), we turn to compute P (3)(x, t). Since Eq. (A13) is a linear

differential equation, we easily obtain:

P (3)(x, t) = −g
∫
dω

2π

∫
dk

2π
χ(ω)eikx−iωt

∫
dω1

2π

dω2

2π

dω3

2π
2πδ(ω1 + ω2 + ω3 − ω)2πδ(kx(ω1) + kx(ω2) + kx(ω3)− k)

×
[
χ(ω1)t(ω1)E

in(ω1)
] [
χ(ω2)t(ω2)E

in(ω2)
] [
χ(ω3)t(ω3)E

in(ω3)
]
. (A20)

The equation on A(3)(x, t) is also a linear differential equation, and therefore we can write the generic solution as:

A(3)(x, t) =

∫
dω

2π
Ã(3)(ω)eikx(ω)x−iωt +A

(3)
dr (x, t), (A21)

where

A
(3)
dr (x, t) = 4πic

∫
dk

2π

∫
dω

2π

ωP (3)(k, ω)

ω2ϵ(k, ω)− k2c2
e−i(ωt−kx). (A22)
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The coefficients Ã(3)(ω) are determined from the boundary condition (A15):

Ã(3)(ω) = −
∫

dk

2π

ω + ck

ω + ckx(ω)
A

(3)
dr (k, ω). (A23)

For the ease of notations, we define ω̄ = ω1+ω2+ω3 and kx(ω1, ω2, ω3) = kx(ω1)+kx(ω2)+kx(ω3). For the reflected
light at x = 0, we finally obtain:

Er
3(t) = −1

2

(1
c
∂tA

(3)(0, t) + ∂xA
(3)(0, t)

)
= −i

∫
dω

2π

∫
dk

2π

ω [k − kx(ω)]

ω + kx(ω)
A

(3)
dr (k, ω)e

−iωt

=

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
e−iω̄tχ(3)(ω1, ω2, ω3)E

in(ω1)E
in(ω2)E

in(ω3). (A24)

so that the third-order susceptibility is then given by:

χ(3)(ω1, ω2, ω3) =
2πg

ckx(ω1, ω2, ω3)/ω̄ +
√
ϵ(ω̄)

[χ(ω̄)t(ω̄)] [χ(ω1)t(ω1)] [χ(ω2)t(ω2)] [χ(ω3)t(ω3)] . (A25)

Appendix B: Equilibrium fluctuations within the Gaussian approximation

In this Appendix, we discuss the equilibrium correlation functions obtained by self-consistently solving Eqs. (50)
and (51). To this end, it is natural to consider the following quantity:

Ω(T̃ , C) ≡ 1

AN
∑
q,qz

D̄ψψ
q,qz =

∫ π

−π

dqz
2π

∫ C

0

dq

2π

q T̃

q2L(qz) + Λeq
, (B1)

where C is the UV momentum cutoff. The in-plane integration results in

Ω(T̃ ; C) = T̃

8π2

∫ π

−π
dqz

1

L(qz)
log

(
1 +

C2L(qz)

Λeq

)
≃ T̃

8π2

∫ π

−π
dqz

1

L(qz)
log

(C2L(qz)

Λeq

)
, (B2)

where we have assumed that C ≫
√
Λeq/minqz (L(qz)). The integral over qz can also be evaluated explicitly:

Ω(T̃ ; C) = T̃

4πc20

{
b
[
log

( 2c20C2/Λeq

b+
√
b2 − 4

)
− 1

]
+

√
b2 − 4

}
, (B3)

where we have defined b ≡ 2 + s2/λ2ab. Substituting Λeq = Λ0 exp(−Ω/2), we arrive at:

Ω(T̃ , C) = T̃ /4πc20
1− T̃ b/8πc20

{
b
[
log

( 2c20C2/Λ0

b+
√
b2 − 4

)
− 1

]
+

√
b2 − 4

}
. (B4)

From this result, we obtain the critical temperature, i.e., where the Josephson plasmon resonance softens to zero:

T̃c =
8πc20

2 + s2/λ2ab
=

8πc2s2/λ2ab
ϵ∞ (2 + s2/λ2ab)

. (B5)

The central result of this Appendix is Eq. (B4), which can be used to obtain any other equilibrium observable of
interest.

Appendix C: Dynamics of two-point correlators

Considering the perturbation given in Eq. (54), the linearized equations of motion for the two-point correlators
around the equilibrium state are given by:

−iωδDψψ
q,qz = 2δDψπ

q,qz , (C1)

−i(ω + iγ)δDψπ
q,qz = δDππ

q,qz − [q2L(qz) + Λeq]δDψψ
q,qz − Λeq

[δΛ0

Λ0
− 1

2AN
∑
k,kz

δDψψ
k,kz

]
D̄ψψ

q,qz , (C2)

−i(ω + 2iγ)δDππ
q,qz = −2[q2L(qz) + Λeq]δDψπ

q,qz . (C3)
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We observe that the last term in Eq. (C2) mixes different momenta modes, suggesting to split the propagator of
fluctuations into the diagonal part

G−1
0 (ω; q, q′) =

 −iω −2 0
q2L(qz) + Λeq −i(ω + iγ) −1

0 2[q2L(qz) + Λeq] −i(ω + 2iγ)

 δq,q′ (C4)

and the off-diagonal part

V(q, q′) = −ΛeqD̄ψψ
q

2AN

0 0 0
1 0 0
0 0 0

 , (C5)

where

δDq =
(
δDψψ

q , δDψπ
q , δDππ

q

)⊤
, q =

(
q, qz

)
. (C6)

We also define a driving vector f as:

fq(ω) = −D̄ψψ
q Λeq

δΛ0(ω)

Λ0

0
1
0

 . (C7)

One can formally write the solution of Eqs. (C1)-(C3) as follows:

δDk =
∑
k′

(
1

G−1
0 + V

)
k,k′

fk′ = (G0f)k − (G0VG0f)k + (G0VG0VG0f)k − . . .

=
∑
k′

G0(k, k
′)fk′ −

∑
p

G0(k, p)
∑
k′′

V(p, k′′)
∑
k′

G0(k
′′, k′)fk′ + . . . (C8)

Since V(k, q) depends only on k and G0(k, k
′) ∝ δk,k′ , we further have:

δDk = G0(k)fk −G0(k)V(k)
∑
k′

G0(k
′)fk′ +G0(k)V(k)

∑
k′′

G0(k
′′)V(k′′)

∑
k′

G0(k
′)fk′ − . . . (C9)

Summing both sides with respect to k, we get:

1

AN
∑
k,kz

δDk =
(
1−

∑
p

G0(p)V(p) +
(∑

p

G0(p)V(p)
)2

+ . . .
) 1

AN
∑
k′

G0(k
′)fk′

=
( 1

1 +
∑
pG0(p)V(p)

) 1

AN
∑
k

G0(k)fk. (C10)

In particular, for the ψψ-component, Eq. (C10) yields:

1

2AN
∑
q,qz

δDψψ
q,qz (ω) = − χ0

Λ(ω)

1− χ0
Λ(ω)

δΛ0(ω)

Λ0
= −χΛ(ω)

δΛ0(ω)

Λ0
, (C11)

where

χ0
Λ(ω) = −ω + 2iγ

ω + iγ

1

AN
∑
q,qz

D̄ψψ
q,qzΛeq

ω(ω + 2iγ)− 4[q2L(qz) + Λeq]
(C12)

= − 2T̃Λeq

T̃cω(ω + iγ)
log

(
1− i

γω

2Λeq
− ω2

4Λeq

)
. (C13)

This completes our derivation of Eqs. (60) and (61) of the main text.
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Appendix D: The third order response function and plasma squeezing

Following Sec. II, here we evaluate the third order response function but now take into account the dynamics
of the electromagnetic background. To mimic an incoming train of light pulses, we consider current perturbations
jz(t) ∼ Ein

z (t), Eq. (44), as well as perturabtions of the bare coupling constant δΛ0(t) ∼ [Ein
z (t)]2, Eq. (54). Explicit

expansion to the third order in the incoming electric field acquires the form:

ψ(t) = ψ(1)(t) + ψ(3)(t) + · · · , (D1)

π(t) = π(1)(t) + π(3)(t) + · · · , (D2)

Dαβ
q,qz (t) = D̄αβ

q,qz (t) +Dαβ(2)
q,qz (t) + · · · . (D3)

Direct insertion of this expansion into Eqs. (44)-(49) gives:

ψ(3)(ω)

χψ(ω)
=

Λeq

6
FT

[(
ψ(1)(t)

)3]
−FT

[(
Λeq

δΛ0(t)

Λ0
− Λeq

2AN
∑
q,qz

Dψψ(2)
q,qz (t)

)
ψ(1)(t)

]
, (D4)

where ψ(1)(ω) = χψ(ω)jz(ω) and FT stands for the Fourier transform. The dynamics ofDψψ(2)
q,qz follows from linearizing

Eqs. (47)-(49) on top of the equilibrium state:

−iωDψψ(2)
q,qz = 2Dψπ(2)

q,qz , (D5)

−i(ω + iγ)Dψπ(2)
q,qz = Dππ(2)

q,qz − [q2L(qz) + Λeq]Dψψ(2)
q,qz − Λeq

[δΛ0

Λ0
− 1

2AN
∑
k,kz

Dψψ(2)
k,kz

− 1

2
(ψ(1) ∗ ψ(1))(ω)

]
D̄ψψ

q,qz ,

(D6)

−i(ω + 2iγ)Dππ(2)
q,qz = −2[q2L(qz) + Λeq]Dψπ(2)

q,qz , (D7)

where ∗ denotes convolution. The only difference between Eqs. (D5)-(D7) and Eqs. (C1)-(C3) is that the left hand
side of Eq. (D6) contains an additional driving term ∝ (ψ(1)(t))2. Employing Eq. (C11), we, thus, readily obtain:

− Λeq

2AN
∑
q,qz

Dψψ(2)
q,qz (ω) = χΛ(ω)Λeq

[
δΛ0(ω)

Λ0
− (ψ(1) ∗ ψ(1))(ω)

2

]
. (D8)

Equation (D4) then yields:

ψ(3)(ω)

χψ(ω)
=

Λeq

6
FT

[(
ψ(1)(t)

)3]
−FT

{
FT −1

[(
1 + χΛ(ω)

)
Λeq

δΛ0(ω)

Λ0
− χΛ(ω)Λeq

(ψ(1) ∗ ψ(1))(ω)

2

]
ψ(1)(t)

}
. (D9)

The third order dynamics of ψ can be written as:

ψ(3)(t) =

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
e−i(ω1+ω2+ω3)tχ(3)(ω1, ω2, ω3)jz(ω1)jz(ω2)jz(ω3)

+

∫
dω1

2π

∫
dω2

2π
e−i(ω1+ω2)tχ̃(3)(ω1, ω2)δΛ0(ω1)jz(ω2), (D10)

where χ(3)(ω1, ω2, ω3) = χ
(3)
mf (ω1, ω2, ω3) + χ

(3)
sq (ω1, ω2, ω3) with:

χ
(3)
mf (ω1, ω2, ω3) =

Λeq

6
χψ(ω1 + ω2 + ω3)χψ(ω1)χψ(ω2)χψ(ω3),

χ(3)
sq (ω1, ω2, ω3) =

Λeq

6

∑
i=1,2,3

χψ(ω1 + ω2 + ω3)χΛ(ω1 + ω2 + ω3 − ωi)χψ(ω1)χψ(ω2)χψ(ω3), (D11)

and

χ̃(3)(ω1, ω2) = −Λeq

Λ0
χψ(ω1 + ω2) [1 + χΛ(ω1)]χψ(ω2). (D12)

This completes our derivations of Eqs. (65) and (66) of the main text.
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