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Spin and orbital Edelstein effect in a bilayer system with Rashba interaction
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The spin Edelstein effect has proven to be a promising phenomenon to generate spin polarization from a charge
current in systems without inversion symmetry. In recent years, a current-induced orbital magnetization, called
the orbital Edelstein effect, has been predicted for various systems with broken inversion symmetry, using the
atom-centered approximation and the modern theory of orbital magnetization. In this paper, we study the current-
induced spin and orbital magnetization for a bilayer system with Rashba interaction, using the modern theory of
orbital magnetization and Boltzmann transport theory in the relaxation time approximation. We find that the spin
Edelstein effect is significantly larger than the orbital contribution. Furthermore, the orbital Edelstein response
can be enhanced, suppressed, and even reversed, depending on the relation of the effective Rashba parameters
of each layer. A sign change of the orbital polarization is related to an interchange of the corresponding layer
localization of the states.
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I. INTRODUCTION

Effective spin-charge interconversion is crucial for the real-
ization of novel spintronic devices [1–3]. One prominent and
intensely studied effect providing charge-to-spin conversion
is the (spin) Edelstein effect (EE) [4–8], also known as the
Aronov–Lyanda-Geller–Edelstein effect [9], the inverse spin-
galvanic effect [8,10], or current-induced spin polarization. In
systems with broken inversion symmetry, such as surfaces,
interfaces, or systems lacking inversion symmetry in their
crystal structure, the application of an external electric field,
or a charge current, generates a homogeneous spin polariza-
tion due to spin-orbit coupling. Similarly, an injected spin
current induces a net charge current in these systems via the
Onsager reciprocal of the EE, the inverse Edelstein effect
(IEE) [11]. The importance of the EE and the IEE for spin-
tronics is due to the ability to create and control spin currents
and spin polarization in a nonmagnetic material solely by
an applied charge current and vice versa. The first and most
common systems for which the EE has been predicted are
two-dimensional (2D) systems with Rashba spin-orbit cou-
pling [12–14], where the spin polarization typically arises in
plane and perpendicular to the current direction [5]. The EE
has been found to occur also in Weyl semimetals [15,16],
chiral materials [17–22], oxide interfaces [23,24], topo-
logical insulators [25–28], transition metal dichalcogenides
(TMDs) [29–32], noncentrosymmetric superconductors [33],
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and other quantum materials [34]. Besides the spin, electrons
can also carry an orbital moment, which can give rise to
a finite net magnetization. In most ferromagnets, the spin
contribution to the equilibrium magnetization is dominant,
and the orbital contribution is negligible [35–37]. However,
analogously to nonequilibrium spin transport effects, orbital
transport can occur [23,24,38–50]. Thus the orbital Edel-
stein effect (OEE) corresponds to a current-induced orbital
density, or current-induced orbital magnetization, in systems
with broken inversion symmetry [23,24,46–49,51]. In contrast
to equilibrium ferromagnetism, the OEE has been found to
be comparable to or even larger than the SEE [23,24,49].
However, since the position operator is not well defined in
translationally invariant systems, the calculation of the orbital
magnetization (OM) is not trivial in periodic systems [52]. In
order to avoid this problem, the angular momentum operator is
evaluated in disjunct spheres around the atoms. This standard
method, known as the atomic-centered approximation (ACA),
provides accurate and computationally efficient results for
some materials, while for others, where the nonlocal contri-
butions are relevant, the ACA fails to accurately estimate the
OM [52,53]. A more precise and complete alternative, includ-
ing the nonlocal contributions, is the so-called modern theory
of orbital magnetization [54–57], proposed for translationally
invariant materials [53].

The modern theory of OM has been implemented in several
density functional theory codes [36,37,58] and tight-binding
models [46,47], primarily to study bulk ferromagnetic materi-
als and heterostructures. However, the need for translational
invariance of the modern theory implies a problem for in-
terfaces and, generally, 2D systems. The modern theory has
recently been extended to treat the OEE in polar metals, insu-
lator surfaces, and semi-infinite systems [59].

In this paper, we apply the modern theory of OM to
a two-dimensional electron gas (2DEG) modeled by an
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effective Rashba Hamiltonian in a bilayer system with spin-
independent interlayer hopping, following the formalism
introduced in Ref. [59]. We induce an asymmetry between the
layers by slight deviations of the effective parameters. Due to
this asymmetry and the interlayer interaction, the motion of
the electrons can be regarded as closed loops of an electrical
current that allow for an in-plane OM. Although the Rashba
2DEG is the first system for which the SEE has been pre-
dicted, its OEE has not been discussed yet, particularly not
within the modern theory of OM. By extending this paradig-
matic Edelstein system to two coupled layers and applying
the modern theory of OM, we examine the OEE and the SEE
concerning their dependence on the model parameters, and we
reveal the role of layer localization of the electronic states.

This paper is organized as follows. In Sec. II, we set
the expressions and overall framework for the spin and
orbital contributions to the current-induced magnetization
using a semiclassical Boltzmann approach in a quasi-two-
dimensional system. In Sec. III, we calculate the spin and
orbital moments for a bilayer system with Rashba interaction.
In Sec. IV, we discuss the spin and orbital Edelstein effects,
their dependence on the model parameters, and real materials
candidates hosting these double Rashba states. Finally, we
conclude in Sec. V.

II. CURRENT-INDUCED SPIN AND ORBITAL
MAGNETIZATION IN A 2D ELECTRON GAS

At zero temperature, the magnetic moment per unit cell m
in terms of spin and orbital contributions is given by

m = −μB

h̄

A0

As

∑
nk

fnk(gssnk + gl lnk ), (1)

where A0 is the area of the unit cell and As is the area of the
entire system. μB is the Bohr magneton, and h̄ is the reduced
Planck constant. fnk is the nonequilibrium distribution func-
tion. gs and gl are the spin and orbital g factors, respectively.
snk and lnk are the expectation values of the spin and orbital
angular momentum, respectively, and n and k indicate the
band index and crystal momentum.

Solving the linearized Boltzmann equation within the con-
stant relaxation time approximation, the distribution function
in the presence of an external electric field E is fnk = f 0

nk +
eτ (∂ f /∂ε)|ε=εnk vnk · E, where f 0

nk is the Fermi-Dirac distribu-
tion function, ε is the energy, vnk is the group velocity, e is the
absolute value of the electron’s charge, and τ is the constant
relaxation time.

The expectation value of the spin moment is

snk = 〈�nk| ˆvecs|�nk〉 , (2)

where ŝ is the spin operator and |�nk〉 is an eigenstate of the
Hamiltonian. Within the modern theory of orbital magneti-
zation [52], the expectation value of the orbital moment is
defined as [57,60]

lnk = ie

2μBgl

〈
∂unk

∂k

∣∣∣∣ × (εk − H0)

∣∣∣∣∂unk

∂k

〉
, (3)

where εk is the band energy, H0 is the Hamiltonian of the sys-
tem, and |unk〉 is the lattice-periodic part of the Bloch function.

The derivative of the eigenvectors in Eq. (3) is avoided in

lnk = ie

2μBgl

∑
m( �=n)

〈unk| ∂H0
∂k |umk〉 × 〈umk| ∂H0

∂k |unk〉
εnk − εmk

(4)

(n and m band indices), which does not yield all components
of the orbital angular momentum (OAM) in 2D systems since
the out-of-plane component of k is not defined. This problem
is avoided by replacing

〈unk|∂H0

∂kz
|umk〉 = i(εnk − εmk )〈unk|ẑ|umk〉, (5)

as suggested in Ref. [59]. Here, the system is assumed to be
finite in the z direction. In the following, k is a 2D vector, and
ẑ is the out-of-plane component of the position operator.

Finally, we define the Edelstein susceptibility tensor in the
linear response regime as [24]

m = (χ s + χ l )E = χE, (6)

where χ s, χ l , and χ are the spin (s), orbital (l), and total
Edelstein susceptibilities, respectively; E is the applied elec-
tric field.

III. MODEL

We consider a semi-infinite system with two Rashba layers
at its surface (or interface to a substrate) labeled A and B.
Each layer is described by a 2D Rashba Hamiltonian, and
they are coupled with a spin-independent interaction. The
corresponding Hamiltonian of the two-layer system is

H =
[

HA T
T HB

]
, (7)

where

Hl = h̄2k2

2ml
+ αl (êz × k) · σ, l = A, B, (8)

are the Rashba Hamiltonians [12–14], with ml and αl being
the effective mass and Rashba parameter of layer l = A, B,
respectively. êz is the unit vector along the surface normal, and
σ = (σx, σy, σz ) are the Pauli matrices; so the spin operator in
Eq. (2) is ŝ = h̄

2I2x2 ⊗ σ. The interaction between the layers
is modeled via the hopping matrix T = tI2x2, with t being
the interlayer hopping. The out-of-plane operator is defined
as ẑ = (c/2)diag(1,−1) ⊗ I2x2, with c being the distance
between the layers.

For the following calculations, the parameters for layer A
are taken from the Rashba surface states of Au(111) [61,62]
for a reasonable order of magnitude, whereas for layer B,
we use arbitrary ratios of αA/αB and mA/mB, to introduce an
asymmetry between the layers. The band structure shows two
pairs of Rashba-type bands (Fig. 1), split by 2t at k = 0. The
magnitude of the spin and orbital moments is constant along
isoenergy lines, with their orientation locked perpendicular
to k. The spin moment presents a k-independent magnitude
[see color in Fig. 1(a)] with a fixed sense of rotation per band.
The texture of the orbital moment shows a more complex k-
dependent magnitude and orientation [see color in Fig. 1(b)].
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FIG. 1. (a) and (b) Band structure of the Rashba bilayer model along the kx axis. In color, the y components of the expectation value of the
spin (a) and orbital (b) moments (in units of h̄). (c)–(f) Expectation values of the spin (left part of each panel) and orbital moments (right part) at
selected isoenergy contours, corresponding to the energies indicated by horizontal lines in (a) and (b). The color indicates the magnitude of the
respective moment. The orbital moment is amplified by a factor of 10. Here, the parameters αA = 2αB = 0.33 eV Å, mA = 2mB/3 = 0.27me,
and t = 2.5 MeV are chosen. The absolute value of the orbital moment exhibits a clear dependence on the magnitude of k, whereas the spin
moment is constant with respect to |k|.

The Rashba parameter of a layer can be associated with a
potential gradient perpendicular to the interface,

αR ∝
∫

|�(z)|2 ∂V (z)

∂z
d3r, (9)

with �(z) being the z-dependent part of an eigenstate [63], but
has been shown to be affected by other factors as well, e.g.,
by an in-plane potential gradient [64,65]. Therefore, different
Rashba parameters in each layer are required to simulate a
layer-dependent interface potential gradient, regardless of the
relation between the masses. Whereas to study a heterostruc-
ture, both different effective masses and Rashba parameters
are needed.

The Hamiltonian introduced in Eq. (8) is an effective model
simulating two coupled Rashba layers, which can be em-
ployed to approximate realistic band structures around distinct
points. It is based on several approximations, which will be
summarized in the following. In realistic materials exhibiting
deviations from this idealized model, we expect quantitatively
modified results for the SEE and OEE. However, we expect
qualitatively similar results for the energy window around the
bilayer-Rashba-like features as long as the main contribution
to the EE stems from these states. Interactions with states
from other layers are neglected. Furthermore, we assume
spin-independent coupling between the two layers. The model
Hamiltonian (7) is not restricted to any particular orbital basis.
Hence the OEE cannot be calculated within the ACA, but
only by employing the modern theory of OM. Our calcula-
tions do not consider further influences of disorder, such as a
k-dependent relaxation time, scattering-in terms, or lifetime
broadening of the states. Contributions from edge states are
also not considered.

The diagonalization of Eq. (7) involves the solution of a
fourth-degree equation that cannot be solved analytically for
arbitrary parameters. The usual methods of solving the fourth-
degree equation lead to either k-dependent conditions for the
effective parameters (αA/B(k), mA/B(k)), which are out of the
scope of our studies, or particular parameter combinations. In
the following, we will focus on two of these particular cases:
firstly, equal effective mass but different Rashba parameters
(mA = mB, αA �= αB), and secondly, different effective masses
but equal Rashba parameters (mA �= mB, αA = αB).

A. Equal effective masses

Assuming mA = mB ≡ m, the dispersion relation yields

εn1,n2 (k) = h̄2k2

2m
+ n1

2
|α+|k + n2

2

√
α2−k2 + 4t2 (10)

with n1, n2 = ±1 and α± = αA ± αB. n1 indicates the shape
of the band, either a V shape for the inner band (n1 = 1) or a
W shape for the outer band (n1 = −1), similar to a monolayer
Rashba system.

The expectation value of the spin moment reads

snk = n1
h̄

2
êφ, (11)

with êφ being the azimuthal unitary vector in cylindrical
coordinates; therefore the absolute value of the spin moment
is constant [Eq. (11) includes a factor of α+/|α+|, which is
neglected here since we consider positive values of the Rashba
parameters]. The orientation of the expectation value of the
spin moment depends on the azimuth of k and the band shape

043294-3



LEIVA-MONTECINOS, HENK, MERTIG, AND JOHANSSON PHYSICAL REVIEW RESEARCH 5, 043294 (2023)

FIG. 2. (a) and (b) Total and band-resolved spin and orbital Edel-
stein effects and (c) corresponding band structure. The calculations
were performed for the parameters αA = 2αB = 0.33 eV Å, mA =
mB = 0.27me, with me being the mass of the electron, interlayer
hopping t = 2.5 meV, A0 = 10 Å, and c = 2 Å. The OEE has an
opposite sign to that of the SEE, which can be seen in Eq. (12). The
gray vertical lines indicate the energy for the bottom of each band,
and the light blue vertical line highlights εF = 5 meV (see discussion
of Figs. 4 and 5).

(W or V shape), as for the monolayer Rashba system [12–14];
see Fig. 2.

The expectation value of the orbital moment

lnk = −n1
ect2α−

μBgl (α2−k2 + 4t2)
êφ (12)

decays with the magnitude of k and, as for snk, also includes
α+/|α+| for the general case. It is important to note that
the band’s shape (W or V shape) determines the sense of
rotation for both spin and orbital moments. In addition, the
orbital moment also depends on the difference in the Rashba
parameters, α−, leading to zero orbital moments for a system
of two equivalent layers.

B. Equal Rashba parameters

The dispersion relation for a general combination of ef-
fective masses but equal Rashba parameters (αA = αB ≡ α) is

given by

εn1,n2(k) = h̄2k2

4
M+ + n1|α|k + n2

√
h4k4

16
M2− + t2, (13)

with M± = 1
mA

± 1
mB

. The spin expectation value is identical
to that in the former case, Eq. (11), but the orbital moment

lnk = − ech̄2t2M−k

4μBgl
(

h̄4k4

16 M2− + t2
) êφ (14)

depends now on k and does not depend either on the band
index n1 or on the sign of α.

IV. RESULTS AND DISCUSSION

Due to the symmetries of the system introduced in
Sec. III, particularly rotational and mirror symmetries, the
only nonzero tensor elements of the Edelstein susceptibility
are χ s/l

xy = −χ s/l
yx .

The spin and orbital moments discussed above
[Eqs. (11), (12), and (14)], as well as the specific
band structure, lead to the characteristic shape of the
energy-dependent Edelstein susceptibilities shown in Figs. 2
and 3. First, the Edelstein effect in a system with equal
effective masses in both layers, shown in Fig. 2, is discussed.
Increasing εF, starting from the band edge of the lowest
W-shaped band, increases the absolute value of both the spin
Edelstein effect (χ s

xy) and the orbital Edelstein effect (χ l
xy) due

to the increasing number of states contributing to transport.
The opposite signs originate from the opposite orientation
of spin and orbital moments. When the second, V-shaped
band is occupied, χ s

xy approximately saturates due to partial
compensation of the spin Edelstein effect originating from
both bands, as in a monolayer Rashba system. Recall that
both W- and V-shaped bands have spin textures with opposite
senses of rotation and contribute oppositely to the SEE.
Such partial compensation is also visible in the OEE signal
[Fig. 2(b)]. However, no saturation is visible here due to the
k dependence of the absolute value of the orbital moments
[see Eq. (12)], leading to a decay of the orbital susceptibility
for energies between the second and third band edges. This
energy dependence is repeated qualitatively when the third
and fourth bands are occupied.

In a bilayer system with equal Rashba parameters in both
layers (Fig. 3), the energy-dependent SEE qualitatively be-
haves as in the previously discussed case of equal masses.
However, the OEE exhibits qualitatively different behavior
due to the band-independent sense of rotation of the orbital
moments [Eq. (14)]. Here, spin and orbital moments are not
aligned oppositely. Hence the signs of χ s

xy and χ l
xy are equal in

the whole energy range. Furthermore, the contributions of the
W- and V-shaped bands do not compensate, but add up due to
the equal sense of rotation of the orbital textures.

As shown in Figs. 2 and 3, the SEE is larger than the OEE.
This can be understood from the lack of a specific orbital
character of the bands for the general effective Rashba model
(therefore no well-defined orbital angular momentum operator
in the atom-centered approximation), avoided crossings [es-
sential for Berry-curvature-like expressions such as Eq. (4)],
the spin-orbit coupling (SOC) leading to a pronounced SEE,
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FIG. 3. (a) and (b) Total and band-resolved spin and orbital Edel-
stein effects and (c) corresponding band structure. The calculations
were performed for αA = αB = 0.33 eVÅ, mA = (2/3)mB = 0.27me,
interlayer hopping t = 2.5 meV, A0 = 10 Å, and c = 2 Å. The gray
vertical lines indicate the energy for the bottom of each band, and
the light blue vertical line highlights εF = 5 meV (see discussion of
Figs. 4 and 5).

and the low penetration length of the 2DEG restricting the
orbital motion within the two layers.

A. Parameter dependence

In the previous section, we have shown the results for a
particular combination of the effective parameters, in which
we take the values of Au(111) [61,62] for the first layer (αA,
mA) and different but comparable values for the second layer
(αB, mB). We have found no significant changes for other
parameter combinations aside from different but qualitatively
similar band structures and energy-dependent Edelstein sig-
nals. As shown in Eqs. (12) and (14), the differences between
the parameters, α− and M−, control the size of the orbital mo-
ments. Therefore, by changing the values of the second layer’s
parameters, the magnitude as well as the sign of the OEE can
be controlled. Figures 4 and 5 show the spin and orbital Edel-
stein susceptibilities as a function of the difference between
the Rashba parameters (αB − αA) and the effective masses
(mB − mA), respectively. Both calculations are performed for
the same parameters as in Figs. 2 and 3 at fixed Fermi en-
ergy (εF = 5 meV), changing the value of the corresponding
parameter on layer B, αB and mB, respectively. As shown

FIG. 4. Spin (a) and orbital (b) Edelstein susceptibility for dif-
ferent values of αB − αA and equal effective masses mA = mB. The
calculations were performed for εF = 5 meV and the same parame-
ters as in Fig. 2, with αA constant.

in Figs. 4(a) and 5(a), the SEE is enhanced by increasing
either α or m in one of the layers. The approximately constant
increase of the SEE is related to an increasing size of the
Fermi lines. However, the SEE can present the opposite sign
for a system with a negative sum of the Rashba parameters,

FIG. 5. Spin (a) and orbital (b) Edelstein susceptibility for differ-
ent values of mB − mA and equal Rashba parameters αA = αB. The
calculations were performed for εF = 5 meV and the same parame-
ters as in Fig. 3, with mA constant.
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FIG. 6. (a) Layer projection of the eigenstates for different values of the Rashba parameters in the system, performed for the same
parameters as in Fig. 2, except for those indicated above each panel. (b) Sketch of the isoenergy lines with spin and orbital textures, projected
to the corresponding layers for εF = 5 meV.

i.e., αA + αB < 0, although that configuration is not studied in
this paper.

Figure 4(b) shows that the sign of the OEE is controlled
by the difference of the Rashba parameters, leading to a
sign change for the case of equivalent layers (mA = mB and
αA = αB), related to the symmetry of the system discussed in
Sec. IV B, and two more parameter-dependent sign changes
around αB − αA ≈ ±0.3 eVÅ. The OEE for equal Rashba
parameters, shown in Fig. 5(b), only shows a sign change for
the case of equivalent layers. The sign change of αB − αA and
mB − mA, respectively, means a reversed orbital moment at
each k point, hence a reversed sense of rotation of the orbital
moment along the isoenergy lines and a sign change of the
OEE. One important difference between the two cases, equal
m and equal α, is the band independence of Eq. (14), since for
the equal-Rashba-parameters case, all bands exhibit the same
sense of rotation of the orbital moments, contributing with the
same sign to the OEE in Fig. 5(b).

In contrast to the SEE, which exists only due to SOC,
orbital effects do not require SOC, which has been confirmed
by studies on various systems without SOC, such as free-
electron systems and chiral structures [39,47], by introducing
different types of asymmetries. In Fig. 4(b), the OEE at αB =
0 (αB − αA = −0.33 eVÅ in the figure), although small, is
not zero, showing that the OEE can occur in the absence
of Rashba splitting in one of the layers. In Appendix A, we
further discuss a bilayer free-electron system without Rashba
SOC, but with asymmetric effective masses, and show that
here a finite OEE occurs, whereas the SEE vanishes.

B. Layer dependence

From Eqs. (12) and (14), it is clear that a sign change
of α− and M−, respectively, induces a sign change of the
k-dependent orbital moment per band, lnk. A physical inter-
pretation of the origin of the sign change in the OEE can be
obtained by analyzing the localization of the states per layer.
In contrast to the spin moment, the OEE is tied to the out-of-
plane position of the layers (z), giving relevance to the spatial
order of the layers relative to each other. Figure 6(a) shows
the projection of the eigenstates to the layers of a system with
equal effective masses but different Rashba parameters. First,
when t = 0 and αB = 0, the states are fully localized in a
degenerate free-electron band for layer B and a simple Rashba
band structure for layer A. At k = 0 the state is fourfold
degenerate. However, when we include interlayer hopping
(t �= 0), the degeneracies are lifted. At k = 0, we observe two
twofold degenerate bands with a band gap of 2t . The states
are weakly localized in both layers around k = 0. For this
case, even with αB = 0, the states localized in layer B show
an energy splitting close to k = 0. Nevertheless, this band
splitting becomes negligible for higher energies (εF 	 t). In
contrast, the states localized in layer A show a Rashba-like
structure with the same band gap of 2t at k = 0. Therefore
the interlayer hopping induces Rashba interaction from layer
A into layer B, even when αB = 0.

For the case of equivalent layers, each eigenstate is equally
localized in both layers, which can be interpreted as a total
compensation of the layer contributions to the orbital moment;
see Eqs. (12) and (14). This compensation is better seen when
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we compare two configurations of the Rashba parameters. The
first configuration is when the Rashba parameter of layer A
is larger than that of layer B (αA > αB), while the second is
the interchanged relation (αA < αB). Both configurations are
highlighted with gray boxes in Fig. 6(a). In addition, Fig. 6(b)
sketches spin and orbital textures along isoenergy lines, pro-
jected to the layers, for these two configurations. Comparing
these two cases proves helpful since the band structure is
equivalent, but the localization of the eigenstates is opposite.
Here, the states on the outermost band and the innermost band
(bands 1 and 4) are localized in the layer with the larger
Rashba parameter, while the states of the middle bands (bands
2 and 3) are localized in the layer with the smaller Rashba
parameter. This interchange of the localization does not affect
the sign of the spin expectation values [see Fig. 6(b)] since
the spin texture is conserved. Even though the contribution
per layer changes when the localization of the eigenstates is
reversed, the total current-induced spin moment remains the
same. However, for the orbital moment the texture’s sense of
rotation per band is changed by reversion of the eigenstates’
localization, which is also evident from Eq. (12) due to the
sign change of α−.

To quantify a layer’s contribution to the orbital moments,
we decompose the eigenstates as |unk〉 = |A, nk〉 + |B, nk〉,
with

|A, nk〉 = 1

N

⎛
⎜⎜⎜⎝

uA
↑,nk

uA
↓,nk

0
0

⎞
⎟⎟⎟⎠ (15)

and analogously for |B, nk〉, with 1/N being the normalization
factor. With this decomposition, the orbital moment (4) is a
sum of four terms, lnk = lAA

nk + lAB
nk + lBA

nk + lBB
nk , with

lXY
nk = ie

2μBgl

∑
m �=n

〈X, nk| ∂H
∂k |X, mk〉 × 〈Y, mk| ∂H

∂k |Y, nk〉
εnk − εmk

(16)
(X,Y = A, B). These contributions read

lAA
nk = −ect2

2μBgl (k2α2− + 4t2)

(
h̄2k

m
+ n1αA

)
êφ, (17a)

lAB
nk = −ect2

2μBgl (k2α2− + 4t2)

n1α−
2

êφ, (17b)

lBB
nk = ect2

2μBgl (k2α2− + 4t2)

(
h̄2

m
+ n1αB

)
êφ (17c)

for a system with mA = mB; compare Eq. (12). The mixed
or interlayer terms are equal (lAB

nk = lBA
nk ), but the intralayer

terms lAA
nk and lBB

nk have opposite sign and differ according to
the respective Rashba parameters, or analogously according to
the effective masses for a system with αA = αB. Therefore the
physical origin of the nonzero k-dependent orbital moment
can be attributed to the asymmetry in the layerwise contribu-
tions, since electrons flowing between the layers acquire an
orbital motion in out-of-plane trajectories, which, in analogy
to a loop of electrical current, generates an in-plane orbital
moment [59].

Applying the above decomposition to the spin moment,
Eq. (11), shows that only the intralayer terms contribute to the
SEE, both with the same sign, which is a direct consequence
of the definition of the spin moment and the interactions in
the system. Therefore the addition of extra layers does not
introduce new physics to the spin moment in our model.
However, as shown in Ref. [59], the extension of the 2DEG
to the third dimension has an important role for the magnitude
of the OEE. We discuss the effect of an extended 2DEG for
the SEE and OEE in Appendix B.

C. Materials proposal

Materials showing a Rashba effect are widely used
for spin-charge interconversion. Especially at oxide inter-
faces [66–68] and polar semiconductors [69,70], 2DEGs with
a thickness of several unit cells can exhibit more than one
band splitting related to the Rashba effect. However, those
bands are required to be energetically close to induce a sizable
nonlocal contribution to the OEE.

Polar semiconductors [71–73] are suitable candidates for
showing a double Rashba band structure similar to the one
shown in Fig. 1(a). Al2O3 covered by a monolayer of a heavy
metal has been reported to host similar double Rashba band
structures. In this substrate, Al atoms are located at a slightly
different height than the O atoms due to surface relaxation.
Therefore the monolayer of the heavy metal (Pb, Bi, Sb,
and their ordered alloys [69]) is expected to form a buckled
adlayer [69,74].

Recent works have suggested a sizable orbital contribution
to the Edelstein effect compared with the spin contribution for
oxide interfaces. Particularly, recent publications on SrTiO3-
based [24] and KTaO3-based [23] interfaces have shown a
significant orbital magnetization using the ACA approach.
These materials present energetically close bands from dif-
ferent layers, hinting at a relevant nonlocal contribution from
the modern theory of OM. Especially for oxide interfaces
in which the 2DEG is extended to several layers [68,75], a
double-layer or multilayer approach, which is crucial for the
application of the modern theory of orbital magnetization, is
appropriate. Other oxide-based materials reported to exhibit a
significant EE are BaSnO3 and ZnO [76].

A surface polarization due to a slight spatial displace-
ment between the atoms at the surface is key in obtaining
a double (or multiple) Rashba structure from an inhomoge-
neous potential gradient. Therefore the ferroelectric Rashba
semiconductors (FERSCs) have been proposed for purely
electrical control of the Rashba interaction, even reaching a
switchable configuration [77,78]. Other systems with switch-
able Rashba SOC have been reported from the perovskite
family [76]. Therefore the enhancement and reversion of the
orbital contribution explored in this paper could further con-
tribute to the overall electrical control of the total conversion
efficiency.

V. CONCLUSIONS

This paper introduces an effective model for a bilayer
system with Rashba interaction to describe the current-
induced spin and orbital Edelstein effect. Because of a
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sizable interlayer hopping, electrons can perform out-of-plane
motion which allows for an in-plane OM. Here, we see that the
asymmetry of the parameters of those layers is fundamental
for an orbital moment. Two cases, namely equal effective
masses and equal Rashba parameters of the two layers, are
discussed in detail. For any parameter combination, spin and
orbital moments are locked perpendicular to the momentum.
The spin expectation values are constant, but the orbital mo-
ments’ absolute values decay with k.

We explore the model parameter dependence of the
current-induced magnetization. For constant energy, the SEE
is enhanced by increasing the value of either the effective mass
or the Rashba parameter regardless of the ratio of the corre-
sponding parameters of both layers. However, the sign of the
OEE can be tuned according to the difference between the pa-
rameters, with the OEE vanishing if the layers are equivalent.
The sign change of the OEE is accompanied by a change in the
layer localization of the eigenstates. Tuning the ratio αB/αA

(or mB/mA) from < 1 to > 1 and vice versa, and assuming
mB = mA (αB = αA), the layer localization of the individual
states is reversed. For the orbital moment, the sense of rotation
along an isoenergy line is also reversed, whereas the spin’s
sense of rotation is preserved. Considering the intra- and in-
terlayer contributions to the orbital moment, we find that both
layers contribute oppositely to the total k-dependent orbital
moment, and hence the difference between the respective pa-
rameters (αA − αB and mA − mB, respectively) determines the
sign of the total OEE.

The approach expressed in this paper shows that the orbital
moment is relevant even for systems where the expectation
value of the orbital angular momentum operator is zero within
the atom-centered approximation, implying that the modern
theory of orbital magnetization can be essential for the dis-
cussion of orbital transport effects.
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APPENDIX A: OEE WITHOUT SOC

It is well known that for the SEE, SOC is crucial, whereas
it has been proven that the OEE does not require SOC [39,47].
In our model, we study the Edelstein effect in a bilayer sys-
tem with Rashba SOC. Obviously, lnk �= 0 in the absence
of SOC (αA = αB = 0), as long as mA �= mB; see Eq. (14).
Hence a nonzero OEE can be induced in a coupled-bilayer
free-electron-gas system with anisotropic effective masses.
Figure 7 shows the spin and orbital Edelstein effect as well as
the band structure of a free-electron-gas bilayer (αA = αB = 0
and mA �= mB). Due to the absence of SOC, the SEE is zero
within the whole energy range, but the OEE is nonzero and
increases with energy.

APPENDIX B: EXTENDED 2DEG

As stated in Sec. IV, one reason why the SEE is larger
than the OEE is the low extension of the 2DEG over only

FIG. 7. (a) and (b) Total and band-resolved spin and orbital
Edelstein effects and (c) corresponding band structure. The calcu-
lations were performed for the parameters αA = αB = 0 eVÅ, mA =
(2/3)mB = 0.27me, interlayer hopping t = 2.5 meV, and c = 2 Å.

two layers. However, the spread of the 2DEG that determines
the number of layers taken into account can be easily ex-
plored. Similarly, a semi-infinite insulator has been explored
in Ref. [59].

Including more layers close to the interface allows more
parameter combinations. In the following, we focus on two
distinct configurations. First, we add layers with decaying
Rashba interaction and increasing effective mass, following
a Gaussian function

αi = α0 exp

(
− (ci)2

4N

)
, (B1a)

mi = m0

[
2 − exp

(
− (ci)2

4N

)]
, (B1b)

where (α0, m0) = (αA, mA) from Au(111), c is the spacing
between the layers, N is the number of layers of the system,
and i = 0, 1, 2, 3, 4 is the index of the layer. Although the
layer dependence in Eq. (B1) is arbitrary, it is a reasonable
way to extend the 2DEG into the bulk. Figure 8 shows the spin
and orbital Edelstein efficiencies for this parameter relation,
simulating a 2DEG with a depth of two to five unit cells. Both
spin and orbital Edelstein effects increase due to the extra
contributions from the extra layers, but the orbital moment
shows the stronger sensitivity towards the number of layers.
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FIG. 8. Spin (a) and orbital (b) Edelstein susceptibilities in a
quasi-2DEG consisting of two, three, four, and five layers. In this
configuration, the Rashba parameters decrease from the surface or
interface (layer 0) to the bulk, while the effective mass increases
from the surface or interface, up a maximum value for the bulk. The
calculations were performed for the parameters following Eqs. (B1),
interlayer hopping t = 2.5 meV for all interlayer hoppings, and
c = 2 Å.

Whereas the SEE is increased by a factor of 2 comparing the
bilayer and five-layer configurations, the OEE is enhanced by
a factor of 5.

The second configuration, for which the SEE and OEE are
shown in Fig. 9, follows Eq. (B1) for the first two layers (i =
0, 1) but adds free-electron-like layers for layers 2, 3, and 4
with the same effective masses per layer as the second layer
(i = 1), i.e., αi = 0 and mi = m1, with i = (2, 3, 4). For this
configuration we keep the zero on-site energies for the first
two layers; however, for the extra layers the on-site energies
are ei = 5 meV for i = (2, 3, 4), and the interlayer hopping
between layers 0 and 1 is t = 2.5 meV and between the other
layers is t = 1.25 meV. The SEE presented in Fig. 9 shows
almost no increase when the number of layers is enhanced,

FIG. 9. Spin (a) and orbital (b) Edelstein susceptibilities in a
quasi-2DEG consisting of two, three, four and five layers, respec-
tively. This configuration assumes that after the second layer (i = 1),
the potential gradient can be neglected and the following layers
can be modeled by a free-electron model. The calculations were
performed for the parameters following Eq. (B1) for the first two
layers and αi = 0 and mi = m1, with i = (2, 3, 4) for the other layers.
Different on-site energies for the extra layers are ei = 5 meV for
i = (2, 3, 4), the interlayer hopping between the i = 0 and i = 1
layers is t = 2.5 meV and between the other layers is t = 1.25 meV,
and c = 2 Å.

whereas the OEE increases by a factor of 2 at high energies,
comparing the five-layer case with the two-layer case.

The calculated Edelstein susceptibilities for both config-
urations show that the number of layers contributing to the
quasi-2DEG has significant influence on the orbital Edelstein
effect (calculated within the modern theory of orbital mag-
netization), whereas the spin Edelstein effect is less affected
by a higher number of layers. This finding opens up new
perspectives in the search for materials exhibiting a large
current-induced orbital magnetization.
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