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ABSTRACT: Predicting the rate constants of elementary reaction steps is key for the
computational modeling of catalytic processes. Within transition state theory (TST), this
requires an accurate estimation of the corresponding free energy barriers. While sophisticated
methods for estimating free energy differences exist, these typically require extensive (biased)
molecular dynamics simulations that are computationally prohibitive with the first-principles
electronic structure methods that are typically used in catalysis research. In this contribution, we
show that machine-learning (ML) interatomic potentials can be trained in an automated
iterative workflow to perform such free energy calculations at a much reduced computational
cost as compared to a direct density functional theory (DFT) based evaluation. For the
decomposition of CHO on Rh(111), we find that thermal effects are substantial and lead to a
decrease in the free energy barrier, which can be vanishingly small, depending on the DFT
functional used. This is in stark contrast to previously reported estimates based on a harmonic
TST approximation, which predicted an increase in the barrier at elevated temperatures. Since
CHO is the reactant of the putative rate limiting reaction step in syngas conversion on Rh(111) and essential for the selectivity
toward oxygenates containing multiple carbon atoms (C2+ oxygenates), our results call into question the reported mechanism
established by microkinetic models.

I. INTRODUCTION
It is well-known that the rate, selectivity, and yield of a
chemical process can be controlled by the use of catalysts.1 In
simple terms, this works via a modulation of the relative
energetics of the reaction intermediates and transition states,
which partake in the overall process leading from the reactants
to the products. Here, the energetic barriers for elementary
reaction steps are of particular interest, since (according to
transition state theory, TST) the rate constant of each step is
proportional to the exponential of the free energy barrier.2,3

The accurate computational prediction of free energy barriers
for elementary reactions is thus essential for understanding the
detailed mechanisms of catalytic processes and for designing
new catalysts.4−6

Predicting free energy barriers accurately is notoriously
difficult, however. This is because the simple picture of the
barrier as an energy difference between a single minimum
configuration and a transition state does not apply at elevated
temperatures. Instead, a rigorous free energy calculation
requires extensive sampling of the configuration space along
a suitable reaction coordinate, e.g., via Transition Path
Sampling,7 Metadynamics,8 or Umbrella Sampling.9,10

These methods are commonly applied in biomolecular
simulations, e.g., to study the binding affinities of drug
candidates to certain enzymes. Here, computationally efficient

empirical force fields are available so that extensive sampling is
not an insurmountable issue. Unfortunately, this is not the case
in heterogeneous catalysis, where the surface of a solid catalyst
must be accurately modeled. This requires the use of
computationally expensive first-principles methods like density
functional theory (DFT) with the consequence that rigorous
free energy calculations are rarely performed in this context.

To avoid this computational bottleneck, DFT based catalysis
research instead typically relies on a more approximate
treatment of free energy barriers. In the simplest case,
temperature effects on the barrier are simply neglected so
that the Helmholtz free energy surface (FES) is approximated
by the 0 K potential energy surface (PES). This simplifies the
problem to finding the transition state between the initial and
final minimum configuration of the reaction on the PES, which
can be achieved, e.g., with the Climbing Image Nudged Elastic
Band (CI-NEB) approach and related methods.11
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Additionally, free energy corrections to the PES barrier can
be computed. These rely on calculating the vibrational modes
of the reactants in the initial, final, and transition state
configurations and are thus somewhat more involved.12 Most
commonly, the harmonic approximation (HA) is used in this
context, meaning that a second-order Taylor expansion of the
PES around the configurations of interest is performed, from
which the finite-temperature free energy corrections can be
calculated analytically. While applying the HA is relatively
straightforward in principle, it is known to be inadequate at
higher temperatures and for low-frequency modes, such as
hindered translations or rotations.12,13 These factors lead to
some ambiguity on how to treat (or whether to neglect) slow
modes and overall add to the uncertainty of predicted free
energy barriers.14

Fortunately, the success of machine-learning (ML)
interatomic potentials in chemistry and materials science in
recent years has opened a new perspective for free energy
calculations in heterogeneous catalysis. Machine-learning
potentials can provide fast and accurate surrogate models of
the DFT PES,15−17 so that the kind of extensive sampling that
is required for rigorous free energy calculations becomes
feasible.

In this contribution, we demonstrate this for the initial
hydrogenation step of CO on Rh(111), focusing on the kinetic
stability of the CHO reaction intermediate (Figure 1). This

system is of particular interest since Rh-based catalysts are
unique in their ability to convert syngas (CO and H2) to
higher oxygenates like ethanol and acetaldehyde with
appreciable selectivity.18−21 We focus on CHO because it is
the reactant in the putative rate limiting step for ethanol and
acetaldehyde synthesis, according to some microkinetic
models.19 Furthermore, the relative formation rates of CHO
and COH ultimately determine the selectivity for the C2+
oxygenates.

We present a workflow that combines the iterative training
of Gaussian Approximation Potentials (GAP) with the
Umbrella Integration (UI) approach, yielding a fast and
accurate method for free energy calculations in surface
catalysis. Subsequently, the results are compared to previously
reported harmonic estimates of the free energy barrier, and the
influence of different density functional approximations is
discussed.

II. METHODS
II.1. Umbrella Integration. The UI approach is a hybrid

between two popular free energy methods, namely, Umbrella
Sampling (US) and Thermodynamic Integration.10,22,23 As in
the US,9 a set of harmonic biasing potentials that span the
scope of a collective variable (CV) ξ are defined:

w kR R( )
1
2

( ( ) )i i
2=

(1)

Here, wi is the ith biasing potential with a spring constant k,
which restrains the sampling around the window center ξi.
ξ′(R) is a function that maps the coordinates of system R to
the collective variable ξ, which can be an interatomic distance,
angle, coordination number, or more complex function of the
atomic coordinates. Note that ξ can, in principle, be higher
dimensional, although we only consider the 1D case herein.
The biasing potential restrains simulations to a region in phase
space close to ξi, which is referred to as the ith window.

With these potentials, a series of biased molecular dynamics
(MD) simulations are performed, where the biases ensure that
energetically unfavorable parts of the PES are sampled
sufficiently. In conventional US, the FES along ξ is then
typically obtained from the corresponding MD ensembles
using the weighted histogram analysis method (WHAM).24−26

In UI, the FES is instead obtained by estimating the gradients
of the free energy F with respect to ξ.10,22,23 To this end, one
merely needs the mean value of ξ (ξ̅i) for each biased
ensemble:

F k( )i i

i (2)

This approximation holds under the assumption that the
distribution in ξ is unimodal and symmetric, which is generally
the case if k is sufficiently large, so the main remaining source
of uncertainty is the statistical error on ξi̅. The FES can then be
obtained by integrating F . Stecher et al. showed that this can

be done in an uncertainty aware fashion using Gaussian
Process Regression (GPR) and we follow this approach
herein.27 All UI simulations below are performed with the
atomic simulation environment (ASE) and a Langevin
thermostat.28

II.2. Gaussian Approximation Potentials. GAP models
are a well established class of ML interatomic potentials that
are also based on GPR.29 Since the GAP approach was
extensively reviewed recently, we only briefly summarize the
details of the potential used herein.15 All hyperparameters as
well as the potential itself are provided as Supporting
Information in this article.

We express the total formation energy of the surface−
adsorbate system in terms of a two-body and a many-body
contribution, with the latter being described by the Super-
position of Atomic Densities (SOAP) representation.30 The
potential is trained in an iterative fashion by running UI
simulations and NEB calculations to generate new config-
urations with the GAP model and augmenting the training set
accordingly (see below for details). This provides a data-
efficient and automated workflow for generating a training set
that covers the relevant parts of the phase space. To avoid
redundancies in the configurations that are added to the
training set, these are selected according to the kernel distance

Figure 1. Top and side views of local minimum configurations for
CHO and CO+H on the Rh(111) surface. The geometric measures d
and θ, which define the collective variable used below, are indicated
for CHO.
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between new configurations and the current training set (so-
called farthest point sampling, FPS).31

II.3. Density Functional Theory. In computational
catalysis at metal surfaces, semilocal functionals based on the
Generalized Gradient Approximation (GGA) are most
commonly used. This is due to their relatively high
computational efficiency compared to those of hybrid DFT
and explicit many-body methods. Additionally, these func-
tionals are fairly accurate in describing the energetics of
molecular adsorbates on transition metal surfaces, particularly
when combined with appropriate dispersion corrections.32,33

To explore the influence of different computational setups,
two separate GAP models were trained with different reference
data. On one hand, the revPBE34 functional and vdWsurf

dispersion correction35 were used, as implemented in the
full-potential numerical atomic orbital code FHI-aims.36 Here,
light integration settings and a tier-1 basis set were used, as is
usually done for ab initio MD simulations. On the other hand,
the BEEF-vdW37 functional was used, as implemented in the
plane-wave code QuantumEspresso, using ultrasoft pseudopo-
tentials and a kinetic energy cutoff of 500 eV for orbitals and
5000 eV for the density.38 Note that the revPBE setup was
used in the iterative training scheme, while the BEEF-vdW
potential was subsequently trained in the same configurations.
In the following, all figures show revPBE-based results unless
otherwise noted. All simulations were performed in a 3 × 3 × 4
Rh(111) surface slab (where the lower two slab layers were
constrained during all simulations). A 4 × 4 × 1 k-grid was
used to sample the Brillouin zone.

For harmonic free energy corrections, vibrational frequen-
cies were obtained at the DFT level via finite-difference
Hessians of the adsorbates in the initial and transition state
geometries. Since vibrational frequencies are more sensitive to
the convergence of geometry optimizations than total energies,
ground state geometries were tightly converged to maximum
force norms of 0.01 eV/Å. The CI-NEB transition state
geometries were refined using the iterative Hessian diagonal-
ization algorithm implemented in the Sella package.39

As is common practice in computational catalysis, the
vibrational frequencies were computed by generating the finite
differences of the Hessian for the adsorbate atoms only. This
was done to ensure consistency with the literature, in particular
ref 19. For the UI calculations, only the lower two layers of the
metal slab were constrained. This introduces a slight
inconsistency between the UI and the HA calculations. To
evaluate the effect of this inconsistency, vibrational calculations
were repeated under inclusion of the top two metal layers for
the BEEF-vdW functional. From this, we find that including
these atoms in the Hessian only has a marginal effect on the
harmonic free energy barrier, which increases by 0.01 eV.

III. RESULTS
III.1. Minimum Energy Path and Collective Variable.

The focus of this work will be on the first hydrogenation step
of CO on Rh(111) to form CHO (Figure 1). Here, the small
barrier for the reverse reaction is of particular interest, since it
determines the stability of the CHO intermediate on the
surface. The geometric changes between the reactant and
product can be described in terms of the angle between the
CO bond and the surface normal (θ, in Radians) and the C−H
distance (d, in Å). While these parameters would in principle
form adequate CVs for this reaction, the computational effort
for free energy calculations rises substantially with each

dimension that is considered. We therefore first define an
effective one-dimensional CV.

To this end, we take advantage of the fact that the CI-NEB
method allows calculating minimum energy paths for chemical
reactions on the PES. This yields a series of configurations
(termed images) that connect reactant and product and
include the transition state. In Figure 2, the NEB images of

CHO formation are plotted with respect to d and θ. This
reveals that the reaction first proceeds by a gradual decrease of
d and increase of θ, until the transition state is reached.
Subsequently, θ further increases, until the product geometry is
obtained.

Based on this path, we define the CV ξ used in the following
as a linear combination of d and θ, connecting the reactant
minimum configuration and the transition state. Here, the
units of the parameters are chosen to render the overall CV
unit-less. This CV is plotted as a gray line in Figure 2, with the
projection of each NEB image indicated by the dotted lines
and diamonds. Note that any parallel line in this plot effectively
corresponds to the same CV. This shows that all NEB images
are well separated on this scale, indicating that ξ is a suitable
reaction coordinate. For the following free energy calculations,
50 evenly spaced biasing potentials are defined in the range ξ =
−0.2−0.85, with a spring constant k = 50 eV.

III.2. Potential Training and Validation. The GAP
potential used to run the UI simulations is trained in an
iterative fashion. Specifically, we define an initial training set of
50 configurations, consisting of the images from the DFT
based NEB calculation shown in Figure 2, dimer curves of the
light element pairs (CO, CC, OO, HH, OH, and CH), as well
as optimized and rattled configurations of the pristine surface.
This set is used to train an initial, coarse GAP model.

While far from chemically accurate, this potential can
directly be used to run biased MD simulations at 573 K in
order to explore the phase space relevant to the UI simulations.
As there is some redundancy between neighboring windows,
we randomly select ten windows from which to sample from.
Subsequently, a diverse set of ten structures is extracted from
these configurations via FPS and evaluated with single-point
DFT calculations. This data is used to validate the accuracy of

Figure 2. Nudged elastic band images plotted in terms of the angle
between the CO and the surface normal (θ) and the C−H distance
(d). The color bar shows the relative energies of the images in eV,
with the yellow points being close to the transition state. The
collective variable used herein is a linear combination of θ and d,
indicated by the gray line.
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the current potential and added to the training set for the next
iteration.

We find that energies and forces are well converged in 17
iterations, with mean energy errors well below 10 meV per
atom and force errors below 75 meV/Å. Note that after initial
convergence was observed in iteration 12, the potentials are
additionally used to perform NEB calculations to ensure that
the minimum energy paths of the GAP and the underlying
DFT functional coincide. The evolution of the corresponding
training and validation errors is shown in Figure 3.

Importantly, the validation errors are for unseen configurations
from the exact kind of simulation that we intend to run with
this model. This gives us high confidence that the potential will
be sufficiently accurate and stable for this purpose.40

As indicated above, the energies and forces on the final
training set were additionally recalculated at the BEEF-vdW
level. This data was used to train a second potential without
performing additional training iterations. This allows us to
explore the impact of using different computational setups for
the free energy calculations.

III.3. Free Energy Calculations. The converged potentials
were used to run extensive US calculations with 100 ps
trajectories per window, at 523 K, which is the experimental
operating temperature in ref 19. This amounts to 16 ns of
dynamics overall, underscoring why this type of simulation is
computationally prohibitive at the first-principles level. The
resulting FESs at the revPBE+vdWsurf and BEEF+vdW levels
are shown in Figure 4, along with the PESs obtained with NEB
calculations.

A comparison of the PESs and FESs reveals that thermal
effects decrease the barrier for decomposition of CHO
significantly. Indeed, the barrier nearly vanishes at the
revPBE+vdWsurf level, indicating that CHO is not a stable
intermediate at 523 K at all. At the BEEF-vdW level, a small
barrier of 0.13 eV remains. Figure 4 also shows the free energy
derivatives, as defined in eq 2. This shows that the GAP-based
MD simulations provide good coverage of the CV range. More
importantly, the derivatives display no discontinuities, which
would point to lack of convergence or broken ergodicity.

III.4. Rate Constants. For catalytic applications, the free
energy barrier is mainly of interest as an intermediate quantity
for computing rate constant k. The most common framework
for computing k from first-principles is Transition State Theory
(TST). In this context, the rate constant is defined via the
Eyring equation as

k
k T

h
G

k T
expB

B
=

‡i
k
jjjjj

y
{
zzzzz (3)

where ΔG is the free energy barrier. One can illustrate the
importance of thermal effects on rates by plugging in the
potential energy barrier ΔE instead of the free energy barrier.
At the BEEF-vdW level the corresponding rates differ by a
factor of 85, i.e., by almost 2 orders of magnitude.

Figure 3. Evolution of mean absolute errors (MAE) on energies (top)
and forces (bottom) during iterative training. At each iteration, new
configurations are generated via Umbrella Sampling and are used as a
validation set. These structures are added to the training set for the
next iteration.

Figure 4. Potential energy surface from Nudged Elastic Band calculations (left) and free energy surface from Umbrella Integration (center).
Umbrella Integration estimates the relative free energies from the derivative of the free energy with respect to the collective variable (right). The
estimated barriers using harmonic free energy corrections are indicated by the stars in the central plot. Calculations were performed with GAP
models trained on the revPBE+vdWsurf and BEEF+vdW data, respectively. The gray region in the rightmost plot indicates the standard deviation of
the Gaussian Process model used for Umbrella Integration.
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Equivalently, the Eyring equation can also be formulated in
terms of the partition functions of the initial and transition
states, QIS and QTS:

k
k T

h

Q

Q
E

k T
expB TS

IS B
=

‡ i
k
jjjjj

y
{
zzzzz (4)

This equation is the basis of the commonly used Harmonic
Approximation (HA) for computing rate constants. This
assumes that the adsorbate is tightly enough bound to the
surface so that all degrees of freedom can be described as
vibrations. In this case, the corresponding partition functions
can be computed from the vibrational modes of the adsorbate
in the initial and transition state configurations. Depending on
whether the vibrations are described as classical or quantum
harmonic oscillators, the corresponding expressions are

Q
k T
hi i

HA,class
B=

(5)

and

( )
( )

Q
exp

1 expi

h
k T

h
k T

HA,quant
2

i

i

B

B

=

(6)

where the product runs over all 3N vibrational modes and νi is
the frequency of mode i.

We can now compare different approximate rate constants
for the decomposition of CHO on Rh(111) (Figure 6). Within
the HA, they can be computed by using the classical and
quantum partition functions, yielding kH,class and kH,quant.
According to the correspondence principle, the classical and
quantum models should yield equivalent results in the high-
temperature limit. At which temperature this limit is reached in
practice depends on the specific vibrational frequencies of the
system, however. This is illustrated in Figure 5, where the
ratios of the quantum and classical rate constants are plotted as
a function of temperature. This reveals that kH,quant exceeds
kH,class by a factor of 1.5 to 2 at 523 K, depending on the DFT
functional. While this is a relatively small difference given that
rate constants tend to vary by several orders of magnitude in

catalytic reaction networks, quantum nuclear effects are clearly
not negligible for this reaction.

Next, we can compare the rate constants obtained from the
HA with those obtained via the UI free energy barriers (kUI).
These are shown in Figure 6, revealing that the classical, fully

anharmonic description of the free energy barrier obtained
with UI yields significantly larger rate constants than both the
classical and quantum HA. Indeed, the enhancement from
kH,class to kUI is much larger than the enhancement from kH,class
to kH,quant (30 and 5-fold, for BEEF-vdW and revPBE+vdWsurf,
respectively).

Both thermal and quantum effects thus lead to a significant
increase in the rate constants relative to the naive baseline of
plugging ΔE into eq 3 (the dotted lines in Figure 6). To
estimate the combined effect of (anharmonic) thermal and
quantum effects, the Pitzer−Gwinn (PG) approximation for
the partition functions can be used.41 To this end, we assume
that

Q Q
Q

QUI,quant UI,class
H,quant

H,class (7)

from which it follows that

k k
k

kUI,PG UI
H,quant

H,class
=

(8)

This leads to estimated rate constants of 1 × 1012 s−1 (BEEF-
vdW) and 9 × 1012 s−1 (revPBE+vdWsurf). These rate
constants can be understood more intuitively in terms of the
half-lives 1/2 of CHO they imply. These are 550 and 80 fs for
BEEF-vdW and revPBE+vdWsurf, respectively. Under these
conditions, CHO decomposition is thus hardly a rare event.

More generally, it is notable that the inclusion of thermal
and nuclear quantum effects changes the rate constants by 1.5
to 2 orders of magnitude, depending on the functional. These
effects are thus on the same order of magnitude as the
difference between the functionals. Since the potential energy
barriers ΔE enter eq 4 exponentially while the partition

Figure 5. Ratio between harmonic rate constants computed with
quantum and classical partition functions. The dotted line marks 523
K, which is the temperature used in the Umbrella Integration
simulations.

Figure 6. Transition state theory rate constants obtained with the
harmonic approximation (HA) using classical and quantum partition
functions and using umbrella integration (UI) free energy barriers. In
addition to the classical UI rate constants, the influence of quantum
nuclear effects can be estimated from the HA using the Pitzer−Gwinn
(PG) correction, as detailed in the main text. As a baseline, the dotted
lines indicate the TST rate constant when ignoring quantum and
thermal effects completely.
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functions are part of the prefactor, the accuracy of DFT
transition state energetics has been a prime focus in
computational catalysis methods development.42 Our results
indicate that thermal effects can be equally important for
certain reactions.

III.5. Harmonic Free Energy Corrections. Analogously
to the HA for rate constants, it is also possible to define a
harmonic free energy approximation by exploiting the
equivalence of eq 3 and eq 4. In Figure 4, the HA free energy
barriers (based on quantum partition functions) for BEEF-
vdW and revPBE+vdWsurf are indicated as stars in the central
plot. An appealing feature of these harmonic free energy
corrections is that they can be decomposed into physically
interpretable contributions, namely, the integrated heat
capacity Cvib

0→T, the entropic contribution −TSvib, and the
zero point vibrational energy (ZPVE). These contributions to
the barrier are shown in Table 1.

This reveals that the lowering of the HA barriers is mainly
due to the ZPVE, which is by far the most negative
contribution for both functionals. Meanwhile, the thermal
contributions (Cvib

0→T and −TSvib) have small and compensating
effects on the barrier, with the entropic contributions to the
barrier being positive and of similar magnitude to the negative
contributions of the integrated heat capacity. This is in stark
contrast to the UI predictions, which exclusively cover thermal
effects and lead to a much stronger decrease in the barrier.

Indeed, the HA is known to be inadequate for low frequency
modes, for which empirical corrections or separate treatments
must be used.12,14 For this reaction, all real vibrational modes
in the initial and transition states display frequencies above 90
cm−1, however, so that they would not be considered to be
particularly pathological (see SI). Nevertheless, the PES
obviously displays considerable anharmonicity. This is likely
related to the small reaction barrier and the small geometric
changes between the initial and transition states. As a
consequence, application of the HA cannot be recommended
in such situations.

It should also be noted that HA is remarkably sensitive to
small changes in the geometry for this reaction. Specifically, in
ref 19, the corresponding free energy barrier is estimated to be
0.49 eV at the BEEF-vdW level (compared to 0.25 eV found
herein). In other words, the free energy correction is found to
substantially increase the barrier therein, in contrast to our
findings at both the UI and HA level. This discrepancy is likely
caused by spurious low frequency modes, which disappear
when tightly converging the geometry optimization. While
such problems can be identified by manual inspection, they are
challenging to diagnose in high-throughput settings such as ref
19.

III.6. Density Functional Comparison. Figure 6 implies a
remarkably large influence of using different dispersion-
corrected GGA functionals on the predicted rates. Here,

further analysis indicates that this is to some extent an artifact
of using the combination of revPBE and the vdWsurf dispersion
correction. Specifically, the DFT reaction barrier was
recomputed using single point calculations with different
functionals and dispersion corrections at the BEEF-vdW and
revPBE+vdWsurf initial and transition state geometries (see
Figure 7). Here, we considered the pure PBE and revPBE

functionals as well as PBE with both the vdWsurf and
conventional Tkatchenko−Scheffler dispersion corrections
(see the SI for details). This reveals revPBE+vdWsurf to be
something of an outlier (see the SI for the individual barriers of
each functional).

This appears to be related to the fact that revPBE is more
repulsive than other GGA functionals like BEEF and PBE,
meaning that the onset of the damping function connecting the
exchange-correlation functional and the dispersion correction
must be set to smaller interatomic distances.43 While this
works reasonably well for noncovalent interactions in
molecular dimers and liquid water,43 the performance for
adsorbates on surfaces deteriorates.44

On the other hand, it is also notable that BEEF-vdW
predicts the highest of all barriers, although the other
predictions lie within the standard deviation of the BEEF
ensemble uncertainty.37 Consequently, the BEEF-vdW and
revPBE+vdWsurf results discussed above represent the upper
and lower bounds of the expected barrier within the scope of
GGA DFT. Overall, the qualitative behavior of both func-
tionals is analogous, in that the inclusion of thermal effects,
anharmonicity, and nuclear quantum effects all lead to a
significant increase in the predicted rate constants. In terms of
the absolute rates we can conclude that the BEEF-vdW
numbers are likely more reliable, though they may be slightly
overestimating the barrier.

III.7. Limitations. The focus of the current article is on
obtaining ML potentials for the computation of free-energy

Table 1. Individual Contributions to Harmonic Free Energy
Corrections of the DFT Reaction Barriers at 523 Ka

Contribution revPBE+vdWsurf BEEF-vdW

Cvib
0→T −16 −18

−ΔTSvib 25 16
ΔZPVE −60 −74
Sum −51 −76

aThe final line is the overall correction. All values are given in meV. Figure 7. Density functional theory energy barriers obtained with
single point calculations using different functionals and dispersion
corrections at the BEEF-vdW and revPBE+vdWsurf initial and
transition state geometries. In both cases, BEEF-vdW and revPBE
+vdWsurf represent the upper and lower bounds of the estimated
barrier, respectively, as indicated by the labels. Details for the other
functionals are given in the main text and the SI. The shaded bar
indicates the standard deviation of the BEEF ensemble uncertainty
estimate.
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profiles (FEPs) in surface catalysis. It should be emphasized,
however, that obtaining the FEP itself is not sufficient to obtain
the exact rate constants for a given level of theory. There are
several further approximations involved in both the computa-
tion of the free energy barrier and in TST.

Regarding the former, calculating the free energy barrier
from the minimum and maximum of the FEP is an
approximation, because the entropy along the CV is neglected.
As a consequence, the barrier computed this way is also
somewhat dependent on the choice of CV. Dietschreit et al.
recently reported formulas for computing exact free energy
barriers.45 This requires the reconstruction of the reweighted
ensemble of all configurations, which is beyond the scope of
the current study.

Regarding the use of TST, in particular, the presence of
recrossing events can be problematic. A recrossing occurs
when a trajectory reaches the transition state from the initial
state and subsequently returns to the initial state before it visits
the final state. TST assumes that this does not happen, so that
the presence of such unsuccessful transitions means that the
TST rate constants are too large. This can be addressed by
introducing an additional transmission coefficient κ < 1 in eq 3,
to account for recrossing.

Given the UI/TST estimated half-lives of 1138 and 124 fs
for the two functionals (without the PG correction for nuclear
quantum effects), the validity of TST can be tested by running
unbiased MD simulations seeded in the initial state.
Specifically, when 120 configurations are drawn from MD
simulations constrained around the initial state with a biasing
potential and subsequently running 2.5 ps long unbiased MD
trajectories, reactive events are frequently observed. From
these simulations, the half-lives of CHO can empirically be
estimated as 725 and 140 fs, respectively. These times are in
good agreement with the ones estimated from UI/TST.
Indeed, this agreement may be somewhat fortuitous, and it
should be noted that the unbiased MD estimates are an
imperfect benchmark. In addition to significant statistical
uncertainty (see SI), the initial structures are drawn from a
biased ensemble and equilibration to the correct initial state
distribution is hindered by frequent reactive events.

An alternative approach is to directly estimate the trans-
mission coefficient κ from simulations. To this end, unbiased
MD simulations were seeded both at the refined NEB TS and
at the maximum of the free energy profile, for the BEEF-vdW
based potential. In the latter case, configurations were drawn
from restrained MD simulations close to the free energy
maximum. In both cases, 240 MD trajectories were started by
using 120 random velocities drawn from the Maxwell−
Boltzmann distribution and integrating forward and backward
in time until either the initial or final state basin is reached
(defined as ξ < − 0.2 and ξ > 2.0, respectively).

This yields transmission coefficients of κ = 0.87 and κ = 0.81,
respectively. In other words, a moderate amount of recrossing
is indeed observed, so that the reported rate constants in
Figure 6 are too large by 10−20%. Notably, transmission
coefficients on this order to account for recrossing are not
uncommon for barrierless reactions in gas-phase kinetics (see,
for example, ref 46 and references therein, in which a
dynamical correction of 15% was applied).

IV. CONCLUSIONS
The current work demonstrates that state-of-the-art free energy
calculations can be performed for heterogeneous catalytic

reactions with DFT-quality potential energy surfaces. This is
achieved by using ML interatomic potentials and a data-
efficient iterative training scheme. Overall, the presented
approach allows for a more rigorous treatment of thermal
effects in computational catalysis and provides a valuable
benchmark for approximate free energy corrections.

The present results indicate that CHO is an unstable (or at
least extremely short-lived) species on Rh(111). While the
formation of this species does not appear to be rate limiting in
recent microkinetic simulations of syngas conversion, this
finding does have some consequences for the mechanistic
understanding of this process. On one hand, the rate limiting
step in ref 19 is the subsequent hydrogenation step from CHO
to CHOH, which assumes the presence of CHO on the
surface. On the other hand, the relative stabilities of CHO and
COH determine the selectivity of syngas conversion to
different products.

More generally, our results fundamentally call into question
the accuracy of the free energy barriers currently used in
computational heterogeneous catalysis. We therefore aim to re-
examine the reaction network of syngas chemistry on Rh more
broadly in future work. In this context, it should be noted that
the ML potentials used herein are single-purpose models
trained and used for one specific elementary reaction. When
treating a full reaction network, there are potentially synergy
effects, in the sense that new data for a specific elementary step
will likely improve the model for all steps in the network.
Similarly, a potential could be trained for different CO and H
coverages simultaneously. Indeed, lateral interactions are
known to be important for this process.21

From a methodological perspective, our analysis furthermore
indicates that nuclear quantum effects lead to a further
decrease in this reaction barrier. In this context, a more
rigorous treatment beyond the PG approximation would be of
interest, for example, using path-integral MD47 or multi-
component DFT.48
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