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Abstract
Magnetic skyrmions are nanoscale magnetic whirls that are highly stable and can be moved by
currents. They have led to the prediction of a skyrmion-based artificial neuron device with
leak-integrate-fire functionality. However, so far, these devices lack a refractory process, estimated
to be crucial for neuronal dynamics. Here we demonstrate that a biskyrmion-based artificial
neuron overcomes this insufficiency. When driven by spin-orbit torques, a single biskyrmion splits
into two subskyrmions that move towards a designated location and can be detected electrically,
ultimately resembling the excitation process of a neuron that fires. The attractive interaction of the
two skyrmions leads to a unique trajectory: Once they reach the detector area, they automatically
return to the center to reform the biskyrmion but on a different path. During this reset period, the
neuron cannot fire again. Our suggested device resembles a biological neuron with the leak,
integrate, fire and refractory characteristics increasing the bio-fidelity of current skyrmion-based
devices.

1. Introduction

The field of magnetism has been crucial for developing technological devices over the last decades. As an
example, data can be stored by encoding bits via magnetic domains. An established strategy to improve such
storage concepts is to decrease the size of these information carriers [1–3]. Here, magnetic skyrmions [4–6]
are promising candidates [7, 8]. These magnetic whirls possess topological properties allowing for stability
even on the nanometer scale [9, 10] and they can even be moved by currents [11–13].

Besides their potential for conventional spintronic devices, skyrmions are attractive for neuromorphic
computing [14–20]. This promising approach is oriented at our brain’s operational mode. We can solve
complex tasks like face recognition at a fraction of a computer’s power consumption that uses conventional
algorithms [21, 22]. This is possible because neurons are connected via synapses and exchange electrical
signals such that various input stimuli lead to a specific response. Artificial neural networks mimic this
behavior and can perform complex tasks with ease compared to conventional computer algorithms. One can
use fully artificial neural networks that rely on activation functions or, as considered in this paper, spiking
neural networks whose neurons are more closely oriented at the biological neurons. The latter encode
information with the timing of action potentials, known as spikes, which could lead to an increased
efficiency and performance for solving specific tasks [23].

Neural networks consist of neurons—cells that non-linearly translate sequences of input currents into a
response—and synapses that weigh the current pulses. Like a biological neuron (figure 1(a)), an artificial
neuron should fulfill the following characteristics: integrate, fire, leak and refractoriness [24]. The essential
dynamics of a biological neuron [25] are depicted schematically in figure 1(d): A postsynaptic neuron
receives current pulses via synapses (input: black lines). The membrane potential increases (i. e. the integrate
characteristics) but drops towards its residual value U0 without input signals (leak). If the membrane reaches
a threshold value Um with the arrival of multiple input spikes, the neuron fires (output: red line in
figure 1(d)). After firing, the membrane potential returns to U0. During this process, the neuron is unable or
inhibited from firing again (refractoriness).
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Figure 1. Overview of biological and artificial neurons. (a) Network of biological neurons. Input and output signals (highlighted
regions) travel along the neuron body. (b) Schematic figure of the skyrmion-based artificial neuron similar to the one proposed in
[15]. A skyrmion (colored object) in a ferromagnetic layer (FM) is driven on the green trajectory towards the detection area by
spin-orbit torques caused by the heavy metal layer (HM). (c) Biskyrmion-based artificial neuron proposed in this work. The
biskyrmion splits under current pulses (two green trajectories) and the subskyrmions can be detected. The skyrmions come back
afterwards without the need of a wedge geometry. (d) Schematic figure of the membrane potential of a biological neuron with
indicated input and output current pulses. The neuron fires once the potential reaches Um and enters an absolute refractory
period (red area). Upon resetting towards U0 the neuron overshoots and enters a relative refractory period (orange area).
(e) Membrane potential of an artificial neuron that only has the LIF characteristics but no refractory property, like the
skyrmion-based neuron in (b). (f) Biskyrmion-based neuron characteristics corresponding to (c). The device has the LIF
properties plus a refractory period (yellow) during which it will not fire again no matter how many input pulses are applied.

An artificial neuron based on a magnetic skyrmion in a wedge (figure 1(b)) has been proposed in [15].
Current pulses move the skyrmion (integrate) towards a detector, where the neuron fires, and the wedge
geometry resets the skyrmion in the absence of currents (leak). However, like most other artificial
neurons [25, 26], this idea lacks the fundamental concept of a refractory period meaning that the neuron
would continue to fire when current pulses are received in fast sequence (figure 1(e)), like in a LIF
(leak-integrate-fire) model [24]; see appendix for details of this simulation. A schematic animation of a
LIF-based neuron is provided in the supplementary information (SI).

Here, we present an artificial neuron based on a magnetic biskyrmion (figure 1(c)). This object consists
of two subskyrmions that are stabilized by dipole-dipole interactions [27–29]. The biskyrmion has been
observed in centrosymmetric materials [30–34]. As we show, the two skyrmions separate when influenced by
spin currents which allows for unique trajectories automatically leading to refractory periods during which
the neuron cannot fire again (figure 1(f)).

We present micromagnetic simulations and show that the skyrmions move along opposite directions
towards a detector when driven by spin currents. Once the detector is reached by one skyrmion, the neuron
fires. Due to the topological properties of the skyrmions, they move at an angle towards the edge [12, 13, 35].
Once the edge stops the forward motion, the skyrmions alter their direction of velocity driven by the weak
attractive interaction between the two skyrmions (figure 1(c)). The neuron cannot fire again until the
skyrmions reestablish the biskyrmion, ultimately resetting the neuron. We explain this unusual trajectory
based on the Thiele equation [36]. This artificial neuron exceeds the capabilities of the typical LIF neuron by
inherently incorporating a refractory process. For this reason, we believe that the biskyrmion-based neuron
will be highly relevant for developing skyrmion-based neuromorphic technologies.

2. Simulated system andmethods

We have conducted micromagnetic simulations and started with a single biskyrmion in a rectangular
magnetic film (figure 1(c)). The rectangular magnetic layer is interfaced with a heavy metal, as shown in
figure 1(c), such that we can manipulate the biskyrmion via spin-orbit torque (SOT): When an electric
current (pulse) j is applied along x, the spin Hall effect [37] generates a spin current along z with spins s
oriented along y. These spins interact with the magnetic moments of the biskyrmion and lead to a motion of
the two subskyrmions. The used parameters are given below. However, the following observations are not
restricted to one particular centrosymmetric material but remain valid for other sets of parameters. For the
considered parameter set we have found, for example, that the artificial neuron continues to perform
unimpededly when the magnetic field was increased by 20%, the anisotropy by 0.8% and even when a low
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finite temperature of 4K was considered. In some cases when the parameters have been changed, the neuron
has to be optimized to better suit the changed skyrmion profile, i. e., the width of the neuron and the
position of the detector have to be adapted to the new conditions. For strong changes in the parameters, the
neuron’s operational mode breaks down once a (bi-)skyrmion cannot be stabilized anymore.

We track the position of the skyrmion moving towards the detector (the skyrmion moving to the right in
figure 1(c)). Once the skyrmion core reaches the detector, e. g. a magnetic tunneling junction, the device fires
because a perpendicular current can flow. The skyrmion-skyrmion interaction then resets the device, with a
complete reset corresponding to the reformation of the biskyrmion.

We have used the graphics processing unit (GPU) accelerated software package MuMax3 [38, 39] to solve
the Landau-Lifshitz-Gilbert (LLG) equation with the SOT term. The equation for the discretized
magnetization reads

∂tmi =−γemi ×Bieff +αmi × ∂tmi + γeϵβ[(mi × s)×mi] (1)

where Bieff = δF/Msδmi is the effective field derived from the system’s total free energy density F, given as the
sum of exchange interaction, magnetocrystaline anisotropy, Zeeman energy and the demagnetization field
(dipole-dipole interaction) — the main interaction responsible for the stabilization of the biskyrmion. The
constants in equation (1) are: the gyromagnetic ration γe = 1.760× 1011 T−1s−1 and ϵβ = ℏΘSH

2edzMs
; where dz is

the thickness of the magnetic layer, e the electron’s charge, ℏ Planck’s constant,Ms the saturation
magnetization andΘSHj the spin current with spin orientation s generated by the spin-Hall angleΘSH.

The FM layer in figure 1(c) is discretized in cells of size 1 nm× 1 nm× 1 nm. The ferromagnetic
orientation points along−z. The simulated parameter are: thickness dz = 3 nm, Gilbert damping parameter
α= 0.3, saturation magnetizationMs = 1.4 MAm−1, exchange constant A= 15 pJm−1, uniaxial anisotropy
Kz = 1.2 MJm−3 and the external field Bz =−40 mT, as in [27]. To stabilize the biskyrmion, we have
simulated the method proposed in [27]. Two individual Bloch-skyrmions with opposite helicities are written
64nm apart in the ferromagnetic layer. Their attractive interaction leads to the formation of a biskyrmion.

3. Results and discussion

The refractory property of the biskyrmion-based artificial neuron that we predict in this paper is based on
the unique trajectory of the two subskyrmions that form the magnetic biskyrmion: Their path towards the
detector is different from the path back to the initial biskyrmion state. To characterize and understand this
fascinating dynamics we first discuss it under constant current and afterward under the influence of current
pulses, like in an artificial neuron device.

3.1. Skyrmion pair driven by constant spin-orbit torque in micromagnetic simulations
A biskyrmion consists of two circular subskyrmions (figure 2) both of which are magnetized along the
out-of-plane direction in their center, opposite to the magnetization direction of the surrounding. In
between, the magnetizationm(r) has an in-plane component. Since the two skyrmions overlap partially
(middle of figure 2), their helicity, characterizing the in-plane profile, must differ by π. That means two
distinct types of skyrmions must form a biskyrmion, which is why a biskyrmion is disfavored by the
Dzyaloshinskii-Moriya interaction and is instead stabilized by the dipole-dipole interactions that favor Bloch
skyrmions of helicity+π/2 and−π/2, likewise [27].

The two subskyrmions of the biskyrmion behave differently when we drive them by spin-orbit torques,
due to their opposite helicity and corresponding in-plane magnetization profiles. For positive currents that
are larger than a critical current, the two skyrmions move away from each other; see orange trajectory in
figure 3(a). However, they do not move perfectly (anti-)parallel with respect to the current direction but
move at an angle partially towards the edge of the sample. This effect is called skyrmion Hall
effect [12, 13, 35] and will be further clarified in the next section based on the Thiele equation [36]. Once the
two skyrmions reach their respective edge after 9ns, the motion almost stops. However, both skyrmions then
begin to creep along the edge towards each other along the±x direction. The motion along the x direction
has reversed even though the current remains unchanged. This motion is much slower compared to the
initial separation process and after a total 180ns the two skyrmions have the same x= 0 component but are
still positioned at the opposite edges with respect to the y coordinate. This configuration is a steady state
under the applied constant current. However, once the current is turned off, the two skyrmions attract each
other again and merge to reestablish the initial biskyrmion. Note that this will occur automatically in the
neuronal operation mode where the input current is received pulsed.

Before we continue and explain this unique trajectory in detail we want to comment on three alternative
scenarios that might occur in practice. First, even if the current is turned off at any other point of the
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Figure 2.Magnetic biskyrmion. Each arrow represents the magnetization in the respective cell in our micromagnetic simulation.
Black regions consist of black arrows pointing along−z. White arrows indicate an orientation along+z and the color encodes the
polar angle in the xy plane.

trajectory, the two skyrmions still attract each other and form the initial biskyrmion. Second, if the current
has the wrong sign (or if the two subskyrmions are reversed) the biskyrmion first rotates by π, effectively
exchanging the two subskyrmions. Third, if the driving current is too small, the biskyrmion will only rotate
and the two individual skyrmions do not form. Therefore, as long as the driving current is large enough,
these scenarios are unproblematic and it is sufficient to focus on explaining the trajectory described above.

3.2. Explanation of the non-linear motion using the Thiele equation
To understand the biskyrmion motion via SOT, we use the generalized Thiele equation [36]. It is an effective
description of the motion of non-collinear textures with the velocity v. The essential assumption is that the
(bi-)skyrmion spin texture does not change in profile while moving, so that it can be condensed into a single
point, and that the total force in the system vanishes. Since we know from the micromagnetic simulations
that the biskyrmion splits up into two subskyrmions, we continue to analyze the trajectory of the skyrmions.
The right skyrmion (figures 1(c) and 2) is discussed if not stated otherwise because we will consider this
skyrmion for the detection later on.

The Thiele equation consists of five force terms and can be written as [40]

bG× v− bDαv−BjIs−∇Uint(r12)−∇Uedge(y) = 0. (2)

The constants b and B are determined from the sample parameters (see Methods section): b=Msdz/γe and
B= ℏΘSH/2e whereMs is the saturation magnetization, dz is the thickness of the ferromagnetic sample, γe is
the gyromagnetic ratio andΘSH is the spin Hall angle.

The topological charge of the (bi-)skyrmion NSk =
1
4π

´
m · (∂xm× ∂ym)d2r gives rise to the first term.

This so-called gyroscopic force is characterized by the gyroscopic vector G= 4πNSkez. The space-dependent
magnetic profilem(r) has been condensed into a single vector by integrating over the whole extent of the
skyrmion. Each skyrmion has a topological charge of NSk =+1. The second term is the dissipative force,
quantified by the Gilbert damping α. The dissipative tensor Dij =

´
(∂xim · ∂xjm)d2r only has non-zero

Dxx = Dyy ≡ D0 elements, irrespective of the type of skyrmion, as long as there is no deformation. The third
term accounts for the spin-orbit torque. The injected spins s interact with the skyrmion’s magnetic moments.
The torque tensor Iij =

´
(∂xim×m)j d2r strongly depends on the skyrmion’s in-plane magnetization profile;

more precisely on its helicity. For the two Bloch skyrmions with opposite helicity γ =±π/2 only the
Ixx = Iyy ≡ λI0 components are non-zero, as long as there is no deformation. Note that λ=±1 has been
introduced to distinguish the two skyrmions with positve and negative helicity, respectively.

The other two terms are the interaction between the two skyrmions, quantified by Uint(r12), and the
interaction of a skyrmion with the edge Uedge(y). If we neglect them, for now, we are able to understand why
the two skyrmions move away from each other once the current is turned on. Under the above explained
symmetry considerations, the Thiele equation becomes

0=−4π b

(
−vy
vx

)
− bD0α

(
vx
vy

)
−λBjI0

(
0
1

)
. (3)

Both skyrmions move at the skyrmion Hall angle tanθsk = vy/vx =
D0α/4π with respect to the current

direction x and they move along opposite directions so that the biskyrmion splits like we have seen in the
micromagnetic simulations.
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Figure 3. Skyrmion motion under constant spin-orbit torque. (a) Trajectories from the micromagnetic simulations (orange) and
the Thiele equation (dashed green). An animated version is available in the SI. (b) Snapshots of the right skyrmion as indicated by
I, II, III in (a). The arrows represent the orientation of the velocity (dashed) and the five force terms entering the Thiele equation
(solid), as indicated. Due to considerable differences in length, the arrows have been normalized to a fixed length for a clearer
representation. (c) The magnitude of the forces corresponding to the arrows in (b). The time range between 14ns and 120ns has
been omitted because the forces are almost zero in this case.

The two skyrmions move at that angle away from each other until they approach their respective
horizontal edge. This leads to a force∇Uedge along λy. Since this force does not have an x component, the
first component of equation (3) reveals that the skyrmions can still only move at the skyrmion Hall angle.
This also means that once the force from the potential compensates the forces from the spin-orbit torque at
y= yc, the skyrmion cannot move anymore at all vx = vy = 0. Note that if the right skyrmion was somehow
displaced beyond y> yc, it would move along the opposite direction but along the skyrmion Hall angle until
it reaches y= yc. This is a special feature of Bloch skyrmions compared to Néel skyrmions, which have a
different I tensor symmetry. While Néel skyrmions can creep along the edges of a confined geometry [41],
Bloch skyrmions always get stuck.

The only remaining force we have not discussed yet, is the skyrmion-skyrmion interaction which is
attractive for all points of the observed skyrmion trajectory. Even though it is weak compared to all other
interactions, it has an x component which allows the two skyrmions to leave the straight course dictated by
the skyrmion Hall angle.
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We qualitatively reproduced the unique trajectory (figure 3(a)) by solving the Thiele equation after
calculating and fitting D0, I0, Uint(r12) and Uedge(r) with the data from our micromagnetic simulations (see
Methods). This approach allows us to determine the trajectory immediately and precisely calculate the five
forces individually, which helps to understand why the skyrmions reverse their direction of motion under
constant current.

We note that the forces in the Thiele equation are not to be understood in the Newtonian sense since the
skyrmion does not move in the direction of the forces’ sum, which is zero per definition (cf equation (2)).
Instead, we have to find the velocity vector, such that all five forces compensate: The reader is reminded that
the spin-orbit torque and edge related forces always point along±y. The skyrmion moves always
perpendicular to the gyroscopic force and anti-parallel to the dissipation force. The skyrmion-skyrmion
attraction always points towards the center of the sample r= 0 since the two skyrmions move symmetrically.

In the first part of the trajectory (I in figure 3(b)), the force related to the spin-orbit torque is larger than
the force from the edge (cf figure 3(c)), as explained before. This means the velocity must be oriented such
that an additional gyroscopic force occurs that compensates the spin-orbit force. Since the velocity is always
perpendicular to the gyroscopic force, it must have a positive x component. At the reversal point (II), the
velocity has drastically decreased since it would be zero if there was no skyrmion-skyrmion interaction due to
the compensation of the spin-orbit related force and the edge force, as explained before. However, due to the
consideration of the skyrmion-skyrmion interaction, yc is not a stationary position anymore. The skyrmion
consequently moves along−x in (III). This is possible because the dissipative force fully compensates for the
interaction force’s x component. Additionally, the gyroscopic force must not deliver any x component which
is only fulfilled for this direction of motion: If v is along−x, the gyroscopic force is along y. Compared to the
discussion without interaction potential, the skyrmion will even move a bit further along y, thereby
increasing the edge force. The gyroscopic force is oriented along y to compensate for this additional edge
force. For such a high value of the y component, all five forces can only compensate each other if the velocity
is oriented along−x. Upon returning towards x= 0 the skyrmion-skyrmion interaction becomes stronger.
Consequently, the dissipative and gyroscopic forces must also increase so that the skyrmion speeds up.

We close this section by noting that the Thiele equation assumes a rigid skyrmion structure. However,
from the micromagnetic simulation, we note that the skyrmion can be deformed, and once it approaches the
edge, its size changes. Mathematically this translates into non-diagonal elements of the tensors D and I
different from zero. Since these terms are very small, the idealized trajectory based on the Thiele equation
does not differ qualitatively from the trajectory based on the micromagnetic simulation (figure 3(a)).
However, these non-diagonal components lead to slower resetting dynamics once the skyrmion has reached
the edge.

3.3. Biskyrmion-based neuronal dynamics
The behavior under current pulses is very similar to the situation explained above. If a continuous sequence
of short current pulses is applied, the trajectory looks almost identical to the case with constant currents
(figure 4(a)): The right skyrmion is pushed along the positive x and y directions according to the skyrmion
Hall angle. Once it reaches its maximum x coordinate, it slowly moves back along the−x direction towards
the center of the sample. However, for a neuron device it is more important to understand the behavior
under limited sequences of current pulses, as will be discussed next.

In the following, we will present the neuronal functionalities of the artificial neuron by discussing three
archetypal examples. The first case (figure 4(b)) allows to discuss the LIF functionality of our device. We
apply a spike train of positive current pulses corresponding to jΘSH = 15MAcm−2 and track the skyrmion’s
core position. The black lines represent the input pulses, each with a duration of 2ns applied every 3ns. Six
pulses are sufficient to drive the skyrmion into the detector beginning at xd = 100nm (red dashed line). The
red line indicates the output signal fired by the device. For this first example, once the artificial neuron has
fired, the input signals are turned off, and the skyrmion-skyrmion interaction resets the device. However,
compared to the constant current case, the reset period is much shorter since no force is still pushing the two
skyrmions apart.

In the second example (figure 4(c)), we present that the biskyrmion adds a layer of bio-fidelity for
skyrmion-based artificial neurons by incorporating the refractory signature. To test for refractoriness, 4ns
after firing, we apply the same input-spike train again. In a device with only the LIF functionality, as in the
skyrmion-based neuron from figure 1(e), this should be more than enough to trigger another firing event.
For the biskyrmion case, however, as shown in figure 4(c), the same spike train does not trigger another
firing event. To understand this, we refer to the dynamics under constant current. While the device is being
reset, the biskyrmion has not yet formed, and the individual skyrmion has a non-zero position component
along the y-axis (the colors in figure 4(c)). The skyrmion moves back on a slightly different path compared to
the initial motion towards the edge (figure 4(f)). Once the second train of pulses arrives, the skyrmion moves
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Figure 4. Biskyrmion-based artificial neuron. (a) Equidistant current pulses. The right skyrmion moves similarly to the scenario
under constant current presented in figure 3. The only difference is the occurrence of oscillations with a period of 3ns
corresponding to the time between two pulses. (b) LIF functionalities. 6 input pulses (black lines) drive the skyrmion towards the
detector at xd = 100nm (dashed line) and, due to the skyrmion Hall effect, towards the horizontal edge (color represents the y
component). A single output signal (red) is triggered. An animated version is available in the SI. (c) Refractoriness. After the
firing event, after 6 pulses, like in (a), one pulse is omitted and then another 6 pulses are applied. This time, the neuron does not
fire due to an inequivalent y coordinate in comparison to (b). (d) End of the refractory period. For this simulation, the time
between the two pulse sequences has been increased so that the biskyrmion has reformed in the meantime. The neuron fires once
after each pulse sequence. (e) Refractory period without a firing event. This simulation is similar to (c), but the first sequence
contains only 5 pulses. The neuron does not fire even when a sequence of 6 pulses is applied shortly after. (f) Inequivalence of the
trajectories. The trajectories for (a), (b) (equivalent to (d)), (c), and (e) are compared. The short dashed lines mark the arrival of
the second spike train for (c)–(e). The long dashed line corresponds to the location of the detector.

again towards the detector but cannot reach the detector because the motion stops at a value x< xd. This
type of motion remains unless this hysteresis is resolved by reestablishing the biskyrmion.

We present this particular case in the third archetypal example (figure 4(d)). This time, the second train
of pulses arrives 25ns after the firing event so that the biskyrmion has already reformed. The refractory
period is overcome and the neuron is fully reset.

Before we conclude, we want to discuss three details about the refractory period. (i) In our simulations,
one assumption was that all input current pulses were of the same magnitude. Only under this assumption
do we have an absolute refractory period during which it is impossible to make the neuron fire again (similar
to the red region of the biological neuron shown in figure 1(d)). If larger input currents are allowed, the
neuron can fire again. It is a relative refractory period in this case (similar to the orange region of the
biological neuron shown in figure 1(d)). (ii) For the neuron to enter the refractory period, there must be at
least one input pulse missing after a firing event. If current pulses keep on being received as inputs, the device
will fire several times in a short sequence before it enters the refractory state (figure 4(a)). Such a signature is
called ‘phasic bursting’ and is also present in biological neurons [42]. (iii) Already a sub-threshold input
without a firing event can initiate a refractory period in our device (figure 4(e)), which is also in good
agreement with the analogous biological neuron.
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4. Conclusions

In summary, we have predicted an artificial neuron that resembles a biological neuron incorporating the
leak, integrate, fire, and refractory characteristics. The goal of artificial neuron devices is to mimic neuronal
dynamics with the same speed and power efficiency as the human brain, hardware-wise. So far, mainly the
LIF features have been fabricated by major technology companies, for instance, Intel with the Loihi
chip [43, 44] and IBM with the TrueNorth chip [43, 44] (for a review of electronic and spintronic artificial
neurons, see [25]). We expect that an artificial neuron with a refractory period will help to overcome current
performance bottlenecks.

Similar to existing predictions of skyrmion-based neurons [15], the energy per spike of∼1pJ is one order
of magnitude smaller than the energy per spike of silicon-based neurons [45]. The neuron can fire within a
few nano-seconds which is even faster than for biological neurons. Besides adding a refractory period to the
skyrmion-based neuron, whose performance impact we want to study in a following project, we have also
shown that the ‘leak’ characteristics can be realized without any nanostructuring of the sample. In our
concept, the neuron leaks solely due to the attractive interaction between the two subskyrmions.

Our discovery of the unique trajectory of the subskyrmions is also interesting from a fundamental point
of view and will bring biskyrmions further into the spotlight of the magnetism community: While a current
remains applied along the same direction, the skyrmions revert their direction of motion, caused by the
broken rotational symmetry of the biskyrmion. This is the opposite of a skyrmion ratchet [46], where the
geometry breaks the inversion symmetry to translate an alternating current into a net motion.
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Appendix A. LIF model

The dynamics of a neuron without refractory period are analogous to an RC circuit. It can be modeled by a
LIF model which has three features: accumulation of the potential (integrate), drop in the potential due to
charge leakage (leak), and reaching the threshold value (fire). Mathematically, this is described by

τm
du(t)

dt
=−(u(t)−U0)+RI(t), (A.1)

where τm = RC is a time constant defined by the membrane resistance R and the capacitance C.
In figure 1(e), we plot the solution of equation (A.1) under a periodic input of 2 units duration every 3

units of time. The membrane potential reaches the threshold Um after six inputs with the appropriate choice
of parameters with τm = 0.18,U0 = 10 and R= 1 (dimensionless units). After firing, the input is turned off,
and the membrane potential drops towards U0.
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Figure B1. Total energy of the two simulated scenarios explained in the appendix. In (a), the only non-constant contribution to
the total energy is Uedge. In (b), the only non-constant contribution to the total energy is Uint. The difference of the x coordinates
has been plotted as the reciprocal value to be able to fit a linear function.

Appendix B. Potentials for the Thiele equation

In order to simulate the motion of the two subskyrmions based on the Thiele equation (equation (2)), we
have determined the tensors and potentials via fitting data from our micromagnetic simulations. We find
that the skyrmion-edge interaction follows Uedge(y)≈ λ2y2 and that the skyrmion-skyrmion interaction
follows Uint(r12)≈ k1/r12 where λ2 and k1 are the strength of the edge and skyrmion-skyrmion potentials,
respectively. For the numerical calculation, these coefficients are obtained from two different micromagnetics
simulations. For Uedge, we simulate only one Bloch skyrmion being pushed towards the edge by SOT and
fitted the energy versus y position (figure B1(a)). For Uint(r12), we write two Bloch skyrmions 100 nm apart
from each other along the x direction to avert the edge interaction. Here, no current is induced and only the
skyrmion-skyrmion interaction moves the skyrmions towards each other. The shape of the potentials and the
coefficients are obtained by fitting energy versus skyrmion position (figure B1(b)). The resulting fit is

Uedge(y) = λ2y
2 +λ0, Uint(x12) =

k1
x12

+ k0, (B.1)

where λ2 ≈ 5.9× 10−5 aJ nm−2, λ0 ≈−2.6× 10−3 aJ, k1 ≈−0.425× 10−3 zJ nm and k0 ≈−7.2 zJ.
For the tensors, we have fitted a skyrmion right after the motion has started: Dxx = Dyy ≈ 14,

Ixx = Iyy ≈ 98 nm.
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