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Skyrmion motion in magnetic anisotropy gradients: Acceleration caused by deformation
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Magnetic skyrmions are nano-sized topologically nontrivial spin textures that can be moved by external stimuli
such as spin currents and internal stimuli such as spatial gradients of a material parameter. Since the total energy
of a skyrmion depends linearly on most of these parameters, like the perpendicular magnetic anisotropy, the
exchange constant, or the Dzyaloshinskii-Moriya interaction strength, a skyrmion will move uniformly in a
weak parameter gradient. In this paper, we show that the linear behavior changes once the gradients are strong
enough so that the magnetic profile of a skyrmion is significantly altered throughout the propagation. In that
case, the skyrmion experiences acceleration and moves along a curved trajectory. Furthermore, we show that
when spin-orbit torques and material parameter gradients trigger a skyrmion motion, it can move on a straight
path along the current or gradient direction. We discuss the significance of suppressing the skyrmion Hall effect
for spintronic and neuromorphic applications of skyrmions. Lastly, we extend our discussion and compare it to
a gradient generated by the Dzyaloshinskii-Moriya interaction.
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I. INTRODUCTION

Magnetic skyrmions [1,2] have emerged as promising can-
didates for various applications, including data storages [3]
and neuromorphic computing [4–6]. These nano objects are
topologically protected spin textures that have attracted enor-
mous research interest due to their high stability, compact
size, and particlelike behavior. Several types of skyrmions can
be stabilized in thin films [7], such as Néel [8], Bloch [9],
and antiskyrmions [10]. Their size and profile result from the
interplay of several interactions, such as exchange interaction,
Dzyaloshinskii-Moriya interaction (DMI) and perpendicular
magnetic anisotropy (PMA) [2,7].

Most of the envisioned skyrmion-based applications rely
on a precisely controlled current-driven motion which is,
however, compromised by the skyrmion Hall effect (SkHE)
[11,12]: Skyrmions are subject to a gyroscopic force due to
their nontrivial topology, which leads to a transverse velocity
component and a motion towards the edge of the sam-
ple, potentially leading to skyrmion annihilation. Therefore,
understanding and controlling their dynamics is crucial for
harnessing their full potential for spintronic applications.

One approach to circumvent the SkHE bottleneck is the
skyrmion-driven motion by internal magnetic parameter gra-
dients, most importantly the PMA and DMI gradients. The
corresponding gradient in a skyrmion’s energy induces the
skyrmion’s motion. Several approaches for gradient engineer-
ing have been demonstrated experimentally, including but
not limited to magnetic patterning with helium ions [13–16],
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thickness variations [17], and inducing strain [18]. In paral-
lel, further research [19,20] has investigated theoretically the
dynamics of skyrmions subjected to these gradients.

This paper highlights the crucial role of variations in the
skyrmion profile for accelerated motion in a PMA gradient.
We study a Néel skyrmion characterized by the topological
charge Nsk = +1, with a comprehensive numerical analysis
through micromagnetic simulations using the software pack-
age Mumax3 [21,22]. While a skyrmion moves uniformly
when the parameter gradient is so weak that the skyrmion
profile remains unchanged, the skyrmion deforms in a strong
gradient causing an accelerated type of motion along a curved
trajectory. Furthermore, we present two possible scenarios to
suppress the SkHE, each with distinct potential application.
Lastly, we compare the PMA gradient with a DMI gradient.
Notably, all discussions can also be applied to a skyrmion
moving in DMI gradients with only minor differences.

This paper is structured as follows: After explaining the
theoretical framework of the micromagnetic simulations in
Sec. II, we discuss the simulated trajectories of skyrmions
in various PMA gradients in Sec. III A. We examine the
alterations in the skyrmion’s profile during movement to
derive expressions for its energy, driving force, velocity, and
acceleration. Besides the acceleration, the deformation of a
skyrmion in a PMA gradient also affects the magnitude of
the skyrmion Hall angle, as analyzed in Sec. III B, leading
to curved trajectories. In Sec. III C, we simulate the motion
of skyrmions in PMA gradients and under the influence of
spin-orbit torques (SOTs) generated by electrical currents. We
show that the SkHE induced by the current can compensate
the SkHE caused by the PMA, leading to a suppressed trans-
verse motion. As presented in Sec. III D, the results derived
for the PMA gradient carry over to other parameter gradients,
like gradients in the DMI strength, as well. We summarize and
elaborate on the significance of our results in Sec. IV.
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FIG. 1. Skyrmion motion in a magnetic anisotropy gradient. (a) Schematic illustration of the gradient in the ferromagnetic layer (FM). The
colored cones represent the orientation of the magnetic moments that form the skyrmion. (b), (c) Change of the x coordinate of the skyrmion
plotted against time in two different anisotropy gradients. (b) Result for the weakest gradient we analyzed. (c) Result for the strongest gradient
we analyzed. The color represents the corresponding value of Ku as shown in (a). (d) The trajectories of the skyrmion moving according to the
two simulations are shown in (b) yellow and (c) red.

II. MODEL AND METHODS

For all simulations described in this paper, we have used
the GPU-accelerated software package Mumax3 [21,22] to
solve the Landau-Lifshitz-Gilbert (LLG) equation [23] for
each unit vector mi indicating the magnetization at a cell i
of the sample

∂t mi = −γemi × Bi
eff + αmi × ∂t mi + γeεβ[(mi × s) × mi].

(1)

Besides the precession and Gilbert-damping term (α = 0.3),
simulations in the later part of the paper include the SOT
term. Here a charge current is translated into a spin current
by the spin Hall effect. The spins s enter the magnetic sample
perpendicularly. The constants in Eq. (1) are the gyromagnetic
ration γe = 1.760 × 1011 T−1s−1 and εβ = h̄�SH

2edzMs
, where dz is

the thickness of the magnetic layer, e the electron’s charge, h̄
Planck’s constant, Ms the saturation magnetization, and j�SH

the spin current with spin orientation s and the spin Hall angle
�SH.

Bi
eff = δF/Msδmi is the effective magnetic field derived

from the system’s total free energy density F . The total energy

E = Eex + EDMI + Eanis + Edemag (2)

is the sum of the exchange energy

Eex =
∫

A(r′)|∇m(r′)|2d3r′, (3)

the magnetocrystalline anisotropy

Eanis =
∫

Ku(r′)[1 − mz(r′)2]d3r′, (4)

the interfacial DMI

EDMI =
∫

Di(r′)[mz(r′)∇ · m(r′) − (m(r′) · ∇)mz(r′)]d3r′,

(5)

and the demagnetization energy (dipole-dipole interaction)

Edemag = μ0Ms

2

∫∫
m(r)

1

4π
∇∇′ 1

|r − r′|d3rd3r′. (6)

We simulate an interface of Co/Pt as in Ref. [24] and
use the magnetic parameters Aex = 1.5 × 1011 J/m and Di =
3.5 × 10−3 J/m2. The anisotropy value is varied near the
value Ku = 8.0 × 105 J/m3 as explained in the following.

The ferromagnetic (FM) layer has dimensions of 252 nm ×
512 nm × 1 nm in all simulations and a cell size of 1 nm ×
1 nm × 1 nm. To simulate the anisotropy gradient, we divide
the FM layer into 252 regions, each having a different value
of Ku. In other words, each cell along the x direction has a
unique Ku parameter. The anisotropy varies linearly starting
from Kumax on the left side of the FM layer and decreasing to
Kumin on the right side, as schematically shown in Fig. 1(a).
Due to the gradient, periodic boundary conditions have not
been used.

III. RESULTS AND DISCUSSION

We start by discussing the motion of skyrmions in PMA
gradients, highlighting the relevance of deformations for an
accelerated type of motion (Sec. III A). After that, we analyze
the curved trajectories (Sec. III B) and present how SOTs can
suppress the SkHE caused by the PMA gradients (Sec. III C).
Finally, we generalize our results to other magnetic parameter
gradients (Sec. III D).

A. Skyrmion motion in a PMA gradient

In this section, we simulate a FM layer in the xy plane,
with a fixed exchange constant A ≡ A(r) and interfacial DMI
coefficient Di ≡ Di(r). The PMA Ku(r) forms the gradient
varying linearly along the x direction,

Ku(x) = 
Ku

l
x, (7)
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with 
Ku = Kumax − Kumin and the length of the sample
l = 252 nm.

As long as the anisotropy parameter does not change
strongly over the size of the skyrmion, we can approximate

Eanis ≈ Ku(x)
∫

[1 − mz(r′)2]d3r′ (8)

because the integrand is only different from zero inside of the
skyrmion. Unless stated otherwise, we refer to Ku(x) as the
anisotropy at the center of the skyrmion. This approximation
is valid for all simulations presented in this paper.

As long as the spin texture of the skyrmion does not
deform under motion, i.e., c ≡ ∫

[1 − mz(r′)2]d3r′ = const,
the anisotropy energy can be approximated as Eanis(x) ≈
c 
Ku

l x. In other words, if the skyrmion does not change, the
anisotropy energy changes linearly along the sample. How-
ever, if the profile changes, c �= const, the energy changes
nonlinearly, giving rise to a fundamentally different propaga-
tion mode that we will discuss in the following.

To investigate the gradient-driven motion of skyrmions, we
start by carrying out two simulations with distinct PMA gradi-
ent strengths 
Ku/l . We write and stabilize a Néel skyrmion
with topological charge NSk = +1, and let it propagate
according to the LLG Eq. (1). The resulting changes in the
coordinate and the trajectories are shown in Figs. 1(b)–1(d).
In the following, we refer to these simulations as simulation
1 (weak gradient) with 
Ku = 0.15 MJ/m3 and simulation
2 (strong gradient) with 
Ku = 0.6 MJ/m3. The maximum
Ku is fixed for both simulations with Kumax = 1.2 MJ/m3,
and we vary only Kumin = 1.05 MJ/m3 for simulation 1 and
Kumin = 0.6 MJ/m3 for simulation 2.

In both cases, the skyrmion moves from a higher to a lower
PMA region to minimize the total energy. However, it does
not follow the gradient but instead moves along the so-called
skyrmion Hall angle θSkHE = vy/vx, which varies slightly
between the two simulations. vx and vy are the components
of the velocity v along the x and y directions.

1. Uniform skyrmion motion in weak PMA gradients

As we will elaborate in the following, the dynamics caused
by the weak PMA gradient (simulation 1) is similar to that
caused by a SOT: The skyrmion moves partially along the
stimulus direction (gradient or applied current) but experi-
ences a transverse deflection.

Assuming a rigid skyrmion profile, its dynamics can be
accurately described by the Thiele equation

bG × v − bDαv − ∇E (x) = 0, (9)

which consists of three forces terms. The first term is the
so-called gyroscopic force, characterized by the gyroscopic
vector G = 4πNSk êz, arising from the topological charge of
the skyrmion NSk = 1

4π

∫
m · (∂xm × ∂ym) d2r. The second

term is the dissipative force, quantified by the Gilbert damp-
ing α. The dissipative tensor Di j = ∫

(∂xi m · ∂x j m) d2r only
has nonzero Dxx = Dyy ≡ D0 elements. Lastly, the third term
is a force arising from the potential difference created by
interactions with the edge, other skyrmions, or, as in our case,
energy changes caused by the PMA gradient. The constant
b = Msdz/γe is determined from the sample parameters.

Since the system’s total energy depends only on the
skyrmion’s x position, the corresponding force is always
along x. If the skyrmion does not deform, i.e., c ≡ ∫

[1 −
mz(r′)2]d3r′ = const, it reads

−∇E (x) ≈ −∇Eanis(x) ≈ −c

Ku

l
ex. (10)

Note that all terms in the Thiele equation have the unit of a
force, but since there is no mass term, they do not act in a
Newtonian way. Instead, if all forces are constant, a constant
velocity v can be calculated directly from the Thiele equation

vx = − D0α

b
[
(4πNSk )2 + D2

0α
2
] · c


Ku

l
, (11)

vy = 4πNSk

b
[
(4πNSk )2 + D2

0α
2
] · c


Ku

l
, (12)

quantifying the skyrmion Hall angle as

tan θSkHE = vy

vx
= 4πNSk

αD0
. (13)

The explained scenario of a constant force is a good
approximation in the weak PMA gradient [simulation 1 pre-
sented in Fig. 1(b)]. The resulting trajectory is a straight line,
and both coordinates increase linearly in time. Not surpris-
ingly, this result is analogous to the propagation of a Néel
skyrmion driven by SOT. More details on the motion caused
by SOT follow in Sec. III C.

2. Accelerated skyrmion motion in strong PMA gradients

Figure 1(c) shows the skyrmion propagation in the strong
PMA gradient (simulation 2). In this case, the time evolution
of the position is nonlinear, indicating an acceleration of the
skyrmion. Moreover, the direction of motion has changed
slightly. A SkHE is still present, but the skyrmion Hall
angle changes slightly during the propagation. As derived,
for a rigid skyrmion profile, it should be constant, θSkHE =
arctan 4πNSk

αD0
. However, D0 changes during the propagation.

Both effects, the continuous change of propagation veloc-
ity and direction, are caused by deformations of the skyrmion.
We continue our discussion by analyzing the skyrmion profile
to better understand and quantify these effects.

3. Deformation of the skyrmion profile

In an ideal FM with homogeneous PMA (no gradient),
the profile of the Néel skyrmion with Nsk = +1 is rotational
symmetric,

mx = x

r
sin θ, (14)

my = y

r
sin θ, (15)

mz = cos θ, (16)

and can thus be characterized by the azimuthal angle [25–27]

θ (r) = 2 arctan
(
e

r+R0



) + 2 arctan
(
e

r−R0



) − π, (17)

where r =
√

x2 + y2 is the distance from the skyrmion’s cen-
ter. R0 is the radius of the skyrmion core and 
 the domain
wall width. As depicted in Fig. 2(a), R0 is defined as the
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FIG. 2. Characterization of the skyrmion profile. (a) Schematic figure of a skyrmion (formed by the colored arrows). The circles are lines
of equal out-of-plane magnetization mz = −0.5, 0, +0.5 as indicated. Their radii define the skyrmion’s core radius R0 and the domain wall
width 
. (b), (c) Skyrmion profile characterized by the azimuthal angle θ (r) at two different time steps in the simulation. Blue shows the
earlier snapshot at t = 0, corresponding to the higher anisotropy value. Red corresponds to the profile where the skyrmion has moved to the
smaller anisotropy region, with t = 93.5 ns for (b) and t = 11.4 ns for (c). The lines are fits of the data points according to Eq. (17). The color
of the points corresponds to the radial direction of the considered cut through the center of the skyrmion (cf. inset). The main text explains that
the skyrmion is not perfectly rotational symmetric due to deformations caused by the anisotropy gradient, leading to scattered points.

radius of the contour where mz = 0 and 
 is defined by the
width of the region that is enclosed by the contours for which
−0.5 � mz � 0.5.

R0 and 
 allow us to quantify the deformation of the
skyrmion during the propagation and help us to explain the
observed acceleration in the strong PMA gradient. In
Figs. 2(b) and 2(c), we plot the skyrmion profile at two distinct
times in simulations 1(b) and 2(c), respectively. The time steps
are such that the skyrmion is in a lower (red) and higher (blue)
PMA region, respectively. Since the skyrmion is confined
in the FM layer, which exhibits a PMA gradient, the Néel
skyrmion is not rotational symmetric anymore. This is why
we have determined the azimuthal angle profile θ (r) along
various directions. The color of the data points corresponds
to the different radial directions (see inset for explanation).
Finally, the red and blue curves have been determined by
fitting the data points according to Eq. (17).

Note that to be able to use Eq. (17), we assume the contours
mz = 0 and −0.5 � mz � 0.5 in Fig. 2(a) to be perfect circles.
We attribute the nonperfect fit in Fig. 2 to this assumption,
mainly to the fact that 
 is not the same on opposite sides
of the skyrmion. Moreover, for small skyrmions, it becomes
a numerical challenge to determine it. Nonetheless, Eq. (17)
can still provide a good description for the average change of
mz, and we shall use it to calculate Eanis later on.

The presented procedure allows us to determine the
skyrmion radius R0 and the domain wall width 
 that define
the skyrmion profile θ (r) for the two simulations at two differ-
ent time steps, respectively. As expected from the trajectories
presented in Fig. 1, the two skyrmion profiles are almost
identical in the case of the weak gradient [red and blue overlap
in Fig. 2(b)]. This means there is almost no deformation. R0

and 
 change equally by ≈8% comparing the start and the
end of this simulation. However, for the strong PMA gradient,
the skyrmion profile has changed significantly [Fig. 2(c)].
Here, the skyrmion radius R0 changes by ≈133% and the
domain wall width 
 by ≈ 43%, after a simulation time
of 11.4 ns and a displacement 
x ≈ 92 nm from its initial
position x0 = −60 nm. This severe change in the skyrmion

profile leads to c = c(x) �= const and ultimately changes the
energy landscape, giving rise to more complicated force terms
that cause the skyrmion to accelerate. The anisotropy energy
becomes

Eanis ≈ Ku(x)
∫

[1 − mz(r′)2]d3r′ ≈ c(x)

Ku

l
x, (18)

which is a nonlinear function in x, and the other energy terms
become nonconstant due to the deformation.

Before analyzing the energy terms in detail, we want to
explain why the skyrmion deforms. As the skyrmion moves to
the region with lower Ku, the weaker anisotropy allows other
competing interactions, such as the DMI and the exchange
interaction, to become more influential in determining the
skyrmion’s profile. In response to the altered energy land-
scape, the DMI causes more magnetic moments to rotate,
increasing 
. At the same time, the exchange interaction,
which favors the parallel alignment of neighboring magnetic
moments, comes into play. To maintain the energetically
favorable alignment, the exchange interaction expands R0.
The next section analyzes how these profile changes affect the
skyrmion’s energy.

4. Changes in the anisotropy energy

Our goal is to express the anisotropy energy Eanis in terms
of x (and therefore Ku). However, due to the change in the
skyrmion profile, we have to take into account not only the
explicit dependency via the term Ku(x) but also the implicit
dependence via c(x). Therefore, we express Eanis in terms of
R0 and 
, which we can easily fit with respect to Ku and x. In
Ref. [26], this yielded the result

Eanis(x) = 2πKu

2dzIanis(R0/
) + E0

anis, (19)

where dz is the sample thickness and E0
anis a constant that

accounts for the size of the sample and the average Ku value.
Since we want to determine the force −∇Eanis that acts

on the skyrmion and enters the Thiele equation, we are only
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FIG. 3. Motion of skyrmions in various PMA gradients. (a) The x coordinate of the skyrmions’ centers over time. (b) The y coordinate.
The color represents the PMA gradient strength and is further explained in Fig. 4. The data points are derived from micromagnetic simulations,
while the overlaying lines correspond to the numerical solutions of the Thiele Eq. (9).

interested in the terms that change with the coordinates; there-
fore, we shall drop E0

anis for the rest of this paper. Ianis is a
nonelementary function that depends on the ratio R0/
. It
can be evaluated numerically and behaves like a quadratic
function in Ku in the considered parameter range. We find
a good agreement of Eq. (19) with the micromagnetic data.
Further details regarding the complete form of Ianis(R0/
) and
the fitting of Eq. (19) to the micromagnetic data can be found
in the Appendices.

As we have seen in Fig. 2, the skyrmion profile varies
with the strength of Ku and therefore we can fit the depen-
dencies R0(Ku) and 
(Ku). For this purpose, we conduct 46
simulations with various PMA gradients. We maintained a
constant Kumax = 1.2 MJ/m3 and varied Kumin in the distinct
simulations: 0.6 MJ/m3 � Kumin � 1.05 MJ/m3. The limits
are the two simulations discussed before. The trajectories are
presented in Fig. 3. As expected, the array of curves falls
between simulations 1 and 2. For weak PMA gradients, the
coordinates change almost linearly and the velocity is rather
small. For strong PMA gradients, the dynamics become non-
linear, and the velocity increases.

The results of the fitting procedure of R0(Ku) and 
(Ku) as
well as Ianis(Ku) and Eanis(Ku) are presented in Figs. 4(a)–4(d).
The respective dependencies on x are shown in Fig. 4(e)–
4(h). Particularly interesting is the strong-gradient limit (red
colors), where the profile of the skyrmion changes signifi-
cantly. 
 changes approximately linearly with Ku, while R0

has a nonlinear form. In the investigated limits, R0 changes by
≈200%, while 
 changes by ≈74%.

In Figs. 4(a) and 4(e), we plot Eanis obtained from micro-
magnetic simulations, with respect to Ku and x, respectively.
Upon increasing the PMA gradient, the energy landscape
transitions from a linear function to a quadratic and even
higher-order polynomial, despite the linear variation of Ku.
Eq. (19) allows us to understand this behavior qualitatively
if we expand Ianis(R0/
) ≈ R0/
 in the relevant parameter
range

Eanis(x) ∝ Ku · 
 · R0, (20)

and use the results of the fit: The domain wall width 


depends linearly on Ku and the skyrmion radius R0 de-
pends quadratically on Ku once we approach stronger PMA
gradients (red curves). This results in a fourth-order polyno-
mial for Eanis(Ku) and Eanis(x). Therefore, the force −∇Eanis

is not constant and results in an acceleration of the skyrmion
motion.

5. Skyrmion acceleration

As we have established, the transition to the high-gradient
regime results in a nonlinear form of Eanis in Ku and x.
However, all other energy terms are affected when R0 and 


change as well, because Eex and EDMI also depend on θ (r).
Evaluating all the energy terms can be quite cumbersome, and
some terms do not possess an obvious analytical solution [26].
Still, from the Ku dependence of Eanis, we know that the total
energy will be a polynomial with higher than linear order.

Even though we know the dependence is of fourth or higher
order, in general, in our relevant parameter range, we were
able to reasonably fit the total energy E (x) already with a
quadratic function

E (x) = A2x2 + A1x + A0, (21)

where A2, A1, A0 are coefficients obtained by fitting the total
energy E (x) vs x. A more detailed analysis is presented in
the Appendices. This gives rise to a simple force term in the
Thiele equation

−∇E (x) = (2A2x + A1)ex, (22)

which allows us to immediately understand why the skyrmion
is accelerated.

From the Thiele equation, we arrive at

vx(t ) = − D0α[A1 + 2A2x(t )]

b
[
(4πNSk )2 + D2

0α
2
] ,

vy(t ) = 4πNSk[A1 + 2A2x(t )]

b
[
(4πNSk )2 + D2

0α
2
] . (23)
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Simulation 1 Simulation 2

FIG. 4. Numerical analysis of skyrmion motion and deformation. The colors of the individual curves depict the gradient strength as
indicated at the bottom. The weak-gradient limit 
Ku = 0.15 MJ/m3 (blue dashed line) corresponds to simulation 1 presented in Fig. 1(b).
The strong-gradient limit 
Ku = 0.60 MJ/m3 (red dashed line) corresponds to simulation 2 presented in Fig. 1(c). The individual panels show
(a) the anisotropy Energy Eanis, (b) the domain wall width 
, (c) the skyrmion radius R0, and (d) the function Ianis versus the perpendicular
magnetic anisotropy Ku. (e)–(h) The same quantities versus the x coordinate of the skyrmion’s center position.

Calculating the time derivative yields the finite acceleration

ax(t ) = −2
D0αA2

b
[
(4πNSk )2 + D2

0α
2
]vx(t ),

ay(t ) = 2
4πNSkA2

b
[
(4πNSk )2 + D2

0α
2
]vx(t ). (24)

As discussed, the energy will have even higher-order terms in
practice. Additionally, even the dissipative tensor element D0

varies with Ku, further complicating the discussion when the
PMA gradient is very strong.

Still, most importantly, we have shown that a linearly vary-
ing anisotropy can introduce an acceleration term in the Thiele
equation. The skyrmion will speed up due to the deformation
in the changed magnetic parameters. If the gradient is weak,
the profile of the skyrmion remains roughly constant, and
the skyrmion moves at a constant velocity. If the gradient
increases, the skyrmion exhibits a more significant profile
change from the initial to the last time step. This induces a
nonlinear energy landscape in Ku that results in the skyrmion
acceleration.

B. Curved trajectories and importance of the dissipative tensor

Now that we have understood why a skyrmion is accel-
erated, we turn to the second observation from analyzing
the skyrmion motion presented in Fig. 1(d): In the strong
PMA gradient, the skyrmion trajectory is curved, meaning

the skyrmion Hall angle changes during propagation. This
behavior cannot be explained using the equations we have
presented so far. Even with the derived nonconstant velocities,
the SkHE is evaluated as before:

θSkHE = arctan
4πNSk

αD0
. (25)

Yet, the curved trajectory is also caused by deformation.
Since NSk is a topological invariant, it is independent of
continuous variations of the skyrmion profile. Therefore, the
deformation only affects the dissipative tensor component D0

that was assumed to be a constant in the previous discussion.
However, since it is calculated from the skyrmion profile θ (r),
it depends on Ku(x) as well.

In Figs. 5(a) and 5(b), we present the numerically calcu-
lated D0 = Dxx = ∫

(∂xm · ∂xm) d2r based on the results of the
previously discussed 46 micromagnetic simulations. Similar
to the energy, this quantity demonstrates a dependency on the
ratio R0/
. For a relatively weak PMA gradient, it exhibits
a linear relationship with the skyrmion center’s x coordinate.
However, under a stronger PMA gradient, it transitions to a
nonlinear behavior. This change arises from modifications in
the skyrmion profile.

In the case of the strongest PMA gradient, D0 changes
from ≈15.4 to ≈20.3, which results in a change of the
skyrmion Hall angle from ≈64.2◦ to ≈69.8◦. The skyrmion
Hall angle as a function of Ku is presented in Fig. 5(c). These
results highlight the connection between D0 and the PMA
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FIG. 5. Skyrmion deformations causing curved trajectories. (a) Dissipative tensor D0 versus the skyrmion’s center’s x coordinate. The
color corresponds to the gradient, as introduced in Fig. 4, and the dashed lines correspond to simulations 1 and 2 from Figs. 1(b) and 1(c).
(b) Dissipative tensor D0 as a function of Ku at the skyrmion’s center position. (c) Skyrmion Hall angle as a function of Ku at the skyrmion’s
center position.

gradient, illustrating how changes in the gradient induce non-
linear effects in the dissipative tensor. Such dependencies are
crucial for understanding the behavior of skyrmions and their
response to varying external conditions.

As we have seen, the gradient-driven skyrmion motion
is generally nonlinear and may appear difficult to control.
However, this type of motion still allows us to improve the
relevance of skyrmions for application, for instance, by sup-
pressing the SkHE, as we shall discuss next.

C. Suppression of the skyrmion Hall effect

One of the main shortcomings of foreseen skyrmion-based
applications is the SkHE. It is caused by the topological
charge of the skyrmion that enters the Thiele equation via
the gyroscopic force term 4πNSkez × v. It occurs when
skyrmions are driven by SOT and, as shown in this paper,
when skyrmions move in PMA gradients. In both cases, the
transverse force term causes the skyrmion to not move along
the respective stimulus direction but at a skyrmion Hall angle.
However, if the forces related to the PMA gradient and the
SOT are perpendicular to each other (or at least oriented at
an angle to each other), we can achieve a suppression of the
SkHE.

The Thiele equation, including the PMA gradient and the
SOT, reads

bG × v − bDαv − ∇E (x) − B jIs = 0, (26)

where Ii j = ∫
(∂xi m × m) j d2r is the torque tensor, with Ixy =

−Iyx = I0 and Ixx = Iyy = 0 for Néel skyrmions. It enters the
last term that accounts for the SOT. A charge current j is
applied in a heavy metal layer that is interfaced with the
considered FM. The spin Hall effect leads to the generation
of a spin current js = jθSH along z with spins s oriented
along j × ez. Therefore, by preparing the contacts for the
application of the charge current along specific directions, one
can control the orientation of the spins in the xy plane. The
constant is B = h̄�SH/2e.

As explained, we want the forces related to the PMA gradi-
ent and the SOT to be perpendicular. If we consider the PMA
gradients along the x direction, as before, we have to apply the

current along ±y so s is oriented along x. Equation (26) yields
the velocities

vx(t ) = BI0 j4πNSk − D0A1α − 2A2D0αx(t )

b
[
(4πNSk )2 + D2

0α
2
] , (27)

vy(t ) = A14πNSk + BD0I0 jα + 2A24πNSkx(t )

b(4πNSk )2 + bD2
0α

2
. (28)

Depending on the magnitude and sign of the applied cur-
rent, the direction of motion can be tuned. Two particularly
interesting scenarios correspond to a suppressed SkHE, each
with distinct potential for applications:

(1) The skyrmion can move along the current direction y,
perpendicular to the anisotropy gradient.

(2) The skyrmion moves perpendicular to the current
along the gradient direction x.

1. Motion along the current direction

More relevant for an application in a racetrack storage
device is scenario 1. This is because if the skyrmion prop-
agates along the current direction and perpendicular to the
gradient, the anisotropy at the skyrmion’s center remains
constant, and the skyrmion does not deform. Also, it means
that the sample can be prepared, in principle, with an infinite
length along the current direction.

The condition for achieving this scenario is vx = 0,
leading to

j = D0α(A1 + 2A2x)

BI04πNSk
. (29)

Figures 6(a)–6(c) visualize a simulation in which the
skyrmion moves according to this condition. We start by
writing a skyrmion at r = (0, 150 nm), where Ku = 9.0 × 105

J/m3. The skyrmion is characterized by the tensor elements
I0 ≈ 45.5 nm and D0 ≈ 18.25. For these values, Eq. (26)
results in j = −1.66 GA/m2, which we have used for this
simulation. This value is a constant since the x coordinate
of the skyrmion’s center is constant in this scenario. In the
simulation, the SkHE is mostly suppressed. The observed
skyrmion Hall angle is only ≈0.3◦. As displayed in Fig. 6(c),
D0 and I0 change by a small amount of ≈0.75% and ≈1.8%,
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(b) (c)

(d)

(e) (f)

(a)

FIG. 6. Motion along the current and PMA gradient direction without skyrmion Hall effect. (a)–(c) Motion along the current direction −y
(scenario 1). The PMA gradient is along x and the current j = −1.66 GA/m2 is oriented along −y. (a) Trajectory based on micromagnetic
simulation (purple). (b) x and y coordinates of the skyrmion’s center position versus time. The constant velocity is vy = −28.4m/s.
(c) Deformation of the skyrmion is measured in terms of the tensor elements D0 and I0 that are almost constant. (d)–(f) Motion along the PMA
gradient direction x without the skyrmion Hall effect (scenario 2). This time, the current j is along +y and has to be changed in magnitude due
to deformations of the skyrmion in accordance with Eq. (30). (d) Trajectory based on micromagnetic simulation (color indicates Ku). (e) x and
y coordinate of the skyrmion’s center position as well as applied current versus time. (f) Deformation of the skyrmion measured in terms of
the tensor elements that change drastically from D0 ≈ 15 and I0 ≈ 45.5 nm to D0 ≈ 77.5 and I0 ≈ 176.8 nm.

respectively. In other words, the profile remains almost un-
changed due to the constrained motion along the y direction,
making it possible to mitigate the SkHE with a constant cur-
rent. In this case, the skyrmion does not accelerate even in the
strong-gradient limit. Instead, we achieve a uniform motion
without the SkHE, ideal for racetrack applications.

2. Motion along the magnetic anisotropy gradient direction

More complicated is scenario 2, where we make the
skyrmion move perfectly along the PMA gradient direction.
The current is now oriented along the opposite direction as
before, +y, to completely suppress the motion along the cur-
rent direction which is perpendicular to the PMA gradient.

In Figs. 6(d)–6(f), we present the result of a micromagnetic
simulation in which the current strength was varied in time,
as shown in Fig. 6(e). If this is done properly, the skyrmion
moves without a SkHE, perfectly along the PMA gradient
direction x.

We started by writing a skyrmion at r = (0,−83 nm),
where Ku = 1.09 MJ/m3. If a constant current is applied,
the skyrmion might be able to move without a SkHE, along
x, in the beginning. However, during the propagation, the
PMA magnitude at the skyrmion’s center changes causing
the skyrmion to deform. This is shown in Fig. 6(f). Both D0

and I0 change drastically by approximately 77% and 288%,
respectively. As we have extensively discussed before, this
deformation changes the skyrmion Hall angle, even in the

absence of SOTs. The current has to be changed during the
simulation to compensate for this variation in the propagation
direction.

To achieve vy = 0, we can derive the current from Eq. (26):

j = −A14πNSk + 2A24πNSkx

BI0D0α
. (30)

At the start of the simulation, this equation yields j =
4.82 GA/m2. However, the current has to be changed due to
the explicit x dependence in the above equation and since
D0 and I0 are also x dependent. As shown in Fig. 6(e), the
current in the simulation was calculated with the time-varying
quantities in Eq. (30) updated at every time step.

In summary, we have succeeded in suppressing the SkHE
and making the skyrmion move along x. However, in this
scenario number 2, the skyrmion deforms, which requires
a changing current and leads to acceleration [Fig. 6(e)].
While a straight path along the gradient is possible, we sug-
gest that aiming for a motion perpendicular to the gradient
offers a more practical solution for controlling the skyrmion
movement while successfully mitigating the SkHE. Scenario 1
circumvents the need for continuous current adjustments and
allows the skyrmion to move with minimal alterations in its
profile.

Still, scenario 2 might be significant for neuromorphic
applications because the motion parallel to a gradient direc-
tion can mimic the excitatory process of a neuron [5]. The
skyrmion’s accumulated travel distance towards a detection
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area in a higher PMA region mimics the increase of a bio-
logical neuron’s membrane potential. This potential increases
with a stimulus due to the accumulation of charges at the neu-
ron’s membrane. Without stimulus, these charges leak through
the neuron’s membrane, decreasing its membrane potential
and resetting it to its initial state. By analogy, in the absence of
a current, the skyrmion moves back to the region with lower
PMA, losing its accumulated traveled distance and thereby
being reset to its initial state. Suppressing the SkHE along
the gradient could make gradient-based artificial neurons with
skyrmions more reliable by avoiding skyrmion destruction at
the edges while mimicking a biological neuron.

D. Similar effects with different parameter gradients

Before we conclude, we want to generalize our discussion.
As we have shown, the skyrmion motion in an anisotropy
gradient leads to a deformation of the skyrmion. This causes
the skyrmion to accelerate and move along a curved trajectory.
The deformation of the skyrmion is crucial for its dynam-
ics. However, what causes this deformation is not important.
Equivalent results can be achieved by considering gradients
in other material parameters if they cause the skyrmion to
deform and/or change size.

The above discussion can be repeated for gradients in other
material properties, such as the DMI strength Di and the
sample thickness. Theoretically, all these gradients allow for
an acceleration of the skyrmion motion, propagation along a
curved trajectory, and potential suppression of the SkHE if a
perpendicular current is applied, as explained before.

While extensive research on PMA gradients exists, repro-
ducing gradients in other parameters, like DMI, could be
more challenging indicated by the limited literature available.
Nonetheless, generating a DMI gradient could in principle be
possible, for example, by manipulating it with strain, as in
Ref. [18].

We could now repeat and discuss all the above calculations
and simulations for a DMI gradient, but the essential point is
that the DMI energy can be evaluated as

EDMI = −2πdzDi
IDMI(R0/
), (31)

where IDMI is a nonelementary function (see Supplemental
Material of Ref. [26]). By analogy with our discussion of the
PMA gradient before, EDMI does not only depend explicitly
on Di but also implicitly via the domain wall width 
 and
the skyrmion radius R0 that account for deformations of the
skyrmion while propagating through the different regions with
changing Di. This means −∇EDMI is a polynomial of higher
than linear order in Di (and therefore also in x), giving rise to
a nonconstant force. Note that, as before, it is not sufficient to
consider only EDMI, but instead the total energy E has to be
considered.

Based on this finding, we can qualitatively reproduce all
three key findings of this paper. (i) The skyrmion moves
linearly in a weak DMI gradient and accelerates in a stronger
gradient. (ii) If the DMI gradient is strong, the skyrmion Hall
angle changes during the propagation giving rise to a curved
trajectory. (iii) If we apply a current perpendicular to the DMI
gradient that gives rise to a SOT, we can compensate the SkHE
if the current strength is chosen appropriately.

Skyrmions move similarly in a PMA gradient and a DMI
gradient, except for one qualitative difference: The skyrmion
has lower energy in the region with a higher DMI. In other
words, it moves from Dimin to Dimax , while it moved from
Kumax to Kumin before. A stronger PMA favors a stiff collinear
spin texture, while a stronger DMI favors a noncolinear spin
texture.

When comparing the motion of the skyrmion driven by
PMA and DMI gradients quantitatively, it is essential to
realize that the motion is not only affected by the value of
the gradient 
Ku/l and 
Di/l but also by the starting value
of the parameters Ku and Di. While all the results presented
are qualitatively the same for various materials with different
magnetic parameters, the following quantitative analysis is
only meaningful for our particular material with the chosen
set of parameters.

To compare the motion of a skyrmion in a PMA gradient
and a DMI gradient, we start with a skyrmion for which
Ku = 0.96 MJ/m3 and Di = 4.2 MJ/m2 at the center. Then
we consider (i) a PMA gradient with Kumax = 1.12 MJ/m3

and Kumin = 0.8 MJ/m3 and (ii) repeat the simulation with a
DMI gradient instead where Dimax = 3.6 MJ/m2 and Dimin =
3.0 MJ/m2. Both gradients correspond to a relative change of
the parameter of 40% throughout the sample.

The results of the two simulations are presented in Fig. 7.
The skyrmion starts roughly with the same profile character-
ized by R0 ≈ 8.7 nm and 
 ≈ 4.1 nm. However, despite the
identical initial conditions, our simulations suggest a different
rate at which the profile changes. In the DMI gradient, the
skyrmion reaches the edges after 8 ns, and in the PMA gradi-
ent after 14 ns, with different R0 and 
. Thus, a DMI gradient
might enable the skyrmion to achieve higher velocities in our
considered material.

In summary, a DMI gradient behaves similarly to a PMA
gradient. It exhibits significant profile changes and allows for
acceleration, curved trajectories, and a compensated SkHE.
Although further experimental validations for such gradient
are still needed, a DMI gradient could be more desirable for
gradient-based devices that require a fast operation.

IV. CONCLUSIONS

In summary, we have investigated the motion of a magnetic
skyrmion in gradients of material parameters. For the majority
of our discussion, we have analyzed gradients of the PMA
Ku. The skyrmion moves from a high anisotropy region to a
lower one. As long as the gradient is so small that it does not
deform during propagation, the driving force is constant—
like the driving force corresponding to SOTs. The skyrmion
moves uniformly but at an angle with respect to the gradient
direction. Once the PMA gradient is so large that the skyrmion
changes its size and shape during the propagation from one
side to the other, the skyrmion (i) experiences an acceleration,
as discussed in Sec. III A, and (ii) it moves along a curved
trajectory, as discussed in Sec. III B.

Furthermore, when we apply a current to drive the
skyrmion by SOT, we can manipulate the motion direction
by tuning the current’s magnitude and sign. By choosing the
appropriate values, we can completely suppress the SkHE
so the skyrmion moves either along the current or gradient
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8 [ns]

14 [ns]

8 [ns]

FIG. 7. Comparison of the skyrmion motion in PMA (blue) and DMI gradients (orange). (a) Skyrmion trajectories. In both simulations,
the skyrmion initially has the same profile as shown in (b), characterized by R0 and (c) by 
.

direction. As discussed at the end of Sec. III C, the SkHE
could be detrimental to applications of skyrmions in technol-
ogy, and suppressing it enhances the potential for spintronic
and neuromorphic applications

As discussed in Sec. III D, the same results can be achieved
using other material parameters’ gradients. Noteworthy is the
DMI gradient, as it may be present in a sample with varying
stochiometry or a sample with interfacial DMI and a varying
thickness. In this case, the effective DMI, averaged over the
whole thickness, changes linearly. In practice, it is hardly pos-
sible that only a single material parameter gradient is present.

Instead, multiple magnetic parameters will vary throughout
the sample, and the effect of several parameter gradients will
act simultaneously.

Our results are also significant from a fundamental point
of view. In Refs. [28,29], an effective skyrmion mass has been
defined via a generalized Thiele equation. In our simulations,
the deformation of a skyrmion leads to acceleration, which
might also suggest the presence of a skyrmion mass and
inertia. However, it is worth noting that the Thiele Eq. (9) used
in this paper is a differential equation of first-order in time.
Therefore, it does not account for mass and we observe no

FIG. 8. Approximation of the anisotropy energy. The figure illustrates the approximated anisotropy energy Eq. (19) (orange squares),
calculated by numerically evaluating Ianis based on Eq. (A1). It is compared to the anisotropy energy [same as Fig. 4(e)] obtained by
micromagnetic simulations (blue dots). The energies are compared for (a) the weak-gradient limit, (b) a transition point between the weak-
and strong-gradient limits (cf. color bar in Fig. 4), and (c) the strong-gradient limit.
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inertia in our micromagnetic simulations. Still, acceleration is
allowed as soon as the gradient of the total energy is not a
constant.
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APPENDIX A: DETAILS ABOUT
THE ANISOTROPY ENERGY

Equation (19) relates the anisotropy energy to the skyrmion
radius R0 and the domain wall width 
 as derived in Ref. [26].
It contains the function

Ianis(R0/
) = 1

2

cosh (R0/
)

[sinh (R0/
)]3

[ − Li2(−e−2(R0/
) )

+ Li2(−e2(R0/
) ) + 2 ln (2 cosh (R0/
))

× sinh (2R0/
)
]
, (A1)

where Li2 is the dilogarithm.
Figure 8 shows that the anisotropy energy Eanis(x) can

indeed be approximated by Eq. (19). The micromagnetic
data (blue) is compared with the result of Eq. (19) (orange)
evaluated numerically with R0 and 
 obtained by fitting the
micromagnetic skyrmion profiles (cf. Fig. 4). Since we are
interested in the energy change, the plots are adjusted by
setting the minimum E0

anis as the reference.
It is worth noting that evaluating 
 from the data can be

challenging for the weak-gradient limit due to the skyrmions’
small sizes and deformations. This results in noise and less
accurate fitting. However, a better fit is achieved as 
 in-
creases, such as in Figs. 9(b) and 9(c).

APPENDIX B: TOTAL ENERGY

In the previous Appendix, we verified that the anisotropy
energy can be approximated by Eq. (19). As explained in the
main text, we can fit R0 and 
 with respect to Ku and find that
the anisotropy energy behaves like a fourth-order polynomial
in Ku [cf. Eq. (20)].

FIG. 9. Dependence of the anisotropy energy and the total energy
on Ku. The figure illustrates the energy variations in the strong-
gradient limit (red) and the weak-gradient limit (blue). The points
(dots) represent the data obtained from micromagnetic simulations
[same as Fig. 4(a)], while the lines correspond to polynomial fits.
In (a), the anisotropy energy is fitted to a fourth-order polynomial
for the strong gradient case and to a linear polynomial for the weak
gradient case. The dashed curves represent the extrapolated fit for
Ku values beyond our set of parameters. In (b), the total energy is
fitted versus x with a second-order polynomial for the strong gradient
scenario and a linear polynomial for the weak gradient.

Figure 9(a) shows Eanis as a function of Ku. A fourth-order
polynomial fit is applied for the strong-gradient scenario (red).
The fit reproduces the data very well; however, in the consid-
ered parameter range, even a quadratic function can capture
the nonlinear behavior well enough. For the weak-gradient
case (blue), the data is even linear, which is why we have fitted
a linear function in this case. Note that the blue data points
agree well with the fourth-order polynomial (red) because it
behaves linearly in this particular range of parameters.

Since −∇E enters the equation of motion, we have to
analyze the total energy and not just the anisotropy energy.
Figure 9(b) shows that it is sufficient to fit the energy by
a quadratic function in Ku or x in the strong-gradient case
(red) and by a linear function in the weak-gradient case
(blue). This is why we have limited the analysis of the
skyrmion acceleration to quadratic-order energy terms [cf.
Eq. (21)]. This allows us to provide a simple description
of the force term for the Thiele equation without a lack
of accuracy. The fit yields the coefficients A2 ≈ −5.03 ×
10−6 J/m2 and A1 ≈ −1.13 × 10−12 J/m that were used in
Sec. III C. In the weak-gradient case, we find that a first-
order polynomial is a good fit yielding only the coefficient
A1 ≈ −1.07 × 10−13 J/m.
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