
Ramsey�antifiers in Linear Arithmetics

PASCAL BERGSTRÄSSER, University of Kaiserslautern-Landau, Germany

MOSES GANARDI,MPI-SWS, Germany

ANTHONY W. LIN, University of Kaiserslautern-Landau, Germany and MPI-SWS, Germany

GEORG ZETZSCHE,MPI-SWS, Germany

We study Satisfiability Modulo Theories (SMT) enriched with the so-called Ramsey quantifiers, which assert
the existence of cliques (complete graphs) in the graph induced by some formulas. The extended framework is
known to have applications in proving program termination (in particular, whether a transitive binary predicate
is well-founded), and monadic decomposability of SMT formulas. Our main result is a new algorithm for
eliminating Ramsey quantifiers from three common SMT theories: Linear Integer Arithmetic (LIA), Linear Real
Arithmetic (LRA), and Linear Integer Real Arithmetic (LIRA). In particular, if we work only with existentially
quantified formulas, then our algorithm runs in polynomial time and produces a formula of linear size. One
immediate consequence is that checking well-foundedness of a given formula in the aforementioned theory
defining a transitive predicate can be straightforwardly handled by highly optimized SMT-solvers. We show
also how this provides a uniform semi-algorithm for verifying termination and liveness with completeness
guarantee (in fact, with an optimal computational complexity) for several well-known classes of infinite-
state systems, which include succinct timed systems, one-counter systems, and monotonic counter systems.
Another immediate consequence is a solution to an open problem on checking monadic decomposability of a
given relation in quantifier-free fragments of LRA and LIRA, which is an important problem in automated
reasoning and constraint databases. Our result immediately implies decidability of this problem with an
optimal complexity (coNP-complete) and enables exploitation of SMT-solvers. It also provides a termination
guarantee for the generic monadic decomposition algorithm of Veanes et al. for LIA, LRA, and LIRA. We report
encouraging experimental results on a prototype implementation of our algorithms on micro-benchmarks.

CCS Concepts: • Theory of computation→ Logic and verification; Automated reasoning; Program
verification; Complexity classes; Verification by model checking; Program analysis.

Additional Key Words and Phrases: Ramsey Quantifiers, Satisfiability Modulo Theories, Linear Integer Arith-
metic, Linear Real Arithmetic, Monadic Decomposability, Liveness, Termination, Infinite Chains, Infinite
Cliques

ACM Reference Format:

Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche. 2024. Ramsey Quantifiers in Linear
Arithmetics. Proc. ACM Program. Lang. 8, POPL, Article 1 (January 2024), 32 pages. https://doi.org/10.1145/
3632843

1 INTRODUCTION

The last two decades have witnessed significant advances in software verification [Jhala and
Majumdar 2009]. One prominent and fruitful approach to software verification is that of deductive
verification and program logics [Leino 2023; Nelson and Oppen 1980; Shostak 1984], whereby one

Authors’ addresses: Pascal Bergsträßer, University of Kaiserslautern-Landau, Kaiserslautern, Germany, bergstraesser@

cs.uni-kl.de; Moses Ganardi, MPI-SWS, Kaiserslautern, Germany, ganardi@mpi-sws.org; Anthony W. Lin, University of

Kaiserslautern-Landau, Kaiserslautern, Germany and MPI-SWS, Kaiserslautern, Germany, awlin@mpi-sws.org; Georg

Zetzsche, MPI-SWS, Kaiserslautern, Germany, georg@mpi-sws.org.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART1

https://doi.org/10.1145/3632843

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-4681-2149
HTTPS://ORCID.ORG/0000-0002-0775-7781
HTTPS://ORCID.ORG/0000-0003-4715-5096
HTTPS://ORCID.ORG/0000-0002-6421-4388
https://doi.org/10.1145/3632843
https://doi.org/10.1145/3632843
https://orcid.org/0000-0002-4681-2149
https://orcid.org/0000-0002-0775-7781
https://orcid.org/0000-0003-4715-5096
https://orcid.org/0000-0002-6421-4388
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.1145/3632843
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632843&domain=pdf&date_stamp=2024-01-05

1:2 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

models a specification of a program % as a formula i% over some logical theory, usually in first-order
logic (FO), or a fragment thereof (e.g. quantifier-free formulas or existential formulas). That way,
the original problem is reduced to satisfiability of the formula i% (i.e. whether it has a solution). One
decisive factor of the success of this software verification approach is that solvers for satisfiability
of boolean formulas and extensions to quantifier-free and existential theories (a.k.a. SAT-solvers
and SMT-solvers, respectively) have made an enormous stride forward in the last decades to the
extent that they are now capable of solving practical industrial instances. The cornerstone theories
in the SMT framework include the theory of Linear Integer Arithmetic (LIA), the theory of Linear
Real Arithmetic (LRA), and the mixed theory of Linear Integer Real Arithmetic (LIRA). Among
others, these can be used to naturally model numeric programs [Hague and Lin 2011], programs
with clocks [Boigelot and Herbreteau 2006; Dang 2001; Dang et al. 2000, 2001; Hague and Lin 2011],
linear hybrid systems [Boigelot and Herbreteau 2006], and numeric abstractions of programs that
manipulate lists and arrays [Bouajjani et al. 2011; Hague and Lin 2011].

Most program logics in software verification can be formulated directly within FO. For example,
to specify a safety property, a programmer may provide a formula �=E asserting a desired invariant
for the program. In turn, the property that �=E is an invariant is definable in FO. In fact, if we
stay within the quantifier-free fragment of FO, this check can be easily and efficiently verified
by SMT-solvers. Some program logics, however, require us to go beyond FO. Most notably, when
verifying that a program terminates, a programmer must provide well-founded relations (or a
finite disjunction thereof) and prove that this covers the transitive closure of the program (e.g.
see [Podelski and Rybalchenko 2004]). [Some techniques realize the proof rules of [Podelski and
Rybalchenko 2004] (e.g. see [Cook et al. 2011]) by constructing relations that are guaranteed to be
well-founded by construction, but these limit the shapes of the well-founded relations that can be
constructed.] In case such a relation is synthesized and not guaranteed to be well-founded, one may
want to check the well-foundedness property automatically. Since well-foundedness of a transitive
predicate is in general not a first-order property (e.g. see Problem 1.4.1 of [Chang and Keisler 1990]),
an extension of FO is required to be able to reason about well-foundedness. One solution is to simply
enrich FO with an ad-hoc condition for checking well-foundedness of a relation [Beyene et al.
2013]. A more general solution is to extend FO with Ramsey quantifiers [Bergsträßer et al. 2022]
(see also Chapter VII of [Barwise and Feferman 1985]) and study elimination of such quantifiers in
the logical theory under consideration. This latter solution is known [Bergsträßer et al. 2022] to
also provide an approach to analyze variable dependencies (a.k.a. monadic decomposability) in a
first-order formula, which has applications in formal verification [Veanes et al. 2017] and query
optimization in constraint databases [Grumbach et al. 2001; Kuper et al. 2000].

SMT with Ramsey quantifiers. In a nutshell, a Ramsey quantifier asserts the existence of an infinite
sequence of elements forming a clique (i.e. a complete graph) in the graph induced by a given
formula. [There are in fact two flavors of Ramsey quantifiers, of which one asserts the existence
of an undirected clique (e.g. see Chapter VII of [Barwise and Feferman 1985]), and the other of a
directed clique [Bergsträßer et al. 2022]. In the sequel, we will only deal with the latter because of
the applications to reasoning about liveness and variable dependencies.] More precisely, if i (x,~)
is a formula over a structure A with universe � and x , ~ are :-tuples of variables, the formula
∃ramx,~ : i (x,~) asserts the existence of an infinite (directed) i-clique, i.e. a sequence v1, v2, . . . of
pairwise distinct :-tuples in �: such that A |= i (v8 , v 9) for all 8 < 9 . For example, in the theory
) = ⟨R;+, <, 1, 0⟩ of Linear Real Arithmetic, we have) |= ∃ramG,~ : (G < ~ ∧ G > 99 ∧ ~ < 100)

because there are infinitely many numbers between 99 and 100.
How do Ramsey quantifiers connect to proving termination/liveness? Let us take a proof rule for

termination/liveness from [Podelski and Rybalchenko 2004], which concerns covering the transitive

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:3

closure '+ of a relation ' by well-founded relations (or a finite disjunction thereof). At its simplest
form, we obtain a verification condition of asserting

' ⊆) ∧) ◦ ' ⊆) ∧) is well-founded. (1)

Such a) satisfying the first two conjuncts is said to be an inductive relation [Podelski and Ry-
balchenko 2004]. The disjunctive well-founded version can be stated similarly, but with a disjunction
of relations)8 instead of just a single) . Here, one defines a relation to be well-founded if there is no
infinite) -chain, i.e., B1, B2, . . . such that (B8 , B8+1) ∈) for each 8 . Clearly, if) is well-founded, then
there is no) -loop (i.e. G with) (G, G)) and no infinite) -clique. Thus,) also satisfies

' ⊆) ∧) ◦ ' ⊆) ∧ no) -loop ∧ no infinite) -clique. (2)

Note that (2) also implies termination of ', despite imposing a weaker requirement on) . However,
the conditions in (2) are easily expressed with the Ramsey quantifier: The absence of) -loops is
a first-order property (i.e. ¬∃G :) (G, G)) and the absence of an infinite) -clique is definable with
the help of a Ramsey quantifier ¬∃ramG,~ :) (G,~). As an example for a covering that satisfies
(2) but not (1), consider the well-founded relation ' = {(8 + 1, 8) | 8 ∈ N} and the covering
) = {(8, 9) | 8, 9 ∈ N, 8 > 9} ∪ {(8, 8 − 1) | 8 ≤ 0}. Then '+ ⊆) and) is loop-free and contains no
(directed) infinite clique, hence (2) proves termination of '. However,) is not well-founded.

Most techniques for handling Ramsey quantifiers proceed by eliminating them. In the early 1980s,
Schmerl and Simpson [1982] showed that in LIA, Ramsey quantifiers ∃ramx,~ can be eliminated if
x and ~ are single variables (hence, it is about cliques of numbers, not vectors). [Actually, their
result concerns only undirected cliques, but the proof easily generalizes to directed cliques.] At the
turn of the 21st centry, Dang and Ibarra [2002] provided a procedure to decide whether a given
relation ' described in LIRA admits an infinite directed clique. Their proof yields that general
Ramsey quantifiers (i.e. about vectors) can be eliminated in LIRA: The procedure transforms the
input formula into a LIRA formula that holds if and only if ' admits an infinite directed clique.
However, the procedure of Dang and Ibarra [2002] (i) requires the input formula to be quantifier-
free (this is also the case for Schmerl and Simpson [1982]) and (ii) yields a formula with several
quantifier alternations. Because of (ii), the algorithm needs to then decide the truth of a LIRA
formula with quantifier alternations, for which Dang and Ibarra [2002, p. 924] provide (based on

Weispfenning [1999]) a doubly exponential time bound of 2!
=2

for a constant 2 , where ! is the
length of the input formula and = is the number of variables. Because of (i), applying the algorithm
to an existential LIRA formula i for ' necessitates an elimination of the existential quantifiers from
i . If i is of length ℓ with @ quantified variables, then according to Weispfenning [1999, Theorem

5.1], this results in a quantifier-free formula of size 2ℓ
@3

for some constant 3 . Plugging this into the

construction of Dang and Ibarra [2002] yields a triply exponential time bound of 22
=2 ·ℓ@

3

.
More recent results [Bergsträßer et al. 2022; To and Libkin 2008] on eliminating Ramsey quan-

tifiers over theories of string (resp. tree) automatic structures are also worth mentioning. These
are rich classes of logical structures whose domains/relations can be encoded using string/tree
automata [Benedikt et al. 2003; Blumensath and Grädel 2000], and subsume various arithmetic
theories including LIA and Skolem Arithmetic (i.e. ⟨Z;×, ≤, 1, 0⟩). Among others, this gives rise to
a decision procedure for LIA with Ramsey quantifiers, which runs in exponential time. The main
problem with the decision procedures given in [Bergsträßer et al. 2022; To and Libkin 2008] is that
they cannot be implemented directly on top of an existing (and highly optimized) SMT-solver, and
their complexity is rather high. Secondly, it does not yield algorithms for LRA and LIRA. In fact,
the common extension of LIRA and automatic structures are the so-called l-automatic structures,
for which eliminability of Ramsey quantifiers is a long-standing open problem [Kuske 2010].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:4 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

Monadic decomposability. Another application of Ramsey quantifiers is the analysis of variable
dependencies (i.e. monadic decomposability [Veanes et al. 2017]) of formulas. Loosely speaking, a
formula i (G1, . . . , G=) is monadically decomposable in the theory T if it is equivalent (over T) to a
boolean combination of T -formulas of the form i (G8), i.e., with at most one G8 as a free variable.
This boolean combination of monadic formulas is a monadic decomposition of i . For example, the
formula G1 + G2 ≥ 2 ∧ G1 ≥ 0 ∧ G2 ≥ 0 is monadically decomposable in LIA as it is equivalent to

(G1 ≥ 2 ∧ G2 ≥ 0) ∨ (G1 ≥ 1 ∧ G2 ≥ 1) ∨ (G1 ≥ 0 ∧ G2 ≥ 0).

Monadic decompositions have numerous applications in formal verification including string analysis
[Hague et al. 2020; Veanes et al. 2017] and query optimization in constraint databases [Grumbach
et al. 2001; Kuper et al. 2000]. Veanes et al. [2017] gave a generic semi-algorithm that is guaranteed
to output a monadic decomposition of SMT formulas, if such a decomposition exists. To make this
semi-algorithm terminating, one may incorporate a monadic decomposability check, which exists
for numerous theories [Barceló et al. 2019; Bergsträßer et al. 2022; Hague et al. 2020; Libkin 2003;
Veanes et al. 2017]. However, most of these algorithms have very high computational complexity,
and for some theories the precise computational complexity is still an open problem. Recently,
Hague et al. [2020] have shown that monadic decomposability of quantifier-free LIA formulas is
coNP-complete, in contrast to the previously known double exponential-time algorithm [Libkin
2003]. In case of quantifier-free LRA and LIRA the precise complexity is still open. Although both
of which can be shown to be decidable in PSPACE [Bergsträßer and Ganardi 2023a].

Contributions. The main contribution of our paper is new algorithms for eliminating Ramsey
quantifiers for three common SMT theories: Linear Integer Arithmetic (LIA), Linear Real Arithmetic
(LRA), and Linear Integer Real Arithmetic (LIRA). If we restrict to existential fragments, the
algorithms run in polynomial time and produce formulas of linear size. [Here, in the definition
of size we assume that every variable occurrence has length one.] As a consequence, SMT over
these theories can be extended with Ramsey quantifiers only with a small overhead on SMT-
solvers. Our results substantially improve the complexity of the elimination procedures of Ramsey
quantifiers from [Dang and Ibarra 2002; Schmerl and Simpson 1982], which run in at least double
exponential time. This has direct applications in proving program termination (especially, connected
to well-foundedness checks) and monadic decomposability (including, the precise complexity for
LIA/LRA/LIRA). We detail our contributions below.

Key novel ingredients. We circumvent the high complexities of [Dang and Ibarra 2002; Schmerl
and Simpson 1982] as follows. The first key ingredient is a procedure to eliminate existential
quantifiers in the context of Ramsey quantifiers: We prove that any formula

∃ramx,~ : ∃w : i (x,~,w) (3)

with some quantifier-free i and quantifier block ∃w is equivalent to

∃ram (x, r , s), (~, t, u) : i (x,~, s + t). (4)

Note that the formula (3) says that there exists a sequence a1, a2, . . . of vectors such that for any
8 < 9 , there exists a b8, 9 with i (a8 , a 9 , b8, 9). The equivalence says that if such b8, 9 exist, then there
are b8 , b

′
8 such that one can choose b8, 9 := b ′8 + b 9 to satisfy i . This comes as a surprise, because

instead of needing to choose a vector for each edge of an infinite clique, it suffices to merely choose
an additional vector at each node. This non-obvious structural result about infinite cliques yields
an algorithmically extremly simple elimination of quantifiers, which just replaces (3) with (4).
Our second key ingredient allows us to express the existence of an infinite directed clique in an

existential formula. Very roughly speaking, Dang and Ibarra [2002] express the existence of an

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:5

infinite directed clique by saying that for each : , there exists a vector a: for which some measure is
at least : . By choosing appropriate measures, this ensures that the sequence a1, a2, . . . has certain
unboundedness or convergence properties. In contrast, our formula expresses the existence of
vectors a, d2 , and d∞, such that the sequence

a: = a − 1
:
d2 + :d∞ (5)

has an infinite clique as a subsequence. Here, the vector d2 is used to enable convergence behavior
(and is not needed in the case of LIA). Note that this is possible despite the fact that there are
formulas i for which no infinite i-clique can be written in the form above. However, one can
always find an infinite i-clique as a subsequence of a sequence as in (5).

Proving termination/non-termination. Since well-foundedness of an inductive relation can be
expressed by means of an SMT formula with a Ramsey quantifier, our quantifier elimination
procedure yields a formula k without Ramsey quantifiers, whose size is linear in the size of the
original formula i expressing the verification condition. This means that we can prove termination
by simply checking satisfiability of k , which can be checked easily by an SMT-solver. Similarly,
if we provide an underapproximation) ⊆ '+, we may use this to prove non-termination of '
by simply checking satisfiability of) (x, x) ∨ ∃ramx,~ :) (x,~) . By the same token, the Ramsey
quantifier can be eliminated using our algorithm, resulting in a formula of linear size that can be
easily handled by SMT-solvers.

In fact, one can combine our results with various semi-algorithms for computing approximations
of reachability relations (e.g. [Bardin et al. 2008, 2005; Boigelot and Herbreteau 2006; Boigelot
et al. 2003; Legay 2008]), yielding a semi-algorithm for deciding termination/non-termination with
completeness guarantee for many classes of infinite-state systems operating over integer and real
variables. These include classes of hybrid systems and timed systems (e.g. timed pushdown systems),
reversal-bounded counter systems, and continuous vector addition systems with states. For these,
we also obtain tight computational complexity for the problem.

Monadic decomposition. Our procedure reduces a monadic decomposability check for a LIA, LRA,
or LIRA formula to linearly many unsatisfiability queries over the same theory. As before, the
resulting formulas without Ramsey quantifiers is of linear size, which can be handled easily by
SMT-solvers. This reduction also shows that monadic decomposability for LIA/LRA/LIRA is in
coNP, which can be shown to be the precise complexity for the problems. The coNP complexity for
LIA was shown already by Hague et al. [2020], but with a completely different reduction (and no
experimental validation). The coNP complexity of monadic decomposability for LRA/LIRA is new
and answers the open questions posed by Veanes et al. [2017] and Bergsträßer and Ganardi [2023a].

Implementation. We have implemented a prototype of our elimination algorithms for LIA, LRA,
and LIRA and tested it on two sets of micro-benchmarks. The first benchmarks contain examples
where a single Ramsey quantifier has to be eliminated. Such formulas can for example be derived
from program (non-)termination. With the second benchmarks we use our algorithms to check
monadic decomposability as described above. Here, we compare our algorithm to the ones in
[Veanes et al. 2017] and [Markgraf et al. 2021]. For both sets of benchmarks we obtain promising
results. The implementation is available at [Bergsträßer et al. 2023b] and the full version of this
paper at [Bergsträßer et al. 2023a].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:6 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

2 MORE DETAILED EXAMPLES

In this section, we give concrete examples illustrating the problems of proving termination and non-
termination, and how these give rise to verification conditions involving Ramsey quantifiers. We
then discuss how our algorithms eliminate Ramsey quantifiers from these verification conditions.

Proving termination. We consider a simplified version of McCarthy 91 program [Manna and
Pnueli 1970]. The program has two integer variables =,< and applies the following rules till
termination:

(1) = := = − 1 and< :=< − 1, if = > 0 and< ≥ 0.
(2) = := = + 1 and< :=< + 2, if = > 0 and< < 0.

The interesting case in this termination proof is when −1 ≤ < ≤ 1. For simplicity, we will only
deal with this. In the sequel, we will write ' ⊆ N2 × N2 to denote the relation generated by the
program restricted to −1 ≤ < ≤ 1.

To prove termination, wewill need to annotate the programwith an inductive relation) ⊆ N2×N2

that is well-founded. Define) as the conjunction of= > 0∧−1 ≤ <,<′ ≤ 1∧=′ ≥ 0 and disjunctions
of relations)1, . . . ,)6 as specified below.

)1 :=<′ = 0 ∧ =′ = = ∧< = −1 ∧ = = 1)2 :=<′ = 1 ∧ =′ = = + 1 ∧< = −1 ∧ = ≥ 1

)3 :=<′ > < ∧ =′ = = ∧ = ≥ 2)4 := =′ < = ∧ =′ ≥ 0 ∧< ≤ 0

)5 := =′ < = ∧ =′ ≥ 0 ∧< = 1 ∧<′ ≥ 0)6 := =′ < = − 1 ∧ =′ ≥ 0 ∧< = 1 ∧<′ = −1

The condition that) is inductive is easily phrased as satisfiability of a quantifier-free LIA formula:

['(=,<,=′,<′) ∧ ¬) (=,<,=′,<′)] ∨ [) (=,<,=′,<′) ∧ '(=′,<′, =′′,<′′) ∧ ¬) (=,<,=′′,<′′)] .

We need to prove unsatisfiability of this formula, which can be easily checked using a LIA solver,
which is supported by major SMT-solvers (e.g. Z3 [de Moura and Bjørner 2008]). To prove well-
foundedness of) , we consider two cases. The looping case also easily translates into a LIA formula:

) (=,<,=′,<′) ∧) (=′,<′, =′,<′).

Again, we need to prove that this is unsatisfiable. The non-looping case is the one that requires a
Ramsey quantifier where we need to prove unsatisfiability of:

∃ram (=,<), (=′,<′) :) (=,<,=′,<′).

real G1 ← input-real();

int G2 ← input-int();

assert G1 > 0;

while G2 > 0 do

real C1 ← input-real();

assert C1 ≥ 0.5G1 + 0.5;

G1 ← C1;

int C2 ← input-int();

assert C2 ≥ 0;

G2 ← G2 − ⌊G1 ⌋ − C2;

end

Fig. 1. Example of a non-terminating program.

Proving non-termination. Let us now present
an example of a program (see Figure 1) where
Ramsey quantifiers can be used to prove non-
termination.
The reachability relation→1 for G1 and G2

after the first iteration of the while-loop is
(G1, G2) →1 (~1, ~2) such that G1 > 0 ∧ G2 >

0 ∧ ~1 ≥ 0.5G1 + 0.5 ∧ ~2 ≤ G2 − ⌊G1⌋. It turns
out that→1 is already an under-approximation
of the reachability relation →+ after at least
one iteration. Thus, to show non-termination,
it suffices to show that→1 and therefore→+

has an infinite clique. For example we find the
clique (08 , 18)8≥1 with 01 = 0.5, 08+1 = 0.508+0.5,
and 18 = 1 for all 8 ≥ 1 which corresponds to choosing G1 = 0.5 and G2 = 1 at the beginning and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:7

C1 = 0.5G1 + 0.5 and C2 = 0 in each iteration. Here we can see that (08)8≥1 converges against 1 but
never reaches 1, which means that ⌊08⌋ is always 0 for all 8 ≥ 1.

Illustration of how to remove a Ramsey quantifier. Let us see an example of Ramsey quantifier
elimination. Consider the following formula:

i (x,~, z) = G1 +
I1 − G1

2
≤ ~1 ≤ I1 ∧ G2 +

I2 − G2

2
≤ ~2 ≤ I2 ∧ ~2 = ⌊~1⌋,

in which x = (G1, G2), ~ = (~1, ~2), and z = (I1, I2). Now we claim that ∃ramx,~ : i (x,~, z) is
equivalent to

I2 = ⌊I1⌋ ∨ (I1 = ⌊I1⌋ ∧ I2 = I1 − 1).

Note that ∃ramx,~ : i (x,~, z) expresses that there exists a sequence a1, a2, . . . ∈ R
2 such that

the first components converge from below against I1: The first conjunct in i requires the first
component of a 9 to have at most half the distance to I1 as the first component of a8 , for every 8 < 9 .
Similarly, the second conjunct forces the second components to converge against I2.

Furthermore, the third conjunct requires the second components of a8 to be the floor of the first
component of a8 , for every 8 . Thus, if I1 is not an integer, then the first components of a1, a2, . . .
will eventually be between ⌊I1⌋ and I1. Thus, the second components must eventually be equal to
⌊I1⌋ and thus also their limit: I2 = ⌊I1⌋. However, if I1 is an integer, then there is another option:
The first components can all be strictly smaller than I1 = ⌊I1⌋. But then the second components
must eventually be equal to ⌊I1⌋ − 1, and thus I2 = I1 − 1.

3 PRELIMINARIES

We denote a vector with components (G1, . . . , G:) of dimension : with a boldface letter x and for
numbers = we write n for a vector (=, . . . , =) of appropriate dimension. On vectors x and ~ of
dimension : we define the usual pointwise partial order x ≤ ~ such that G8 ≤ ~8 for all 1 ≤ 8 ≤ : .
Moreover, we define x ≪ ~ if G8 < ~8 for every 8 .

To reduce the usage of parentheses, we assume the binding strengths of logical operators to be
¬, ∧, ∨,→ in decreasing order and quantifiers bind the weakest.
We define the size of a formula by the length of its usual encoding where we assume that

every variable occurrence has length one. In the following we formally only define formulas with
constants 0 and 1, but we will also use arbitrary constants that, when encoded in binary, can be
eliminated with only a linear blow-up in the above size definition. Note that for implementations, it
would also make sense to measure the length of writing the formula using a fixed alphabet, which
would incur a logarithmic-length string per variable occurrence.

3.1 Linear Integer Arithmetic

Linear Integer Arithmetic (LIA) is defined as the first-order theory with the structure ⟨Z;+, <, 1, 0⟩.
LIA is also called Presburger arithmetic and we will use these terms interchangeably. We will only
work on the existential fragment of LIA, i.e., formulas of the form ∃x : i (x, z) where the variables
in x are bound by the existence quantifier and z is a vector of free variables.

Proposition 3.1 ([Borosh and Treybig 1976]). Satisfiability of existential formulas in LIA is

NP-complete.

To admit quantifier elimination, one has to enrich the structure ⟨Z;+, <, 1, 0⟩ by modulo con-
straints. A modulo constraint is a binary predicate ≡4 with 4 > 0 such that B ≡4 C is fulfilled if
and only if 4 |B − C . Note that modulo constraints are definable in ⟨Z;+, <, 1, 0⟩ using existence
quantifiers, which means that ⟨Z;+, <, 0, 1, (≡4)4>0⟩ is still a structure for LIA. The following was
famously shown by Presburger [1929] (see [Weispfenning 1997] for complexity considerations):

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:8 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

Proposition 3.2. LIA with the structure ⟨Z;+, <, 0, 1, (≡4)4>0⟩ admits quantifier elimination.

3.2 Linear Real Arithmetic

In addition to the integers, we also consider linear arithmetic over the reals. Linear Real Arithmetic

(LRA) is defined as the first-order theory with the structure ⟨R;+, <, 1, 0⟩. As for LIA, the satisfiability
problem for the existential fragment of LRA is NP-complete [Sontag 1985, Corollary 3.4]:

Proposition 3.3. Satisfiability of existential formulas in LRA is NP-complete.

Moreover, quantifiers can already be eliminated over the structure ⟨R;+, <, 1, 0⟩. This goes back
to Fourier [1826] and was rediscovered several times thereafter [Williams 1986]:

Proposition 3.4. LRA with the structure ⟨R;+, <, 1, 0⟩ admits quantifier elimination.

3.3 Linear Integer Real Arithmetic

We define Linear Integer Real Arithmetic (LIRA) as the first-order theory with the structure
⟨R; ⌊.⌋, +, <, 0, 1⟩ where ⌊A⌋ denotes the greatest integer smaller than or equal to A ∈ R. In terms
of full first-order logic, this logic is equally expressive as the first-order logic over the structure
⟨R;Z, +, <, 0, 1⟩. Here, we focus on ⟨R; ⌊.⌋, +, <, 0, 1⟩, because its existential fragment is expressively
complete [Weispfenning 1999, Theorem 3.1]. Note that by using G = ⌊G⌋, we can extend LIRA to
allow two sorts of variables: real and integer variables. For a vector x = (G1, . . . , G=) of variables let
x i/r denote the vector (x int, xreal) where x int = (G int1 , . . . , G int=) is a vector of integer variables and

xreal = (G real1 , . . . , G real=) is a vector of real variables. Two vectors x and ~ of dimension = are said to
have the same type if for all 8 ∈ [1, =] we have that G8 and ~8 are both real or integer variables. The
separation of an existential formula ∃G1, . . . , G= : i (G1, . . . , G=, I1, . . . , I<) in LIRA is defined as

∃x i/r : i (x int + xreal, zint + zreal) ∧ 0 ≤ xreal
< 1 ∧ 0 ≤ zreal < 1

where G int8 , Iint9 are fresh integer variables and G real8 , Ireal9 are fresh real variables that express the

integer and real part of G8 and I 9 . If G8 (resp. I 9) is an integer variable, we add the constraint G real8 = 0

(resp. Ireal9 = 0) to the separation. We say that an existential formula in LIRA is decomposable if its

separation can be written as an existentially quantified Boolean combination of Presburger and
LRA formulas (called decomposition).

Lemma 3.5. Every existential formula in LIRA is decomposable. Moreover, its decomposition is of

linear size and can be computed in polynomial time.

Proof. Letk = ∃G1, . . . , G= : i (G1, . . . , G=, I1, . . . , I<) be an existential formula in LIRA. By intro-
ducing new existentially quantified variables, we can assume that every atom of i is of one of the
following forms: (i) G = 0, (ii) G = 1, (iii) G + ~ = I, (iv) G < 0, (v) G = ⌊~⌋. Note that the size of the
formula is still linear (even if the coefficients are given in binary). Let i ′(x i/r, zi/r) be the formula
obtained from i (x int + xreal, zint + zreal) by replacing every

• G int + G real = 0 by G int = 0 ∧ G real = 0,
• G int + G real = 1 by G int = 1 ∧ G real = 0,
• G int + G real + ~int + ~real = Iint + Ireal by

(G real + ~real < 1→ G int + ~int = Iint ∧ G real + ~real = Ireal) ∧

(G real + ~real ≥ 1→ G int + ~int + 1 = Iint ∧ G real + ~real − 1 = Ireal),

• G int + G real < 0 by G int < 0, and
• G int + G real = ⌊~int + ~real⌋ by G real = 0 ∧ G int = ~int.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:9

Thus, i ′ is a Boolean combination of formulas that either only involve integer variables or real
variables. Now the separation ofk is equivalent to

∃x i/r : i ′(x i/r, zi/r) ∧ 0 ≤ xreal
< 1 ∧ 0 ≤ zreal < 1

where we add G real8 = 0 if G8 is an integer variable and Ireal9 = 0 if I 9 is an integer variable, which is

a linear sized decomposition. □

Proposition 3.6. Satisfiability of existential formulas in LIRA is NP-complete.

Proof. TheNP lower bound is inherited from the Presburger (Proposition 3.1) and LRA (Proposi-
tion 3.3) case. For the upper bound let i be an existential formula in LIRA. We first apply Lemma 3.5
to compute a decompositionk of i in polynomial time. Then we guess truth values for the Pres-
burger and LRA subformulas ofk and verify the guesses in NP using Propositions 3.1 and 3.3. Since
i and its decompositionk are equisatisfiable, it remains to check whether the truth values satisfy
k in order to decide satisfiability of i . □

3.4 Ramsey �antifier

Let x and ~ be two vectors of variables of the same type. For a formula i in LIRA we define
∃ramx,~ : i (x,~, z) as the formula that is satisfied by a valuation c of z if and only if there exists
a sequence (a8)8≥1 of pairwise distinct valuations of x (and ~) such that i (a8 , a 9 , c) holds for all
8 < 9 . The sequence (a8)8≥1 with the above properties is called an infinite clique of i with respect
to c . The infinite clique problem asks given a formula i (x,~), where x and ~ have the same type,
whether i has an infinite clique.

The infinite version of Ramsey’s theorem can be formulated over graphs as follows:

Theorem 3.7 ([Ramsey 1930]). Any complete infinite graph whose edges are colored with finitely

many colors contains an infinite monochromatic clique.

We will often use the fact that by Ramsey’s theorem ∃ramx,~ : i (x,~, z) ∨k (x,~, z) is equivalent
to (∃ramx,~ : i (x,~, z)) ∨ (∃ramx,~ : k (x,~, z)).

4 ELIMINATING EXISTENTIAL QUANTIFIERS

The first step in our elimination of the Ramsey quantifier in ∃ramx,~ : k (x,~, z) is to reduce to
the case where k is quantifier-free. In LIA and LRA, there are procedures to convert k into a
quantifier-free equivalent (Propositions 3.2 and 3.4), but these incur a doubly exponential blow-
up [Weispfenning 1997]. Instead, we will show the following (perhaps surprising) equivalence:

Theorem 4.1. Let i be an existential formula in LIRA. Then the formulas

∃ramx,~ : ∃w : i (x,~,w, z) and ∃ram (x, v1, v2), (~,w1,w2) : i (x,~, v1 +w2, z) ∧ x ≠ ~

are equivalent where v1, v2,w1,w2 have the same type asw .

Thus, if we write k (x,~, z) in prenex form as ∃w : i (x,~,w, z) with a quantifier-free i , then
Theorem 4.1 allows us to eliminate the block ∃w of quantifiers by moving w under the Ramsey
quantifier. Note that both formulas express the existence of an infinite clique. The left says that
for every edge x → ~ in the clique, we can choose a vector w such that i (x,~,w, z) is satisfied.
The right formula says thatw can be chosen in a specific way: It says that for each node, one can
choose two vectors (w1,w2) such that for each edge x → ~, the vectorw can be the sum ofw1 for x
andw2 for ~. Thus, the right-hand formula clearly implies the left-hand formula. The challenging
direction is to show that the left-hand formula implies the right-hand formula.
The rest of this section is devoted to proving Theorem 4.1.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:10 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

4.1 Presburger Arithmetic

We start with LIA, a.k.a. Presburger arithmetic.

Theorem 4.2. Let i be an existential formula in Presburger arithmetic. Then the formulas

∃ramx,~ : ∃w : i (x,~,w, z) and ∃ram (x, v1, v2), (~,w1,w2) : i (x,~, v1 +w2, z) ∧ x ≠ ~

are equivalent.

To prove Theorem 4.2, it suffices to prove it in case w consists of just one variable F : Then,
Theorem 4.2 follows by induction.

Lemma 4.3. Let i be an existential formula in Presburger arithmetic. Then the formulas

∃ramx,~ : ∃F : i (x,~,F, z) and ∃ram (x, E1, E2), (~,F1,F2) : i (x,~, E1 +F2, z) ∧ x ≠ ~ (6)

are equivalent.

Simple Presburger formulas. Let u be a vector of variables and F be a variable. We say that a
Presburger formula i (u,F) is F-simple if it is a Boolean combination of formulas of the form
r⊤u + 2 < F ,F < r⊤u + 2 , and modulo constraints over u andF , where r is a vector over Z, and
2 ∈ Z.

Lemma 4.4. Let i (x,~,F, z) beF-simple. Then the formulas

∃ramx,~ : ∃F : i (x,~,F, z) and ∃ram (x, E1, E2), (~,F1,F2) : i (x,~, E1 +F2, z) ∧ x ≠ ~

are equivalent.

Proof. We first move all negations in i inwards to the atoms and possibly negate them (which
for modulo constraints introduces disjunctions). We then bring i into disjunctive normal form and
move the Ramsey quantifier and existence quantifier into the disjunction. Since i is simple, we can
assume that it is a conjunction of formulas

U8 (x) + V8 (~) + W8 (z) + ℎ8 < F

for 8 = 1, . . . , = and

F < U ′9 (x) + V
′
9 (~) + W

′
9 (z) + ℎ

′
9

for 9 = 1, . . . ,<, and modulo constraints

X8 (x,~,F, z) ≡48 38

for 8 = 1, . . . , : . Here, U8 , V8 , W8 , U
′
9 , V
′
9 , W
′
9 , X8 are linear functions. Let 58 (x,~, z) := U8 (x) + V8 (~) +

W8 (z) + ℎ8 for all 8 ∈ [1, =] and 5 ′9 (x,~, z) := U ′9 (x) + V
′
9 (~) + W

′
9 (z) + ℎ

′
9 for all 9 ∈ [1,<]. In the

following we assume that =,< > 0; the other cases are simpler and can be handled similarly.
Assume c ∈ Z |z | satisfies the left-hand formula, i.e., there is an infinite sequence (a8)8≥1 of

pairwise distinct vectors over Z such that for all 8 < 9 there exists 18, 9 ∈ Z such that i (a8 , a 9 , 18, 9 , c)
holds. By Ramsey’s theorem we can take an infinite subsequence such that we can assume that
51 (a8 , a 9 , c) ≤ · · · ≤ 5= (a8 , a 9 , c) and 5 ′1 (a8 , a 9 , c) ≤ · · · ≤ 5 ′< (a8 , a 9 , c) for all 8 < 9 . Thus, it suffices
to consider the greatest lower bound 5= (a8 , a 9 , c) and the smallest upper bound 5 ′1 (a8 , a 9 , c) on
F . Let 5 := 5=, U := U=, V := V=, W := W= , and ℎ := ℎ= . Let # := 41 · · · 4: be the product of all
moduli where we set # := 1 if : = 0. First observe that 18, 9 can always be chosen from the interval
[5 (a8 , a 9 , c) + 1, 5 (a8 , a 9 , c) + #] for all 8 < 9 . Since this interval has fixed length # , by Ramsey’s
theorem we can restrict to an infinite subsequence such that there is a constant A ∈ [1, #] such
that 5 (a8 , a 9 , c) + A = 18, 9 for all 8 < 9 . Now if we set 118 := U (a8) and 1

2
8 := V (a8) + W (c) + ℎ + A for

8 ≥ 1, the infinite sequence (a8 , 1
1
8 , 1

2
8)8≥1 satisfies i (a8 , a 9 , 1

1
8 + 1

2
9 , c) for all 8 < 9 as desired. □

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:11

General Presburger formulas. Let us now prove Lemma 4.3 for general existential Presburger
formulas. Observe that if we can show equivalence of the formulas in Equation (6) for quantifier-free
i with modulo constraints, then the same follows for general i : Since for each i , there exists an
equivalent quantifier-free i ′ with modulo constraints, we can apply the equivalence in Lemma 4.3
to i ′, which implies the same for i itself. Therefore, we may assume that i is quantifier-free, but
contains modulo constraints.

We now modify i as in the standard quantifier elimination procedure for Presburger arithmetic.
To this end, we define the “F-simplification” of a quantifier-free formula \ (u,F) with modulo
constraints that has free variables u andF . This means, \ is a Boolean combination of inequalities
of the form r⊤u +2 ∼ BF , where ∼ ∈ {<, >}, and modulo constraints r⊤u + BF ≡4 2 for some vector
r and 2, B ∈ Z. (Note that in Presburger arithmetic equality can be expressed by a conjunction of two
strict inequalities.) Let # be the least common multiple of all coefficients B ofF in these constraints.
We obtain \ ′ from \ by replacing each inequality r⊤u + 2 ∼ BF with #

B
r⊤u + #

B
2 ∼ F and replacing

each modulo constraint r⊤u + BF ≡4 2 with #
B
r⊤u +F ≡#

B
4

#
B
2 . Now the F-simplification of i

is the pair (k, #), wherek (u,F) = i ′(u,F) ∧F ≡# 0. Then clearly,k isF-simple and for every
integer vector a and 1 ∈ Z, we have

\ (a, 1) if and only ifk (a, #1)

and moreover,k (a, 1) implies that 1 is a multiple of # .
Now suppose i (x,~,F, z) is quantifier-free, but contains modulo constraints. Moreover, let

k (x,~,F, z) and # be theF-simplification of i . To show Lemma 4.3, let us assume the left-hand
formula in Equation (6) is satisfied for some integer vector c . Then ∃ramx,~ : ∃F : k (x,~,F, c)

holds, because we can multiply the witness values by # . By Lemma 4.4, this implies that

∃ram (x, E1, E2), (~,F1,F2) : k (x,~, E1 +F2, c)

is satisfied, meaning there exists a sequence (a8 , 18 , 1
′
8)8≥1 where a1, a2, . . . are pairwise distinct and

wherek (a8 , a 9 , 18 +1
′
9 , c) for every 8 < 9 . By construction ofk , this implies that 18 +1

′
9 is a multiple

of # for every 8 < 9 and therefore all the numbers 11, 12, . . . must have the same remainder modulo
, say A ∈ [0, # −1], and all the numbers 1 ′1, 1

′
2, . . . must be congruent to −A modulo # . This means,

the numbers 1̄8 = (18 − A)/# and 1̄ ′8 = (1
′
8 + A)/# must be integers. Then for every 8 < 9 , we have

k (a8 , a 9 , # (1̄8 + 1̄
′
9), c) and hence i (a8 , a 9 , 1̄8 + 1̄

′
9 , c). Thus, the sequence (a8 , 1̄8 , 1̄

′
8)8≥1 shows that

∃ram (x, E1, E2), (~,F1,F2) : i (x,~, E1 +F2, c) ∧ x ≠ ~ is satisfied.

4.2 Linear Real Arithmetic

We now turn to the case where i is a formula in LRA.

Theorem 4.5. Let i be an existential formula in LRA. Then the formulas

∃ramx,~ : ∃w : i (x,~,w, z) and ∃ram (x, v1, v2), (~,w1,w2) : i (x,~, v1 +w2, z) ∧ x ≠ ~

are equivalent.

We may assume thatw consists of just one variableF : Then Theorem 4.5 follows by induction.

Lemma 4.6. Let i be an existential formula in LRA. Then the formulas

∃ramx,~ : ∃F : i (x,~,F, z) and ∃ram (x, E1, E2), (~,F1,F2) : i (x,~, E1 +F2, z) ∧ x ≠ ~

are equivalent.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:12 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

Proof. Again by eliminating quantifiers in i , bringing it into disjunctive normal form, and
moving the quantifiers into the disjunction, we assume that i is a conjunction of formulas

U8 (x) + V8 (~) + W8 (z) + ℎ8 < F

for 8 = 1, . . . , = and

F < U ′9 (x) + V
′
9 (~) + W

′
9 (z) + ℎ

′
9

for 9 = 1, . . . ,<, and equality constraints

F = X8 (x) + ^8 (~) + _8 (z) + 38

for 8 = 1, . . . , : . Here, U8 , V8 , W8 , U
′
9 , V
′
9 , W
′
9 , X8 , ^8 , _8 are linear functions with rational coefficients and

ℎ8 , ℎ
′
9 , 38 ∈ Q are constants.

Assume c ∈ R |z | satisfies the left-hand formula, i.e., there is an infinite sequence (a8)8≥1 of
pairwise distinct vectors over R such that for all 8 < 9 there exists 18, 9 ∈ R such that i (a8 , a 9 , 18, 9 , c)
holds. Clearly, if : > 0, we can eliminate F by replacing it by X1 (x) + ^1 (~) + _1 (z) + 31. Thus,
setting 18 := X1 (a8) and 1 ′8 := ^1 (a8) + _1 (c) + 31 for 8 ≥ 1, the sequence (a8 , 18 , 1

′
8)8≥1 satisfies

i (a8 , a 9 , 18 + 1
′
9 , c) for all 8 < 9 . So assume : = 0, i.e., i only contains lower and upper bounds

on F . We further assume that =,< > 0 since the other cases are obvious. As in the Presburger
case we can apply Ramsey’s theorem so that we only have to consider the greatest lower bound
U (x)+V (~)+W (z)+ℎ and the smallest upper bound U ′(x)+V ′(~)+W ′(z)+ℎ′ onF . This means thatF
can always be chosen to be the midpoint of this interval. Therefore, if we set 18 := (U (a8) +U

′(a8))/2

and 1 ′8 := (V (a8) + W (c) + ℎ + V
′(a8) + W

′(c) + ℎ′)/2 for 8 ≥ 1, the sequence (a8 , 18 , 1
′
8)8≥1 satisfies

i (a8 , a 9 , 18 + 1
′
9 , c) for all 8 < 9 . □

4.3 Linear Integer Real Arithmetic

We are now ready to prove Theorem 4.1. As mentioned above, it suffices to prove the “only
if” direction. Let k (z) be the left-hand formula and c be a valuation of z that satisfies k . By
Lemma 3.5 there exists a decomposition i ′(x i/r,~i/r,w i/r, zi/r) of i (x,~,w, z). We define the formula
k ′(zi/r) := ∃ramx i/r,~i/r : ∃w i/r : i ′(x i/r,~i/r,w i/r, zi/r). By definition of a decomposition, there is a
valuation c i/r of zi/r with c int + creal = c that satisfiesk ′. We bring i ′ into disjunctive normal form

=
∨

8=1

U8 (x
int,~int,w int, zint) ∧ V8 (x

real,~real,wreal, zreal)

where U8 is an existential Presburger formula and V8 is an existential formula in LRA. By Ramsey’s
theorem there exists 1 ≤ 8 ≤ = such that

∃ramx i/r,~i/r : ∃w int : U8 (x
int,~int,w int, c int) ∧ ∃wreal : V8 (x

real,~real,wreal, creal).

Note that the existentially quantified variables can be split at the conjunction into the real and
integer part. To perform a similar splitting for the variables bound by the Ramsey quantifier, we
have to distinct the two cases whether the vectors of the clique are pairwise distinct in the real
components or in the integer components. We only show the case where the vectors of the clique
are pairwise distinct in both the real and integer components. The other cases are similar by
allowing that either the integer or real components do not change throughout the clique, i.e., either
∃x int,w int : U8 (x

int, x int,w int, c int) or ∃xreal,wreal : V8 (x
real, xreal,wreal, creal) holds. So we assume that

∃ramx int,~int : ∃w int : U8 (x
int,~int,w int, c int) ∧ ∃ramxreal,~real : ∃wreal : V8 (x

real,~real,wreal, creal) .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:13

By applying Theorem 4.2 to the first conjunct and Theorem 4.5 to the second conjunct, we get

∃ram (x int, vint1 , vint2), (~
int,w int

1 ,w int
2) : U8 (x

int,~int, vint1 +w
int
2 , c int) ∧ x int

≠ ~int ∧

∃ram (xreal, vreal1 , vreal2), (~
real,wreal

1 ,wreal
2) : V8 (x

real,~real, vreal1 +wreal
2 , creal) ∧ xreal

≠ ~real.

This implies that c satisfies the right-hand formula of the theorem by adding the two cliques
componentwise.

5 RAMSEY QUANTIFIERS IN PRESBURGER ARITHMETIC

In this section, we describe our procedure to eliminate the Ramsey quantifier if applied to an
existential Presburger formula.

It is not difficult to construct Presburger-definable relations that have infinite cliques, but none
that are definable in Presburger arithmetic. For example, consider the relation ' = {(G,~) ∈ N×N |

~ ≥ 2G}. Then every infinite clique � = {00, 01, . . . , } with 00 ≤ 01 ≤ 02 ≤ · · · must satisfy
08 ≥ 28 ·00 for every 8 ≥ 1 and thus cannot be ultimately periodic (i.e., there is no =, : ∈ N such that
for all 0 ≥ =, we have 0 ∈ � if and only if 0 + : ∈ �). Since a subset of N is Presburger-definable if
and only if it is ultimately periodic, it follows that � is not Presburger-definable. Nevertheless, we
show the following:

Theorem 5.1. Given an existential Presburger formula i (x,~, z), we can construct in polynomial

time an existential Presburger formula of linear size that is equivalent to ∃ramx,~ : i (x,~, z).

We first assume that i is a conjunction of the form

=
∧

8=1

r⊤8 x < s⊤8 ~ + t
⊤
8 z + ℎ8 ∧

<
∧

9=1

u⊤9 x ≈
9
4 9 v

⊤
9 ~ +w

⊤
9 z + 3 9 (7)

where ≈
9
4 9 ∈ {≡4 9 , .4 9 }. It should be noted that since Theorem 4.1 allows us to eliminate any

existential quantifier under the Ramsey quantifier without introducing modulo constraints, it
would even suffice to treat the case where i has no modulo constraints. However, in practice it
might be useful to be able to treat modulo constraints without first trading them in for existential
quantifiers. For this reason, we describe the translation in the presence of modulo constraints.

5.1 Cliques in Terms of Profiles

Our goal is to construct an existential Presburger formula i ′(z) so that i ′(c) holds if and only
if there exists an infinite sequence a1, a2, . . . of pairwise distinct vectors for which i (a8 , a 9 , c) for
every 8 < 9 . As mentioned above, it is possible that such a sequence exists, but that none of them is
definable in Presburger arithmetic. Therefore, our first step is to modify the condition “i (a8 , a 9 , c)
for 8 < 9” into a different condition such that (i) the new condition is equivalent in terms of existence
of a sequence and (ii) the new condition can always be satisfied by an arithmetic progression.

To illustrate the idea, suppose i (x,~, z) says that ~1 > 2 · G1 ∧k (x) for some Presburger formula
k . As mentioned above, any directed clique for i must grow exponentially in the first component.
However, such a directed clique exists if and only if there exists a sequence a1, a2, . . . such that
k (a1),k (a2), . . . and the sequence of numbers 01, 02, . . . in the first components of a1, a2, . . . grows
unboundedly: Clearly, any directed clique for i must satisfy this. Conversely, a sequence satisfying
the unboundedness condition must have a subsequence with 0 9 > 2 · 08 for 8 < 9 .

These modified conditions on sequences are based on the notion of profiles. Essentially, a profile
captures how in a sequence a1, a2, . . . the values r

⊤
8 a: and s⊤8 a: + t

⊤
8 c + ℎ8 evolve. A profile (for

i) is a vector in Z2=l where Zl := Z ∪ {l}. Suppose p = (?1, . . . , ?2=). Then value ?28−1 being an
integer means that r⊤8 a1, r

⊤
8 a2, . . . is bounded from above by ?28−1. If ?28−1 is l , then the sequence

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:14 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

r⊤8 a1, r
⊤
8 a2, . . . tends to infinity. Similarly, even-indexed entries ?28 describe the evolution of the

sequence s⊤8 a1 + t
⊤
8 c + ℎ8 , s

⊤
8 a2 + t

⊤
8 c + ℎ8 ,

Let us make this precise. If p is a profile and c is a vector over Z, then a sequence a1, a2, . . . of

pairwise distinct vectors over Z is compatible with p for c if for every : < ℓ , we have u⊤9 a: ≈
9
4 9

v⊤9 aℓ +w
⊤
9 c + 3 9 and

sup{r⊤8 a: | : = 1, 2, . . .} ≤ ?28−1, ?28 ≤ lim inf{s⊤8 a: + t
⊤
8 c + ℎ8 | : = 1, 2, . . .}. (8)

A profile p = (?1, . . . , ?2=) is admissible if for every 8 ∈ [1, =], we have ?28−1 < ?28 or ?28 = l .

Lemma 5.2. Let c be a vector overZ. Then∃ramx,~ : i (x,~, c) if and only if there exists an admissible

profile p ∈ Z2=l such that there is a sequence compatible with p for c .

Proof. We begin with the “only if” direction. To ease notation, we write 58 (x) = r⊤8 x and 68 (x) =
s⊤8 x + t

⊤
8 c + ℎ8 for 8 ∈ [1, =]. Suppose a1, a2, . . . is a directed clique witnessing ∃ramx,~ : i (x,~, c).

First, we may assume that if for some 8 ∈ [1, =], the sequence {58 (a:) | : = 1, 2, . . .} is bounded
from above, then for its maximum " , we have " < 68 (a:) for every : ≥ 1. If this is not the
case, we can achieve it by removing an initial segment of a1, a2, Now we define the profile
p = (?1, ?2, . . . , ?2=−1, ?2=) as

?28−1 = sup{58 (a:) | : = 1, 2, . . .}, ?28 = lim inf{68 (a:) | : = 1, 2, . . .}.

Observe that ?28 cannot be −l and thus belongs to Zl : This is because the set {68 (a:) | : ≥ 1}

is bounded from below (by min{58 (a1), 68 (a1)}). Then p is admissible: Otherwise, we would have
?28−1 ≥ ?28 and ?28 ∈ Z, implying that there are : < ℓ with 58 (a:) ≥ ?28 = 68 (aℓ), which contradicts
the fact that a1, a2, . . . witnesses ∃

ramx,~ : i (x,~, c). Moreover, by definition of p, the sequence
a1, a2, . . . is clearly compatible with p for c .
Let us now prove the “if” direction. Let p ∈ Z2=l be an admissible profile and a1, a2, . . . be

a sequence compatible with p for c . Then, we know that for any : < ℓ , we have u⊤9 a: ≈
9
4 9

v⊤9 aℓ + w 9 c + 3 9 . We claim that we can select a subsequence of a1, a2, . . . such that, for every

8 ∈ [1, =], we have 58 (a:) < 68 (aℓ) for every : < ℓ . It suffices to do this for each 8 = 1, . . . , =

individually, because if for some 8 ∈ [1, =], we have 58 (a:) < 68 (aℓ) for every : < ℓ , then this is
still the case for any subsequence. Likewise, picking an infinite subsequence does not spoil the
property of being compatible with p for c .
Consider some 8 ∈ [1, =]. We distinguish two cases, namely whether ?28 ∈ Z or ?28 = l . First,

suppose ?28 ∈ Z. Then, since p is admissible, we have ?28−1 < ?28 . Now compatibility implies that
?28−1 < ?28 ≤ 68 (aℓ) for almost all ℓ . Hence, by removing some initial segment of our sequence, we
can ensure that 58 (a:) < 68 (aℓ) for every : < ℓ .
Now suppose ?28 = l . We successively choose the elements of a subsequence a′1, a

′
2, . . . of

a1, a2, . . . such that 58 (a
′
:
) < 68 (a

′
ℓ) for any : < ℓ . Suppose we have already chosen a′1, . . . , a

′
ℎ
for

some ℎ ≥ 1. Then the set {58 (a
′
:
) | : ∈ [1, ℎ]} is finite and thus bounded by some " ∈ N. By

compatibility of a1, a2, . . ., there exist infinitely many ℓ ∈ N with " < 68 (aℓ). This allows us to
choose a′

ℎ+1
to extend our sequence.

This completes the construction of our clique witnessing ∃ramx,~ : i (x,~, c). □

5.2 Compatibility in Terms of Matrices

Our next step is to express the existence of a sequence compatible with p for c in terms of certain
inequalities. To this end, we define two matrices Gp,c and Hp and a vector bp,c . Here, Gp,cx ≥ bp,c
will express the compatibility conditions involving ?28−1 and ?28 that are integers. Thus, we define
Gp,c and bp,c by describing the system of inequalityGp,cx ≥ bp,c . For every 8 ∈ [1, =] with ?28−1 ∈ Z,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:15

we add the inequality r⊤8 x ≤ ?28−1. Moreover, for every 8 ∈ [1, =] with ?28 ∈ Z, we add the inequality
?28 ≤ s⊤8 x + t

⊤
8 c + ℎ8 .

Moreover,Hp will be used to express the unboundedness condition on the right side of Equation (8)
if ?28 = l . Thus, for every 8 ∈ [1, =] with ?28 = l , we add the row s⊤8 to Hp . We say that a function
5 : - → Zℓ is simultaneously unbounded on a sequence G1, G2, . . . ∈ - if for every : ∈ N, we have
5 (G 9) ≥ (:, . . . , :) for almost all 9 . Now observe the following:

Lemma 5.3. Let c be a vector and p ∈ Z2=l be a profile. Then there exists a sequence that is

compatible with p for c if and only if there exists a sequence a1, a2, . . . of pairwise distinct vectors such

that (i) u⊤9 a: ≈
9
4 9 v

⊤
9 aℓ +w

⊤
9 c + 3 9 for every 9 ∈ [1,<] and : < ℓ and (ii) Gp,ca: ≥ bp,c for every

: ≥ 1 and (iii) Hp is simultaneously unbounded on a1, a2,

5.3 Arithmetic Progressions

The last key step is to show that there exists a sequence compatible with p if and only if there
exists such a sequence of the form a0 + a, a0 + 2a, a0 + 3a, This will allow us to express existence
of a sequence by the existence of suitable vectors a0 and a.

Lemma 5.4. Let c be a vector and p ∈ Z2=l be a profile. There exists a sequence compatible with p

for c if and only if there are vectors a0, a over Z with a ≠ 0 such that for all 9 ∈ [1,<],

Gp,ca0 ≥ bp,c , Gp,ca ≥ 0, Hpa ≫ 0,

u⊤9 a0 ≈
9
4 9 v

⊤
9 (a0 + a) +w

⊤
9 c + 3 9 , u⊤9 a ≡4 9 v

⊤
9 a ≡4 9 0.

Proof. We begin with the “if” direction. Suppose there are vectors a0 and a as described. Then
we claim that the sequence a1, a2, . . . with a: = a0 + : · a is compatible with p for c . We use
Lemma 5.3 to show this. First note that since a ≠ 0, the a: are pairwise distinct. It is clear that the
sequence satisfies conditions (i) and (ii) of Lemma 5.3. Condition (iii) holds as well, because in the
vector Hp (: · a), every entry is at least : . Thus, Hp is simultaneously unbounded on a1, a2,

For the “only if” direction, suppose a1, a2, . . . is a sequence of pairwise distinct vectors that satisfies
the conditions in Lemma 5.3. Since there are only finitely many possible remainders modulo 4 9
of the expressions u⊤9 a: and v⊤9 a: , we can pick a subsequence such that for each 9 ∈ [1,<], the

maps : ↦→ u⊤9 a: and : ↦→ v⊤9 a: are constant modulo 4 9 . In the second step, we notice that since

Gp,ca: ≥ bp,c for each : ≥ 1, the sequence Gp,ca1,Gp,ca2, . . . cannot contain an infinite strictly
descending chain in any component. Thus, by Ramsey’s theorem, we may pick a subsequence
so that Gp,ca1 ≤ Gp,ca2 ≤ · · · . Note that passing to subsequences does not spoil the conditions
of Lemma 5.3. Thus, Hp is still simultaneously unbounded on a1, a2, This allows us to pick a
subsequence so that also Hpa1 ≪ Hpa2 ≪ · · · . Therefore, if we set a0 := a1 and a := a2 − a1, then
a0 and a are as desired. □

5.4 Construction of the Formula

We are now ready to prove Theorem 5.1 in the general case, i.e., i (x,~, z) is an arbitrary existential
Presburger formula. By Theorem 4.1 we can assume thati is quantifier-free. Bymoving all negations
inwards to the atoms and possibly negating those, we may further assume that i is a positive
Boolean combination of inequality atoms U8 := r⊤8 x < s⊤8 ~ + t

⊤
8 z + ℎ8 for 8 ∈ [1, =] and modulo

constraint atoms V 9 := u⊤9 x ≈
9
4 9 v

⊤
9 ~ +w

⊤
9 z + 3 9 with ≈

9
4 9 ∈ {≡4 9 , .4 9 } for 9 ∈ [1,<]. (Note that in

Presburger arithmetic equality can be expressed by a conjunction of two strict inequalities.)
The key idea is to guess (using existentially quantified variables) a subset of the atoms in i and

check that (i) satisfying those atoms makes i true and (ii) for the conjunction of those atoms, there
exists a directed clique. Note that there are only finitely many conjunctions of atoms (from i) and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:16 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

i is equivalent to the disjunction over these conjunctions. Thus, by Ramsey’s theorem, there exists
a directed clique for i if and only if there exists one for some conjunction of atoms. Condition (i)
is easy to state. To check (ii), we then require the conditions of Lemma 5.4 to be satisfied for our
conjunction of atoms.
For each atom U8 , we introduce a variable @

<

8 , and for each atom V 9 , we introduce a variable @
≈
9 .

To check that (i) holds, we use the formula i ′, that is obtained from i by replacing each U8 with
@<8 = 1 and each V 9 with @≈9 = 1, and adding the restrictions @<8 = 0 ∨ @<8 = 1 and @≈9 = 0 ∨ @≈9 = 1.
Now, i is equivalent to

k := ∃q<, q≈ : i ′ ∧

=
∧

8=1

(@<8 = 1→ U8) ∧

<
∧

9=1

(@≈9 = 1→ V 9).

Let us now construct the formula for condition (ii) above. To this end, we build a formula W8 that
states all conditions of Lemma 5.4 that stem from the atom U8 . For 8 ∈ [1, =] and fresh variables
?28−1, ?28 , x0, x let

W8 := (?28−1 < l → (r⊤8 x0 ≤ ?28−1 ∧ r⊤8 x ≤ 0)) ∧

(?28 < l → (?28 ≤ s⊤8 x0 + t
⊤
8 z + ℎ8 ∧ s

⊤
8 x ≥ 0)) ∧

(?28 = l → s⊤8 x > 0)

and for all 9 ∈ [1,<] let

X 9 := u⊤9 x0 ≈
9
4 9 v

⊤
9 (x0 + x) +w

⊤
9 z + 3 9 ∧ u

⊤
9 x ≡4 9 0 ∧ v

⊤
9 x ≡4 9 0.

Here, ?ℓ < l and ?ℓ = l is shorthand notation for lℓ = 0 and lℓ = 1, respectively, where lℓ is a
fresh variable associated with ?ℓ that is restricted to values from {0, 1}. Thus, from now on we
implicitly quantify 8 when p is quantified. The following requires p to be an admissible profile:

\ :=

=
∧

8=1

(?28−1 < l ∧ ?28−1 < ?28 ∨ ?28 = l).

Then we claim that ∃ramx,~ : k (x,~, z) is equivalent to

j := ∃q<, q≈,p, x0, x : i
′ ∧ \ ∧ x ≠ 0 ∧

=
∧

8=1

(@<8 = 1→ W8) ∧

<
∧

9=1

(@≈9 = 1→ X 9).

We show that for any valuation c ∈ Z |z | of z we have ∃ramx,~ : k (x,~, c) if and only if j (c). For an
assignment a of the @<8 , @

≈
9 to {0, 1} let �a := {8 ∈ [1, =] | a (@<8) = 1} and �a := { 9 ∈ [1,<] | a (@≈9) =

1}. By Ramsey’s theorem we have ∃ramx,~ : k (x,~, c) if and only if there is an assignment a of the
@<8 , @

≈
9 satisfying i

′ such that ∃ramx,~ :
∧

8∈�a U8 (x,~, c) ∧
∧

9 ∈�a V 9 (x,~, c). By Lemmas 5.2 and 5.4

this formula is equivalent to ∃p, x0, x : \ ∧ x ≠ 0 ∧
∧

8∈�a W8 (p, x0, x, c) ∧
∧

9 ∈�a X 9 (x0, x, c) which
in turn holds for some assignment a of the @<8 , @

≈
9 satisfying i

′ if and only if j (c).

6 RAMSEY QUANTIFIERS IN LINEAR REAL ARITHMETIC

In this section, we describe our procedure to eliminate the Ramsey quantifier if applied to an
existential LRA formula. At the end of the section, we mention a version of this result for the
structure ⟨Q;+, <, 1, 0⟩ (Theorem 6.5).

Theorem 6.1. Given an existential formula i (x,~, z) in LRA, we can construct in polynomial time

an existential formula in LRA of linear size that is equivalent to ∃ramx,~ : i (x,~, z).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:17

Similar to the integer case, we first assume that i is a conjunction of the following form:
=
∧

8=1

r⊤8 x < s⊤8 ~ + t
⊤
8 z + ℎ8 ∧

<
∧

9=1

u⊤9 x = v⊤9 ~ +w
⊤
9 z + 3 9 (9)

where r8 , s8 , t8 , u 9 , v 9 ,w 9 ∈ Q
3 for 3 ≥ 1 and ℎ8 , 3 9 ∈ Q.

6.1 Cliques in Terms of Profiles

We now define the notion of a profile with a similar purpose as in the integer case. In the real case,
these carry more information: In the case of Presburger arithmetic, it is enough to guess whether
a particular function grows or has a particular upper bound. Here, it is possible that a function
grows strictly, but it still bounded, because it converges. For example, if i (G,~) says that G < ~ and
G ≤ 1, then a clique must be a strictly ascending sequence of numbers ≤ 1.

A profile (for i) is a tuple p = (d, f, Cd , Cf) of functions where d, f : {1, . . . , =} → R ∪ {−l,l}

and Cd , Cf : {1, . . . , =} → {−l,−1, 0, 1, l}. For a sequence (a:):≥1 in R
3 let 18 := (r

⊤
8 a:):≥1 and

28 := (s
⊤
8 a:):≥1. We say that a sequence (a:):≥1 of pairwise distinct vectors is compatible with p if

d (8) and f (8) are the real values to which the sequences 18 and 28 converge or l (resp. −l) if the
corresponding sequence is strictly increasing (resp. decreasing) and diverges to∞ (resp. −∞) and
the functions Cd and Cf describe the type of convergence where type 0means that the corresponding
sequence is constant, type 1 (resp. −1) means that it is strictly increasing (resp. decreasing) and
converges from below (resp. above), and the type is l (resp. −l) in the divergent case. A profile p
is c-admissible for a vector c ∈ R3 if for all 8 ∈ {1, . . . , =} we have

• f (8) ≠ −l and if d (8) = l , then f (8) = l ,
• d (8) < f (8) + t⊤8 c +ℎ8 if either Cd (8) ∈ {−1, 0} and Cf (8) ∈ {0, 1} or Cd (8) = −1 and Cf (8) = −1,
• d (8) ≤ f (8) + t⊤8 c + ℎ8 if either Cd (8) = 0 and Cf (8) = −1 or Cd (8) = 1.

We say that a sequence (a:):≥1 satisfies the equality constraints (of i) for c ∈ R3 if u⊤9 a: =

v⊤9 aℓ +w
⊤
9 c + 3 9 for all 9 ∈ {1, . . . ,<} and : < ℓ .

Lemma 6.2. Let c ∈ R3 . Then ∃ramx,~ : i (x,~, c) if and only if there exists a c-admissible profile

p such that there is a sequence compatible with p that satisfies the equality constraints for c .

Proof. Wefirst show the “only if” direction. Let (a:):≥1 be a cliquewitnessing∃
ramx,~ : i (x,~, c).

For all 8 ∈ {1, . . . , =} consider the sequence 18 . By the Bolzano-Weierstrass theorem if 18 is bounded,
we can replace (a:):≥1 by an infinite subsequence such that 18 converges against a real value
A8 ∈ R. By restricting further to an infinite subsequence, we have that 18 is either constant, strictly
increasing, or strictly decreasing. Thus, we set d (8) := A8 and Cd (8) to 0, 1, or −1 depending on
whether 18 is constant, increasing, or decreasing. If 18 is unbounded, we replace (a:):≥1 by an
infinite subsequence such that 18 is strictly increasing if it is unbounded above and strictly de-
creasing if it is unbounded below. Then we set d (8) and Cd (8) to l or −l depending on whether 18
is increasing or decreasing. Similarly, we can define f (8) and Cf (8) by considering the sequence
28 . Thus, there is a sequence (a:):≥1 that is compatible with the profile p := (d, f, Cd , Cf). Since
(a:):≥1 still satisfies the equality constraints for c , it remains to show that p is c-admissible. First
observe that f (8) ≠ −l since 28 is bounded from below by min{r⊤8 a1, s

⊤
8 a1}. If d (8) = l , then

also f (8) = l since otherwise there were : < ℓ such that r⊤8 a: ≥ s⊤8 aℓ + t
⊤
8 c + ℎ8 . With a similar

reasoning we can show that if Cd (8) ∈ {−1, 0} and Cf (8) ∈ {0, 1}, then d (8) < f (8) + t⊤8 c + ℎ8 , if
Cd (8) = Cf (8) = −1, then d (8) < f (8) + t⊤8 c + ℎ8 , and if either Cd (8) = 0 and Cf (8) = −1 or Cd (8) = 1,
then d (8) ≤ f (8) + t⊤8 c + ℎ8 .
We now turn to the “if” direction. Let p = (d, f, Cd , Cf) be a c-admissible profile and (a:):≥1

be a sequence compatible with p that satisfies the equality constraints for c . We successively

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:18 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

restrict for each 8 ∈ {1, . . . , =} to a subsequence such that r⊤8 a: < s⊤8 aℓ + t
⊤
8 c + ℎ8 for all : < ℓ . We

construct the subsequence inductively. Suppose we already constructed the subsequence a81 , . . . , a8ℎ
such that r⊤8 a8: < s⊤8 a8ℓ + t

⊤
8 c + ℎ8 for all 1 ≤ : < ℓ ≤ ℎ and the set !ℎ := {ℓ > 8ℎ | ∀1 ≤ : ≤

ℎ : r⊤8 a8: < s⊤8 aℓ + t
⊤
8 c + ℎ8 } is infinite. Let 8ℎ+1 := min(!ℎ). If d (8) < f (8) + t⊤8 c + ℎ8 , then clearly

there is an infinite subset ! of !ℎ such that r⊤8 a8ℎ+1 < s⊤8 aℓ + t
⊤
8 c + ℎ8 for all ℓ ∈ ! \ {8ℎ+1}. If

d (8) = f (8) + t⊤8 c + ℎ8 , then by definition of c-admissibility we have that either Cd (8) = 0 and
Cf (8) = −1 or Cf (8) = 1, or d (8) = f (8) = l . In all of these cases we can find an infinite subset ! of
!ℎ such that r⊤8 a8ℎ+1 < s⊤8 aℓ + t

⊤
8 c + ℎ8 for all ℓ ∈ ! \ {8ℎ+1}. Thus, we can extend the subsequence

by a8ℎ+1 where the set !ℎ+1 is infinite since it contains !. Finally, note that passing to subsequences
does not spoil the satisfaction of the equality constraints for c . Thus, the constructed subsequence
is an infinite clique witnessing ∃ramx,~ : i (x,~, c). □

6.2 A General Form of Cliques

In the case of Presburger arithmetic, a key insight was that if there exists a clique compatible with a
profile, then there exists one of the form a0, a0 + a, a0 + 2 · a, The case of reals is more involved
in this regard: There are profiles with which no arithmetic progression is compatible.
For example, consider the profile that specifies that in the first component, the numbers must

increase strictly in each step and tend to infinity. In the second component, the numbers must
also increase strictly, but are bounded from above by 1. A sequence compatible with this would be
(1
2
, 1), (3

4
, 2), (4

5
, 3), However, such a sequence cannot be of the form a0, a0 + a, a0 + 2 · a, . . .: The

entry in the first component of a would have to be positive; but if it is, then the first component
also tends to infinity. Instead, we look for cliques of the form a1, a2, . . . with

a: = a − 1
:
d2 + :d∞ (10)

for some vectors a, d2 , and d∞. Here the vector d2 realizes the convergence behavior: By subtracting
smaller and smaller fractions of it, the part a − 1

:
d2 converges to a. Moreover, the vector d∞ realizes

divergence to∞ or −∞: By adding larger and larger multiples of it, we can make sure certain linear
functions on a: grow unboundedly.
We will later formulate necessary conditions on vectors a, d2 , and d∞ such that the sequence

(10) is compatible with a profile and satisfies the equality constraints of i . We will then show the
converse in Lemma 6.4: If there is a compatible sequence, then there is one of the form (10).

6.3 Extracting a and d∞

Before we formulate the necessary conditions, we present the key lemma that will yield the existence
of a and d∞. Suppose that we are looking for a sequence a1, a2, . . . in R

3 where for some linear
maps G : R3 → R< and H : R3 → R= , the sequence Ga1,Ga2, . . . converges to some v ∈ R3 and
the sequence Ha1,Ha2, . . . is simultaneously unbounded. If we want to show that there exists such
a sequence of the form Equation (10), then we need a and d∞ to satisfy (i) Ga = v, (ii) Gd∞ = 0

and (iii) Hd∞ ≫ 0. Indeed, we need Gd∞ = 0, because if Gd∞ had a non-zero component, the
sequence : ↦→ G(0 − 1

:
d2 + :d∞) would diverge in that component. Moreover, if Gd∞ = 0, then

: ↦→ G(a − 1
:
d2 + :d∞) = G(a − 1

:
d2) converges to Ga, meaning we need Ga = v. Finally, the map

H is simultaneously unbounded on the sequence : ↦→ a − 1
:
d2 + :d∞ if and only if Hd∞ ≫ 0.

The following lemma yields vectors a and d∞ that satisfy these conditions. For the proof we
refer to the full version of this paper [Bergsträßer et al. 2023a].

Lemma 6.3. Let G : R3 → R< and H : R3 → R= be linear maps. Let a1, a2, . . . ∈ R
3 be a sequence

such that Ga1,Ga2, . . . converges against v ∈ R
< and H is simultaneously unbounded on a1, a2,

Then there exist (1) a ∈ R3 with Ga = v and (2) d∞ ∈ R
3 with Gd∞ = 0 and Hd∞ ≫ 0.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:19

6.4 Compatibility in Terms of Inequalities

We are now ready to describe the necessary and sufficient conditions for the vectors a, d2 , and
d∞. We define matrices and vectors to describe systems of linear (in)equalities that are needed to
express the compatibility conditions. Let p be a profile and define the following inequalities.

Limit values Let Rp be a matrix and ℓp be a vector such that Rpx = ℓp if and only if

r⊤8 x = d (8) for each 8 with Cd (8) ∈ {−1, 1}

s⊤8 x = f (8) for each 8 with Cf (8) ∈ {−1, 1}

Then, as discussed above, our vectors need to satisfy Rpa = ℓp and Rpd∞ = 0.
Constant values Let Ip be a matrix and cp be a vector such that Ipx = cp if and only if

r⊤8 x = d (8) for each 8 with Cd (8) = 0

s⊤8 x = f (8) for each 8 with Cf (8) = 0

Since components 8 with Cd (8) = 0 (resp. Cf (8) = 0) are those where r⊤8 a1, r
⊤a2, . . . (resp.

s⊤8 a1, s
⊤a2, . . .) is constant, our vectors clearly need to satisfy Ipd2 = 0 and Ipd∞ = 0.

Convergence Let Jp be a matrix such that Jpx ≫ 0 if and only if

r⊤8 x > 0 (resp. < 0) for each 8 with Cd (8) = 1 (resp. = −1),

s⊤8 x > 0 (resp. < 0) for each 8 with Cf (8) = 1 (resp. = −1)

Since the components 8 with Cd (8) = 1 (resp. Cd (8) < 0) are those where r⊤8 a1, r
⊤
8 a2, . . .

converges to a real number from below (resp. from above), and similarly for s⊤8 a1, s
⊤
8 a2, . . .,

we must have Jpd2 ≫ 0.
Unboundedness Let [p be a matrix such that [px ≫ 0 if and only if

r⊤8 x > 0 (resp. < 0) for each 8 with Cd (8) = l (resp. = −l)

s⊤8 x > 0 (resp. < 0) for each 8 with Cf (8) = l (resp. = −l)

Since the components 8 with Cd (8) = l are those where r⊤8 a1, r
⊤
8 a2, . . . diverges to ∞ (and

analogous relationships hold for Cd (8) = −l and for Cf (8)), we must have [pd∞ ≫ 0.

Let us now formally provide a list of necessary and sufficient conditions on a, d2 , and d∞ for the
existence of a sequence compatible with p that satisfies the equality constraints for c .

Lemma 6.4. Let c ∈ R3 and p be a profile. Then there exists a sequence compatible with p that

satisfies the equality constraints for c if and only if there are vectors a, d2 , d∞ ∈ R
3 with d2 ≠ 0 with

(1) Rpa = ℓp , Ipa = cp ,

(2) Jpd2 ≫ 0, Ipd2 = 0,

(3) Rpd∞ = 0, Ipd∞ = 0, [pd∞ ≫ 0, and

(4) u⊤9 d2 = u⊤9 d∞ = 0, v⊤9 d2 = v⊤9 d∞ = 0, (u⊤9 − v
⊤
9)a = w⊤9 c + 3 9 for all 9 ∈ {1, . . . ,<}.

Proof. We start with the “only if” direction. Let (a:):≥1 be a sequence compatible with p

that satisfies the equality constraints for c . First observe that the equality constraints imply that
u⊤9 a: = u⊤9 aℓ , v

⊤
9 a: = v⊤9 aℓ , and (u

⊤
9 − v

⊤
9)a: = w⊤9 c + 3 9 for all 2 ≤ : < ℓ . Thus, by removing the

first vector of the sequence we can assume that (a:):≥1 fulfills this property already for 1 ≤ : < ℓ .
For d2 we choose a2 − a1 where d2 ≠ 0 since a1 ≠ a2. This fulfills (2) since the sequences 18 and 28

are strictly increasing/decreasing if Cd , Cf ∈ {−1, 1} and constant if Cd = Cf = 0. Moreover, d2 fulfills
(4) since u⊤9 d2 = u⊤9 a2 − u

⊤
9 a1 = 0 and v⊤9 d2 = v⊤9 a2 − v

⊤
9 a1 = 0. Let G be the matrix obtained by

concatenating Rp and Ip vertically and adding the rows u⊤9 , v
⊤
9 , and u⊤9 − v

⊤
9 for all 9 ∈ {1, . . . ,<}.

In parallel, we define the vector v as the vertical concatenation of ℓp and cp extended by the entry

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:20 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

u⊤9 a1 in the row of u⊤9 , the entry v
⊤
9 a1 in the row of v⊤9 , and the entryw

⊤
9 c +3 9 in the row of u⊤9 −v

⊤
9 .

Then we have that the sequence (Ga:):≥1 converges against v. We can now apply Lemma 6.3 for
G, v, and H := [p to obtain vectors a and d∞ with the desired properties.

For the “if” direction let a, d2 , d∞ ∈ R
3 be as in the lemma. We claim that the sequence with

a: := a − 1
:
d2 + :d∞ for all : ≥ :0 and sufficiently large :0 is as desired. For convenient notation,

define the sequence 18 = r⊤8 a: for each 8 .
We first show that the sequence a1, a2, . . . is compatible with p. Since d2 ≠ 0, the a: are pairwise

distinct for all : ≥ :0 and sufficiently large :0. If Cd (8) = 1 (resp. Cd (8) = −1), then r⊤8 a: =

r⊤8 a −
1
:
r⊤8 d2 + :r

⊤
8 d∞ and since r⊤8 d∞ = 0, r⊤8 a = d (8), and r⊤8 d2 > 0 (resp. < 0), we have that the

sequence 18 is strictly increasing (resp. decreasing) and converges against d (8) from below (resp.
above). If Cd (8) = 0, then 18 is constantly d (8) since r⊤8 d∞ = 0, r⊤8 a = d (8), and r⊤8 d2 = 0. Finally,
if Cd (8) = l (resp. Cd (8) = −l), then r⊤8 d∞ > 0 (resp. < 0) which means that for sufficiently large
:0, the sequence (18):≥:0 = (r

⊤
8 a:):≥:0 is strictly increasing (resp. decreasing) and diverges to∞

(resp. −∞). The statement can be shown analogously for 28 .
It remains to show that the sequence satisfies the equality constraints for c . By (4) we have that

u⊤9 (a −
1
:
d2 + :d∞) = v⊤9 (a −

1
ℓ
d2 + ℓd∞) +w

⊤
9 c + 3 9 for : < ℓ if and only if u⊤9 a = v⊤9 a +w

⊤
9 c + 3 9

which holds if and only if (u⊤9 − v
⊤
9)a = w⊤9 c + 3 9 which is fulfilled by (4). □

6.5 Constructing the Formula

We now prove Theorem 6.1 in the general case, i.e., i (x,~, z) is an arbitrary existential LRA formula.
If i is a conjunction of inequalities, Lemma 6.4 essentially tells us how to construct an existential
formula for ∃ramx,~ : i (x,~, z). Moreover, by Theorem 4.1, we may assume i to be quantifier-free.
Thus, it remains to treat the case that i is a Boolean combination of constraints as in (9).

We first move all negations inward and, if necessary, negate atoms, so that we are left with
a positive Boolean combination of atoms. Let U8 := r⊤8 x < s⊤8 ~ + t

⊤
8 z + ℎ8 for 8 ∈ [1, =] be the

inequality atoms and V 9 := u⊤9 x = v⊤9 ~ +w
⊤
9 z + 3 9 for 9 ∈ [1,<] be the equality atoms in i .

As in the Presburger case, we now guess a subset of the atoms and then assert that (i) satisfying
all these atoms makes i true and (ii) there exists a clique satisfying the conjunction of these atoms.

Let i ′ be the formula obtained from i by replacing each U8 by @
<

8 = 1 for a fresh variable @<8 , for
all 8 ∈ [1, =], and each V 9 by @

=
9 = 1 for a fresh variable @=9 , for all 9 ∈ [1,<], and add the restrictions

@<8 = 0 ∨ @<8 = 1 and @=9 = 0 ∨ @=9 = 1. Now, i is equivalent to

k := ∃q<, q= : i ′ ∧

=
∧

8=1

(@<8 = 1→ U8) ∧

<
∧

9=1

(@=9 = 1→ V 9).

We represent a profile p by the variables d8 , f8 , Cd,8 , and Cf,8 for all 8 ∈ [1, =] where d8 , f8 range over
R and Cd,8 , Cf,8 range over {−2,−1, 0, 1, 2}. Here, −2 and 2 represent −l and l , respectively.
We now define formulas for the inequalities and equality constraints from Lemma 6.4. For 8 ∈
[1, =], let d8 , f8 , Cd,8 , Cf,8 , x, x2 , x∞ be fresh variables. Our first formula _8 contains all the constraints
from R?x = ℓp and Rpx∞ = 0 that stem from the atom U8 :

_8 := ((Cd,8 = −1 ∨ Cd,8 = 1) → r⊤8 x = d8 ∧ r⊤8 x∞ = 0) ∧

((Cf,8 = −1 ∨ Cf,8 = 1) → s⊤8 x = f8 ∧ s
⊤
8 x∞ = 0)

Next, j8 states the constraints about constant values—meaning: those from Ipx = cp and Ipx2 =

Ipx∞ = 0—that stem from U8 :

j8 := (Cd,8 = 0→ r⊤8 x = d8 ∧ r⊤8 x2 = 0 ∧ r⊤8 x∞ = 0) ∧

(Cf,8 = 0→ s⊤8 x = f8 ∧ s
⊤
8 x2 = 0 ∧ s⊤8 x∞ = 0)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:21

With X8 , we express the convergence constraints from Jpx2 ≫ 0 required by U8 :

X8 := (Cd,8 = −1→ r⊤8 x2 < 0) ∧ (Cd,8 = 1→ r⊤8 x2 > 0) ∧

(Cf,8 = −1→ s⊤8 x2 < 0) ∧ (Cf,8 = 1→ s⊤8 x2 > 0)

Furthermore, `8 states the unboundedness condition [?x∞ ≫ 0:

`8 := (Cd,8 = −2→ r⊤8 x∞ < 0) ∧ (Cd,8 = 2→ r⊤8 x∞ > 0) ∧

(Cf,8 = −2→ s⊤8 x∞ < 0) ∧ (Cf,8 = 2→ s⊤8 x∞ > 0)

Finally, Y 9 expresses the equality constraints (5) in Lemma 6.4: For all 9 ∈ [1,<] let

Y 9 := u⊤9 x2 = 0 ∧ u⊤9 x∞ = 0 ∧ v⊤9 x2 = 0 ∧ v⊤9 x∞ = 0 ∧ (u⊤9 − v
⊤
9)x = w⊤9 z + G 9 .

To check if p is a z-admissible profile, we define the formula

\ :=

=
∧

8=1

Cd,8 ∈ {−2,−1, 0, 1, 2} ∧ Cf,8 ∈ {−1, 0, 1, 2} ∧ (Cd,8 = 2→ Cf,8 = 2) ∧

[(Cd,8 ∈ {−1, 0} ∧ Cf,8 ∈ {0, 1} ∨ Cd,8 = −1 ∧ Cf,8 = −1) → d8 < f8 + t
⊤
8 z + ℎ8] ∧

[(Cd,8 = 0 ∧ Cf,8 = −1 ∨ Cd,8 = 1) → d8 ≤ f8 + t
⊤
8 z + ℎ8]

where we use set notation as a shorthand. Then we claim that ∃ramx,~ : k (x,~, z) is equivalent to

W := ∃q<, q=,p, x, x2 , x∞ : i
′ ∧ \ ∧ x2 ≠ 0 ∧

=
∧

8=1

(@<8 = 1→ _8 ∧ j8 ∧ X8 ∧ `8) ∧

<
∧

9=1

(@=9 = 1→ Y 9).

We show that for any valuation c ∈ R3 of z we have ∃ramx,~ : k (x,~, c) if and only if W (c). For an
assignment a of the @<8 , @

=
9 to {0, 1} let �a := {8 ∈ [1, =] | a (@<8) = 1} and �a := { 9 ∈ [1,<] | a (@=9) =

1}. By Ramsey’s theorem,∃ramx,~ : k (x,~, c) holds if and only if there there is an assignmenta of the
@<8 , @

=
9 satisfying i

′ such that ∃ramx,~ :
∧

8∈�a U8 (x,~, c) ∧
∧

9 ∈�a V 9 (x,~, c). By Lemmas 6.2 and 6.4,

this is equivalent to ∃p, x, x2 , x∞ : \ (p, c) ∧ x2 ≠ 0 ∧
∧

8∈�a _8 ∧ j8 ∧ X8 ∧ `8 ∧
∧

9 ∈�a Y 9 (x, x2 , x∞, c).
This holds for some assignment a of the @<8 , @

=
9 satisfying i

′ if and only if W (c).
Using standard arguments, one can observe that Theorem 6.1 has an analogue over the rationals:

Theorem 6.5. Given an existential formulai (x,~, z) over ⟨Q;+, <, 1, 0⟩, we can construct in polyno-

mial time an existential formula over ⟨Q;+, <, 1, 0⟩ of linear size that is equivalent to∃ramx,~ : i (x,~, z).

The proof can be found in the full version of this paper [Bergsträßer et al. 2023a].

7 RAMSEY QUANTIFIERS IN LINEAR INTEGER REAL ARITHMETIC

We now show elimination of the Ramsey quantifier in LIRA. At the end of the section, we mention
a version of this result for the structure ⟨Q; ⌊·⌋, +, <, 1, 0⟩ (Theorem 7.3).

Theorem 7.1. Given an existential formula i (x,~, z) in LIRA, we can construct in polynomial time

an existential formula in LIRA of linear size that is equivalent to ∃ramx,~ : i (x,~, z).

Proof. It suffices to show the theorem for the decomposition of i : Given i , we first com-
pute its decomposition i ′(x i/r,~i/r, zi/r) using Lemma 3.5. We then show how to compute a
formula k ′(zi/r) in LIRA that is equivalent to ∃ramx i/r,~i/r : i ′(x i/r,~i/r, zi/r). Let k (z) be the
formula obtained from k ′ by replacing every Iint8 by ⌊I8⌋ and every Ireal8 by I8 − ⌊I8⌋. Now k

is equivalent to ∃ramx,~ : i (x,~, z) since ∃ramx,~ : i (x,~, c) if and only if c = c int + creal and
∃ramx i/r,~i/r : i ′(x i/r,~i/r, c i/r).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:22 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

Thus, we now assume that i ′(x i/r,~i/r, zi/r) is a decomposition of i . By Theorem 4.1 we can
assume that i ′ is quantifier-free. We further assume that all negations are moved directly into the
atoms. Let U1, . . . , U= be the atoms in LRA and V1, . . . , V< be the Presburger atoms of i ′. For fresh
real variables ?1, . . . , ?= and integer variables @1, . . . , @< let f be the formula obtained from i ′ by
replacing every U8 by ?8 = 1 and every V 9 by @ 9 = 1 and adding the constraints ?8 = 0 ∨ ?8 = 1 and
@ 9 = 0 ∨ @ 9 = 1. Then i ′ is equivalent to

X := ∃p, q : f ∧

=
∧

8=1

(?8 = 1→ U8) ∧

<
∧

9=1

(@ 9 = 1→ V 9).

Since each ?8 and @ 9 only has finitely many (in fact two) possible valuations, Ramsey’s theorem

implies that ∃ramx i/r,~i/r : X (x i/r,~i/r, zi/r) is equivalent to

∃p, q : f ∧ ∃ramx i/r,~i/r :

=
∧

8=1

(?8 = 1→ U8) ∧

<
∧

9=1

(@ 9 = 1→ V 9).

Let U :=
∧=

8=1 (?8 = 1 → U8) and V :=
∧<

9=1 (@ 9 = 1 → V 9). To split the vectors of the Ramsey
quantified variables into real and integer components, we have to allow that in the infinite clique
either the real components or the integer components do not change throughout the clique. To this
end, we introduce a fresh variable A that is either 0 or 1 and get the equivalent formula

∃p, q, A : f ∧ (A = 0 ∨ A = 1) ∧
[(

∃ramxreal,~real : U (p, xreal,~real, zreal)
)

∨ A = 0 ∧ ∃xreal : U (p, xreal, xreal, zreal)
]

∧
[(

∃ramx int,~int : V (q, x int,~int, zint)
)

∨ A = 1 ∧ ∃x int : V (q, x int, x int, zint)
]

where the Ramsey quantifiers can be eliminated by Theorems 5.1 and 6.1. □

Let us mention a simple consequence.

Corollary 7.2. The infinite clique problem for existential formulas in LIRA is NP-complete.

The proof can be found in the full version of this paper [Bergsträßer et al. 2023a].

Theorem 7.3. Given an existential formula i (x,~, z) over ⟨Q; ⌊·⌋, +, <, 1, 0⟩, we can construct in

polynomial time an existential formula of linear size that is equivalent to ∃ramx,~ : i (x,~, z) over

⟨Q; ⌊·⌋, +, <, 1, 0⟩.

Proof. We use almost the same construction as for Theorem 7.1. The only difference is that we
use Theorem 6.5 in place of Theorem 6.1. □

8 APPLICATIONS

In this section, we present further applications of our results.

8.1 Monadic Decomposability

A formula is called monadic if every atom contains at most one variable. As mentioned above,
monadic formulas play an important role in constraint databases[Grumbach et al. 2001; Kuper et al.
2000]. Partly motivated by this, Veanes et al. [2017] recently raised the question of how to decide
whether a given formula i is equivalent to a monadic formula. In this case, i is called monadically

decomposable. For LIA, monadic decomposability was shown decidable (under slightly different
terms) by Ginsburg and Spanier [1966, Corollary, p. 1048] and a more general result by Libkin [2003,
Theorem 3] establishes dedicability for LIA, LRA, and other logics [Libkin 2003, Corollaries 7,8]. In
terms of complexity, given a quantifier-free LIA formula, monadic decomposability was shown

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:23

coNP-complete by Hague et al. [2020]. However, it remained open what the complexity is in the
case of LRA and LIRA. From Theorems 5.1, 6.1 and 7.1, we can conclude the following:

Corollary 8.1. Given a quantifier-free formula in LIA, LRA, or LIRA, deciding monadic decom-

posability is coNP-complete.

As mentioned above, the result about LIA was also shown by Hague et al. [2020]. The coNP-
hardness in Corollary 8.1 uses the same idea as [Bergsträßer et al. 2022, Lemma 6.4] (see the full
version of this paper [Bergsträßer et al. 2023a] for details). The coNP upper bound follows from
Theorems 5.1, 6.1 and 7.1 as follows. Suppose i (G,~) is a formula in LIA, LRA, or LIRA with some
free variable G and a further vector ~ of free variables. We define the equivalence ∼i,G on the
domain � (i.e. R or Z) by

0 ∼i,G 1 ⇐⇒ for all c ∈ � |~ | , we have i (0, c) iff i (1, c) .

Note that if i is quantifier-free, we can easily construct a linear-size existential formula for the
negation of ∼i,G by setting Xi,G (G, G

′) := ∃~ : ¬(i (G,~) ↔ i (G ′,~)). For LIA, LRA, and LIRA,
the formula i (G1, . . . , G=) is monadically decomposable if and only if for each 8 ∈ {1, . . . , =},
the equivalence ∼i,G8 has only finitely many equivalence classes. This is shown in [Libkin 2003,
Lemma 4] for LIA and LRA and in [Bergsträßer and Ganardi 2023b, Lemma 10] for LIRA. Thus, the
formula i (G1, . . . , G=) is not monadically decomposable if and only if `G := ∃ram (G, G ′) : Xi,G8 holds
for some 8 ∈ {1, . . . , =}. Thus, we can decide monadic non-decomposability by deciding in NP each
of the = formulas `G by applying Theorems 5.1, 6.1 and 7.1.
We should mention that although a coNP algorithm was known for LIA, our new procedure

to decide monadic decomposability is asymptotically much more efficient than the one by Hague
et al. [2020]: They construct for each variable G a formula aG that contains an exponential constant
� [Hague et al. 2020, p. 128]. They choose � = 23<=+3 [Hague et al. 2020, p. 132], where (i) 3 is the
number of bits needed to encode constants in i , (ii) = is the number of linear inequalities in any
disjunct in i , and (iii)< is the number of variables in i . Thus, this constant requires 3<= + 3 bits,
meaning aG is of length $ (3<=), which is cubic in the size of the input formula. In contrast, each
of our formulas `G (and thus the result after eliminating ∃ram) is of linear size.

8.2 Linear Liveness for Systems with Counters and Clocks

As already observed by Bergsträßer et al. [2022], the Ramsey quantifier can be used to check liveness
properties of formal systems, provided that the reachability relation is expressible in the respective
logic. This yields several applications for systems that involve counters and/or clocks.

Specifically, there is a rich variety of models where a configuration is an element of� = &×Z:×Dℓ ,
where & is a finite set of control states, and D is either R or Q, with a step relation→ ⊆ � ×� ,
and for ?, @ ∈ & , one can effectively construct an existential first-order formula i?,@ (x,~) for the

reachability relation: This means, (?, x)
∗
−→ (@,~) if and only if i?,@ (x,~). Here the components Z:

and Dℓ hold counter or clock values. We will see some concrete examples below.
For systems of this type, we can consider the linear liveness problem:

Given A description of a system, a formulak (x,~, z), and a state @.
Question Is there an infinite run (@1, u1) → (@2, u2) → · · · and a vector v such that for some

infinite set � ⊆ N, we have @8 = @ for every 8 ∈ � andk (u8 , u 9 , v) for any 8, 9 ∈ � with 8 < 9 .

Here, a simple case is thatk simply states a linear condition on each configuration (thus,k (x,~, z)
would just depend on x). But one can also require that between (@8 , u8) and (@ 9 , u 9), the values in
u8 and u 9 have increased by at least some positive value in v. With this, one can express, e.g. that
clock values grow unboundedly (rather than converging).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:24 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

If we have reachability formulas i?,@ as above, linear liveness can easily be decided using the
Ramsey quantifier: Note that there is a run as above if and only if for some state @ ∈ & , we have

∃z : ∃ram (x,~) : i@,@ (x,~) ∧k (x,~, z). (11)

Let us see some applications of this.

Timed (pushdown) automata. In a timed automaton [Alur and Dill 1994], configurations are
elements of & × Rℓ and the real numbers are clock values. In each step, some time can elapse
or, depending on satisfaction of guards, some counters can be reset; see [Alur and Dill 1994] for
details. It was shown by Comon and Jurski [1999, Theorem 5] that the reachability relation in
timed automata is effectively definable in ⟨R;+, <, 1, 0⟩. Using a conceptually simpler construction,
Quaas et al. [2017, Theorem 10] construct an exponential-size existential formula in ⟨R;+, <, 0, 1⟩
for the reachability relation. Using the formula (11) and our results, we can thus decide the linear
liveness problem for timed automata in NEXPTIME. Recall that liveness in timed automata is
PSPACE-complete [Alur and Dill 1994, Theorem 4.17]. The difference to linear liveness is that in
the latter, one can express arbitrary LIRA constraints (even between configurations).

In order to model timed behavior of recursive programs, timed automata have been extended by
stacks, where each stack either has [Abdulla et al. 2012] or does not have [Bouajjani et al. 1994] its
own clock value. These two versions are semantically equivalent and have been extended to timed

pushdown automata [Clemente and Lasota 2018], a strict extension that allows additional counter
constraints. Clemente and Lasota [2018, Theorem 5] show that the reachability relation, between
two configurations with empty stack, is definable by a doubly-exponential existential formula over
⟨Q;+, <, 0, 1⟩ (for the more restricted model of Abdulla et al. [2012], existence of such a formula
had been shown by Dang [2003], but without complexity bounds). Based on this, our results allow
us to decide the linear liveness problem for timed pushdown automata in 2NEXPTIME, if we view
each run from empty stack to empty stack as a single step of the system.

Continuous vector addition systems with states. Vector addition systems with states (VASS; a.k.a.
Petri nets) are arguably the most popular formal model for concurrent systems. They consist of a
control state and some counters that assume natural numbers. Since the reachability problem is
Ackermann-complete [Czerwinski and Orlikowski 2021; Leroux 2021; Leroux and Schmitz 2019]
and the coverability problem is EXPSPACE-complete [Lipton 1976; Rackoff 1978], there has been
substantial interest in finding overapproximations where these problems become easier.

A particularly successful overapproximation is the continuous semantics, where each added vector
is non-deterministically multiplied by some 0 < U < 1. This has been used to speed up the backward
search procedure by pruning configurations that cannot cover the target continuously [Blondin
et al. 2016]. Thus, in continuous semantics, the configurations belong to & × Qℓ .

As shown by Blondin and Haase [2017, Theorem 4.9], the reachability relation under continuous
semantics can be described by a polynomial-size existential formula over ⟨Q;+, <, 0, 1⟩. Thus, our
results imply NP-completeness of the linear liveness problem for continuous VASS (NP-hardness
easily follows from NP-hardness of reachability [Blondin and Haase 2017, Theorem 4.14]).

Systems with discrete counters. There are several prominent types of counter systems for which
one can compute an existential Presburger formula for the reachability relation. The most well-
known example are reversal-bounded counter machines (RBCM) [Ibarra 1978]. These admit an exis-
tential formula for the reachability relation, even if one of the counters has no reversal bound [Ibarra
et al. 2000, Theorem 12], even with a polynomial-time construction [Hague and Lin 2011].

Closely related to RBCM are Parikh automata (PA) [Klaedtke and Rueß 2003], for which one can
also compute an existential Presburger formula for the reachability relation in polynomial time.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:25

Another example is the class of succinct one-counter systems, which have one unrestricted counter
with binary-encoded updates. Based on [Haase et al. 2009], Li et al. [2020] have shown that one
can construct in polynomial time an existential Presburger formula for the reachability relations.
In fact, using the proof techniques in [Hague and Lin 2012; To 2009], this result can be extended to
multithreaded programs with : threads — each represented as a succinct one-counter system —
where inter-thread communication is limited, e.g., when the number of context switches is also
fixed (in the style of [Qadeer and Rehof 2005]).

Thus, our results imply that for these models, the linear liveness problem is NP-complete. (Again,
NP-hardness follows using a simple reduction from the reachability problem.) In the case of PA,
this strengthens recent results on PA over infinite words [Grobler et al. 2023; Guha et al. 2022].

8.3 Deciding Whether a Relation Is a WQO

The concept of well-structured transition systems (WSTS) [Abdulla et al. 1996; Finkel and Schnoe-
belen 2001] is a cornerstone of the verification of infinite-state systems. Here, the key idea is to
order the configurations of a system by a well-quasi-ordering (WQO). This recently led Finkel and
Gupta [2019a] to consider the problem of automatically establishing that a given counter machine
is well-structured. In particular, they raised the problem of deciding whether a relation, specified
by a formula in Presburger arithmetic, is a well-quasi ordering. Finkel and Gupta [2019b] show that
this is decidable using Ramsey quantifiers in automatic structures, which leads to high complexity:
For quantifier-free formulas this results in a PSPACE procedure by constructing an NFA for the
negation and then evaluating a Ramsey quantifier using [Bergsträßer et al. 2022].
Our results settle the complexity, if the relation is given by a quantifier-free formula i (x,~):

Deciding whether i defines a WQO is coNP-complete. Suppose x and ~ are vectors of : vari-
ables and thus i defines a relation on Z: . Recall that a relation ' ⊆ Z: is a WQO iff it is reflex-
ive and transitive and for every infinite sequence a1, a2, . . ., there are 8 < 9 with (a8 , a 9) ∈ '.
Thus, i violates the conditions of a WQO if and only if (1) ∃x : ¬i (x, x) (reflexivity violation) or
(2) ∃x,~, z : i (x,~) ∧ i (~, z) ∧ ¬i (x, z) (transitivity violation) or (3) ∃ramx,~ : ¬i (x,~) (violation
of the sequence condition). Thus, we obtain anNP procedure using Theorem 5.1 and Proposition 3.1.
Here, coNP-hardness can be shown using a simple ad-hoc proof (see the full version of this paper
[Bergsträßer et al. 2023a]).

9 EXPERIMENTS

We have implemented a prototype (which can be found at [Bergsträßer et al. 2023b]) of our Ramsey
quantifier elimination algorithms for LIA, LRA, and LIRA in Python using the Z3 [de Moura and
Bjørner 2008] interface Z3Py. We have tested it against two sets of micro-benchmarks. The first
benchmarks contain the following examples, where the dimension 3 of x and ~ is a parameter:

(a) ihalf := ∃
ramx,~ : 2~ ≤ x ∧ x ≥ t for parameter C ∈ Z

(b) ieq_ex := ∃
ramx,~ : ∃z : x ≪ ~ ∧ x = z

(c) ieq_free := ∃
ramx,~ : x ≪ ~ ∧ x = z

(d) idickson := ∃ramx,~ : x ≥ 0 ∧ (x > ~ ∨ x ̸≤ ~ ∧~ ̸≤ x) where unsatisfiability over Z proves
Dickson’s lemma

(e) iprogram := ∃ram (x1, x2), (~1,~2) : x1 ≫ 0 ∧ x2 ≫ 0 ∧~1 ≥ 0.5x1 + 0.5 ∧~2 ≤ x2 − ⌊x1⌋ that
describes an under-approximation of the non-terminating program in Section 2, where x1,~1

are vectors of real variables and x2,~2 are vectors of integer variables.

Here, ⌊v⌋ for a vector v denotes the vector (⌊E1⌋, . . . , ⌊E3⌋). Moreover, recall that for numbers = we
write n for the vector (=, . . . , =) of appropriate dimension.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

1:26 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

Table 1. Experiments for the elimination of the Ramsey quantifier with a 500 seconds timeout.

formula dom sat
input output

#vars #atoms #vars #atoms 3 = 1 3 = 10 3 = 20 3 = 50 3 = 100

ihalf
Z no

23 23
223 1303 0.04s 0.33s 0.84s 3.35s 11.00s

R C ≤ 0 253 2843 0.06s 0.75s 2.10s 10.31s 38.48s

ieq_ex
Z yes

33 23
313 1663 0.05s 0.67s 2.01s 10.23s 39.44s

R yes 253 2133 0.05s 1.03s 3.53s 20.01s 82.46s

ieq_free
Z no

33 23
283 1623 0.05s 0.44s 1.12s 4.73s 16.11s

R no 203 2093 0.08s 0.54s 1.64s 8.18s 31.03s

idickson
Z no

23 53
373 2263 0.06s 0.58s 1.52s 6.33s 21.60s

R yes 403 4823 0.08s 1.17s 4.48s 17.18s 66.46s

iprogram R,Z yes 63 143 4263 + 1 38583 + 4 0.84s 68.28s 445.89s > 500s > 500s

The experiments were conducted on an Intel(R) Core(TM) i7-10510U CPU with 16GB of RAM
running on Windows 10. The results are summarized in Table 1. We observe that the number of
output variables and atoms linearly depends on the number of input variables and atoms. In the
first three cases, the output formula has ca. 5 times as many variables as the input has variables and
atoms. The choice of parameter C ∈ Z has no notable effect on the size of the output formula or the
running time since it only changes constants. For iprogram our prototype implementation assumes
the formula to be decomposed into a Boolean combination of LIA and LRA formulas whose size is
given in the input column of Table 1. Then the running time is dominated by the Z3 satisfiability
check due to the large number of variables and atoms in the output.

For the second benchmarks we used our elimination procedure to checkmonadic decomposability,
as described in Section 8, of the following formulas:

(a) iimp :=
∧3

8=1 G8 ≥ 0→ G8 + ~8 ≥ : ∧ ~8 ≥ 0 for parameter : ∈ N
(b) idiagonal := 0 ≤ x ≤ k ∧ G1 = · · · = G3 for parameter : ∈ N

(c) icubes2d := G1 + G2 ≤ : ∧
∧:

8=1 8 ≤ G1 ≤ 8 + 2 ∧ 8 ≤ G2 ≤ 8 + 2 where parameter : ∈ N is the
number of cubes

(d) icubes10 :=
∧10

8=1 i ≤ x ≤ i + 2

(e) imixed := x = ⌊~⌋ ∧ 0 ≤ ~ ≤ k over LIRA with parameter : ∈ N

The results are shown in Table 2 where either the dimension 3 or parameter : is varied. The size
of the input refers to the formula Xi,(G1,...,G8−1,G8+1,...,G3) for 8 = 1 that is defined similarly to Xi,G
in Section 8 but uses only one existentially quantified variable. This has the advantage that the
algorithm only has to eliminate one existential variable before eliminating the Ramsey quantifier.
For the output we measure the size of the first formula given to Z3, i.e., Xi,(G2,...,G3) after elimination
of the Ramsey quantifier. We observe that if = is the number of input variables plus atoms, on these
instances the number of output variables can be estimated by 5 ·= over Z and 10 ·= over R. Note that
not only is the formula Xi,(G2,...,G3) (the input to the elimination procedure) larger than i , where
monadic decomposability is checked on, we also have to consider all of the Xi,(G1,...,G8−1,G8+1,...,G3) in
case i is monadically decomposable. This explains the slowdown compared to Table 1.
For iimp and idiagonal we observe that, despite the larger output formula, over R the algorithm

terminates significantly faster than over Z since it only needs to construct Xi,(G2,...,G3) to detect
that i is not monadically decomposable. The first four examples are taken from [Markgraf et al.
2021] where the authors compare their tool to mondec1 from [Veanes et al. 2017] that computes a
monadic decomposition if one exists. We observe that on these instances our decision algorithm
is significantly faster than mondec1, especially for iimp and idiagonal when only the parameter :
is varied (and 3 = 1 resp. 3 = 2 as in [Markgraf et al. 2021]). The reason for this is that mondec1
computes the monadic decomposition whose size grows exponentially in the encoding of : , whereas
in our approach, where we only decide if a decomposition exists, : only changes a constant in the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

Ramsey�antifiers in Linear Arithmetics 1:27

Table 2. Experiments for monadic decomposability with a 500 seconds timeout.

formula dom mondec
input output

#vars #atoms #vars #atoms

iimp

3 = 1 3 = 5 3 = 10 3 = 20

Z yes
43 − 1 123

843 − 8 5163 − 62 0.12s 6.19s 34.11s 224.53s
R no 1363 − 7 16783 − 130 0.32s 2.27s 6.69s 19.01s

idiagonal

3 = 2 3 = 10 3 = 20 3 = 30

Z yes
23 − 1 43 + 4

523 − 8 3223 − 62 0.15s 8.20s 46.48s 151.42s
R no 353 + 59 4163 + 716 0.32s 1.33s 3.82s 7.37s

icubes2d

: = 50 : = 100 : = 150 : = 250

Z yes
3 16: + 4

80: + 36 512: + 198 7.74s 18.77s 37.73s 109.17s
R no 176: + 63 2256: + 702 210.12s > 500s > 500s > 500s

icubes10

3 = 2 3 = 10 3 = 15 3 = 20

Z yes
23 − 1 803

4123 − 8 26263 − 62 1.18s 66.40s 231.67s 482.39s
R yes 8933 − 7 114143 − 130 5.83s > 500s > 500s > 500s

imixed
3 = 1 3 = 2 3 = 3 3 = 4

R,Z yes 63 − 1 283 8423 − 28 77103 − 198 3.67s 42.84s 192.76s > 500s

formulas where the Ramsey quantifier is eliminated. Therefore, changing : in the two examples
(and also in imixed) does not have any notable effect on the running time in Table 2. In this case,
our algorithm is also faster than the one developed in [Markgraf et al. 2021] that outputs the
decomposition in form of cubes. Since both algorithms in [Veanes et al. 2017] and [Markgraf et al.
2021] only terminate if the input formula is monadically decomposable, our algorithm is the only
one that terminates on iimp, idiagonal, and icubes2d over R and can therefore be used as a termination
check in the other algorithms. Finally, note that the increase of the running time for icubes2d, icubes10

over R and imixed is due to the large number of atoms in the output, which is problematic not only
for the elimination procedure but especially for the satisfiability check with Z3. We observe that
for large instances, the running time is dominated by the satisfiability check.

10 CONCLUSION AND FUTURE WORK

We have given efficient algorithms for removing Ramsey quantifiers from the theories of Linear
Integer Arithmetic (LIA), Linear Real Arithmetic (LRA), and Linear Integer Real Arithmetic (LIRA).
The algorithm runs in polynomial time and is guaranteed to produce formulas of linear size. We
have shown that this leads to applications in proving termination/non-termination of programs, as
well as checking variable dependencies (a.k.a. monadic decomposability) in a given formula.

Wemention several future research avenues. First, combined with existing results on computation
of reachability relations [Bardin et al. 2008, 2005; Boigelot and Herbreteau 2006; Boigelot et al.
2003; Legay 2008], we obtain fully-automatic methods for proving termination/non-termination.
Recent software verification frameworks, however, rely on Constraint Horn Clauses (CHC), which
extend SMT with recursive predicate, e.g., see [Bjørner et al. 2015, 2012]. To extend the framework
for proving termination, one typically extends CHC with ad-hoc well-foundedness conditions
[Beyene et al. 2013]. Our results suggest that we can instead extend CHC with Ramsey quantifiers,
and develop synthesis algorithms for the framework. We leave this for future work. Second, we
also mention that eliminability of Ramsey quantifiers from other theories (e.g. non-linear real
arithmetics and EUF) remains open, which we also leave for future work.

DATA-AVAILABILITY STATEMENT

The experimental results of this paper may be reproduced using the artifact on Zenodo [Bergsträßer
et al. 2023b]. The implementation is also available on GitHub: https://github.com/bergstraesser/
ramsey-linear-arithmetics.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

https://github.com/bergstraesser/ramsey-linear-arithmetics
https://github.com/bergstraesser/ramsey-linear-arithmetics

1:28 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

ACKNOWLEDGMENTS

We thank anonymous reviewers, Arie Gurfinkel, and Philipp Rümmer for their helpful comments.
Moreover, we are grateful to Christoph Haase for discussions on existing quantifier elimination
techniques.
Funded by the European Union (ERC, LASD, 101089343 (https://doi.org/10.3030/

101089343), and FINABIS, 101077902 (https://doi.org/10.3030/101077902)). Views and
opinions expressed are however those of the authors only and do not necessarily reflect
those of the European Union or the European Research Council Executive Agency. Neither the
European Union nor the granting authority can be held responsible for them.

REFERENCES

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. 2012. Dense-Timed Pushdown Automata. In Proceedings of

the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. IEEE

Computer Society, 35–44. https://doi.org/10.1109/LICS.2012.15

Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. 1996. General Decidability Theorems for Infinite-

State Systems. In Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,

USA, July 27-30, 1996. IEEE Computer Society, 313–321. https://doi.org/10.1109/LICS.1996.561359

Rajeev Alur and David L Dill. 1994. A theory of timed automata. Theoretical computer science 126, 2 (1994), 183–235.

Pablo Barceló, Chih-Duo Hong, Xuan Bach Le, Anthony W. Lin, and Reino Niskanen. 2019. Monadic Decomposability of

Regular Relations. In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12,

2019, Patras, Greece (LIPIcs, Vol. 132), Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 103:1–103:14. https://doi.org/10.4230/LIPIcs.ICALP.2019.103

Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure Petrucci. 2008. FAST: acceleration from theory to practice. Int. J.

Softw. Tools Technol. Transf. 10, 5 (2008), 401–424. https://doi.org/10.1007/s10009-008-0064-3

Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Philippe Schnoebelen. 2005. Flat Acceleration in Symbolic Model

Checking. In Automated Technology for Verification and Analysis, Third International Symposium, ATVA 2005, Taipei,

Taiwan, October 4-7, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3707), Doron A. Peled and Yih-Kuen Tsay

(Eds.). Springer, 474–488. https://doi.org/10.1007/11562948_35

J. Barwise and S. Feferman (Eds.). 1985. Model-Theoretic Logics. Perspectives in Logic, Vol. 8. Association for Symbolic Logic.

Michael Benedikt, Leonid Libkin, Thomas Schwentick, and Luc Segoufin. 2003. Definable relations and first-order query

languages over strings. J. ACM 50, 5 (2003), 694–751. https://doi.org/10.1145/876638.876642

Pascal Bergsträßer and Moses Ganardi. 2023a. Revisiting Membership Problems in Subclasses of Rational Relations. In 2023

38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–14. https://doi.org/10.1109/LICS56636.2023.

10175722

Pascal Bergsträßer and Moses Ganardi. 2023b. Revisiting Membership Problems in Subclasses of Rational Relations. CoRR

abs/2304.11034 (2023). https://doi.org/10.48550/arXiv.2304.11034 arXiv:2304.11034

Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche. 2022. Ramsey Quantifiers over Automatic

Structures: Complexity and Applications to Verification. In LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in

Computer Science, Haifa, Israel, August 2 - 5, 2022. 28:1–28:14. https://doi.org/10.1145/3531130.3533346

Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche. 2023a. Ramsey Quantifiers in Linear Arithmetics.

CoRR abs/2311.04031 (2023). https://doi.org/10.48550/arXiv.2311.04031 arXiv:2311.04031

Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche. 2023b. Ramsey Quantifiers in Linear Arithmetics -

Artifact. https://doi.org/10.5281/zenodo.8422415

Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. 2013. Solving Existentially Quantified Horn Clauses.

In Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.

Proceedings (Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer, 869–882.

https://doi.org/10.1007/978-3-642-39799-8_61

Nikolaj S. Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko. 2015. Horn Clause Solvers for Program

Verification. In Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday

(Lecture Notes in Computer Science, Vol. 9300), Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz, Bernd Finkbeiner,

and Wolfram Schulte (Eds.). Springer, 24–51. https://doi.org/10.1007/978-3-319-23534-9_2

Nikolaj S. Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. 2012. Program Verification as Satisfiability Modulo

Theories. In 10th International Workshop on Satisfiability Modulo Theories, SMT 2012, Manchester, UK, June 30 - July 1, 2012

(EPiC Series in Computing, Vol. 20), Pascal Fontaine and Amit Goel (Eds.). EasyChair, 3–11. https://doi.org/10.29007/1l7f

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

https://doi.org/10.3030/101089343
https://doi.org/10.3030/101089343
https://doi.org/10.3030/101077902
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.4230/LIPIcs.ICALP.2019.103
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1007/11562948_35
https://doi.org/10.1145/876638.876642
https://doi.org/10.1109/LICS56636.2023.10175722
https://doi.org/10.1109/LICS56636.2023.10175722
https://doi.org/10.48550/arXiv.2304.11034
https://arxiv.org/abs/2304.11034
https://doi.org/10.1145/3531130.3533346
https://doi.org/10.48550/arXiv.2311.04031
https://arxiv.org/abs/2311.04031
https://doi.org/10.5281/zenodo.8422415
https://doi.org/10.1007/978-3-642-39799-8_61
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.29007/1l7f

Ramsey�antifiers in Linear Arithmetics 1:29

Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. 2016. Approaching the Coverability Problem Continu-

ously. In Proc. of the 22nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS 2016) (LNCS, Vol. 9636). Springer, 480–496. https://doi.org/10.1007/978-3-662-49674-9_28

Michael Blondin and Christoph Haase. 2017. Logics for continuous reachability in Petri nets and vector addition systems

with states. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23,

2017. IEEE Computer Society, 1–12. https://doi.org/10.1109/LICS.2017.8005068

Achim Blumensath and Erich Grädel. 2000. Automatic Structures. In 15th Annual IEEE Symposium on Logic in Computer

Science, Santa Barbara, California, USA, June 26-29, 2000. IEEE Computer Society, 51–62. https://doi.org/10.1109/LICS.

2000.855755

Bernard Boigelot and Frédéric Herbreteau. 2006. The Power of Hybrid Acceleration. In Computer Aided Verification, 18th

International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings (Lecture Notes in Computer Science,

Vol. 4144), Thomas Ball and Robert B. Jones (Eds.). Springer, 438–451. https://doi.org/10.1007/11817963_40

Bernard Boigelot, Axel Legay, and Pierre Wolper. 2003. Iterating Transducers in the Large (Extended Abstract). In Computer

Aided Verification, 15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings (Lecture Notes in

Computer Science, Vol. 2725), Warren A. Hunt Jr. and Fabio Somenzi (Eds.). Springer, 223–235. https://doi.org/10.1007/978-

3-540-45069-6_24

Itshak Borosh and Leon Bruce Treybig. 1976. Bounds on positive integral solutions of linear Diophantine equations. Proc.

Amer. Math. Soc. 55, 2 (1976), 299–304.

Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif, Pierre Moro, and Tomás Vojnar. 2011. Programs with lists

are counter automata. Formal Methods Syst. Des. 38, 2 (2011), 158–192. https://doi.org/10.1007/s10703-011-0111-7

Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. 1994. On the Automatic Verification of Systems with Continuous

Variables and Unbounded Discrete Data Structures. In Hybrid Systems II, Proceedings of the Third International Workshop

on Hybrid Systems, Ithaca, NY, USA, October 1994 (Lecture Notes in Computer Science, Vol. 999), Panos J. Antsaklis, Wolf

Kohn, Anil Nerode, and Shankar Sastry (Eds.). Springer, 64–85. https://doi.org/10.1007/3-540-60472-3_4

C. C. Chang and H. J. Keisler. 1990. Model Theory. Elsevier.

Lorenzo Clemente and Slawomir Lasota. 2018. Binary Reachability of Timed Pushdown Automata via Quantifier Elimination

and Cyclic Order Atoms. In 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July

9-13, 2018, Prague, Czech Republic (LIPIcs, Vol. 107), Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and

Donald Sannella (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 118:1–118:14. https://doi.org/10.4230/LIPIcs.

ICALP.2018.118

Hubert Comon and Yan Jurski. 1999. Timed Automata and the Theory of Real Numbers. In CONCUR ’99: Concurrency Theory,

10th International Conference, Eindhoven, The Netherlands, August 24-27, 1999, Proceedings (Lecture Notes in Computer

Science, Vol. 1664), Jos C. M. Baeten and Sjouke Mauw (Eds.). Springer, 242–257. https://doi.org/10.1007/3-540-48320-9_18

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2011. Proving program termination. Commun. ACM 54, 5 (2011),

88–98. https://doi.org/10.1145/1941487.1941509

Wojciech Czerwinski and Lukasz Orlikowski. 2021. Reachability in Vector Addition Systems is Ackermann-complete. In

62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE,

1229–1240. https://doi.org/10.1109/FOCS52979.2021.00120

Zhe Dang. 2001. Binary Reachability Analysis of Pushdown Timed Automata with Dense Clocks. In Computer Aided

Verification, 13th International Conference, CAV 2001, Paris, France, July 18-22, 2001, Proceedings (Lecture Notes in Computer

Science, Vol. 2102), Gérard Berry, Hubert Comon, and Alain Finkel (Eds.). Springer, 506–518. https://doi.org/10.1007/3-

540-44585-4_48

Zhe Dang. 2003. Pushdown timed automata: a binary reachability characterization and safety verification. Theor. Comput.

Sci. 302, 1-3 (2003), 93–121. https://doi.org/10.1016/S0304-3975(02)00743-0

Zhe Dang and Oscar H. Ibarra. 2002. The Existence of l-Chains for Transitive Mixed Linear Relations and Its Applications.

Int. J. Found. Comput. Sci. 13, 6 (2002), 911–936. https://doi.org/10.1142/S0129054102001539

Zhe Dang, Oscar H. Ibarra, Tevfik Bultan, Richard A. Kemmerer, and Jianwen Su. 2000. Binary Reachability Analysis of

Discrete Pushdown Timed Automata. In Computer Aided Verification, 12th International Conference, CAV 2000, Chicago,

IL, USA, July 15-19, 2000, Proceedings (Lecture Notes in Computer Science, Vol. 1855), E. Allen Emerson and A. Prasad Sistla

(Eds.). Springer, 69–84. https://doi.org/10.1007/10722167_9

Zhe Dang, Pierluigi San Pietro, and Richard A. Kemmerer. 2001. On Presburger Liveness of Discrete Timed Automata. In

STACS 2001, 18th Annual Symposium on Theoretical Aspects of Computer Science, Dresden, Germany, February 15-17, 2001,

Proceedings (Lecture Notes in Computer Science, Vol. 2010), Afonso Ferreira and Horst Reichel (Eds.). Springer, 132–143.

https://doi.org/10.1007/3-540-44693-1_12

Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for

the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1109/LICS.2017.8005068
https://doi.org/10.1109/LICS.2000.855755
https://doi.org/10.1109/LICS.2000.855755
https://doi.org/10.1007/11817963_40
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/s10703-011-0111-7
https://doi.org/10.1007/3-540-60472-3_4
https://doi.org/10.4230/LIPIcs.ICALP.2018.118
https://doi.org/10.4230/LIPIcs.ICALP.2018.118
https://doi.org/10.1007/3-540-48320-9_18
https://doi.org/10.1145/1941487.1941509
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/3-540-44585-4_48
https://doi.org/10.1007/3-540-44585-4_48
https://doi.org/10.1016/S0304-3975(02)00743-0
https://doi.org/10.1142/S0129054102001539
https://doi.org/10.1007/10722167_9
https://doi.org/10.1007/3-540-44693-1_12

1:30 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

(Lecture Notes in Computer Science, Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340. https:

//doi.org/10.1007/978-3-540-78800-3_24

Alain Finkel and Ekanshdeep Gupta. 2019a. The Well Structured Problem for Presburger Counter Machines. In 39th IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019, December 11-13,

2019, Bombay, India (LIPIcs, Vol. 150), Arkadev Chattopadhyay and Paul Gastin (Eds.). Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 41:1–41:15. https://doi.org/10.4230/LIPIcs.FSTTCS.2019.41

Alain Finkel and Ekanshdeep Gupta. 2019b. The Well Structured Problem for Presburger Counter Machines. CoRR

abs/1910.02736 (2019). arXiv:1910.02736

Alain Finkel and Philippe Schnoebelen. 2001. Well-structured transition systems everywhere! Theor. Comput. Sci. 256, 1-2

(2001), 63–92. https://doi.org/10.1016/S0304-3975(00)00102-X

Jean Baptiste Joseph Fourier. 1826. Solution d’une question particuliere du calcul des inégalités. Nouveau Bulletin des

Sciences par la Société philomatique de Paris 99 (1826).

Seymour Ginsburg and Edwin H Spanier. 1966. Bounded regular sets. Proc. Amer. Math. Soc. 17, 5 (1966), 1043–1049.

https://doi.org/10.1090/S0002-9939-1966-0201310-3

Mario Grobler, Leif Sabellek, and Sebastian Siebertz. 2023. Parikh Automata on Infinite Words. CoRR abs/2301.08969 (2023).

https://doi.org/10.48550/arXiv.2301.08969 arXiv:2301.08969

Stéphane Grumbach, Philippe Rigaux, and Luc Segoufin. 2001. Spatio-Temporal Data Handling with Constraints. GeoInfor-

matica 5, 1 (2001), 95–115. https://doi.org/10.1023/A:1011464022461

Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. 2022. Parikh Automata over Infinite Words. In

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2022,

December 18-20, 2022, IIT Madras, Chennai, India (LIPIcs, Vol. 250), Anuj Dawar and Venkatesan Guruswami (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 40:1–40:20. https://doi.org/10.4230/LIPIcs.FSTTCS.2022.40

Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. 2009. Reachability in Succinct and Parametric

One-Counter Automata. In CONCUR 2009 - Concurrency Theory, 20th International Conference, CONCUR 2009, Bologna,

Italy, September 1-4, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5710), Mario Bravetti and Gianluigi Zavattaro

(Eds.). Springer, 369–383. https://doi.org/10.1007/978-3-642-04081-8_25

Matthew Hague and Anthony Widjaja Lin. 2011. Model Checking Recursive Programs with Numeric Data Types. In

Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings

(Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 743–759.

https://doi.org/10.1007/978-3-642-22110-1_60

Matthew Hague and Anthony Widjaja Lin. 2012. Synchronisation- and Reversal-Bounded Analysis of Multithreaded

Programs with Counters. In Computer Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA,

July 7-13, 2012 Proceedings. 260–276. https://doi.org/10.1007/978-3-642-31424-7_22

Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. 2020. Monadic Decomposition in Integer Linear

Arithmetic. In Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020,

Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12166), Nicolas Peltier and Viorica Sofronie-Stokkermans

(Eds.). Springer, 122–140. https://doi.org/10.1007/978-3-030-51074-9_8

Oscar H. Ibarra. 1978. Reversal-Bounded Multicounter Machines and Their Decision Problems. J. ACM 25, 1 (1978), 116–133.

https://doi.org/10.1145/322047.322058

Oscar H. Ibarra, Jianwen Su, Zhe Dang, Tevfik Bultan, and Richard A. Kemmerer. 2000. Conter Machines: Decidable Properties

and Applications to Verification Problems. In Mathematical Foundations of Computer Science 2000, 25th International

Symposium, MFCS 2000, Bratislava, Slovakia, August 28 - September 1, 2000, Proceedings (Lecture Notes in Computer Science,

Vol. 1893), Mogens Nielsen and Branislav Rovan (Eds.). Springer, 426–435. https://doi.org/10.1007/3-540-44612-5_38

Ranjit Jhala and Rupak Majumdar. 2009. Software model checking. ACM Comput. Surv. 41, 4 (2009), 21:1–21:54. https:

//doi.org/10.1145/1592434.1592438

Felix Klaedtke and Harald Rueß. 2003. Monadic Second-Order Logics with Cardinalities. In Automata, Languages and

Programming, 30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings

(Lecture Notes in Computer Science, Vol. 2719), Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J.

Woeginger (Eds.). Springer, 681–696. https://doi.org/10.1007/3-540-45061-0_54

Gabriel Kuper, Leonid Libkin, and Jan Paredaens. 2000. Constraint Databases. Springer.

Dietrich Kuske. 2010. Is Ramsey’s Theorem omega-automatic?. In 27th International Symposium on Theoretical Aspects of

Computer Science, STACS 2010, March 4-6, 2010, Nancy, France (LIPIcs, Vol. 5), Jean-Yves Marion and Thomas Schwentick

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 537–548. https://doi.org/10.4230/LIPIcs.STACS.2010.2483

Axel Legay. 2008. T(O)RMC: A Tool for (omega)-Regular Model Checking. In Computer Aided Verification, 20th International

Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings (Lecture Notes in Computer Science, Vol. 5123), Aarti

Gupta and Sharad Malik (Eds.). Springer, 548–551. https://doi.org/10.1007/978-3-540-70545-1_52

K. Rustan M. Leino. 2023. Program Proofs. (2023).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.41
https://arxiv.org/abs/1910.02736
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1090/S0002-9939-1966-0201310-3
https://doi.org/10.48550/arXiv.2301.08969
https://arxiv.org/abs/2301.08969
https://doi.org/10.1023/A:1011464022461
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.40
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1007/978-3-642-22110-1_60
https://doi.org/10.1007/978-3-642-31424-7_22
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.1145/322047.322058
https://doi.org/10.1007/3-540-44612-5_38
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.4230/LIPIcs.STACS.2010.2483
https://doi.org/10.1007/978-3-540-70545-1_52

Ramsey�antifiers in Linear Arithmetics 1:31

Jérôme Leroux. 2021. The Reachability Problem for Petri Nets is Not Primitive Recursive. In 62nd IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE, 1241–1252. https://doi.org/

10.1109/FOCS52979.2021.00121

Jérôme Leroux and Sylvain Schmitz. 2019. Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension.

In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019.

IEEE, 1–13. https://doi.org/10.1109/LICS.2019.8785796

Xie Li, Taolue Chen, Zhilin Wu, and Mingji Xia. 2020. Computing Linear Arithmetic Representation of Reachability Relation

of One-Counter Automata. In Dependable Software Engineering. Theories, Tools, and Applications - 6th International

Symposium, SETTA 2020, Guangzhou, China, November 24-27, 2020, Proceedings (Lecture Notes in Computer Science,

Vol. 12153), Jun Pang and Lijun Zhang (Eds.). Springer, 89–107. https://doi.org/10.1007/978-3-030-62822-2_6

Leonid Libkin. 2003. Variable independence for first-order definable constraints. ACM Trans. Comput. Log. 4, 4 (2003),

431–451. https://doi.org/10.1145/937555.937557

Richard Lipton. 1976. The reachability problem is exponential-space hard. Yale University, Department of Computer Science,

Report 62 (1976).

Zohar Manna and Amir Pnueli. 1970. Formalization of Properties of Functional Programs. J. ACM 17, 3 (1970), 555–569.

https://doi.org/10.1145/321592.321606

Oliver Markgraf, Daniel Stan, and Anthony W. Lin. 2021. Learning Union of Integer Hypercubes with Queries - (with

Applications to Monadic Decomposition). In Computer Aided Verification - 33rd International Conference, CAV 2021,

Virtual Event, July 20-23, 2021, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12760), Alexandra Silva and

K. Rustan M. Leino (Eds.). Springer, 243–265. https://doi.org/10.1007/978-3-030-81688-9_12

Greg Nelson and Derek C. Oppen. 1980. Fast Decision Procedures Based on Congruence Closure. J. ACM 27, 2 (1980),

356–364. https://doi.org/10.1145/322186.322198

Andreas Podelski and Andrey Rybalchenko. 2004. Transition Invariants. In 19th IEEE Symposium on Logic in Computer

Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings. IEEE Computer Society, 32–41. https://doi.org/10.1109/

LICS.2004.1319598

Mojżesz Presburger. 1929. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die

Addition als einzige Operation hervortritt. Comptes Rendus du I congres de Mathematiciens de Pays Slaves (1929).

Shaz Qadeer and Jakob Rehof. 2005. Context-Bounded Model Checking of Concurrent Software. In Tools and Algorithms for

the Construction and Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings (Lecture Notes in

Computer Science, Vol. 3440), Nicolas Halbwachs and Lenore D. Zuck (Eds.). Springer, 93–107. https://doi.org/10.1007/978-

3-540-31980-1_7

Karin Quaas, Mahsa Shirmohammadi, and James Worrell. 2017. Revisiting reachability in timed automata. In 32nd Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer

Society, 1–12. https://doi.org/10.1109/LICS.2017.8005098

Charles Rackoff. 1978. The covering and boundedness problems for vector addition systems. Theoretical Computer Science 6,

2 (1978), 223–231.

F. P. Ramsey. 1930. On a Problem of Formal Logic. Proceedings of the London Mathematical Society s2-30, 1 (01 1930), 264–286.

https://doi.org/10.1112/plms/s2-30.1.264

James H Schmerl and Stephen G Simpson. 1982. On the role of Ramsey quantifiers in first order arithmetic1. The Journal of

Symbolic Logic 47, 2 (1982), 423–435.

Robert E. Shostak. 1984. Deciding Combinations of Theories. J. ACM 31, 1 (1984), 1–12. https://doi.org/10.1145/2422.322411

Eduardo D. Sontag. 1985. Real Addition and the Polynomial Hierarchy. Inform. Process. Lett. 20, 3 (April 1985), 115–120.

https://doi.org/10.1016/0020-0190(85)90076-6

Anthony Widjaja To. 2009. Model Checking FO(R) over One-Counter Processes and beyond. In Computer Science Logic,

23rd international Workshop, CSL 2009, 18th Annual Conference of the EACSL, Coimbra, Portugal, September 7-11, 2009.

Proceedings. 485–499. https://doi.org/10.1007/978-3-642-04027-6_35

Anthony Widjaja To and Leonid Libkin. 2008. Recurrent Reachability Analysis in Regular Model Checking. In Logic for

Programming, Artificial Intelligence, and Reasoning, 15th International Conference, LPAR 2008, Doha, Qatar, November

22-27, 2008. Proceedings. 198–213. https://doi.org/10.1007/978-3-540-89439-1_15

Margus Veanes, Nikolaj S. Bjørner, Lev Nachmanson, and Sergey Bereg. 2017. Monadic Decomposition. J. ACM 64, 2 (2017),

14:1–14:28. https://doi.org/10.1145/3040488

Volker Weispfenning. 1997. Complexity and Uniformity of Elimination in Presburger Arithmetic. In Proceedings of the

1997 International Symposium on Symbolic and Algebraic Computation, ISSAC 1997, Maui, Hawaii, USA, July 21-23, 1997,

Bruce W. Char, Paul S. Wang, and Wolfgang Küchlin (Eds.). ACM, 48–53. https://doi.org/10.1145/258726.258746

Volker Weispfenning. 1999. Mixed Real-Integer Linear Quantifier Elimination. In Proceedings of the 1999 International

Symposium on Symbolic and Algebraic Computation, ISSAC ’99, Vancouver, B.C., Canada, July 29-31, 1999, Keith O. Geddes,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/978-3-030-62822-2_6
https://doi.org/10.1145/937555.937557
https://doi.org/10.1145/321592.321606
https://doi.org/10.1007/978-3-030-81688-9_12
https://doi.org/10.1145/322186.322198
https://doi.org/10.1109/LICS.2004.1319598
https://doi.org/10.1109/LICS.2004.1319598
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1109/LICS.2017.8005098
https://doi.org/10.1112/plms/s2-30.1.264
https://doi.org/10.1145/2422.322411
https://doi.org/10.1016/0020-0190(85)90076-6
https://doi.org/10.1007/978-3-642-04027-6_35
https://doi.org/10.1007/978-3-540-89439-1_15
https://doi.org/10.1145/3040488
https://doi.org/10.1145/258726.258746

1:32 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche

Bruno Salvy, and Samuel S. Dooley (Eds.). ACM, 129–136. https://doi.org/10.1145/309831.309888

H Paul Williams. 1986. Fourier’s method of linear programming and its dual. The American mathematical monthly 93, 9

(1986), 681–695. https://doi.org/10.2307/2322281

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 1. Publication date: January 2024.

https://doi.org/10.1145/309831.309888
https://doi.org/10.2307/2322281

	Abstract
	1 Introduction
	2 More Detailed Examples
	3 Preliminaries
	3.1 Linear Integer Arithmetic
	3.2 Linear Real Arithmetic
	3.3 Linear Integer Real Arithmetic
	3.4 Ramsey Quantifier

	4 Eliminating existential quantifiers
	4.1 Presburger Arithmetic
	4.2 Linear Real Arithmetic
	4.3 Linear Integer Real Arithmetic

	5 Ramsey quantifiers in Presburger arithmetic
	5.1 Cliques in Terms of Profiles
	5.2 Compatibility in Terms of Matrices
	5.3 Arithmetic Progressions
	5.4 Construction of the Formula

	6 Ramsey quantifiers in Linear Real Arithmetic
	6.1 Cliques in Terms of Profiles
	6.2 A General Form of Cliques
	6.3 Extracting a and d
	6.4 Compatibility in Terms of Inequalities
	6.5 Constructing the Formula

	7 Ramsey quantifiers in Linear Integer Real Arithmetic
	8 Applications
	8.1 Monadic Decomposability
	8.2 Linear Liveness for Systems with Counters and Clocks
	8.3 Deciding Whether a Relation Is a WQO

	9 Experiments
	10 Conclusion and Future Work
	Acknowledgments
	References

