
Reachability in Continuous Pushdown VASS

A. R. BALASUBRAMANIAN∗,MPI-SWS, Germany

RUPAK MAJUMDAR,MPI-SWS, Germany

RAMANATHAN S. THINNIYAM†, Uppsala University, Sweden
GEORG ZETZSCHE,MPI-SWS, Germany

Pushdown Vector Addition Systems with States (PVASS) consist of �nitely many control states, a pushdown

stack, and a set of counters that can be incremented and decremented, but not tested for zero. Whether the

reachability problem is decidable for PVASS is a long-standing open problem.

We consider continuous PVASS, which are PVASS with a continuous semantics. This means, the counter

values are rational numbers and whenever a vector is added to the current counter values, this vector is �rst

scaled with an arbitrarily chosen rational factor between zero and one.

We show that reachability in continuous PVASS is NEXPTIME-complete. Our result is unusually robust:

Reachability can be decided in NEXPTIME even if all numbers are speci�ed in binary. On the other hand,

NEXPTIME-hardness already holds for coverability, in �xed dimension, for bounded stack, and even if all

numbers are speci�ed in unary.

CCS Concepts: • Theory of computation→Models of computation.

Additional Key Words and Phrases: Vector addition systems, Pushdown automata, Reachability, Decidability,

Complexity

ACM Reference Format:

A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. 2024. Reachability

in Continuous Pushdown VASS. Proc. ACM Program. Lang. 8, POPL, Article 4 (January 2024), 25 pages.

https://doi.org/10.1145/3633279

1 INTRODUCTION

Pushdown VASS (PVASS) is a model of computation which combines a Pushdown Automaton
(PDA) and a Vector Addition System with States (VASS) by using both a stack and counters. Since
PDAs naturally model sequential computation with recursion [Alur et al. 2005; Reps et al. 1995]
and VASSs naturally model concurrency [Karp and Miller 1969], the combination of the two is an
expressive modelling paradigm. For instance, PVASS can be used to model recursive programs with
unbounded data domains [Atig and Ganty 2011], beyond the capability of PDA alone. They can
also model context-bounded analysis of multi-threaded programs [Atig et al. 2009], even when one
thread can have arbitrarily many context switches. In program analysis, one-dimensional PVASS
models certain pointer analysis problems [Kjelstrøm and Pavlogiannis 2022; Li et al. 2021].

∗A part of the work was done when this author was at Technical University of Munich (TUM).
†A part of the work was done when this author was at MPI-SWS.

Authors’ addresses: A. R. Balasubramanian, MPI-SWS, Germany, bayikudi@mpi-sws.org; Rupak Majumdar, MPI-SWS,

Germany, rupak@mpi-sws.org; Ramanathan S. Thinniyam, Uppsala University, Sweden, ramanathan.s.thinniyam@it.uu.se;

Georg Zetzsche, MPI-SWS, Germany, georg@mpi-sws.org.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART4

https://doi.org/10.1145/3633279

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-7258-5445
HTTPS://ORCID.ORG/0000-0003-2136-0542
HTTPS://ORCID.ORG/0000-0002-9926-0931
HTTPS://ORCID.ORG/0000-0002-6421-4388
https://doi.org/10.1145/3633279
https://orcid.org/0000-0002-7258-5445
https://orcid.org/0000-0003-2136-0542
https://orcid.org/0000-0002-9926-0931
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.1145/3633279
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3633279&domain=pdf&date_stamp=2024-01-05

4:2 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

Many veri�cation problems can then be reduced to the reachability problem [Hack 1976], where
one asks, given a PVASSM and two of its con�gurations 20 and 2 5 , whether there is a run ofM
that starts at 20 and ends at 2 5 . Unfortunately, in spite of our understanding of the reachability
problem in the context of PDA [Alur et al. 2005; Chaudhuri 2008; Reps et al. 1995; Yannakakis 1990]
and VASS models [Czerwiński and Orlikowski 2022; Leroux 2022; Leroux and Schmitz 2019], the
decidability of PVASS reachability remains open [Englert et al. 2021; Ganardi et al. 2022; Schmitz
and Zetzsche 2019], even with just one stack and one VASS counter. Hence a natural approach
to take is to consider overapproximations of the system behaviour, both to build up theoretical
understanding and to approximate veri�cation questions in practice. The approach we take in this
paper is to approximate the model via continuous semantics. A continuous semantics gives an
over-approximation of the possible behaviors, so if the relaxed program cannot reach a location,
neither can the original one.
By continuous semantics of VASS, we mean that a transition is allowed to be �red fractionally,

allowing the addition or removal of a rational fraction of tokens from a counter. This model was
�rst introduced by David and Alla in the context of Petri nets [David 1987]. Continuous VASS
(Q+-VASS) were studied by Blondin and Haase [2017], who showed reachability and coverability
are NP-complete. Approximation via continuous semantics has allowed the application of SMT
solvers and the development of state-of-the-art solvers from an empirical perspective [Blondin
et al. 2016] to the coverability problem for VASS. More generally, relaxing integer-valued programs
to continuous-valued programs is a common approximation in invariant synthesis [Colón et al.
2003; Srivastava et al. 2010].
In addition to its use as an overapproximation, the continuous semantics captures the exact

behavior in systems where update vectors represent change rates (to real variables such as temper-
ature, energy consumption) per time unit. Here, fractional addition corresponds to executing steps
that take at most one time unit. For example, Q+-VASS are constant-rate multi-mode systems [Alur
et al. 2012] where each action takes at most one time unit. Continuous PVASS can then be seen as
recursive programs with such constant-rate dynamics.

Contribution. We study PVASS with continuous semantics (denoted by Q+-PVASS), where we
allow fractional transitions on counters, but retain the discrete nature of the stack. Hence, a
con�guration is a tuple (@,W, v) where @ is the control-state, W is the stack content and v represents
the counter values. We show that reachability is decidable, and we provide a comprehensive
complexity landscape for reachability, coverability, and state reachability. The reachability problem

asks for given con�gurations (@,W, v) and (@′, W ′, v′), whether from (@,W, v), the system can reach
(@′, W ′, v′). The coverability problem asks for given con�gurations (@,W, v) and (@′, W ′, v′), whether
from (@,W, v), the system can reach a con�guration of the form (@′, W ′, v′′) where v′′ ≥ v′). Moreover,
state reachability asks for a given con�guration (@,W, v) and a state @′, whether from (@,W, v), the
system can reach a con�guration of the form (@′, W ′, v′) for some W ′ and v′.

Our main result is the following:

Theorem 1.1. Reachability in Q+-PVASS is NEXPTIME-complete.

The NEXPTIME-completeness is unusually robust. Speci�cally, the complexity is not a�ected by
(i) whether we consider reachability or coverability, or (ii) whether the number of counters is part
of the input or �xed, or (iii) whether counter values (in updates and con�gurations) are encoded in
unary or binary. This is summarized in the following stronger version:

Theorem 1.2. Reachability inQ+-PVASS, with binary encoded numbers, is inNEXPTIME. Moreover,

NEXPTIME-hardness already holds for coverability in 85-dimensional Q+-PVASS, with unary encoded
numbers, and bounded stack-height.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

Reachability in Continuous Pushdown VASS 4:3

Further, if we allow the con�gurations to be encoded in binary, then hardness already holds for
coverability in 13-dimensional Q+-PVASS.
Our result is in stark contrast to reachability problems in classical VASS: It is well-known

that there, coverability is EXPSPACE-complete [Racko� 1978], whereas general reachability is
Ackermann-complete [Czerwiński and Orlikowski 2022; Leroux 2022]. Furthermore, �xing the
dimension brings the complexity down to primitive-recursive [Leroux and Schmitz 2019] (or from
EXPSPACE to PSPACE in the case of coverability [Rosier and Yen 1986]).

Another surprising aspect is that for continuous PVASS, the coverability problem and the state
reachability problem do not have the same complexity. We also show:

Theorem 1.3. The state reachability problem for Q+-PVASS is NP-complete.

This is also in contrast to the situation in PVASS: There is a simple reduction from the reachability
problem to the coverability problem [Leroux et al. 2015], and from there to state reachability. Thus,
the three problems are polynomial-time inter-reducible for PVASS.
Our results are based on a number of novel technical ingredients. Especially for our lower

bounds, we show a number of subtle constructions that enable us to encode discrete computations
of bounded runs of counter machines in the continuous semantics.

Ingredient I: Upper bound via rational arithmetic. We prove the NEXPTIME upper bound by
observing that a characterization of runs in a cyclic Q+-VASS (meaning: the initial state is also the
only �nal one) by Blondin and Haase [2017] still holds in a more general setting of cyclicQ+-PVASS.
We apply this observation by combining several (known) techniques. As is standard in the analysis
of PVASS [Englert et al. 2021; Leroux et al. 2015], we view runs as derivations in a suitable grammar.
As usual, one can then decompose each derivation tree into an acyclic part and “pump derivations”

of the form �
∗
=⇒ D�E for some non-terminal �. Such pumps, in turn, can by simulated by a cyclic

Q+-PVASS. Here, to simulate�
∗
=⇒ D�E , one appliesD as is and one applies E in reverse on a separate

set of counters. This idea of simulating grammar derivations by applying “the left part forward”
and “the right part backward” is a recurring theme in the literature on context-free grammars (see,
e.g. [Baumann et al. 2023; Berstel 1979; Lohrey et al. 2022; Reps et al. 2016; Rosenberg 1967]) and
has been applied to PVASS by Leroux et al. [2015, Section 5].
As a consequence, reachability can be decided by guessing an exponential-size formula of

Existential Linear Rational Arithmetic (ELRA). Since satis�ability for ELRA is in NP, this yields an
NEXPTIME upper bound.

Ingredient II: High precision and zero tests. For our lower bound, we reduce from reachability in
machines with two counters, which can only be doubled and incremented. A run in these machines
is accepted if it is of a particular length (given in binary) and has both counters equal in the end. We

call such machines 2CM·2,+1RL , the RL stands for “run length”. This problem is NEXPTIME-hard by a
reduction from a variant of the Post Correspondence Problem where the word pair is restricted to
have a speci�ed length (given in binary) [Aiswarya et al. 2022].

We give the desired reduction from 2CM·2,+1RL , through a series of intricate constructions that

“control” the fractional �rings. We go through an intermediate machine model called [0, 1]-VASS0?RL.

An [0, 1]-VASS0?RL is just like a Q+-VASS, except that the counter values are constrained to be in the
interval [0, 1] and we allow zero tests. Further, we only consider runs up to a particular length

(given in binary), as indicated by the RL subscript. When reducing from 2CM·2,+1RL , we are confronted

with two challenges: First, [0, 1]-VASS0?RL cannot store numbers beyond 1 and second, [0, 1]-VASS0?RL
cannot natively double numbers. The key idea here is that, since we only consider runs of a 2CM·2,+1RL

up to a given length<, the counter values of a 2CM·2,+1RL are bounded by 2< along any run. Hence,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

4:4 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

instead of storing the counter values of a 2CM·2,+1RL exactly, we instead use exponential precision.
We encode a number = ∈ N by =

2<
∈ [0, 1]. Since then all the values are in [0, 1], we can double

the counter values in a [0, 1]-VASS0?RL by forcing the �ring fraction of the [0, 1]-VASS0?RL to be a
particular value. The �ring fraction is controlled, in turn, by means of the zero tests.

Ingredient III: Constructing precise numbers. In order to simulate increments of the 2CM·2,+1RL in

our [0, 1]-VASS0?RL, we need to be able to add
1
2<

to a counter. To this end, we present a [0, 1]-VASS0?RL
gadget of polynomial size that produces the (exponentially precise) number 1

2<
in a given counter.

The idea is to start with 1 in the counter and halve it< times. The trick is to use an additional
counter that goes up by 1/< for each halving step. Checking this counter to be 1 in the end ensures
that exactly< halvings have been performed.

Ingredient IV: Zero tests via run length.We then reduce [0, 1]-VASS0?RL to Q+-VASSRL, which
are Q+-VASS with a run-length constraint. Here, we need to (i) make sure that the counter values
remain in [0, 1] and (ii) simulate zero tests. We achieve both by introducing a complement counter

Ḡ for each counter G , where it is guaranteed that G + Ḡ = 1 at all times. This means that instead of
checking G = 0, we can check Ḡ = 1 by subtracting 1 from Ḡ . However, this does not su�ce—we
need to ensure that the �ring fraction is exactly 1 in these steps. Here, the key idea is, whenever
we check Ḡ = 1, we also increment at the same time (and thus with the same �ring fraction), a
separate counter called the controlling counter, which in the end must equal / , the total number of
zero tests. This exploits the fact that every run attempts the same pre-determined number of zero
tests due to the run-length constraint. If the controlling counter reaches the value / at the very
end, then we are assured that every zero-test along the run was indeed performed correctly.
Finally, we reduce from Q+-VASSRL to Q+-PVASS by using the pushdown stack to count from

zero up to a number speci�ed in binary. This employs a standard trick for encoding a binary number
on the stack, where the least signi�cant bit is on top. We further show that the �nal Q+-PVASS
that we construct has bounded stack-height, 13 counters, and also that the target con�guration can
be reached from the source con�guration if and only if the target can be covered from the source.
This proves that coverability is hard even for a constant number of counters.

Ingredient V: Unary encodings. The above reduction produces instances of Q+-PVASS where
the con�gurations are encoded in binary. Proving hardness for unary encodings requires more
ideas. First, by using a trick akin to exponential precision from above, we show that hardness of
coverability inQ+-PVASS holds already when all the values of the given con�gurations are less than
1. Next, by reusing the doubling and the halving gadgets from Ingredients II and III, we show that
for any fraction ?/2: where ? is given in binary, there exists an ampli�er, i.e., there is a Q+-VASS
of polynomial size in log(?) and : , which starting from an unary-encoded con�guration is able
to put the value ?/2: in a given counter. We then simply plug in a collection of these ampli�ers
before and after our original Q+-PVASS to get the desired result.

Related work. There have been several attempts to study restrictions or relaxations of the PVASS
reachability problem. For example, reachability is decidable when one is allowed to simultane-
ously test the �rst 8 counters of a VASS for zero for any 8 [Reinhardt 2008]; this model can be
seen as a special case of PVASS [Atig and Ganty 2011]. Furthermore, the coverability problem in
one-dimensional PVASS is decidable [Leroux et al. 2015] and PSPACE-hard [Englert et al. 2021].
Reachability is decidable for bidirected PVASS [Ganardi et al. 2022], although the best known upper
bound is Ackermann time (primitive recursive time in �xed dimension). Our work is in the same
spirit. The continuous semantics reduces the complexity of reachability from Ackermann-complete
for VASS to NP-complete [Blondin and Haase 2017] (and even to P for Petri nets [Fraca and Haddad

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

Reachability in Continuous Pushdown VASS 4:5

2015]). Our results show that the presence of a stack retains decidability, but allows exponentially
more computational power.

For space reasons, detailed proofs can be found in the full version of this paper [Balasubramanian
et al. 2023].

2 PRELIMINARIES

We write Q for the set of rationals and Q+ for the set of nonnegative rationals. Vectors over Q (or
Q+) are written in bold (u, v etc.) and are represented as a pair of natural numbers (numerator and
denominator) for each rational. Throughout this paper, all numbers will be encoded in binary, unless
stated otherwise. Note that, this means that, each rational number is a pair of natural numbers,
with both of them encoded in binary.

Machine models. A 3-dimensional Continuous Vector Addition System with States (3-Q+-VASS or
simply Q+-VASS)M = (&,) ,Δ) consists of a �nite set& of states, a �nite set) ⊆ Z3 of transitions,
and a �nite set Δ ⊆ & ×) ×& of rules. We will on occasion consider an in�nite Q+-VASS where)
continues to be �nite, but & and Δ are in�nite.
A con�guration of M is a tuple � = (@, v) where @ is a state and v ∈ Q3+ is a valuation of

the counters. We use the notations state(�), val(�),� (8) to denote @, v, v(8) respectively. Let � =
(@, C, @′) ∈ Δ be a rule and let U ∈ (0, 1] be the �ring fraction. A step from a con�guration �

to another con�guration �′ by means of the pair (U, �) (denoted by �
U�
−−→ �′) is possible iff

state(�) = @, state(�′) = @′ and val(�′) = val(�) + UC . A run ofM is a �nite sequence of steps

�0
U1�1
−−−→ �1

U2�2
−−−→ . . .

U=�=
−−−→ �= , where U1�1 . . . U=�= is called a �ring sequence, and we say �= is

reachable from �0 (written �0
U1�1,U2�2,...,U=�=
−−−−−−−−−−−−→ �= or �0

∗
−→ �=).

We assume the reader is familiar with context-free grammars and give basic de�nitions and
notation (see, e.g., [Sipser 2012]). A context-free grammar G = ((, # , Σ, %) consists of a �nite set of
nonterminals # , a starting nonterminal (, a �nite alphabet Σ and a �nite set of production rules

% ⊆ # × (# ∪ Σ)∗. We will assume that G is in Chomsky Normal Form. As usual
∗
=⇒ is the re�exive,

transitive closure of =⇒. A wordF ∈ Σ∗ belongs to the language !(G) of the grammar i� (
∗
=⇒F .

A Continuous Pushdown VASS (Q+-PVASS) is a Q+-VASS additionally equipped with a stack.
Formally, it is a tupleM = (&, Γ,) ,Δ) where & is a �nite set of states, Γ is a �nite stack alphabet,
) ⊆ Z3 × (Γ ∪ Γ̄ ∪ Y) is a �nite set of transitions, and Δ ⊆ & ×) × & is a �nite set of rules. A
con�guration� = (@,F, v) ofM contains additionally the stackF ∈ Γ∗ and we writeF = stack(�).

A step �
U�
−−→ �′ using rule � = (@, 0, C, @′) is possible iff state(�) = @, state(�′) = @′, val(�′) =

val(�) + UC , and one of the following holds: (1) 0 ∈ Γ and stack(�′) = 0 stack(�), (2) 0 ∈ Γ̄ and
stack(�) = 0 stack(�′), or (3) 0 = Y and stack(�) = stack(�′). The notion of run, �ring sequence,
and reachability is de�ned as for Q+-VASS. In some cases, we will need to extend the notion of step
to allow vectors in Q3 in a con�guration rather than just Q3+. We then explicitly specify this in the
form of an underscript: −→Q+ or −→Q to make it clear.

Decision problems. The reachability problem for Q+-PVASS is de�ned as follows:

Given a Q+-PVASSM and two of its con�gurations �0,�1, is �1 reachable from �0?

The coverability problem for Q+-PVASS is de�ned as follows:

Given a Q+-PVASSM and two of its con�gurations �0,�1 = (@1,F1, v1), does there
exist a con�guration �′ = (@1,F1, v

′
1) with v′1 ≥ v1 such that �′ reachable from �0?

The state reachability problem is de�ned as follows:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

4:6 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

@0 @1

@2

@3

(−1, 0), 0

(0,−1), 1

(0
, 0
),
0̄

(0
, 1
),
0

(0, 0), ¯1
(1, 0), 1

Fig. 1. An example Q+-PVASS with 2 counters. Here 0 and 1 are the stack symbols.

Given a Q+-PVASSM, a con�guration�0 and a state @, does there exist a con�guration
�1 with state(�1) = @ that is reachable from �0?

Example 2.1. Let us consider the Q+-PVASS from Figure 1, which we shall denote byM. It has 2
counters and stack symbols 0 and 1. Recall that a label 0 represents a push of 0 and 0̄ represents a
pop of 0. There are only two outgoing rules from the state @0: the �rst rule A1 decrements the �rst
counter by 1, does not modify the second counter and pushes 0 onto the stack and the second rule
A2 decrements the second counter by 1, does not modify the �rst counter and pushes 1 onto the
stack. Hence, starting from the con�guration (@0, Y, (0, 0)) it is not possible to reach a con�guration
whose state is @1. This implies that the input (M, (@0, Y, (0, 0))), @1) is a negative instance of the
state reachability problem.
On the other hand, starting from (@0, Y, (1, 1)), by �ring A1 with fraction 0.5, we can reach
(@1, 0, (0.5, 1)). This means that (M, (@0, Y, (1, 1)), @1) is a positive instance of the state reachability
problem. Moreover, this also means that (M, (@0, Y, (1, 1)), (@1, 0, (0.5, 0.5))) is a positive instance
of the coverability problem.
However, the input (M, (@0, Y, (1, 1)), (@1, 0, (1, 1))) is a negative instance of the coverability

problem. To see this, suppose for the sake of contradiction, a run exists between (@0, Y, (1, 1)) and
(@1, 0, (=1, =2)) for some =1 ≥ 1, =2 ≥ 1. The �rst step of this run has to �re either A1 or A2 by some
non-zero fraction U . Suppose A1 is �red. (The argument is similar for the other case). Then 0 gets
pushed onto the stack and the value of the �rst counter becomes 1 − U . From that point onwards,
the only rules that can be �red are the ones going in and out of the state @2, both of which do not
increment the �rst counter. Hence, the �rst counter will have 1 − U as its value throughout the run,
which leads to a contradiction.

Finally, note that starting from (@0, Y, (1.1, 0.6)), it is possible to reach (@1, 0, (1, 1)): �rst, �re A1
with fraction 0.1, then �re the incoming rule to @2 (which pops 0) with fraction 1 and then �re the
outgoing rule from @2 (which pushes 0) with fraction 0.4. Hence, (M, (@0, Y, (1.1, 0.6)), (@1, 0, (1, 1)))

is a positive instance of the reachability problem.

3 UPPER BOUND FOR REACHABILITY

We �rst prove the NEXPTIME upper bound in Theorem 1.2. To this end, we �rst use a standard
language-theoretic translation to slightly rephrase the reachability problem in Q+-PVASS (this
slight change in viewpoint is also taken in other work on PVASS [Englert et al. 2021; Leroux et al.
2015]). Observe that when we are given two con�gurations �0 and �1 of a Q+-PVASS, we want
to know whether there exists a sequenceF ∈ (Z3)∗ of update vectors such that (i) there exists a
sequence f of transitions that appliesF , such that f is a valid run from �0 to �1 in the pushdown

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

Reachability in Continuous Pushdown VASS 4:7

automaton underlying the Q+-PVASS (thus ignoring the counter updates) and (ii) there exist �ring
fractions for each vector inF such that adding the resulting update vectors will lead from u to v,
where u, v are the vectors in the con�gurations �0 and �1. Now observe that the set of wordsF as
in condition (i) are a context-free language. Therefore, we can phrase the reachability problem in
Q+-PVASS by asking for a word in a context-free language that satis�es condition (ii).

Let us make condition (ii) precise. Let Σ ⊆ Z3 be the �nite set of vectors that appear as transition
labels in our Q+-PVASS. Given two con�gurations u, v ∈ Q3+ and a word F = F1F2 . . .F= ∈ Σ

∗

with eachF8 ∈ Σ, we say that u
F
−→Q+ v i� there exist U1, . . . , U= such that u

U1F1,U2F2,...,U=F=
−−−−−−−−−−−−−−→Q+ v.

Similarly, given a language ! ⊆ Σ
∗, we say that u

!
−→Q+ v i� u

F
−→Q+ v for some F ∈ !. By our

observation above, the reachability problem in Q+-PVASS is equivalent to the following problem:

Given: A set of vectors Σ ⊆ Z3 , a context-free language ! ⊆ Σ
∗ and u, v ∈ Q3+.

Question: Does u
!
−→Q+ v?

We solve this problem using results about the existential fragment of the �rst-order theory of
(Q, +, <), which we call Existential Linear Rational Arithmetic (ELRA). Our algorithm constructs
an ELRA formula for the following relation '! .

De�nition 3.1. The reachability relation '! corresponding to a context-free language ! ⊆ (Z3)∗

is given by '! = {(u, v) ∈ Q3+ × Q
3
+ | u

!
−→Q+ v}.

The following de�nition of computing a formula using a non-deterministic algorithm is inspired
by the de�nition of leaf language from complexity theory [Papadimitriou 2007]. We say that
one can construct an ELRA formula in NEXPTIME (resp. NP) for a relation ' ⊆ Q=+ if there is a
non-deterministic exponential (resp. polynomial) time-bounded Turing machine such that every
accepting path of the machine computes an ELRA formula such that if i1, . . . , i< are the produced
formulae, then their disjunction

∨<
8=1 i8 de�nes the relation '. Here, a formula q is said to de�ne

a relation ' ⊆ Q=+ if for every =-tuple u ∈ Q
=
+, we have '(u) holds i� q (u) is true of the rational

numbers.

Proposition 3.2. Given a context-free language ! ⊆ (Z3)∗ one can construct in NEXPTIME an

ELRA formula for the relation '! .

Since the truth problem for ELRA formulae can be solved in NP [Sontag 1985], the NEXPTIME
upper bound follows from Proposition 3.2: Our algorithmwould �rst non-deterministically compute
a disjunct i of the ELRA formula for '! and then check the truth of i in NP in the size of i . This is
a non-deterministic algorithm that runs in exponential time.

Therefore, the remainder of this section is devoted to proving Proposition 3.2. The key di�culty
lies in understanding the reachability relation along pumps, which are derivations of the form

�
∗
=⇒ F�F ′ for some non-terminal �.

De�nition 3.3. Let G be a context-free grammar over Z3 and � a non-terminal in G. The pump

reachability relation is de�ned as

%� =

{

(u, v, u′, v′) ∈ Q3+ × Q
3
+ × Q

3
+ × Q

3
+ | ∃F,F

′ : �
∗
=⇒ F�F ′, u

F
−→Q+ v, u

′ F′

−−→Q+ v
′

}

.

Theorem 3.4. Given a context-free grammar G over Z3 and a non-terminal� in G, one can compute

in NEXPTIME an ELRA formula for the relation %�.

Before proving Theorem 3.4, we �rst show how Proposition 3.2 follows from Theorem 3.4.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

4:8 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

T = node n�

�

D E F G ~

= T ′node n �

D (�,=) F (�,=) ~

;

Fig. 2. Removal of a single cycle in an arbitrary derivation tree T to get a tree T ′ with additional leaves of

the form (�,=) and (�,=).

Let G be a grammar for the language ! in Proposition 3.2. Consider an arbitrary derivation tree
T of G. We say a derivation tree is pumpfree if along every path of the tree, every nonterminal
occurs at most once. Clearly, an arbitrary derivation tree T can be obtained from a pumpfree

tree by inserting “pumping” derivations of the form �
∗
=⇒ F�F ′. Since every pumpfree tree is

exponentially bounded in size (since its depth is bounded by the number of nonterminals |# |), there
can only be exponentially many such pumps that need to be inserted for any given nonterminal �.

A pump �
∗
=⇒ E�G on a nonterminal � in an arbitrary derivation tree T can be replaced by

additional terminal letters called pump letters (�, n) and (�, n) as shown in Fig. 2. Let the two
occurrences of � be the �rst and last occurences of � along a path. Here n ∈ {0, 1}∗ is a vector
denoting the node which is labelled by the �rst �. Note that we assume that the grammar is in
Chomsky Normal Form and hence nodes in the derivation tree can be identi�ed in this manner
since the trees are binary trees. The tree T ′ contains four children at n, with the �rst and fourth
being pump letters and the second and third being labelled by the nonterminals �,� occurring
in the production � =⇒ �� . It could also be the case that the rule used is of the form � =⇒ 0, in

which case there are only three letters: the middle letter being 0 and the other two pump letters.

Repeating this replacement procedure along each path, we �nally obtain a pumpfree tree T̃ which

does not have a repeated nonterminal along any path. Since T̃ is exponentially bounded in size, the
number of pump terminals introduced is also exponentially bounded. In particular, every vector
n ∈ {0, 1}ℎ for ℎ ≤ |# | where # is the set of nonterminals of G.

The algorithm guesses an exponential sized tree T̃ and veri�es the consistency of node labels
between parent and children nodes in the tree using the rule set % of the grammar. It then constructs
a formula q T̃ as follows. The formula q T̃ contains variables for a sequence of fractions and vectors

x0, U1, x1 . . . U; , x; where ; is the number of leaf nodes in T̃ . Let W8 be the label of the 8
Cℎ leaf node.

The constructed formula is the conjunction of the following formulae q8 for each leaf 8:

• if W8 is a nonpump letter then q8 := (x8 + U8+1W8 = x8+1), else
• W8 is a pump letter (�, n), then x8 , x8+1 are plugged into an instantiation of the formula obtained
from Theorem 3.4 for �, along with the corresponding vectors x9 , x9+1 for the dual letter

(�, n) = W 9 to give the formula q8, 9 . In this case, q8 = q 9 = q8, 9 .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

Reachability in Continuous Pushdown VASS 4:9

The formula q T̃ existentially quanti�es over the variables x1, . . . , x;−1 as well as the �ring fractions
U1, . . . , U; , while x0 and x; are free variables corresponding to u and v respectively. The �nal formula
we want is

∨

T̃ q T̃ .

3.1 Capturing Pump Reachability Relations

It remains to prove Theorem 3.4. The key observation is that a characterization of Blondin and
Haase [2017] of the existence of “cyclic runs” (i.e. ones that start and end in the same control state)
inQ+-VASS actually also applies toQ+-VASSwith in�nitely many control states. Thus, the �rst step
is to translate the setting of pumps into that of cyclic Q+-VASS with in�nitely many control states.
It is more convenient for us to use algebraic terminology, so we will phrase this as a translation to
the case of semigroups. We say a language ⊆ Σ

∗ is a semigroup if it is closed under concatenation,
i.e., for any D, E ∈ , we have DE ∈ . We will show that for our particular cyclic Q+-VASS, the
characterization of Blondin and Haase allows us to build an exponential-sized ELRA formula.

Reduction to semigroups. Let us �rst show that the pump reachability relations %� can be
captured using context-free semigroups. In this section, we often write letters 0 in normal font,
even though they are vectors in Z3 . Vectors in Q3+ are represented by bold font e.g. u.

The following lemma uses the idea of simulating grammar derivations by applying “the left part
forward” and “the right part backward”, which is a recurring theme in the literature on context-free
grammars (see, e.g. [Baumann et al. 2023; Berstel 1979; Lohrey et al. 2022; Reps et al. 2016; Rosenberg
1967]) and has been applied to PVASS by Leroux et al. [2015, Section 5].

Lemma 3.5. Given a grammar G over Z3 and a non-terminal� in G, one can compute, in polynomial

time, a context-free language ⊆ (Z23)∗ such that (i) is a semigroup and (ii) for any u, v, u′, v′ ∈ Q3 ,

we have (u, v′)

−→Q+ (u

′, v) if and only if (u, v, u′, v′) ∈ %�.

Suppose ((, # , Σ, %) is a context-free grammar in Chomsky normal form, with Σ ⊆ Z3 and� ∈ # .

The idea is to take a derivation tree for �
∗
=⇒ F�F ′ and consider the path from the root to the �

in the derived word, see Fig. 3 on the left. We transform the tree as follows. Each subtree on the
left of this path (ℓ1 and ℓ2 in the �gure) is left unchanged, except that each produced vector 0 ∈ Z3

is padded so as to obtain (0, 0, . . . , 0) ∈ Z23 . In the �gure, the resulting subtrees are
−→
ℓ1 ,
−→
ℓ2 . Each

subtree on the right (A1 and A2 in the �gure), however, is moved to the left side of the path and it is
reversed, meaning in particular that the word produced by it is reversed. Moreover, each vector
1 ∈ Z3 occurring at a leaf is turned into (0, . . . , 0,−1) ∈ Z23 .

Then, every word generated by the new grammar will be of the form −→G1
←−~= · · ·

−→G=
←−~1, where

G1 · · · G=~1 · · ·~= is the word produced by the original grammar. Here, for a wordF ∈ (Z3)∗, −→F is

obtained from F by replacing each vector 0 ∈ Z3 in F by (0, 0, . . . , 0) ∈ Z23 , and←−F is obtained
fromF by reversing the word and replacing each 0 ∈ Z3 by (0, . . . , 0,−0) ∈ Z23 . Conversely, for

every �
∗
=⇒ F�F ′, we can �nd a word −→G1

←−~= · · ·
−→G=
←−~1 in the new grammar such that G1 · · · G= = F

and ~1 · · ·~= = F ′. Thus, we clearly have (u, v′)

−→Q+ (u

′, v) if and only if (u, v, u′, v′) ∈ %� for

every u, v ∈ Q3+.
Formally, in the new grammar for , we have three copies of the non-terminals in # , hence we

have# ′ =
←−
∪
−→
∪#̂ , where

←−
= {

←−
� | � ∈ # },

−→
= {

−→
� | � ∈ # } and #̂ = {�̂ | � ∈ # } are disjoint

copies of# . The productions in the new grammar are as follows: For every production � → �� in % ,

we include productions
−→
� →

−→
�
−→
� , �̂ →

−→
� �̂ and �̂ →

←−
��̂ ,
←−
� →

←−
�
←−
� . Moreover, for every � → 1

with 1 ∈ Z3 , we include the productions
−→
� → (1, 0, . . . , 0) ∈ Z23 and

←−
� → (0, . . . , 0,−1) ∈ Z23 .

Finally, we add �̂ → Y and set the start symbol to �̂. Observe that the generated language is

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

4:10 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

�

�

ℓ1

ℓ2

A1

A2

�̂

�̂

−→
ℓ1

←−A1

−→
ℓ2

←−A2

;

Fig. 3. Illustration of Lemma 3.5. A derivation of the original grammar (shown on the le�) is transformed into
a derivation of the new grammar (on the right).

closed under concatenation. This is because at any point in any derivation, there is exactly one hat

nonterminal symbol which always occurs as the last symbol and only �̂ can be replaced by Y. This

means whenever �̂
∗
=⇒ D, it is the case that �̂

∗
=⇒ D�̂ and hence if �̂

∗
=⇒ E as well, then it is the case

that �̂
∗
=⇒ DE as well as �̂

∗
=⇒ ED. This grammar achieves the required transformation.

Reduction to letter-uniform semigroup. As a second step, we will further reduce the problem
to the case where n all runs, the letters (i.e. added vectors) appear uniformly (in some precise
sense). The support sequence of a wordF ∈ Σ is the tuple (Γ, <) where Γ ⊆ Σ is the subset of letters
occuring inF and < is a total order on Γ which corresponds to the order of �rst occurrence of the
letters inF . For example the support sequence of 0020112 consists of Γ = {0, 1, 2} and the linear
ordering 0 < 2 < 1.

A context-free language ⊆ (Z3)∗ is letter-uniform if any two words in have the same support
sequence. Let Σ ⊆ Z3 be the set of letters occurring in . Moreover, for every subset Γ ⊆ Σ and a
total order < on Γ = {W1, . . . , W; } given as W1 < W2 . . . < W; , let (Γ,<) = {F ∈ | ∃D1, D2, . . . , D; F =

W1D1W2D2 . . . W;D; where D8 ∈ {W1, . . . , W8 }
∗} denote the set of all words in with support sequence

(Γ, <).
Then we can observe that each (Γ,<) is letter-uniform and also a semigroup: for any two words

D, E ∈ (Γ,<) , it is the case that the letters occurring in DE and ED are exactly Γ and furthermore,
the order of �rst occurrence of the letters from Γ in the two words also corresponds to the total
order <. Furthermore, DE, ED ∈ since is a semigroup. Hence both of these words also belong to

 (Γ,<) . Moreover, we have u

−→Q+ v if and only if there exists some Γ ⊆ Σ and total order < on Γ

with u
 (Γ,<)
−−−−→Q+ v. We shall prove the following:

Proposition 3.6. Given a context-free letter-uniform semigroup ⊆ (Z3)∗, we can in NEXPTIME
construct an ELRA formula for the relation ' .

Let us see how Theorem 3.4 follows from Proposition 3.6. Given some nonterminal � of a CFG,
we want a formula for %�. We �rst use Lemma 3.5 to compute a context-free language such
that ' captures %� (up to permuting some counters). Suppose ⊆ Σ

∗ for some Σ ⊆ Z3 . For
each subset Γ ⊆ Σ and total order < on Γ, consider the set (Γ,<) as de�ned earlier. As we already
observed, (i) each (Γ,<) is a semigroup, (ii) each (Γ,<) is letter-uniform, and (iii) is the union
of all (Γ,<) . Therefore, our construction proceeds as follows. We guess (Γ, <) and then apply
Proposition 3.6 to compute in NEXPTIME an existential FO(Q, +, <) formula for ' (Γ,<) . Then, the
disjunction of all resulting formulas clearly de�nes ' . We note that given some (Γ, <), a grammar
for (Γ,<) can be constructed from the grammar for in polynomial time. This is because we need

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

Reachability in Continuous Pushdown VASS 4:11

to construct a grammar for the intersection of with the language of the regular expression given
by ' := W1W

∗
1W2 (W1 + W2)

∗W3 . . . W: (W1 + W2 . . . W:)
∗, which only incurs a polynomial blowup. In fact,

without the linear order and only the subset Γ, the same construction would lead to an exponential
blowup since we would then have to remember all possible subsets of Γ while reading a word.

3.2 Characterizing Reachability by Three Runs

It remains to show Proposition 3.6. The advantage of reducing our problem to the letter-uniform
case is that we can employ a characterization of Blondin and Haase [2017] about the existence of
runs. In the rest of this section, we will assume that the language comes with a corresponding
support sequence (Γ, <).
The following lemma tells us that reachability along a letter-uniform semigroup can be char-

acterized by the existence of three runs: One run that witnesses reachability under Q-semantics,
and two runs that witness “admissibility” in both directions. Here, the “only if” direction is trivial,
because the run from u to v along is a run of all three types. For the converse, we use the fact
that is a semigroup and letter-uniform to compose the three runs into a run under Q+-semantics.

Lemma 3.7. Let ⊆ (Z3)∗ be a letter-uniform semigroup. Then we have u

−→Q+ v if and only if

there are u′, v′ ∈ Q3 such that:

u

−→Q v, u

−→Q+ v

′, and u′

−→Q+ v.

Lemma 3.7 is an extension of [Blondin and Haase 2017, Proposition 4.5]. The only di�erence is
that in [Blondin and Haase 2017], is given by a non-deterministic �nite automaton where one
state is both the initial and the �nal state. The “only if” direction is trivial. For the “if” direction, the
proof in [Blondin and Haase 2017] takes the three runs and shows that a suitable concatenation of

these runs, together with an appropriate choice of multiplicities, yields the desired run u

−→Q+ v.

Since is a semigroup, the same argument yields Lemma 3.7.
Lemma 3.7 allows us to express the reachability relation along : It tells us that we merely have to

express existence of the three simpler types of runs. The �rst of the three runs is reachability under
Q-semantics while the second and third are examples of admissible runs under Q+-semantics. Thus
we need to characterize these two types of runs. We will do this in the following two subsections.

Characterizing reachability under Q-semantics. We �rst show how to construct an ELRA
formula for the Q-reachability relation along a letter-uniform context-free .

Lemma 3.8. Given a letter-uniform context-free language ⊆ (Z3)∗, we can construct in exponential

time an ELRA formula for the relation

'
Q

= {(u, v) ∈ Q3+ × Q

3
+ | u

−→Q v}.

Our proof relies on the following, which was shown in [Blondin and Haase 2017, Proposition B.4]:

Lemma 3.9 (Blondin and Haase [2017]). Given an NFA A over some alphabet Σ ⊆ Z3 , one can

in polynomial time construct an ELRA formula i such that for u, v ∈ Q3+, we have i (u, v) if and only

if u
! (A)
−−−−→Q v.

Proof of Lemma 3.8. The key observation is that in the case of Q-semantics, reachability along
a wordF ∈ (Z3)∗ does not depend on the exact order of the letters inF . Let Ψ(F) ∈ N |Σ | be the
Parikh image ofF i.e. Ψ(F) (0) for 0 ∈ Σ denotes the number of times 0 occurs inF . Formally, if

Ψ(F) = Ψ(F ′), then u
F
−→Q v if and only if u

F′

−−→Q v. In particular, for languages , ′ ⊆ (Z3)∗,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

4:12 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

if Ψ() = Ψ(′), then 'Q

= '

Q

 ′
. We use this to reduce the case of context-free to the case of

regular languages .
It is well known that given a context-free grammar, one can construct an NFA of exponential

size such that the NFA accepts a language of the same Parikh image as the grammar. For example, a
simple construction with a close-to-tight size bound can be found in [Esparza et al. 2011]. Therefore,
given , we can construct an exponential-sized NFA A such that Ψ(!(A)) = Ψ().

Observe that Ψ(!(A)) = Ψ() implies that for any u, v ∈ Q3+, we have u

−→Q v if and only if

u
! (A)
−−−−→Q v. Therefore, we apply Lemma 3.9 to compute a formula i fromA. SinceA is exponential

in size, this computation takes exponential time and results in an exponential formula i . Then, for

u, v ∈ Q3+, we have i (u, v) if and only if u
! (A)
−−−−→Q v, which is equivalent to u

−→Q v. □

We note that it is also possible to use a construction of [Verma et al. 2005] to construct a formula

for 'Q

in polynomial time – the reason we chose the current presentation is that applying the

result from [Verma et al. 2005] as a black box would result in a formula over mixed integer-rational
arithmetic (of polynomial size): One would use integer variables to implement the construction
from [Verma et al. 2005] and then rational variables to account for continuous semantics. This
would yield the same complexity bound in the end (existential mixed linear arithmetic is still in
NP), but we preferred not to introduce another logic.

Characterizing admissibility under Q+-semantics. Finally, we construct an ELRA formula

for the set of vectors u such that there exists a v′ ∈ Q3+ with u

−→Q+ v′. We call such vectors

 -admissible and denote the set of -admissible vectors as � . The key observation is that u
is -admissible if and only if the total order < satis�es some simple properties. Intuitively, u is
<-admissible if for each letter that decrements a counter, either (i) that counter is positive in u or
(ii) there is an earlier letter that increments this counter. For 0 ∈ Z3 , we denote by J0K (resp. J0K+ or
J0K−) the subset of indices 8 where 0(8) ≠ 0 (resp. 0(8) > 0 or 0(8) < 0). Formally, u is <-admissible
if for each 0 ∈ Γ and each 9 ∈ J0K− , we either have (i) u(9) > 0 or (ii) there is a 1 ∈ Γ with 1 < 0

and 9 ∈ J1K+. We show the following:

Lemma 3.10. Let be letter-uniform and ≠ ∅. Then u ∈ � if and only if u is <-admissible.

The “if” direction is easy. If u is not < −03<8BB81;4 , this means that there is some index 9 and
some letter W8 such that W8 decrements 9 , u (9) = 0 and W: (9) ≤ 0 for all : < 8 . This means that
starting from u, on any word F ∈ , we would go below 0 in index 9 when W8 �rst occurs in F .
Hence u ∉ .
For the converse, suppose that u is <-admissible andF ∈ be any word. WriteF = F1 · · ·F=

withF1, . . . ,F= ∈ Γ. For each 8 ∈ {0, . . . , =}, we de�ne

�8 = JuK+ ∪
8
⋃

ℓ=1

JFℓK
+
,

i.e. the set of components that are incremented at some point when �ring the pre�xF1 · · ·F8 .

We will show the following for every 8: There exists a v8 such that u
F1 · · ·F8
−−−−−→Q+ v8 such that

v8 ∈ Q+ and v8 (9) > 0 for 9 ∈ �8 .
We proceed by induction on 8 . For 8 = 0, the statement clearly holds, because u is positive on all

co-ordinates in �0 = JuK+ and u ∈ Q+. Now suppose there is a run u
F1 · · ·F8
−−−−−→Q+ v8 . We know that

JF8+1K
−
⊆ �8 and thus v8 is positive on all indices whereF8+1 is negative. Let U8+1 = min{−

v8 (9)
2F8+1 (9)

|

9 ∈ JF8+1K
−
}. Clearly v8 + U8+1F8+1 = v8+1 ∈ Q+ and also, v8+1 (9) > 0 for all 9 ∈ �8+1. In particular

this means that u
F
−→Q+ v= and thus u ∈ � .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

Reachability in Continuous Pushdown VASS 4:13

Lemma 3.11. Given a non-empty letter-uniform context-free language ⊆ (Z3)∗, we can construct

in polytime an ELRA formula for the relation � .

The formula q< , where q< (u) for a vector u ∈ Q
3
+ is true i� u is <-admissible can be written as:

q< (x) =
∧

W ∈Γ

∧

8∈JWK−

x(8) > 0 ∨
∨

[<W

8 ∈ J[K+

Proof of Proposition 3.6. We are now ready to prove Proposition 3.6. By Lemma 3.7, it su�ces

to show that there are formulae for the relations 'Q

and � . These formulae have been obtained in

Lemma 3.8 and Lemma 3.11 respectively. □

This concludes the proof that reachability in Q+-PVASS is in NEXPTIME.

State reachability. The material in this section also allows us to derive Theorem 1.3. Since
state-reachability is NP-hard already for Q+-VASS [Blondin and Haase 2017], we only have to show
membership in NP. Using the language-theoretic translation from the beginning of this section,
state reachability can be phrased as: Given a set of vectors Σ ⊆ Z3 , a letter-uniform context-free
language ⊆ Σ

∗ (which comes with an associated (Γ, <)) and u ∈ Q3+, decide if u is -admissible.
This is because, given an arbitrary context-free language , we can see it as the disjoint union of
(exponentially) many (Γ,<) each of which is letter-uniform. Furthermore, we can construct each
 (Γ,<) in polynomial time and check if they are non-empty. The NP upper bound then follows from
Lemma 3.11: We can guess (Γ, <), construct (Γ,<) and Lemma 3.11 lets us build an ELRA formula
for � (Γ,<) . Since the truth problem for ELRA is in NP [Sontag 1985], we can then check whether u
satis�es the constructed formula for � .

4 NEXPTIME-HARDNESS OF 2CM·2,+1RL

We now move on to proving the NEXPTIME-hardness of reachability in Q+-PVASS. As outlined in
the introduction, we do this by a chain of reductions. Our reduction chain starts with the machine

model 2CM·2,+1RL . Informally, a 2CM·2,+1RL has a �nite-state control along with two counters, each of
which can hold a non-negative integer. A rule of the machine allows us to move from one state to
another whilst either incrementing the value of a counter by 1 or doubling the value of a counter.
The set of �nal con�gurations of such a machine will be given by a �nal state and an equality

condition on the two counters.
Formally, a 2CM·2,+1RL is a tupleM = (&,@8=, @5 ,Δ) where & is a �nite set of states, @8=, @5 ∈ &

are the initial and the �nal states respectively, and Δ ⊆ & × {inc0, inc1, double0, double1, nop} ×&

is a �nite set of rules. A con�guration ofM is a triple (@, E0, E1) where @ ∈ & is the current state of
M and E0, E1 ∈ N are the current values of the two counters respectively. Let A = (@, C, @′) ∈ Δ be a
rule. A step from a con�guration � = (?, E0, E1) to another con�guration �′ = (?′, E ′0, E

′
1) by means

of the rule A (denoted by �
A
−→ �′) is possible if and only if ? = @, ?′ = @′, and

If C = inc8 then E
′
8 = E8 + 1, E

′
1−8 = E1−8 If C = double8 then E

′
8 = 2E8 , E

′
1−8 = E1−8

If C = nop then E ′0 = E0, E
′
1 = E1

We then say that a con�guration � can reach another con�guration �′ if �′ can be reached
from � by a sequence of steps. The initial con�guration ofM is �8=8C := (@8=, 0, 0). The set of �nal
con�gurations ofM is taken to be {(@5 , =, =) : = ∈ N}.

The reachability problem for 2CM·2,+1RL asks, given a 2CM·2,+1RL M and a number< in binary, if
the initial con�guration can reach some �nal con�guration in exactly< steps.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

4:14 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

@0 @1 @2 @3 @4 @5
inc0 inc1 double0 inc0 double1

nop

Fig. 4. An example 2CM·2,+1
RL

. The initial state is @0 and the final state is @2.

Example 4.1. Let us consider the 2CM·2,+1RL given in Figure 4, which we shall denote byM. The
initial state is @0 and the �nal state is @2. Note that the initial con�guration (@0, 0, 0) can reach
(@2, 1, 1) in exactly 2 steps. Hence if we set the length of the run< to 2, then the instance ⟨M,<⟩

is a positive instance of the reachability problem for 2CM·2,+1RL . On the other hand, for any other

value of<, the instance ⟨M,<⟩ is a negative instance of the reachability problem for 2CM·2,+1RL .

Indeed, �rst note that in this 2CM·2,+1RL , each state has exactly one outgoing transition. Hence, there
is exactly one run starting from (@0, 0, 0) and that run is as follows: First it reaches the con�guration
(@2, 1, 1) in exactly 2 steps. Then from there, it follows the following (cyclical) pattern.

(@2, G,~) −→ (@3, 2G,~) −→ (@4, 2G + 1, ~) −→ (@5, 2G + 1, 2~) −→ (@2, 2G + 1, 2~) −→ (@3, 4G + 2, 2~)

(@4, 4G + 3, 2~) −→ (@5, 4G + 3, 4~) −→ (@2, 4G + 3, 4~) . . .

This pattern indicates that after the con�guration (@2, 1, 1), whenever the run reaches the state
@2, the �rst counter has an odd value, whereas the second counter has an even value. Hence, the
run will never reach a �nal con�guration and so ⟨M,<⟩ is a negative instance of the reachability
problem whenever< ≠ 2.

We shall prove the following:

Theorem 4.2. The reachability problem for 2CM·2,+1RL is NEXPTIME-hard.

Theorem 4.2 is shown using a bounded version of the classical Post Correspondence Problem
(PCP). Recall that, in this problem, we are given a set of pairs of words (D1, E1), (D2, E2), . . . , (D<, E<)
over a common alphabet Σ and we are asked to decide if there is a sequence of indices 81, 82, . . . , 8:
for some : such that D81 · D82 · · · · · D8: = E81 · E82 · · · · · E8: . It is well-known that this problem is
undecidable [Sipser 2012]. For our purposes, we shall use a bounded version of PCP, called bounded
PCP, de�ned as follows.

Given: A set of pairs of words (D1, E1), (D2, E2), . . . , (D<, E<) over an alphabet Σ such that none of
the given words is the empty string, and a number ℓ encoded in binary.

Question: Is there a sequence of indices 81, 82, . . . , 8: such that D81 · D82 · · · · · D8: = E81 · E82 · · · · · E8: ,
and the length of D81 · · · · D8: is exactly ℓ .

Note that this problem is decidable – we simply have to guess a sequence of indices of length at
most ℓ and check that the resulting words from these indices satisfy the given property. In [Aiswarya
et al. 2022, Section 6.1], Bounded-PCPwas shown to beNEXPTIME-hard.We now prove Theorem 4.2

by giving a reduction from Bounded-PCP to the reachability problem for 2CM·2,+1RL .
Let (D1, E1), . . . , (D<, E<) be a set of pairs of words over a common alphabet Σ and let ℓ ∈ N.

Without loss of generality we assume that |Σ| = 2: for some : ≥ 1, for instance, by adding at
most twice as many dummy letters as the size of the alphabet. With this assumption, there are two
essential ideas behind this reduction, which we now brie�y outline.

The �rst idea is as follows: Since the size of Σ is 2: , we can identify Σwith the set {0, 1, . . . , 2: −1},
by mapping each letter in Σ to some unique number in {0, 1, . . . , 2: − 1}. This identi�cation means

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

Reachability in Continuous Pushdown VASS 4:15

that, any non-empty wordF represents a number = in base |Σ| in the most signi�cant bit notation.
In this way, to any number = we can bijectively map a non-empty wordF .
The second idea is as follows: Assume that we have a wordF and its corresponding number =.

Suppose we are given another wordF ′ and we are asked to compute the number corresponding to
the concatenated wordF ·F ′. We can do that as follows: LetF ′ = F ′1, . . . ,F

′
9 with eachF ′8 being

a letter. Construct the sequence of numbers =0, =1, . . . , = 9 given by =0 = = and =8 = |Σ| · =8−1 +F
′
8 .

Notice that each =8 is essentially the representation of the stringF ·F ′1 ·F
′
2 · · ·F

′
8 and so = 9 is the

representation for the wordF ·F ′.
These two ideas essentially illustrate the reduction from the Bounded-PCP problem to the

reachability problem for 2CM·2,+1RL . Given a Bounded-PCP instance ⟨(D1, E1), . . . (D<, E<), ℓ⟩, we

construct a 2CM·2,+1RL as follows: Initially it starts at an initial state @8= with both of its counters set
to 0. From here it executes a loop in the following manner: Suppose at some point, the machine is
at state @8= with counter values =1 and =2 corresponding to some stringsF1 andF2 respectively.
Then the machine picks some index between 1 and : and then by the idea given in the previous
paragraph, it updates the values of its counters to =′1 and =

′
2 corresponding to the stringsF1 · D8

andF2 · E8 , respectively and then comes back to the state @8= .
We can hard-code the rules in this machine so that whenever it has the representation for two

stringsF,F ′ in its counters and it wants to compute the representation forF · D8 andF
′ · E8 for

some 1 ≤ 8 ≤ : , it takes exactly C steps for some C which is polynomial in the size of the given
Bounded-PCP instance. Then clearly, reaching a con�guration (@8=, I, I) for some number I in
the machine in exactly Cℓ steps is equivalent to �nding a sequence of indices 81, . . . , 8: such that
D81 · · ·D8: = E81 · · · E8: and the length of D81 · · ·D8: is exactly ℓ . This completes the reduction.

5 FROM 2CM·2,+1RL TO [0, 1]-VASS0?RL

The next step in our reduction chainmoves from 2CM·2,+1RL to [0, 1]-VASS0?RL. Intuitively, a [0, 1]-VASS
0?
RL

has a �nite-state control along with some number of continuous counters, each of which can only
hold a fractional number belonging to the interval [0, 1]. A rule of such a machine allows us to move
from one state to another whilst incrementing or decrementing some counters by some fractional

number. Further a rule can also specify that the e�ect of �ring that rule makes some counters 0,
thereby allowing us to perform zero-tests. Note that a [0, 1]-VASS0?RL is di�erent from Q+-VASS in

two aspects: First, the counters of a [0, 1]-VASS0?RL can only hold numbers in [0, 1], whereas the

counters of a Q+-VASS can hold any rational number. Second, the counters of a [0, 1]-VASS0?RL can
be tested for zero, which is not possible in a Q+-VASS. We now proceed to formally de�ne the
model of a [0, 1]-VASS0?RL.

More formally, a 3-dimensional [0, 1]-VASS0?RL (or 3-[0, 1]-VASS
0?
RL or simply [0, 1]-VASS0?RL) is a

tuple C = (&,) ,Δ) where & is a �nite state of states,) ⊆ Z3 × 2[3] is a �nite set of transitions and
Δ ⊆ & ×) ×& is a �nite set of rules. A con�guration of C is a tuple � = (@, v) where @ ∈ & is the
current state of C and v ∈ [0, 1]3 is the vector representing the current values of the counters of C.
We use the notations state(�), val(�),� (8) to denote @, v, v(8), respectively. Let � = (@, C, @′) ∈ Δ be
a rule with C = (A, B) and let U ∈ (0, 1]. A step from a con�guration � to another con�guration �′

via the pair (U, �) (denoted by �
U�
−−→ �′) is possible if and only if state(�) = @, state(�′) = @′ and

val(�′) = val(�) + UA and val(�′) (8) = 0 for all 8 ∈ B

Note that we implicitly require that val(�) + UA ∈ [0, 1]3 and also that the value obtained after
�ring U� is 0 on all the counters in the set B . We de�ne the notions of �ring sequences U1�1, . . . , U=�=

and reachability between con�gurations�
U1�1,...,U=�=
−−−−−−−−−→ �′ as forQ+-VASS, The reachability problem

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

4:16 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

for [0, 1]-VASS0?RL asks, given a [0, 1]-VASS
0?
RL C, two con�gurations 2init, 2�n and a number< encoded

in binary, whether 2init can reach 2�n in exactly< steps. We show that

Theorem 5.1. The reachability problem for [0, 1]-VASS0?RL is NEXPTIME-hard.

We prove this theorem by exhibiting a reduction from the reachability problem for 2CM·2,+1RL .

Fix a 2CM·2,+1RL M and a number< in binary. Since the initial values of both the counters are 0,
the largest value we can attain in any counter during a run of length< is at most 2< (in fact, the
bound is 2<−1). Hence, we shall implicitly assume that the set of con�gurations ofM that are
under consideration are those where the counter values are bounded by 2< .

Overview of the reduction. We want to construct an [0, 1]-VASS0?RL C that simulates M. As
already mentioned in the introduction, we use exponential precision and represent a discrete counter
value = in a con�guration ofM as the value =

2<
in a continuous counter of C. Furthermore, we

want to correctly simulate increment and doubling operations onM which correspond to addition
of 1

2<
and doubling in C respectively. Since we do not control the fraction U in a rule, we have to

overcome the following challenge:

(C1) How can we create gadgets which simulate addition of 1
2<

and doubling?

Towards solving this challenge, we use the following idea: Suppose we are in some con�guration
� and suppose we want to make a step from � by adding 1

2<
to a counter 2 . Assume that there are

two other counters BC and C4 whose values in� are 1
2<

and 0, respectively. Suppose � is a rule which
decrements BC by 1, increments 2 and C4 both by 1 and then checks that the value of BC (after �ring

�) is 0. Then, if �
U�
−−→ �′ is a step, it must be that U is exactly 1

2<
. This is because, by assumption,

before �ring this rule the value of BC was 1
2<

and after �ring this rule, the zero-test ensures that the

value of BC is 0. Hence, the only possible value that U can take is 1
2<

. Therefore, this rule allows us

to add 1
2<

to the counter 2 .
However, note that after �ring � , the values of BC and C4 are reversed, i.e., the values of BC and C4

are 0 and 1
2<

, respectively. This is undesirable, as we might once again want to use BC to simulate

addition by 1
2<

. Therefore, we add another rule � , which decrements C4 by 1, increments BC by 1
and then checks that the value of C4 (after �ring �) is 0. Then, a successful �ring of the rule � by
some fraction V means that V =

1
2<

(due to the same reasons as above) and so this would mean that

the values of BC and C4 after �ring � would again become 1
2<

and 0, respectively. Hence, the counter
C4 essentially acts as a temporary holder of the value of BC and allows us to “re�ll” the value of BC .

Generalizing this technique allows us to control the �ring fraction to perform doubling as well.
However, this technique has a single obstacle, which we now address.
For this technique to work, we need a counter BC initially which stores the value 1

2<
. It might

be tempting to simply declare that the value of BC in the initial con�guration is 1
2<

. However, this
cannot be done, because the number< is given to us in binary and so the number of bits needed to
write down the number 1

2<
is exponential in the size of the given input ⟨M,<⟩, which would not

give as a polynomial-time reduction. This raises the following challenge as well:

(C2) How can we create a value of 1
2<

in a continuous counter?

We show that challenge C2 can also be solved by our idea of controlling the �ring fraction.

Solving Challenge (C1). From the 2CM·2,+1RL M = (&,@8=, @5 ,Δ), we construct a [0, 1]-VASS
0?
RL C0

as follows. C0 will have 4 counters 20, 21, BC , C4 , i.e., it will be 4-dimensional. Intuitively, each 28 will
store the value of one of the counters ofM, BC will store the value 1/2< that will be needed for
simulating the addition operation, and C4 will be used to temporarily store the values of 20, 21 and
BC at some points along a run. A rule in C0 consists of a vector A ∈ Z

4 and a subset B ⊆ {1, 2, 3, 4}.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

Reachability in Continuous Pushdown VASS 4:17

@ A<83 @′
28++, C4++, BC--

BC = 0?

BC++, C4--

C4 = 0?

(a) Gadget for the rule A := (@, inc8 , @
′).

@ A<83 @′
C4+=2, 28--

28 = 0?

28++, C4--

C4 = 0?

(b) Gadget for the rule A := (@, double8 , @
′).

@ A<83 @′

(c) Gadget for the rule A := (@, nop, @′).

@5 @′
5 @5

BC--

BC = 0?, C4 = 0?

20--, 21--

20 = 0?, 21 = 0?

(d) The “finish” gadget.

Fig. 5. Gadgets for simulating rules ofM.

For ease of reading, we write the vector A as a sequence of increment or decrement operations
2+== (or 2-==) whose intended meaning is that counter 2 is incremented (or decremented) by =,
followed by a sequence of zero-tests. For example, C = (A, B) where A = (1, 0, 0,−2) and B = {1, 3} is
represented by 20+=1, C4-=2; 20 = 0?, BC = 0?.
C0 will have all the states ofM and in addition, for every rule A ofM, it will have a state A<83 .

The set of rules of C0 will be given as follows.

• For the rule A := (@, inc8 , @
′) ofM, C0 will have the “increment(8)” gadget given in Figure 5a.

• For the rule A := (@, double8 , @
′), C0 will have the “double(8)” gadget given in Figure 5b.

• For the rule A := (@, nop, @′), C0 will have the “nop” gadget given in Figure 5c.

Note that for every rule A ofM, the corresponding gadget in C0 has exactly two rules, where
the �rst rule (from @ to A<83) will be denoted by A1 and the second rule (from A<83 to @′) by A4 . We
would now like to show that the rules ofM are simulated by their corresponding gadgets. To this
end, we �rst de�ne a mapping 6 from con�gurations ofM to con�gurations of C0 as follows: If
� = (@, E0, E1), then 6(�) is the con�guration of C0 such that

state(6(�)) = @, 6(�) (20) = E0/2
<, 6(�) (21) = E1/2

<, 6(�) (BC) = 1/2<, 6(�) (C4) = 0

We now have the following “gadget simulation” lemma, which solves Challenge (C1).

Lemma 5.2 (Gadget Simulation). Suppose � is a con�guration and A is a rule ofM.

• Soundness: If �
A
−→ �′, then there exists U, V such that 6(�)

UA1 ,VA4

−−−−−−→ 6(�′).

• Completeness: If 6(�)
UA1 ,VA4

−−−−−−→ � for some U, V and � , then there exists �′ such that � = 6(�′)

and �
A
−→ �′.

Proof sketch. We have already discussed the case of increments in some detail before and so
we will concentrate on when A is a doubling rule of the form (@, double8 , @

′). The soundness part

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

4:18 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

8=0 8=1 8=2 8=3
C4++, BC-=2; BC = 0? BC++, C4--; C4 = 0? C4++, 2>D=C++, G--; G = 0?

G++, C4--; C4 = 0?

Fig. 6. The “initialization” gadget.

can be easily obtained by setting U = 6(�) (28) and V = 2 · 6(�) (28). For completeness, note that
since A1 has a zero-test on 28 , it must be that U = 6(�) (28). Hence, after �ring UA

1 , the value of C4
must be 2 · 6(�) (28). Now since A4 has a zero-test on C4 , it must be that V = 2 · 6(�) (28). So the net
e�ect of �ring UA1, VA4 is to make the value of 28 to be 2 · 6(�) (28). Hence, if we let �

′ be such that

�
A
−→ �′ inM, it can be veri�ed that 6(�′) = � . □

The “�nish” gadget. Before, we solve Challenge (C2), we make a small modi�cation to C0. Recall
that inM, we have a set of �nal con�gurations given by � := {(@5 , =, =) : = ≤ 2<}, whereas in a

[0, 1]-VASS0?RL, we are allowed to specify only one �nal con�guration. However, the [0, 1]-VASS0?RL
C0 only promises us that the initial con�guration 28=8C ofM can reach some con�guration in � in
< steps i� 6(28=8C) can reach some con�guration in the set {6(�) : � ∈ � } in 2< steps. Hence, we
need to make a modi�cation to C0 which allows us to replace the set of con�gurations with a single
�nal con�guration. To this end, we modify C0 by adding the “�nish gadget” from Figure 5d, where
@′
5
and @5 are two fresh states and the �rst and the second rule are respectively denoted by 5 1 and

5 4 . Let us call the resulting [0, 1]-VASS0?RL as C1.

Note that the e�ect of �ring 5 1 is to set the values of BC and C4 to 0. Further, if 5 4 is �red, then 20
and 21 are decremented by the same amount and both of them are tested for zero. This means that
5 4 could be �red successfully only if the counter values of 20 and 21 at state @

′
5
are the same and

the e�ect of �ring 5 4 is to set the values of 20 and 21 to 0. This observation along with repeated
applications of the Gadget Simulation lemma give us the following Simulation theorem.

Theorem 5.3 (Simulation Theorem). The initial con�guration 28=8C of M can reach a �nal

con�guration in< steps i� 6(28=8C) can reach the con�guration (@5 , 0) in 2< + 2 steps in C1.

We now move on to solving Challenge (C2).

Solving Challenge (C2). Thanks to the Simulation theorem, the required reduction is almost
over. As we had discussed before, the only remaining part is that since 6(28=8C) (BC) = 1/2< and
< is already given in binary, we cannot write down 6(28=8C) in polynomial time. To handle this
challenge (Challenge (C2)), we construct an “initialization” gadget which starts from a “small” initial
con�guration and then “sets up” the con�guration 6(28=8C).

The initialization gadget is shown in the Figure 6. The gadget shares the counters BC and C4 with
C1 and has two new counters G and 2>D=C . Initially, the gadget will start in 8=0 and will have the
values 1, 0, 1/< and 0 in BC, C4, G and 2>D=C respectively. In each iteration of the gadget, the value of
BC will be halved. The function of G is to store the value 1/< and the function of 2>D=C is to count
the number of executions of this gadget. Initially the value of 2>D=C is 0 and in every iteration its
value will increase by 1/<. Hence, if we �nally require the value of 2>D=C to be 1, then we would
have executed this gadget precisely< times, thereby setting the value of BC to 1/2< .

The following lemma follows from an analysis of the initalization gadget, similar to the one for
the Gadget Simulation lemma.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

Reachability in Continuous Pushdown VASS 4:19

Lemma 5.4 (The Initialization lemma). Suppose � is a con�guration of the initialization gadget

such that state(�) = 8=0,� (C4) = 0 and � (G) = 1/<. Then we can execute one iteration of the gadget

from � to go to a con�guration �′ if and only if �′ is the same as � except that �′ (BC) = � (BC)/2 and

�′ (2>D=C) = � (2>D=C) + 1/<.

We now construct our �nal [0, 1]-VASS0?RL C as follows: We take the initialization gadget and the

[0, 1]-VASS0?RL C1 and we add a rule from 8=0 to @8= which does not do anything to the counters.
Intuitively, we �rst execute the initialization gadget for some steps and then pass the control �ow
to C1. We let 38=8C be the con�guration of C whose state is 8=0 and whose counter values are all 0,
except for 38=8C (G) = 1/< and 38=8C (BC) = 1. Then, we let 35 8= be the con�guration of C whose state
is @5 and whose counter values are all 0, except for 35 8= (G) = 1/< and 35 8= (2>D=C) = 1. If we encode
38=8C and 35 8= in binary, then they can be written down in polynomial time. Since 35 8= (2>D=C) = 1,
when the control �ow passes from the initialization gadget to C1, the value of BC must be 1/2< ,
which is exactly what we want.

Theorem 5.5. 6(28=8C) can reach the con�guration (@5 , 0) in the [0, 1]-VASS0?RL C1 in 2(< + 1) steps

if and only if 38=8C can reach 35 8= in the [0, 1]-VASS0?RL C in 4< + 1 + 2(< + 1) steps.

Combining this theorem with Theorem 5.3, proves the correctness of our reduction.

6 FROM [0, 1]-VASS0?RL TO Q+-PVASS

We now move on to the next step in our reduction chain with the following problem called the
reachability problem for Q+-VASSRL, de�ned as follows: Given a Q+-VASSM, two con�gurations
2init, 2�n, and a number< in binary, whether one can reach 2�n from 2init in exactly< steps.

Theorem 6.1. The reachability problem for Q+-VASSRL is NEXPTIME-hard.

We prove this theorem by giving a reduction from the reachability problem for [0, 1]-VASS0?RL. Fix

a [0, 1]-VASS0?RL C, two of its con�gurations 2init, 2�n, and a number<. Without loss of generality,
we assume that every rule in C performs at least one zero-test.

Overview of the reduction. We want to construct a Q+-VASSM that simulates C for< steps.
The primary challenge that prevents us from doing this is the following:

(D1) How can we create gadgets to simulate exactly< zero-tests of C inM?

We circumvent this challenge as follows: We know that in a [0, 1]-VASS0?RL, the value of every
counter will always be in the range [0, 1]. Hence, for every counter G , we introduce another counter
Ḡ , called the complementary counter of G and maintain the invariant G + Ḡ = 1 throughout a run.
Then testing if the value of G is 0, amounts to testing if the value of Ḡ is at least 1. This allows us to
replace a zero-test with a greater than or equal to 1 (geq1) test.

The latter can be implemented as follows: If C and C ′ are rules which decrement and increment Ḡ

by 1 respectively and �
1C
−→ �′

1C ′

−−→ �′′ is a run, then we know that the value of Ḡ in � is at least 1,
which lets us implement a geq1 test. Note that for this to succeed, we require that both C and C ′ are
�red completely, i.e., with fraction 1.
To sum this up, this means that if were to simulate a rule A = (@, (F, B), @′) of the [0, 1]-VASS0?RL
C in our new machine with the complementary counters, we need one rule to take care of the
updates corresponding toF and two rules to take care of geq1 tests corresponding to the zero tests
in B , both of which must be �red completely. Hence, simulating< steps of C in our new machine
requires 3< steps, of which exactly 2< steps must be �red completely. This leads us to

(D2) How can we force the rules corresponding to geq1 tests to be �red completely, for exactly
2< times?

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

4:20 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

@ A<83 A ′
<83 @′

F̄ ∧G∈B Ḡ--, G++; 2CA;++ ∧G∈B Ḡ++, G--; 2CA;++

Fig. 7. Gadget for the rule A := (@, C, @′) with C = (F, B).

To solve this challenge, we introduce another counter 2CA; , called the controlling counter. We modify
every rule corresponding to a geq1 test to also increment the value of the counter 2CA; by 1. This
means that, if d is a run of 3< steps such that the value of 2CA; after d is exactly 2<, then every
rule corresponding to a geq1 test must have been �red completely along the run d .

Formal construction. Having given an informal overview of the reduction, we now proceed to
the formal construction. We are given an [0, 1]-VASS0?RL C and a number< in binary. From the

[0, 1]-VASS0?RL C, we will construct a Q+-VASSM as follows. For every counter G of C,M will have
two counters G and Ḡ . Every transition that increments G will decrement Ḡ by the same amount
and vice-versa, so that the sum of the values of G and Ḡ will be equal to 1 throughout. Further,M
will have another counter 2CA; , called the controlling counter.

Suppose A := (@, C, @′) is a rule of C such that C = (F, B). Denote by F̄ the vector such that
F (2CA;) = 0 and for every counter G of C, F̄ (G) = F (G) and F̄ (Ḡ) = −F (G). Then corresponding
to the rule A in C,M will have the gadget in Figure 7, whose �rst, second and third rules will be
denoted by A1, A< and A4 respectively.

For any con�guration� of C, let� (�) denote the set of con�gurations ofM such that � ∈ � (�)
i� state(�) = state(�), � (G) = � (G) and � (Ḡ) = 1 −� (G) for every counter G of C. Note that any
two con�gurations in � (�) di�er only in their value of the counter 2CA; . For any number U , let
� (�)U denote the unique con�guration in � (�) whose 2CA; value is U . The following lemma is a
consequence of the discussion given in the overview section.

Lemma 6.2 (Control counter simulation).

• Soundness: If �
UA
−−→ �′ in C, then for any Z , � (�)Z

UA1 ,A<,A4

−−−−−−−→ � (�′)Z+2.

• Completeness: If� (�)Z
UA1 ,VA<,WA4

−−−−−−−−−→ � ′ for some U, V,W, Z and � such that � (2CA;) = Z + 2, then

there exists �′ such that � ′ = � (�′)Z+2, V = W = 1 and �
UA
−−→ �′.

Repeated applications of the Control Counter Simulation lemma give us the following theorem,
which completes our reduction.

Theorem 6.3. 28=8C can reach 2 5 8= in C in< steps i� � (28=8C)0 can reach � (2 5 8=)2< in 3< steps.

Example 6.4. Let us see a concrete application of this reduction on some example. To this end,
consider the [0, 1]-VASS0?RL given in Figure 8. Note that this is essentially a renamed version of
the “increment(i)” gadget described in Figure 5a. We consider this version here since it makes it
easier to describe the e�ect of our reduction. The result of the application of the reduction on this
[0, 1]-VASS0?RL is given in Figure 9.

Suppose for some D, E ∈ [0, 1] with D + E ≤ 1, we start in state @0 in the [0, 1]-VASS0?RL given in
Figure 8 with counter values D, E and 0 for the counters 2, BC and C4 , respectively. From the argument
given in the previous section, we know that if we �re the [0, 1]-VASS0?RL in Figure 8 once, then we
will reach the state @2 with counter values D + E, E and 0 for the counters 2, BC and C4 , respectively.

Now, suppose we start in @0 in theQ+-VASSRL given in Figure 9 with counter valuesD, 1−D, E, 1−
E, 0, 1 and 0 in 2, 2, BC, BC, C4, C4 and 2CA; , respectively. From the reduction, we know that if we �re the
gadget in Figure 9 once, and reach the state @2 with counter value 4 for the controlling counter 2CA; ,
then the counter values for counters 2, 2, BC, BC, C4, C4 are D + E, 1 −D − E, E, 1 − E, 0 and 1 respectively.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

Reachability in Continuous Pushdown VASS 4:21

@0 @1 @2
2++, C4++, BC--

BC = 0?

BC++, C4--

C4 = 0?

Fig. 8. Renamed version of the “increment(0)” gadget from Figure 5a. The rule from @0 to @1 shall be denoted
by � and the rule from @1 to @2 shall be denoted by � .

@0 �<83 � ′
<83

@1

�<83� ′
<83

@2

2++, C4++, BC--

2--, C4--, BC++

BC--, BC++, 2CA;++
BC++, BC--, 2CA;++

BC++
, C4-

-

BC--
, C4+

+C4--, C4++, 2CA;++C4++, C4--, 2CA;++

Fig. 9. Application of the reduction described in this section on the example [0, 1]-VASS0?
RL

given in Figure 8.

Wrapping up. We now provide the �nal steps to prove that reachability for Q+-PVASS is
NEXPTIME-hard. To do this, we recall a well-known folklore fact about pushdown automata.
It essentially states that we can implement a binary counter in a PDA.

Lemma 6.5. For any number <, in polynomial time in log(<), we can construct a PDA %< of

bounded stack-height and two con�gurations � and �′ such that there is exactly one run from � to �′.

Moreover, this run is of length exactly<.

Proof. The essential idea is to use the stack to do a depth-�rst search of a binary tree of size
$ (<). At each point, the PDA will only store at most $ (log<) many entries in its stack, because
the depth of the tree is $ (log<). We now give a more precise construction.

Note that when< = 1, %1 can simply be taken to be a PDA with two states and a single transition
between the �rst state and the second state which does nothing to the stack. Now, let us consider
the case when< > 1 is a power of 2, i.e.,< = 2: for some : . Consider the following PDA %< with :
stack symbols (:1 , (

:
2 , . . . , (

:
:
. %< starts in the state 1< with the empty stack. It then moves to state

4< while pushing (:1 onto the stack. The state 4< has : self-loop transitions as follows: For each

1 ≤ 8 < : , the 8Cℎ self-loop pops (:8 and pushes (:8+1 twice. Further, the :
Cℎ self-loop simply pops (:

:
.

It can be easily veri�ed that starting from state 1< with the empty stack, there is exactly one path
to the con�guration whose state is 4< and whose stack is empty. Moreover this path is of length
exactly<. This is because the desired path is essentially the depth-�rst search traversal of a binary
tree of size< − 1, where the root is labelled by (:1 and each node at height 8 is labelled by (:8+1. Due
to the depth-�rst search traversal, the number of elements stored in the stack at any point during
the run is $ (:).
Now for the general case, suppose < =

∑

1≤8≤= 2
:8 for some :1 < :2 < · · · < := ≤ log(<).

The desired PDA %< has
∑

1≤8≤= :8 stack symbols given by (:11 , . . . , (
:1
:1
, (:21 , . . . , (

:2
:2
, . . . , (:=1 , . . . , (

:=
:=
.

Further, %< has = + 1 states 11<, . . . , 1
=
<, 1

=+1
< . Initially, it starts in the state 11< with the empty stack.

Then for each 1 ≤ 8 ≤ =, it has a transition from 18< to 18+1< which pushes (:81 onto the stack. Then,

at state 1=+1< , it has the following set of self-loops: For each 1 ≤ 8 ≤ = and each 1 ≤ 9 < :8 , it pops

(:89 from the stack and pushes (:89+1 twice. Further for each 1 ≤ 8 ≤ =, it pops (:8
:8
. It can now be

easily veri�ed that starting from state 11< with the empty stack, there is exactly one path to the
con�guration whose state is 1=+1< and whose stack is empty and also that this path is of length
exactly<. □

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

4:22 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

We now give a reduction from reachability for Q+-VASSRL to reachability for Q+-PVASS. Let
M = (&,) ,Δ) be a Q+-VASS such that 28=8C and 2 5 8= are two of its con�gurations and let < be
a number, encoded in binary. Construct the pair (%<,�,�

′) as given by the Folklore lemma 6.5.
We now take the usual cross product, i.e., the Cartesian product between %< andM, to obtain a
Q+-PVASS C. (This operation is very similar to taking the cross product between a PDA and an
NFA). Intuitively, the PDA part of C corresponds to simulating a binary counter, counting till the
value< and the Q+-VASS part of C corresponds to simulating the Q+-VASSM.

Let u (resp. v) be the con�guration of C such that state(u) = (state(�), state(28=8C)), stack(u) =
stack(�) and val(u) = val(28=8C) (resp. state(v) = (state(�

′), state(2 5 8=)), stack(v) = stack(�′)
and val(v) = val(2 5 8=)). By construction of C, 28=8C can reach 2 5 8= inM in< steps i� u can reach v

in C. Hence, we have the following theorem.

Theorem 6.6. Reachability in Q+-PVASS is NEXPTIME-hard.

7 COVERABILITY, NUMBER OF COUNTERS AND ENCODINGS

The chain of reductions from reachability in 2CM·2,+1RL to reachability in Q+-PVASS prove that

the latter is NEXPTIME-hard. The reduction from 2CM·2,+1RL to [0, 1]-VASS0?RL was accomplished by

using 6 counters, and the reduction from [0, 1]-VASS0?RL to Q+-VASSRL used 2G + 1 counters where

G is the number of counters of the [0, 1]-VASS0?RL instance. Finally, the reduction from Q+-VASSRL
to Q+-PVASS did not add any new counters. It follows that the lower bound already holds for
Q+-PVASS of dimension 13.
We can go one step further. Similar to reachability in Q+-VASSRL we can de�ne coverability in

Q+-VASSRL, where want to cover some con�guration in a given number of steps. Let us inspect the
Q+-VASSRLM that we constructed in Section 6. We claim that

� (28=8C)0 can reach� (2 5 8=)2< in 3< steps i�� (28=8C)0 can cover� (2 5 8=)2< in 3< steps.

The left-to-right implication is trivial. For the other direction, notice that in any run of 3< steps
inM starting from � (28=8C)0, the value of 2CA; can be increased by at most 2<. Further, for every
counter G ≠ 2CA; , we maintain the invariant G + Ḡ = 1 throughout. It then follows that the only way
to cover� (2 5 8=)2< in 3< steps is by actually reaching� (2 5 8=)2< . Hence, coverability in Q+-VASSRL
is also NEXPTIME-hard. Since the reduction in Section 6 preserves coverability, we obtain:

Theorem 7.1. The coverability problem for 13-dimensional Q+-PVASS is NEXPTIME-hard.

Let us now consider the encoding of the numbers that we use. It can be easily veri�ed that in the
�nalQ+-PVASS instance that we construct using our chain of reductions from Sections 4 till 6, all the
numbers are �xed constants, except for the numbers appearing in the initial and �nal con�gurations,
which are encoded in binary. Hence, the above theorem holds for 13-dimensional Q+-PVASS where
the numbers are encoded in binary. We show that it is possible to strengthen this result to unary-
encoded numbers at the cost of increasing the number of counters by a constant. More speci�cally,
in the full version of this paper, we present an alternate reduction, which given an instance of
reachability in [0, 1]-VASS0?RL over G counters produces an instance of coverability in Q+-VASSRL
over 10G + 25 counters where all numbers are encoded in unary. (We have already discussed the
idea of this reduction in the Introduction). Since the proof in Section 5 shows that reachability
in [0, 1]-VASS0?RL is NEXPTIME-hard already over 6 counters, this will prove that coverability in
Q+-VASSRL over 85 counters where all numbers are encoded in unary is also NEXPTIME-hard.
Since the reduction given in Section 6 from Q+-VASSRL to Q+-PVASS produces a Q+-PVASS of
bounded stack-height, does not add any new counters and does not change the encodings of the
numbers, we can now conclude the following theorem.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

Reachability in Continuous Pushdown VASS 4:23

Theorem 7.2. The coverability problem forQ+-PVASS isNEXPTIME-hard, already overQ+-PVASSes
of dimension 85, bounded stack-height, and when all numbers are encoded in unary.

This hardness result is very strong, as it simultaneously achieves coverability, bounded stack,
constant dimensions, and unary encodings. In contrast, in NEXPTIME, we can decide reachability
of Q+-PVASS over arbitary dimension, even when all the numbers are encoded in binary.

Finally, the reduction from Q+-VASSRL to Q+-PVASS in Section 6 only used the fact that for every
<, (1) there is a PDA of size$ (log(<)) which can “count” exactly till< and (2) we can take product
of a PDA with a Q+-VASS. For any model of computation that satis�es these two constraints, the
corresponding reachability problem over continuous counters should also be NEXPTIME-hard. For
instance, if we replace a stack in Q+-PVASS with Boolean programs to de�ne Boolean programs with

continuous counters then their reachability and coverability problems are also NEXPTIME-hard. A
similar result also holds when we replace the stack with a (discrete) one-counter machine which
can only increment its counter and whose accepting condition is reaching a particular counter
value given in binary. For both models, the reachability and coverability problems must also be in
NEXPTIME, because the former can be converted into an exponentially bigger Q+-VASS, for which
these problems are in NP [Blondin and Haase 2017, Theorem 4.14].

8 CONCLUSION

We have shown that the reachability problem for continuous pushdown VASS is NEXPTIME-
complete. While our upper bound works for any arbitrary number of counters, our lower bound
already holds for the coverability problem for continuous pushdown VASS with constant number
of counters, bounded stack-height and when all numbers are encoded in unary.
As part of future work, it might be interesting to study the complexity of coverability and

reachability for continuous pushdown VASS over low dimensions. It might also be interesting to
study the coverability and reachability problems for extensions of continuous pushdown VASS.
For instance, it is already known that reachability in continuous VASS in which the counters are
allowed to be tested for zero is undecidable [Blondin and Haase 2017, Theorem 4.17]. It might be
interesting to see if this is also the case when the continuous counters are endowed with operations
such as resets or transfers. Finally, it would be nice to extend the decidability result here to other
machine models, such as continuous VASS with higher-order stacks.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for their helpful comments and for pointing
out a small (and easily �xable) mistake in an earlier version. This research was sponsored in part
by the Deutsche Forschungsgemeinschaft project 389792660 TRR 248–CPEC.

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant
agreement number 787367 (PaVeS). Funded by the European Union (ERC, FINABIS, 101077902).
Views and opinions expressed are however those of the authors only and do not necessarily re�ect
those of the European Union or the European Research Council Executive Agency. Neither the
European Union nor the granting authority can be held responsible for them.

REFERENCES

C. Aiswarya, Soumodev Mal, and Prakash Saivasan. 2022. On the Satis�ability of Context-free String Constraints with

Subword-Ordering. In LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 -

5, 2022, Christel Baier and Dana Fisman (Eds.). ACM, 6:1–6:13. https://doi.org/10.1145/3531130.3533329

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

https://gepris.dfg.de/gepris/projekt/389792660
https://doi.org/10.3030/787367
https://doi.org/10.3030/101077902
https://doi.org/10.1145/3531130.3533329

4:24 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, Georg Zetzsche

Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid, ThomasW. Reps, and Mihalis Yannakakis. 2005. Analysis

of recursive state machines. ACM Trans. Program. Lang. Syst. 27, 4 (2005), 786–818. https://doi.org/10.1145/1075382.

1075387

Rajeev Alur, Ashutosh Trivedi, and Dominik Wojtczak. 2012. Optimal scheduling for constant-rate multi-mode systems. In

Hybrid Systems: Computation and Control (part of CPS Week 2012), HSCC’12, Beijing, China, April 17-19, 2012, Thao Dang

and Ian M. Mitchell (Eds.). ACM, 75–84. https://doi.org/10.1145/2185632.2185647

Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. 2009. Context-Bounded Analysis for Concurrent Programs with

Dynamic Creation of Threads. In Tools and Algorithms for the Construction and Analysis of Systems, 15th International

Conference, TACAS 2009, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,

York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5505), Stefan Kowalewski and Anna

Philippou (Eds.). Springer, 107–123. https://doi.org/10.1007/978-3-642-00768-2_11

Mohamed Faouzi Atig and Pierre Ganty. 2011. Approximating Petri Net Reachability Along Context-free Traces. In IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011) (Leibniz Interna-

tional Proceedings in Informatics (LIPIcs), Vol. 13), Supratik Chakraborty and Amit Kumar (Eds.). Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 152–163. https://doi.org/10.4230/LIPIcs.FSTTCS.2011.152

A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. 2023. Reachability in Continuous

Pushdown VASS. arXiv (2023). https://arxiv.org/abs/2310.16798

Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. 2023. Context-

Bounded Veri�cation of Context-Free Speci�cations. Proc. ACM Program. Lang. 7, POPL (2023), 2141–2170. https:

//doi.org/10.1145/3571266

Jean Berstel. 1979. Transductions and context-free languages. Teubner, Stuttgart.

Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. 2016. Approaching the Coverability Problem Continu-

ously. In Tools and Algorithms for the Construction and Analysis of Systems (Lecture Notes in Computer Science), Marsha

Chechik and Jean-François Raskin (Eds.). Springer, Berlin, Heidelberg, 480–496. https://doi.org/10.1007/978-3-662-

49674-9_28

Michael Blondin and Christoph Haase. 2017. Logics for Continuous Reachability in Petri Nets and Vector Addition Systems

with States. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, Reykjavik, Iceland,

1–12. https://doi.org/10.1109/LICS.2017.8005068

Swarat Chaudhuri. 2008. Subcubic algorithms for recursive state machines. In Proceedings of the 35th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008,

George C. Necula and Philip Wadler (Eds.). ACM, 159–169. https://doi.org/10.1145/1328438.1328460

Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. 2003. Linear Invariant Generation Using Non-linear Constraint

Solving. In Computer Aided Veri�cation, 15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003,

Proceedings (Lecture Notes in Computer Science, Vol. 2725), Warren A. Hunt Jr. and Fabio Somenzi (Eds.). Springer, 420–432.

https://doi.org/10.1007/978-3-540-45069-6_39

Wojciech Czerwiński and Lukasz Orlikowski. 2022. Reachability in Vector Addition Systems Is Ackermann-complete. In

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). 1229–1240. https://doi.org/10.1109/

FOCS52979.2021.00120

René David. 1987. Continuous Petri nets. In Proc. 8th European Workshop on Appli. & Theory of Petri nets, 1987.

Matthias Englert, Piotr Hofman, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Juliusz Straszyński. 2021. A Lower

Bound for the Coverability Problem in Acyclic Pushdown VAS. Inform. Process. Lett. 167 (April 2021), 106079. https:

//doi.org/10.1016/j.ipl.2020.106079

Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. 2011. Parikh’s theorem: A simple and direct automaton

construction. Inf. Process. Lett. 111, 12 (2011), 614–619. https://doi.org/10.1016/j.ipl.2011.03.019

Estíbaliz Fraca and Serge Haddad. 2015. Complexity analysis of continuous Petri nets. Fundamenta informaticae 137, 1

(2015), 1–28.

Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche. 2022. Reachability in Bidirected

Pushdown VASS. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022) (Leibniz

International Proceedings in Informatics (LIPIcs), Vol. 229), Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodru�

(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 124:1–124:20. https://doi.org/10.4230/

LIPIcs.ICALP.2022.124

Michel Henri Théodore Hack. 1976. Decidability questions for Petri Nets. Ph. D. Dissertation. Massachusetts Institute of

Technology.

Richard M. Karp and Raymond E. Miller. 1969. Parallel Program Schemata. J. Comput. System Sci. 3, 2 (May 1969), 147–195.

https://doi.org/10.1016/S0022-0000(69)80011-5

Adam Husted Kjelstrøm and Andreas Pavlogiannis. 2022. The decidability and complexity of interleaved bidirected Dyck

reachability. Proc. ACM Program. Lang. 6, POPL (2022), 1–26. https://doi.org/10.1145/3498673

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1145/2185632.2185647
https://doi.org/10.1007/978-3-642-00768-2_11
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.152
https://arxiv.org/abs/2310.16798
https://doi.org/10.1145/3571266
https://doi.org/10.1145/3571266
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1109/LICS.2017.8005068
https://doi.org/10.1145/1328438.1328460
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1016/j.ipl.2020.106079
https://doi.org/10.1016/j.ipl.2020.106079
https://doi.org/10.1016/j.ipl.2011.03.019
https://doi.org/10.4230/LIPIcs.ICALP.2022.124
https://doi.org/10.4230/LIPIcs.ICALP.2022.124
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1145/3498673

Reachability in Continuous Pushdown VASS 4:25

Jérôme Leroux. 2022. The reachability problem for Petri nets is not primitive recursive. In 2021 IEEE 62nd Annual Symposium

on Foundations of Computer Science (FOCS). IEEE, 1241–1252.

Jérôme Leroux and Sylvain Schmitz. 2019. Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension.

In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019.

IEEE, 1–13. https://doi.org/10.1109/LICS.2019.8785796

Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. 2015. On the Coverability Problem for Pushdown Vector Addition

Systems in One Dimension. In Automata, Languages, and Programming, Magnús M. Halldórsson, Kazuo Iwama, Naoki

Kobayashi, and Bettina Speckmann (Eds.). Vol. 9135. Springer Berlin Heidelberg, Berlin, Heidelberg, 324–336. https:

//doi.org/10.1007/978-3-662-47666-6_26

Yuanbo Li, Qirun Zhang, and Thomas W. Reps. 2021. On the complexity of bidirected interleaved Dyck-reachability. Proc.

ACM Program. Lang. 5, POPL (2021), 1–28. https://doi.org/10.1145/3434340

Markus Lohrey, Andreas Rosowski, and Georg Zetzsche. 2022. Membership Problems in Finite Groups. In 47th International

Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria (LIPIcs,

Vol. 241), Stefan Szeider, Robert Ganian, and Alexandra Silva (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

71:1–71:16. https://doi.org/10.4230/LIPICS.MFCS.2022.71

Christos H. Papadimitriou. 2007. Computational complexity. Academic Internet Publ.

Charles Racko�. 1978. The Covering and Boundedness Problems for Vector Addition Systems. Theor. Comput. Sci. 6 (1978),

223–231. https://doi.org/10.1016/0304-3975(78)90036-1

Klaus Reinhardt. 2008. Reachability in Petri nets with inhibitor arcs. Electronic Notes in Theoretical Computer Science 223

(2008), 239–264.

Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise Interprocedural Data�ow Analysis via Graph Reachability.

In Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

San Francisco, California, USA, January 23-25, 1995, Ron K. Cytron and Peter Lee (Eds.). ACM Press, 49–61. https:

//doi.org/10.1145/199448.199462

Thomas W. Reps, Emma Turetsky, and Prathmesh Prabhu. 2016. Newtonian program analysis via tensor product. In

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,

St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 663–677. https:

//doi.org/10.1145/2837614.2837659

Arnold L Rosenberg. 1967. A machine realization of the linear context-free languages. Information and Control 10, 2 (1967),

175–188. https://doi.org/10.1016/S0019-9958(67)80006-8

Louis E. Rosier and Hsu-Chun Yen. 1986. A Multiparameter Analysis of the Boundedness Problem for Vector Addition

Systems. J. Comput. Syst. Sci. 32, 1 (1986), 105–135. https://doi.org/10.1016/0022-0000(86)90006-1

Sylvain Schmitz and Georg Zetzsche. 2019. Coverability Is Undecidable in One-Dimensional Pushdown Vector Addition

Systems with Resets. In 13th International Conference on Reachability Problems (RP 2019) (Lecture Notes in Computer

Science, Vol. 11674), Emmanuel Filiot, Raphaël Jungers, and Igor Potapov (Eds.). Springer International Publishing, Brussels,

Belgium, 193–201. https://doi.org/10.1007/978-3-030-30806-3_15

Michael Sipser. 2012. Introduction to the Theory of Computation. Cengage Learning.

Eduardo D. Sontag. 1985. Real Addition and the Polynomial Hierarchy. Inform. Process. Lett. 20, 3 (April 1985), 115–120.

https://doi.org/10.1016/0020-0190(85)90076-6

Saurabh Srivastava, Sumit Gulwani, and Je�rey S. Foster. 2010. From program veri�cation to program synthesis. In Proceedings

of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January

17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM, 313–326. https://doi.org/10.1145/1706299.1706337

Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. 2005. On the Complexity of Equational Horn Clauses. In

Automated Deduction - CADE-20, 20th International Conference on Automated Deduction, Tallinn, Estonia, July 22-27,

2005, Proceedings (Lecture Notes in Computer Science, Vol. 3632), Robert Nieuwenhuis (Ed.). Springer, 337–352. https:

//doi.org/10.1007/11532231_25

Mihalis Yannakakis. 1990. Graph-Theoretic Methods in Database Theory. In Proceedings of the Ninth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, April 2-4, 1990, Nashville, Tennessee, USA. ACM Press, 230–242.

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 4. Publication date: January 2024.

https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1145/3434340
https://doi.org/10.4230/LIPICS.MFCS.2022.71
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/2837614.2837659
https://doi.org/10.1145/2837614.2837659
https://doi.org/10.1016/S0019-9958(67)80006-8
https://doi.org/10.1016/0022-0000(86)90006-1
https://doi.org/10.1007/978-3-030-30806-3_15
https://doi.org/10.1016/0020-0190(85)90076-6
https://doi.org/10.1145/1706299.1706337
https://doi.org/10.1007/11532231_25
https://doi.org/10.1007/11532231_25

	Abstract
	1 Introduction
	2 Preliminaries
	3 Upper Bound for Reachability
	3.1 Capturing Pump Reachability Relations
	3.2 Characterizing Reachability by Three Runs

	4 NEXPTIME-hardness of 2CM2,+1RL
	5 From 2CM2,+1RL to [0,1]VASSRL0?
	6 From [0,1]VASSRL0? to Q+PVASS
	7 Coverability, number of counters and encodings
	8 Conclusion
	Acknowledgments
	References

