
Appendix

A Choice Tasks

Table A.1: The 49 decision tasks faced by the participants
task unchanging changing average

(m1, ...,mM ;m) (n1, ..., nN ;n) #balls #priors |∆(#priors)| |∆(#win-balls)| |∆̂EU | |∆̂SM | |∆̂RD| |∆̂AM |
1 1,2;3 0,1,2,3;3 13.5 4.5 1 1.70 .153 .183 .158 .158
2 0,1,2,3;3 0,1,2,3;3 19.5 6.5 1.5 2.13 .152 .155 .157 .149
3 0,1,2,3,4;4 0,1,2,3;3 27.5 7.5 2.5 6.31 .146 .153 .151 .138
4 0,3;3 0,1,2,3,4;4 18 5 1.4 3.68 .132 .170 .138 .129
5 1,2;3 0,1,2,3,4;4 18 5 1.4 3.47 .134 .161 .139 .138
6 0,1,2,3;3 0,1,2,3,4;4 24 7 1.4 2.81 .133 .143 .138 .126
7 0,1,2,3,4;4 0,1,2,3,4;4 32 8 2 3.85 .143 .149 .148 .140
8 0,1,2,3,4,5;5 0,1,2,3,4;4 42 9 3 9.04 .132 .140 .137 .126
9 0,3;3 0,1,2,3,4,5;5 23.5 5.5 1.8 6.06 .118 .150 .124 .108
10 1,2;3 0,1,2,3,4,5;5 23.5 5.5 1.8 6.18 .126 .145 .131 .127
11 0,1,2,3,4;4 0,1,2,3,4,5;5 37.5 8.5 1.8 4.26 .123 .124 .129 .113
12 0,3;3 0,1,2,3,4,5,6;6 30 6 2.3 9.33 .114 .155 .121 .105
13 0,1,2,3,4,5;5 0,1,2,3,4,5,6;6 54 10 2.3 5.85 .117 .120 .123 .107
14 0,1,3,4;4 0,1,2,3;3 23.5 6.5 1.5 4.26 .149 .157 .153 .145
15 0,4;4 0,1,2,3,4;4 20 5 1.4 3.10 .131 .166 .136 .126
16 0,4;4 0,1,2,3,4,5;5 25.5 5.5 1.8 5.42 .126 .157 .132 .116
17 0,4;4 0,1,2,3,4,5,6;6 32 6 2.3 8.50 .110 .152 .116 .103
18 2,3;5 0,1,2,3;3 17.5 4.5 1 1.88 .153 .185 .159 .160
19 0,2,3,5;5 0,1,2,3;3 27.5 6.5 1.5 6.25 .148 .153 .153 .142
20 0,5;5 0,1,2,3,4;4 22 5 1.4 2.88 .138 .167 .144 .131
21 2,3;5 0,1,2,3,4;4 22 5 1.4 2.88 .135 .162 .141 .141
22 0,2,3,5;5 0,1,2,3,4;4 32 7 1.4 4.05 .134 .140 .139 .127
23 0,5;5 0,1,2,3,4,5;5 27.5 5.5 1.8 4.94 .121 .162 .127 .116
24 2,3;5 0,1,2,3,4,5;5 27.5 5.5 1.8 4.91 .123 .143 .129 .127
25 0,2,3,5;5 0,1,2,3,4,5;5 37.5 7.5 1.5 4.14 .121 .124 .127 .110
26 0,5;5 0,1,2,3,4,5,6;6 34 6 2.3 7.62 .114 .146 .121 .105
27 2,3;5 0,1,2,3,4,5,6;6 34 6 2.8 7.69 .116 .142 .122 .119
28 0,1,5;6 0,1,2,3;3 25.5 5.5 1 6.93 .226 .228 .236 .186
29 2,3,4;6 0,1,2,3;3 25.5 5.5 1 5.27 .158 .191 .163 .163
30 0,2,4,6;6 0,1,2,3;3 31.5 6.5 1.5 8.22 .159 .163 .164 .154
31 0,1,3,5,6;6 0,1,2,3;3 37.5 7.5 2.5 11.28 .148 .156 .153 .142
32 0,2,3,4,6;6 0,1,2,3;3 37.5 7.5 2.5 11.33 .158 .168 .163 .151
33 2,3,4,5,6;6 0,1,2,3;3 37.5 7.5 2.5 13.79 .235 .252 .243 .238
34 0,1,2,4,5,6;6 0,1,2,3;3 43.5 8.5 3.5 14.24 .157 .161 .161 .152
35 0,1,2,3,4,5,6;6 0,1,2,3;3 49.5 9.5 4.5 17.23 .149 .158 .153 .143
36 0,6;6 0,1,2,3,4;4 24 5 1.4 2.68 .136 .167 .142 .131
37 2,4;6 0,1,2,3,4;4 24 5 1.4 2.72 .128 .148 .133 .131
38 0,1,5;6 0,1,2,3,4;4 30 6 1.2 5.55 .227 .217 .240 .169
39 0,3,6;6 0,1,2,3,4;4 30 6 1.2 3.66 .132 .145 .138 .125
40 0,1,2,6;6 0,1,2,3,4;4 36 7 1.4 7.46 .179 .170 .199 .122
41 0,2,4,6;6 0,1,2,3,4;4 36 7 1.4 6.04 .132 .140 .137 .125
42 0,1,2,4,5,6;6 0,1,2,3,4;4 48 9 3 12.17 .132 .139 .137 .122
43 0,6;6 0,1,2,3,4,5;5 29.5 5.5 1.8 4.61 .126 .156 .132 .113
44 2,4;6 0,1,2,3,4,5;5 29.5 5.5 1.8 4.61 .123 .141 .129 .125
45 2,3,4;6 0,1,2,3,4,5;5 35.5 6.5 1.5 3.94 .118 .136 .123 .119
46 0,1,2,5;6 0,1,2,3,4,5;5 41.5 7.5 1.5 6.71 .206 .198 .220 .150
47 0,1,2,3,5;6 0,1,2,3,4,5;5 47.5 8.5 1.8 8.37 .182 .182 .192 .153
48 0,1,2,4,5,6;6 0,1,2,3,4,5;5 53.5 9.5 2.5 9.27 .126 .130 .133 .115
49 0,6;6 0,1,2,3,4,5,6;6 36 6 2.3 7.14 .118 .151 .126 .108

Note: Each task is made of two two-stage lotteries, an unchanging lottery and a changing lottery. The unchanging lottery is composed

of M one-stage lotteries, each made of m balls, with the k’th containing mk blue balls. The changing lottery is composed of N

one-stage lotteries, each made of n balls, with the j’th containing nj blue balls. In the tasks above, it is assumed that the blue is

the winning colour. The average value assumed by some task-specific variables used in Table 6 is reported. Note that, while the

variables #balls, #priors and |∆(#priors)| change within task (depend only on the round) but not between subjects, the variables

|∆(#win-balls)| and |∆̂τ |, τ ∈ {EU, SM,RD,AM}, depend on the elimination sequence and, consequently, change between subjects.

The calculation of |∆̂τ |, τ ∈ {EU, SM,RD,AM}, is based on the expectation of the parameter of interest characterising that type’s

functional, calculated individually for each subject conditional on being of that particular type (see Conte and Hey, 2013).
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B How the Different Preference Functionals were Fitted

Here we describe how C&H used the data – using only the data on the decisions for all 149

subjects for all 49 tasks, consisting of a total of 256 decision problems for each subject,1

giving a grand total of 19,668 observations; the mixture estimation was based in these 19,668

observations. The crucial point is that we are interested in knowing whether there are different

types of decision-makers in the population for the type of problem considered here. This was

assessed in C&H by fitting a Finite Mixture Model (henceforth, mixture model or, more

simply, mixture) from choice data.

A mixture model is a representation of the heterogeneity of the population. There are

different types of decision-makers and types differ in the decision rules, or more technically,

in the functional that describes their choice process. In the case of our experiment, “type”

refers to a subject’s choice process that is recognised as being compatible with one of the

four theories of decision-making under ambiguity. We will describe these theories later. The

crucial point here is that a mixture model enables us to estimate jointly the parameters

of the preference functionals which characterise our types and the proportions of types in

the population, namely the “mixing proportions”. Put differently, the parameters of each

type’s functional are automatically estimated only from those subjects who appear to be

“statistically” compatible with that type.2 Note that, in the experiment, subjects can either

win or not win, therefore the utility function, u(.), is normalised such that u(win) = 1 and

u(not win) = 0 and there is no attitude to risk parameter to estimate.

In a finite mixture model, the mixing proportion of a type represents the probability of a

randomly chosen subject being of that particular type. The larger the mixing proportion of

a type, the higher the probability of the subject being of that particular type. C&H assign

subjects to types following a majority rule: a subject is assigned to a specific type if her

posterior probability of that type is the highest.3

1The number of questions in each task depended upon the initial number of one-stage lotteries in the
changing task: to be precise if there were N such one-stage lotteries then there would be N decision-problems
in that task. N varied across task.

2This is what differentiates a mixture from a pooled estimation procedure assuming a single type at a time.
3The power of a mixture model is higher, the neater its capacity to assign subjects to types with high

probability. As shown in Conte and Hey (2013, Figure 4), in 88.58% of subjects are assigned to type with
posterior probability higher than 90%.
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Using the parameter estimates and the assignment of subjects to types of the mixture

model, we can isolate and investigate the effect of decision type on decision time.

B.1 Expected Utility Theory (EU)

According to the Expected Utility Theory, the valuation of a two-stage lottery used in this

experiment is

VEU [R(r1, . . . , rk, . . . , rR; r)] =
[r1
r

+ . . .+
rk
r

+ . . .+
rR
r

] 1

R
(B.1)

This valuation follows by the property of EU of being linear in the probabilities and by the

fact that each one-stage lottery is equally likely. It is worth noting that the EU preference

functional in this formulation does not require any parameter estimation.

As an example, let us consider the choice problem depicted in Figure 1, where the two-

stage lotteries A (left lottery) and B (right lottery) include five and two one-stage lotteries,

respectively. Assuming that red is the winning colour, the valuations of these lotteries ac-

cording to Expected Utility Theory are

VEU [A(0, 1, 2, 3, 4; 4)] =

[
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4
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1
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+
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+
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4
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4

4

]
· 1
5
= 0.5

VEU [B(0, 3; 3)] =

[
0

3
+

3

3

]
· 1
2
= 0.5

Under EU , the two lotteries have the same valuation.4

B.2 Smooth Model (SM)

Smooth Model evaluates a two-stage lottery of our experiment as follows:

VSM [R(r1, . . . , rk, . . . , rR; r)] =
[
ϕ
(r1
r

)
+ . . .+ ϕ

(rk
r

)
+ . . .+ ϕ

(rR
r

)] 1

R
(B.2)

Here, ϕ (x) = (1− e−sx) / (1− e−s), where −∞ < s < +∞ is the only characterising param-

eter to be estimated. SM reduces to EU when s → 0.

4This valuation is deterministic and does not include any error terms.
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Now, let us consider how the Smooth Model evaluates the lotteries of the decision problem

depicted in Figure 1. As a value for s we use the mean of the normal distribution assumed

for it whose moments are estimated in C&H. This is s = 1.377.

VSM [A(0, 1, 2, 3, 4; 4)] =

[
ϕ

(
0

4

)
+ ϕ

(
1

4

)
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4
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(
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4
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(
4
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)]
· 1
5

= [0 + 0.39 + 0.67 + 0.86 + 1] /5 = 0.583

VSM [B(0, 3; 3)] =

[
ϕ

(
0

3

)
+ ϕ

(
3

3

)]
· 1
2
= [0 + 1] · 1

2
= 0.5

We conclude that the average SM subject gives a higher valuation to lottery A than to lottery

B.

B.3 Rank Dependent Expected Utility (RD)

Given that r1 < . . . < rk < . . . < rR, a two-stage lottery of our experiment is evaluated as

follows:

VRD [R(r1, . . . , rk, . . . , rR; r)] =
R∑

k=1

h
(rk
r

)[
h

(
R− k + 1

R

)
− h

(
R− k

R

)]
(B.3)

Here, h (p) = pg/ [(pg + (1− p)g)]1/g, with h (0) = 0 and h (1) = 1. The only parameter to be

estimated is g > 0. When g = 1, RD reduces to EU .

The Rank Dependent Expected Utility evaluates the lotteries of the decision problem

depicted in Figure 1, using as a value of g the mean of the lognormal distribution as estimated

in C&H, which is g = 1.139, as follows.

VRD [A(0, 1, 2, 3, 4; 4)] = 0 + h
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+ h (1) ·

[
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)
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]
= 0.492

VRD [B(0, 3; 3)] = 0 + 1 ·
[
h

(
1

2

)
− 0

]
= 0.494

Here, lottery B receives a higher valuation than lottery A by the average RD subject.
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B.4 Alpha Expected Utility Model (AM)

According to the Alpha Expected Utility Model, the valuation of a generic two-stage lottery

is a weighted average of the value of the worst and the best one-stage lotteries within the

two-stage lottery:

VAM [R(r1, . . . , rk, . . . , rR; r)] = a
r1
r

+ (1− a)
rR
r

(B.4)

The only parameter to be estimated is the weight 0 ≤ a ≤ 1.

The Alpha Expected Utility Model evaluates the lotteries of the decision problem depicted

in Figure 1 as follows. As a value for the parameter a we use the mean of the beta distribution

estimated in C&H, which is a = 0.542.

VAM [A(0, 1, 2, 3, 4; 4)] = a
0

4
+ (1− a)

4

4
= 0.458

VAM [B(0, 3; 3)] = a
0

3
+ (1− a)

3

3
= 0.458

Again, we see that the two lotteries are equally evaluated by the average AM subject, as for

EU , but here only the extreme priors of each lottery are used in the calculation.

B.5 Stochastic and Distributional assumptions

C&H assume that subjects make mistakes in their choices, more specifically, that they make

errors when calculating the difference in the valuations of the two lotteries: Vτ (A)−Vτ (B)+

uτ , with τ ∈ {EU,SM,RD,AM}; uτ ∼ N(0, σ2
τ ) is an additive error term, independent

across questions. They further consider a probabilistic tremble of magnitude w and estimate

the parameters of the models in consideration (s in the SM , g in the RD, and a in the

AM) together with σ2
τ and w. Finally, they estimate the mixing proportions of types, that

is the proportions of the population who are of each of the considered types, where a type is

described by one of the four above-mentioned models.

For all the details concerning the estimation of the mixture model and the computation of

posterior probabilities not directly relevant to the present paper, we refer the reader to C&H.

5



C Application of the Analysis to Data from Choice under Risk

This section describes a replication of our analysis using a different data set. The purpose of

this exercise is not only to demonstrate that the main results of this work are not coincidental

but also to show that they extend to a context different from the one involving choice under

ambiguity. Here, we report only the most important results; the complete set of results is

available from the authors upon request.

We use the same data set that Moffatt (2005) used in his analysis of decision times in

choice under risk. The data set contains decision times from 53 subjects who selected their

preferred lottery in a pair of lotteries 500 times. The experiment and the data set are described

in Hey (2001).

Moffatt (2005), assumes the existence of only one type of decision-maker, characterised

by a Rank-Dependent utility function with Constant Absolute Risk Aversion (CARA) utility

function and a Prelec Probability Weighting Function (PWF). In contrast, we introduce a

mixture hypothesis by adding a second type: an Expected Utility maximiser with a CARA

utility function.5 We select 300 decision problems per subject for estimating the mixture

model. The decision times associated with these problems are also used for estimating models

of decision time, while the remaining 200 are reserved for validation.

The estimate of the mixture model shows that the proportion of RD decision-makers is

0.5441 (s.e. = 0.0719), with the remaining portion consisting of EU decision-makers.

Table C.1: Summary statistics of decision time per type
Estimation sample Validation sample

type subjects observations mean std. dev. median observations mean std. dev. median

EU 24 7,200 4.09 4.98 2.80 4,800 4.17 5.52 2.80

RD 29 8,700 5.16 5.84 3.62 5,800 5.38 6.47 3.68

Table C.1 clearly demonstrates a significant difference in decision times between the two

types, with the EU decision-maker taking less time on average than the RD decision-maker.

Such a difference is confirmed by both the variance-comparison and mean-comparison tests

of decision times between the two types resulting in the rejection of the null hypothesis of

5This EU type is nested within the RD type since it can be obtained from the latter by setting the two
parameters of the Prelec PWF to 1.
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equality against a two-tailed alternative hypothesis. This rejection is strong (p-value< 0.0000)

for both the estimation and validation samples.

Table C.2: Results from model random effects model of log(decision time) by
type

EU RD

Dependent: log(decision time) Coeff. (s.e.) Coeff. (s.e.)

Constant 2.1347 (0.0953) 2.0649 (0.0838)

Complexity level 1 (base) – –

Complexity level 2 0.2634 (0.0212) 0.2298 (0.0199)

Complexity level 3 0.3523 (0.0307) 0.4042 (0.0289)

τd − 1 -0.0144 (0.0017) -0.0073 (0.0005)(
τd − 1

)2
/100 0.0110 (0.0021) 0.0024 (0.0002)(

τd − 1
)3

/1000 -0.0004 (0.0001) -0.0000 (2.96e-06)(
τd − 1

)4
/1000000 0.0008 (0.0002)(

τd − 1
)5

/100000000 -0.0000 (0.0000)

τ 0.0005 (0.0002)

|∆̂| -10.4914 (0.3429) -3.2185 (0.1960)

|∆̂|2 39.3324 (2.0292) 4.2292 (0.6324)

|∆̂|3 -55.3443 (3.7301) -1.9788 (0.5149)

|∆̂|4 24.5716 (1.9936)

∆O 0.0601 (0.0192) 0.0353 (0.0182)

σu (between) 0.3971 0.4059

σs (within) 0.5885 0.6098

n 24 29

T 7,200 8,700

Note: Regressors are defined as in Moffatt (2005): τd − 1 and τ represent the position in the sequence of
decision problems within the whole experiment and its parts, respectively, accounting for experience; |∆̂|
captures closeness to indifference; while ∆O measures objective similarity. The powers are selected using
the likelihood-ratio test for nested specifications and the Akaike Information Criterion for non-nested ones.

Table C.2 reports the estimation results of the logarithm of decision time against various

regressors that account for the same task characteristics we consider (E, C, S and I). It is

noteworthy that the results reveal significant differences, particularly in the learning process

and in terms of the impact of closeness to indifference.

Table C.3 presents the results of a validation exercise similar to the one described in

Section 6. Just as with decision times in choice under ambiguity, the best predictors for a

specific type are consistently those based on that same type also in the case of decision times

in choice under risk.
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Table C.3: Validation of decision times
EU validation sample RD validation sample

τ τ

EU SM EU SM

decision time predicted by τ 0.9945 1.0581 decision time predicted by τ 0.9374** 0.9691

(0.0347) (0.0363) (0.0223) (0.0206)

intercept 0.0063 -0.0583 intercept 0.1052*** 0.0067

(0.0372) (0.0374) (0.0262) (0.0248)

observations 4,800 observations 5,800

subjects 24 subjects 29

F (2, 23) 0.01 1.30 F (2, 28) 13.27 0.57

p-value 0.9855 0.2931 p-value 0.0001 0.5719

R2 0.5148 0.4820 R2 0.4178 0.4420

RMSE 0.3593 0.3847 RMSE 0.4019 0.3845

Note: See Note to Table ??.
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