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Abstract 

Human endogenous retroviruses (HERVs) are the germline embedded proviral fragments of ancient retroviral infec-
tions that make up roughly 8% of the human genome. Our understanding of HERVs in physiology primarily surrounds 
their non-coding functions, while their protein coding capacity remains virtually uncharacterized. Therefore, we 
applied the bioinformatic pipeline “hervQuant” to high-resolution ribosomal profiling of healthy tissues to provide 
a comprehensive overview of translationally active HERVs. We find that HERVs account for 0.1–0.4% of all translation 
in distinct tissue-specific profiles. Collectively, our study further supports claims that HERVs are actively translated 
throughout healthy tissues to provide sequences of retroviral origin to the human proteome.

Keywords Human endogenous retrovirus (HERV), Ribosomal profiling (RiboSeq), Protein translation, Dark genome, 
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Background
Human endogenous retroviruses (HERVs) persist within 
the genome as the legacy of ancient retroviral infections 
that integrated into the germline [1, 2]. Germline embed-
ded retroviruses then transmit vertically where over time 
they then accumulate mutations or deletions that pro-
hibit infectious particle formation. Once a retrovirus no 
longer produces infectious particles, they are deemed 
“endogenous” [1]. Endogenization is not an instantaneous 
process, but instead occurs through complex transgener-
ational invasion of genomic sequences by a retrovirus, as 

demonstrated by the active endogenization events occur-
ring in Koala species [3]. Once retrovirus has invaded 
the germline of a host specific, endogenization can then 
be driven by a multitude of factors, such as xenotropic 
restriction [4], mutations [1, 2], host-antiviral responses 
[5], and recombination events [6]. Collectively, HERVs 
make up about 8% of human genetic material [2, 7, 8], and 
have therefore substantially impacted the genome. While 
HERVs are mostly inactive [9] and none are replication 
competent like the ERVs of other mammals [10], many 
do display spatiotemporal activity in somatic [11–14] and 
developing cells [15–21] alike. Since their endogeniza-
tion, many HERV elements have been coopted to accom-
plish molecular tasks in which are observable throughout 
reproduction [22, 23], immune responses [24, 25], and 
cell type specific transcription [11, 17, 19, 26]. Our cur-
rent understanding of HERVs is primarily derived from 
their genomic and transcriptomic functions while little is 
known about their protein encoding capabilities.

Here, we performed the first large-scale characteriza-
tion of HERV translation in healthy tissues by analyzing 
publicly available ribosomal profiling (RiboSeq) datasets 
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[27]. RiboSeq quantifies the translatome by sequenc-
ing the short fragments (~ 25-35 bps) of ribosomal pro-
tected RNA, therefore providing a ‘snapshot’ of protein 
production [28]. By applying the bioinformatic pipeline 
‘hervQuant’ [29] to publicly available RiboSeq data, we 
quantify the translational abundance of over 3000 anno-
tated HERV proviruses [30] across an atlas of healthy tis-
sue and cell types by aligning ribosomal protected short 
RNA sequencing fragments to full length proviruses. 
Collectively, this approach provides the first comprehen-
sive characterization of actively translated HERV provi-
ruses under healthy conditions. We term the collective of 
HERV proteins undergoing translation as the “endoretro-
translatome” (ERT) and suggest further investigation into 
the ERT as an understudied component of human health.

Results and discussion
Despite characterizations of multiple uniquely identified 
HERV proteins [20, 23, 31–50], HERV-derived peptides 
as neoantigens in cancers [29, 51–67], and the identifi-
cation of open reading frames (ORFs) embedded within 
HERV loci [2, 30, 47, 68–79], little is known regarding 
whether or not HERVs are readily translated in healthy 
tissues specifically. For this purpose, we aligned ribo-
somal embedded mRNA fragments from the RiboSeq 
atlas [27] with an annotation of proviral sequences [30] 
using hervQuant [29], a biologically validated pipeline 
that accurately depicts HERV translation. Using this 
approach, we provide the first large-scale examination of 
the ERT in brain, liver, and fat tissues, as well as within 
cell types such as vascular smooth muscle cells (VSMCs), 
embryonic stem cells (ESCs), human aorta endothe-
lial cells (HA_ECs), human coronary artery endothe-
lial cells (HCA_ECs), human umbilical vein endothelial 
cells (HUVECs), and primary human atrial fibroblasts 
(PHAFs). (Fig. 1A; Table S1). We found that all samples 
display detectable translation of HERV products rang-
ing from 0.08% (brain) to 0.39% (ESCs) of all transla-
tion (Fig. 1B; Table S2). We next quantified the number 
of HERV proviruses that contain ≥1 read per million 
(RPM) and found that fat tissue displayed the most 
diverse expression profiles with an average of 533 HERV 
proviruses surpassing this threshold per sample, while 
HCA_ECs displayed the least diverse expression profile 
averaging only 105 distinct HERV proviruses that surpass 
this threshold (Fig.  1C). Principal component analysis 
(PCA) plots based on HERV protein production alone 
demonstrate that ESCs can be distinguished from other 
sample types by the ERT alone, while somatic sample 
types are indistinguishable from one another (Fig.  1D). 
This ESC-specific profile is largely attributed to high 
translation of the HERVHF superfamily (Fig. S1; Table 
S3), a large HERV clade whose activity coordinates early 

embryonic development [16, 80]. Heatmaps of HERV 
proviral transcript abundances organized in descending 
order of RPM abundance showcase discrete changes in 
the ERT between tissue and cell types (Fig. 1E-F). Collec-
tively, these data demonstrate that HERVs are translated 
throughout healthy tissue types with-site specific transla-
tional profiles.

Next, we profiled the ERT based on phylogeny. Sum-
mary data demonstrates the average RPM (Fig. 2A) and 
proportional (Fig. 2B) abundances of all HERV superfam-
ilies across tissue and cell types. Collectively, the HML 
(HML1 through HML10, including HML2), HERVW9, 
HERVIDADP, and HERVHF superfamilies were most 
translationally active in healthy tissues (Fig. S2). Next, 
analysis of RPM abundances amongst HERV super-
families in HA_ECs (Fig. 2C), HCA_ECs (Fig. 2D), ESCs 
(Fig. 2E), brain (Fig. 2F), fat (Fig. 2G), PHAFs (Fig. 2H), 
hepatocytes (Fig.  2I), HUVECs (Fig.  2J), and VSMCs 
(Fig. 2K) suggests that sample type is the dominant fac-
tor in determining HERV translation, while interin-
dividual discrepancies are a secondary determinant. 
Proportional abundances of HERV superfamilies further 
supports this conclusion (Fig. S3). Next, we identify the 
10 most highly translated HERVs in HA_ECs (Fig.  2L), 
HCA_ECs (Fig.  2M), ESCs (Fig.  2N), brain (Fig.  2O), 
fat (Fig.  2P), PHAFs (Fig.  2Q), hepatocytes (Fig.  2R), 
HUVECs (Fig.  2S), and VSMCs (Fig.  2T) demonstrate 
distinct changes in translational abundances (Table S1). 
Proviruses HERV_4295 (Fig. S4A) and HERV_4184 (Fig. 
S4B) possess conserved RPM abundances, suggesting 
conserved roles in ubiquitous processes. Meanwhile, 
highly translated proviruses such as HERV_1844 (Fig. 
S4C), HERV_4378 (Fig. S4D), and HERV_4231 (Fig. S4E) 
contain differential RPM abundances and may instead 
contribute to specialized roles indicative of a local 
environment.

Our analyses demonstrate that HERV-provirus aligned 
reads make up a surprising portion of the human trans-
latome, encompassing roughly between 0.1–0.4% of all 
translation in a site-specific manner. Unsurprisingly, the 
ERT displays substantial diversity across tissue sites. As 
the expression of HERVs at the RNA level is tightly regu-
lated by an excessive complement of epigenetic modifi-
cations [9], their translation with little interindividual 
discrepancies suggests that their expression at the protein 
level is likely by design and not inadvertent. Post-transla-
tion, HERV protein stability and function may be rapidly 
compromised by the host via post translational modifica-
tions [81] or by the targeted clearance of dysfunctional 
protein aggregates [82, 83], and therefore a limitation of 
this study pertains to their unknown half-life. In exam-
ple, our results find that paraneoplastic Ma antigen 1 
(PNMA1), a domesticated LTR retrotransposon capsid 
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containing a neuronal autoantigen associated with para-
neoplastic neurological pathologies [84], is translated 
throughout all tissue types tested (Fig. S5). Therefore, 

going forward considering the rate of transcription, 
translation, and degradation would provide the most 
comprehensive determination of HERV activity [85].

Fig. 1 Ribosomal profiling reveals active translation of HERV proviruses in healthy tissue and cell types. a Schematic overview of workflow 
for profiling HERV proviral abundances from RiboSeq data. b HERV-aligned reads as a percentage of all filtered sequencing reads per sample. Dots 
indicate individual biological replicates with the graphed mean. Error bars indicate ± standard error of the mean (SEM). c Sum number of HERV 
proviruses possessing ≥1RPM per sample. Dots indicate individual biological replicates with the graphed mean. Error bars indicate ± SEM. d PCA 
plot of all tissue and cell types based on HERV-aligned ribosomal profiling reads alone. e Individual sample RPM abundances of all HERV proviruses 
per sample clustered per cell or tissue type. HERVs are listed in descending order by average RPM abundance. f Average RPM abundances of all 
HERV proviruses per cell or tissue type. HERVs are listed in descending order by average RPM abundance
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Fig. 2 Profiling of the endoretrotranslatome. a HERV superfamily RPM abundance averages per tissue or cell type. RPM values are calculated based 
on the total number of filtered reads per sample. b HERV superfamily abundance averages per sample type as a proportion of all HERV-aligned 
reads. c HERV superfamily RPM abundances per sample in HA_ECs. Dots indicate individual biological replicates with the graphed mean. Error bars 
indicate ± SEM. (n = 6). d HERV superfamily RPM abundances per sample in HCA_ECs. Dots indicate individual biological replicates with the graphed 
mean. Error bars indicate ± SEM. (n = 5) e HERV superfamily RPM abundances per sample in ESCs. Dots indicate individual biological replicates 
with the graphed mean. Error bars indicate ± SEM. (n = 6) f HERV superfamily RPM abundances per sample in brain tissue. Dots indicate individual 
biological replicates with the graphed mean. Error bars indicate ± SEM. (n = 5) g HERV superfamily RPM abundances per sample in fat tissue. 
Dots indicate individual biological replicates with the graphed mean. Error bars indicate ± SEM. (n = 6) h HERV superfamily RPM abundances 
per sample in PHAFs. Dots indicate individual biological replicates with the graphed mean. Error bars indicate ± SEM. (n = 10) i HERV superfamily 
RPM abundances per sample in hepatocytes. Dots indicate individual biological replicates with the graphed mean. Error bars indicate ± SEM. 
(n = 5) j HERV superfamily RPM abundances per sample in HUVECs. Dots indicate individual biological replicates with the graphed mean. Error bars 
indicate ± SEM. (n = 3) k HERV superfamily RPM abundances per sample in VSMCs. Dots indicate individual biological replicates with the graphed 
mean. Error bars indicate ± SEM. (n = 11) l Heatmap displaying RPM abundances of the top 10 most highly translated HERVs in HA_ECs. (n = 6) m 
Heatmap displaying RPM abundances of the top 10 most highly translated HERVs in HCA_ECs. (n = 5) n Heatmap displaying RPM abundances 
of the top 10 most highly translated HERVs in ESCs. (n = 6). o Heatmap displaying RPM abundances of the top 10 most highly translated HERVs 
in brain tissue. (n = 5). p Heatmap displaying RPM abundances of the top 10 most highly translated HERVs in fat tissue. (n = 6). q Heatmap displaying 
RPM abundances of the top 10 most highly translated HERVs in PHAFs.(n = 10). r Heatmap displaying RPM abundances of the top 10 most highly 
translated HERVs in hepatocytes. (n = 5). s Heatmap displaying RPM abundances of the top 10 most highly translated HERVs in HUVECs. (n = 3). t 
Heatmap displaying RPM abundances of the top 10 most highly translated HERVs in VSMCs. (n = 11)
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Conclusions
In this study, we demonstrate that HERVs, acquired 
via ancient retroviral infections, are translationally 
active elements. Previous misconceptions suggested 
that HERVs were merely inert or parasitic sequences, 
however it is now appreciated that HERVs innervate 
host physiology [86], regulate transcriptional networks 
[87, 88], contribute to the transcriptome [11–13], and 
provide retroviral motifs that propagate immunity [24, 
25]. Here, we demonstrate that HERVs are translated in 
greater than anticipated proportions, and that HERV 
proteins are a reservoir of poorly defined macromole-
cules that may impact human health and disease. Previ-
ous studies have shown that a diverse profile of HERVs 
are expressed that the RNA level throughout various 
tissue sites, and that HERV RNAs make up roughly 
0.19–1.91% of all polyadenylated RNA in site-specific 
manners [12]. Additionally, the authors demonstrate 
HERV RNA activity is sensitive to confounding vari-
ables, such as background and age [12]. Transcriptional 
activity of the HML and HERHF superfamilies, which 
we found to be most abundant in the ERT, has previ-
ously been detected in fully differentiated somatic tis-
sues [12, 13, 89, 90]. Additionally, in ESCs many HERV 
elements are derepressed, and HERVH elements are 
highly active and contribute to cellular ESC cell specific 
processes [16, 91]. Therefore, it is unsurprising that we 
see the highest proportions of HERV translation glob-
ally and from the HERVHF family in ESCs.

In accordance with previous observations of HERV 
activity in the transcriptome and genome, we now dem-
onstrate that HERV RNAs can be found in the ribo-
some of healthy human tissues. While ribosomal RNA 
content does not perfectly equate to stable protein lev-
els, as demonstrated by the translational abundances 
of PNMA1 which is absent in the protein content of 
healthy cells [92], it does suggest that HERV elements 
are participating in the intricacies cellular biology than 
previously considered. We emphasize that future stud-
ies which investigate the translational efficiency and 
stability of HERV proteins, and whether pre- or post-
translational modifications contributing to their clear-
ance go awry in diseases associated with HERV protein 
abundance, are of the utmost importance, and con-
tinued characterization of the ERT will provide valu-
able insight into the mysterious mechanisms by which 
ancient retroviral genes underlie cellular processes as 
potentially viable and unstudied protein coding genes. 
These results also suggest reassessment of previous 
nomenclature that, while lowly abundant in the trans-
latome, might have considered HERVs to be non-cod-
ing genes.

Methods
Data and code availability
All original code utilized for this study can be found 
at https:// github. com/ nixon lab/ te_ ribos eq_ atlas. The 
code for quantifying HERV-provirus aligning reads was 
adapted from the previously developed hervQuant pipe-
line [29] which can be found at https:// uncli neber ger. org/ 
vince ntlab/ resou rces/. Post hoc visualization of HERV 
provirus loci was performed with Integrated Genom-
ics Viewer (IGV) [93] desktop application available at 
https:// softw are. broad insti tute. org/ softw are/ igv/. Scatter 
plots and heatmaps were generated with GraphPad Prism 
version 9.3.1 available at https:// www. graph pad. com/ 
scien tific- softw are/ prism/. Biplots displaying PCA dif-
ferentiation of samples were generated using PCATools 
available at https:// github. com/ kevin blighe/ PCAto ols.

Quantification of HERV provirus aligned reads 
from RiboSeq datasets
Quantification of HERVs from the RiboSeq atlas [27] was 
accomplished using modified methods for the hervQuant 
pipeline [29]. Briefly, an annotated reference was generated 
using full-length HERV provirus sequences within hg19 
[30]. FASTQ files from were first filtered to remove rRNA 
reads with Ribodetector [94]. FASTQ reads were then fil-
tered to retain only sequences between 25 and 35 bps in 
length using SeqKit [95]. Next, known tRNA and rRNA 
sequences were removed using Bowtie2 v2.5.1 [96]. Post 
hoc analysis in IGV v2.12.3 [93] demonstrated 5 highly 
abundant sequences within HERV proviruses that possess 
high-homology to common RNA contaminants of RiboSeq 
data [28, 97] based on query searches with BLAST [98] 
and RNAcentral [99]. These 5 sequences were manually 
added to the tRNA and rRNA annotation before reanaly-
sis. The final FASTA file of contaminant RNAs removed 
can be found at https:// github. com/ nixon lab/ te_ ribos 
eq_ atlas/ blob/ main/ custom_ datab ases/ tRNA_ rRNA_ 
hg19_ ND. fa. Filtered FASTQ files were then aligned to 
the HERV reference annotation using STAR v2.7.9a [100] 
(multimaps ≤3 and mismatches ≤1). Next, SAM file out-
puts were filtered to generate BAM files containing only 
HERV aligned reads with SAMtools v1.14 [101] before 
quantification with Salmon v0.8.2 [102] (quant mode − 1 a). 
For quality assurance, SAMtools v1.14 [101] sorted BAM 
files merged per tissue type were visualized in IGV v2.12.3 
[93]. HERV_1613, HERV_2322, HERV_2740, HERV_4231, 
HERV_4596, and HERV_5896 were removed from analy-
ses due to RNA contaminant alignment. For RPM abun-
dances, all samples were normalized to filtered reads (Table 
S2). HERV superfamily annotations were gathered from 
the supplemental information provided by the original 
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description of hervQuant pipeline [29] and HERV anno-
tations [30]. PCA was performed using PCAtools v2.6.0 
on DESEQ2 v1.34.0 [103] transformed objects from raw 
count matrices. Characterization of translated ORFs was 
performed using BLAST [98], clustal omega [104], and 
ORFFinder [105] tools. Statistical analysis was performed 
using GraphPad Prism v9.3.1. Degree of significance was 
demonstrated using the following key: *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001.
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