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AB S T R A C T
This paper explores memory mechanisms in complex socio-technical systems, using a mobility

de-mand model as an example case. We simplified a large-scale agent-based mobility model into a

Markov process and discover that the mobility decision process is non-Markovian. This is due to its

dependence on the system’s history, including social structure and local infrastructure, which evolve

based on prior mo-bility decisions. To make the process Markovian, we extend the state space by

incorporating two history-dependent components. Although our model is a very much reduced version of

the original one, it remains too complex for the application of usual analytic methods. Instead, we employ

simulations to examine the functionalities of the two history-dependent components. We think that the

structure of the analyzed stochastic process is exemplary for many socio-technical, -economic,

-ecological systems. Additionally, it exhibits analogies with the framework of extended evolution, which

has previously been used to study cultural evolution.
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1 Introduction

Agent-based models (ABMs)  are valuable tools for representing complex socio-economic, -ecological, and 

-technical systems because they allow the modeller to define the system based on its individual elements 

and their interactions, rather than having to specify aggregate dynamics of the system in the first place. 

Moreover, ABMs offer the advantage of being easily explainable to a non-technical audience: relevant actors 

in the system under study are represented on the computer as agents with features, governed by decision 

or interaction rules, and embedded in agent networks and a common environment; the system evolution is 

then simulated by repeatedly carrying out the specified (inter)actions.  There hence is a wide usage of such 

models for analysing challenges in environmental and social sustainability contexts (e.g. 1; 14; 17; 23; 18).

Owing to detailed micro-level definitions, however, complex, empirically grounded ABMs are challenging 

to express mathematically (10).  In fact, there is a research gap between these models and simpler ABMs 

studied in physics and mathematics, which often prioritize the depiction of mechanisms over accurately 

representing a specific social system (4).

Generally, in social contexts, where collective phenomena emerge from repeated interactions among 

individuals, there is growing interest in applying statistical physics to understand such phenomena (5; 25; 13).  

The related literature offers analytical tools and mean-field approximations, particularly for binary opinion 

models, with the famous voter model being extensively analyzed (e.g., 6; 24; 28; 26).

Mathematically, such agent-based models have been described as discrete-time Markov chains (12; 3)  or 

continuous-time Markov jump processes (19; 30),  also coupled with (e.g. spatial)  diffusion dynamics, allow-

ing for description by stochastic differential equations (8)  or approximation by stochastic partial differential 

equations (11).  In a seminal work, Izquierdo et al. (12)  demonstrated how analyzing well-known ABMs as 

Markov chains offered valuable insights, including the identification of absorbing states from which the sys-

tem cannot escape once entered.

On the other hand, for more complex ABMs – that e.g. include an economic, ecological, or technical di-

mension along with the social system, as well as feedbacks between these components – the corresponding 

Markov chain is hard to even write down explicitly and would in most cases be ”too big for a tractable analysis 

of a model” (2).  One explanation for this is the significance of history in such systems: for instance, path 

dependencies resulting from prior (collective)  decisions for a certain technology or investment have a signif-

icant impact in human decision-making processes, as do past experiences, long-term beliefs, social norms 

or conventions, and the social network itself. These path dependencies clearly contrast with the Markov 

property, which presupposes that the future will only depend on the current situation. However, in theory, it 

is possible to convert non-Markov processes into Markovian ones by extending the state space.

Here this paper contributes. We focus on an agent-based model of mobility decisions, as an example 

case of a complex system in which a transition towards sustainability is required. Based on a large-scale, 

empirically-grounded ABM – the Mobility Transition Model (MoTMo)  (9)  – we derived a reduced model that 

retains the primary memory mechanisms of the original model (27).  In this paper, we formulate the reduced 

model as a stochastic process and transform it – through an extension of the state space – into a Markov 

chain. This not only enhances the explainability of the model but also points to a classification of memory 

mechanisms that can be helpful for understanding complex socio-technical systems more generally.

MoTMo has been developed for simulating private mobility demand in Germany until 2035. While MoTMo 

itself is highly detailed and complex, making it challenging to express it entirely as a stochastic process, it 

contains two general kinds of memory mechanisms. The first kind comprises feedback from previous mo-
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bility decisions that influences the mobility options agents can choose from. In MoTMo, this feedback takes

various forms, such as the growth of convenience for a mobility type with increased usage (leading to the ex-

pansion of corresponding infrastructure) and the decline of unit prices with increased usage. This feedback

operates through local (conveniences) or global (prices) fields, which are influenced by aggregate decisions

of the agents. That means that it is not of importance who among the agents takes which decisions but

rather how many of them choose what. In the general context of socio-technical systems, this structure

can be associated with feedbacks related to general global or local parameters, such as unit costs, prices,

technological progress, productivity, or social norms and conventions. The second memory mechanism

is a network-based learning process, which in MoTMo operates as follows: individuals base their mobility

decisions on the choices made by others within their social network. Afterward, they evaluate the useful-

ness of the information obtained and revalue the links in their network accordingly. This process resembles

Bayesian updating and simulates social learning dynamics. In general socio-technical systems, this learning

mechanism involves feedbacks facilitated by an evolving network structure, encompassing elements like so-

cial relations, information networks, supply chains, and local connections such as roads, railway tracks, and

pipelines.

In this work, we present a highly condensed version of MoTMo which serves as an abstract model to

analyze these two memory mechanisms. The Reduced Mobility Transition Model (R-MoTMo) is available via

the CoMSES Model Library (27), where the code and a documentation according to the ODD protocol (10)

can be found. We will show how formulating the (mobility) decision process as a Markov chain by extend-

ing the state space helps understand the system’s structure and characteristic properties. The definition of

this stochastic process explicitly reveals the required information for defining probabilities to predict future

behaviour. The extended (Markovian) process not only contains the agents’ mobility choicesM(t), but also

an infrastructure bonus process B(t) aggregating the convenience of the mobility types induced by previous

mobility decisions (related to the first memory mechanism) and time-evolving weights W(t) for the social

network (capturing the second memory mechanism of social learning).

The explicit formulation of our stochastic process can be viewed through two distinct lenses present

in previous literature. Firstly, the components identified in our formulation can be related to the elements

of ABMs for social systems described in prior conceptual work (see, e.g., 7, and references therein), that

has emphasized agents, social structure, and the environment. However contrary to Dilaver and Gilbert, we

identify components rather formally than contentual, so this relation is not an equation but maybe a step

towards understanding in how far function might determine structure (or vice versa) in such systems.

Secondly, there have been past approaches discussing social systems from an evolutionary perspective

(22). The complexity arising from the feedback mechanisms in our model can be interpreted using more

recent developments in evolutionary theory (16). With our work, we take an initial step towards bridging

the conceptual gap between sophisticated, empirically based ABMs and mathematical theory. By explicitly

formulating the stochastic process, we create a foundation for better integrating empirical and theoretical

aspects of modeling complex socio-technical systems.

The paper is structured as follows: In Section 2 we introduce R-MoTMo and define it as a Markov chain.

Section 3 explores simulation results for different settings to analyse the effect of the memory mechanisms

B(t) andW(t) on the system’s dynamics. Moving on to Section 4, the paper discusses how theMarkov chain

formulation enhances the comprehension of the model and its dynamics. It also establishes connections

with previous conceptual frameworks and the theory of extended evolution, before Section 5 concludes.
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2 R-MoTMo as a Markov chain

In the Reduced Mobility Transition Model (R-MoTMo),  agents are persons who live in one of the model’s cells 

and take mobility decisions. They can choose between cars and public transport, and using one of these 

mobility types provides them with utility. The level of utility depends on the population density of their cell: 

Roughly, public transport is more convenient in densely populated cells (representing urban areas),  while 

cars are more convenient in sparsely populated ones (rural areas).  This convenience translates into utility. 

It is further influenced by endogenous factors depending on the mobility type usage: in the short run, more 

persons using the same mobility type decreases its utility (representing traffic jams, crowded trains, etc.) 

while in the long run, more persons using a mobility type make it more convenient (as, e.g., infrastructure 

is being built up).  Persons want to optimise their utilities as in standard economic models, but – unlike in 

standard economics – they do not have full information for doing so; they only know their current utility and 

have information from other persons, who are their friends in a social network, about their utility stemming 

from their mobility choice. Taking mobility decisions by copying a random friend (where the probability of 

choosing a specific friend depends on the friend’s utility and on the connection strength in the social network) 

they rather optimise their choices by trial and error, learning from the information given by this network. The 

intensity of connections in the social network also co-evolves with the decisions taken, as a person adapts 

the connection weight according to whether copying a specific friend has led to an increase or decrease of 

the utility experienced.

Note   that, while this description uses the vocabulary of a mobility demand simulation, R-MoTMo can be 

seen as a prototypical model for a consumption decision taken between two different technologies, which 

in the long run deliver a higher utility to the consumers the more they have been used (locally); this is known 

as the network effect or as demand-side economies of scale, and in our model it does not operate through a 

network but through a local field. The model can further be seen as prototypical for co-evolutionary modelling 

approach where agents’ decisions randomly depend on the network the agents are embedded in, which is 

transformed by the agents in the course of time, and on their environment that evolves as a consequence of 

agents’ (collective) actions.

To formalize the model described in words above, we will introduce the notation and components needed 

(Section 2.1), define the steps that compose the dynamics (Section 2.2), and then assert the Markov property 

of the defined stochastic process (Section 2.3).

2.1 Notation and Process Components

Our notation here is the following: There are N ∈ N agents, and referring to a specific agent, the indices 

i, j ∈ I are used, where I := {1, ..., N} is the set of agents’ indices. Each agent is located in a cell on a grid. 

The number of cells is denoted C ∈ N, and cells are indexed by c ∈ {1, ..., C}. Let Nc ∈ N be the number of

agents in cell c, which means that
∑

c∈{1,...,C} Nc = N . The location of each agent is fixed, such that also

the numberNc of agents in a cell is time-independent. Each person i interacts directly with a set of friends

F(i) ⊂ I, which is a subset of all agents of size n ∈ N, i.e. all agents have the same number of friends. An

agent’s set of friends is also fixed throughout a simulation. Moreover, there is a setM = {0, ...,M − 1} of

M different mobility types that each agent can choose between. In the reduced model, this set is given by

M = {0, 1} wherem = 0 refers to “car” andm = 1 refers to “public transport”.

With this notation, we can define the components of R-MoTMo as a stochastic process in discrete time,

where we use t ∈ N0 as the discrete time index throughout.
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The mobility decision process M(t). For each person i ∈ I, let Mi(t) ∈ M denote the chosen mobility

type of this person at time t. The state of the stochastic process of mobility choices at time t is then given

by

M(t) = (Mi(t))i=1,...,N ∈ MN . (1)

The starting pointM(0) ∈ MN is a randomly chosen initial state. The state space of the mobility decision

process thus corresponds to that in some opinion dynamics models (see, e.g., 3). However, to describe

the dynamics, and in particular to define the probabilities underlying the stochastic mobility choices, further

elements will be needed.

The counting processesX (t). At some points in the following, we are not interested in each single agent’s

mobility choice, but only in how many agents have made which choice. Therefore the information contained

inM(t) is aggregated in the counting process X (t) in the following way: Let Ic ⊂ I be the set of indices of
persons living in cell c ∈ {1, ..., C}. For each cell c and each mobility typem, let

X (m)
c (t) :=

1

Nc

∑
i∈Ic

1m(Mi(t)) ∈ [0, 1] (2)

be the (random) share of persons in cell c using mobility typem at time t.

The infrastructure bonus process B(t). For each cell c and each mobility type m, the process B(m)
c =(

B(m)
c (t)

)
t=0,1,...

is recursively defined by

B(m)
c (t) =

1

3
· X (m)

c (t) +
2

3
· B(m)

c (t− 1) ∈ [0, 1] (3)

for t ≥ 0, where B(m)
c (−1) := 0. Set B(t) =

(
B(m)
c (t)

)
c=1,...,C;m=1,...,M

. This process represents the

assumption that – at a local level – conditions will become better for mobility types that are usedmore in the

respective cell, e.g. as an infrastructure build-up with a positive feedback mechanism. That is, large values

of X (m)
c (t) have a positive impact onto the component B(m)

c (t) of the bonus process.

The utility processU(t). Utility of amobility choice is defined on the level of cells, determined by the current

level of the bonus process and the current number of users of this mobility type. The individual utility at time

t of agent i is then given by the utility of the respective cell ci that the agent lives in:

Ui(t) := u(Mi(t))
ci

(
X (Mi(t))

ci (t),B(Mi(t))
ci (t)

)
, (4)

where the utility functions u
(m)
c : [0, 1]2 → (0,∞) have the form

u(m)
c (x, b) := a(m)

c (x) · û(m)
c + b, (5)

with the short-term malus function a
(m)
c : [0, 1] →

[
2
3 , 1

]
given by

a(m)
c (x) := 1− 1

3
x (6)

and the exogenous factor

û(m)
c :=

100√
2πσ

exp

(
− (Nc − µ(m))2

2σ2

)
∈
(
0,

A√
2πσ

]
, (7)
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where

µ(m) :=

{
minc∈{1,...,C} Nc form = 0,

maxc∈{1,...,C} Nc form = 1,
(8)

and σ := 1
2 (maxc Nc − minc Nc). The factor 100 appearing in (7) just serves to bring utilities to a handy

range (e.g., u
(m)
c (x, 0) ∈ [0, 4] for all x).

The exogenous factors û
(m)
c are independent of the system and only depend on the mobility typem and

the number of personsNc in the cell. In Figure 1, they are shown for both mobility typesm = 0 (representing

car) and m = 1 (representing public transport) for different numbers Nc of persons per cell. In contrast,

the malus term a
(m)
c (x), as given in Eq. (6), and the added b, see (5), depend on the system’s state and

represent two kinds of feedback mechanisms associated to infrastructure: The more agents currently use a

mobility type m in cell c, the lower the utility at present (e.g. due to traffic jams or crowded trains) because

infrastructure starts working at capacity, which is represented by the short-termmalus a
(m)
c (x). On the other

hand, themore agents use a certainmobility type, themore the related infrastructure is extended in the longer

run; this is modelled by the infrastructure bonus process B(m)
c (t). The two terms will be called infrastructure

feedback in the following. The case where u
(m)
c (x, b) = û

(m)
c for all x, b will be called a scenario without

infrastructure feedback.

Figure 1: Exogenous part û
(m)
c , see (7), of the utility function u

(m)
c over the numberNc of agents per cell for

µ(0) = 2 (m = 0 represents car) and µ(1) = 26 (m = 1 stands for public transport), see (8). With these

values, used in Section 3, the exogenous utilities are equal for both mobility types for cells with a population

of 14 agents.

Note that through the dependence on the random mobility choices (summarized in X (t)) and on the

bonus process B(t), the individual utilities Ui(t) are again stochastic processes.

The weight matrix process W(t). The connections between agents are weighted by time-evolving values

Wi,j(t) ∈ [0,∞). The larger the connection weightWi,j(t), the more likely it is for agent i to communicate

at time twith agent j , as will be seen in the recursive process rules below. The overall weight matrix process

is given byW(t) = (Wi,j(t))i,j=1,...,N . Its initial state is defined by

Wi,j(0) =

{
1, if j ∈ F(i),
0, otherwise.

(9)
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This is a generally non-symmetric matrix with zero entries on the diagonal (because a person is never friends

with itself).

2.2 Updating Scheme

The mobility choice of an agent evolves by copying the choice of a friend, where the probability for choosing

a specific friend is the normalized product of the friend’s utility times the connection weight. The copying

only takes place if the friend’s utility exceeds the agent’s own utility.

More precisely, for t ∈ N0, let (M(t),W(t),B(t)) be given, and assume thatX (t) andU(t) have already
been calculated using Eq. (2) and Eq. (4), respectively.

1. Choice of a friend. For each agent i ∈ I choose a friend Ji(t) ∈ F(i) randomly according to the

probabilities qi,j(t),

Prob(Ji(t) = j) = qi,j(t), (10)

where

qi,j(t) :=
Uj(t) · Wi,j(t)∑

k∈F(i) Uk(t) · Wi,k(t)
. (11)

2. Update of mobility types. For each agent i ∈ I update the mobility type according to

Mi(t+ 1) =

{
Mj(t), if j = Ji(t) and Uj(t) > Ui(t),

Mi(t), otherwise.
(12)

3. Update of counting state and bonus. For each cell c and each mobility typem determineX (m)
c (t+1)

according to Eq. (2) and B(m)
c (t+ 1) according to Eq. (3).

4. Update of individual utilities. For each agent i ∈ I determine Ui(t+ 1) according to Eq. (4).

5. Update of weights. For all i, j ∈ I set

Wi,j(t+ 1) =

{
Wi,j(t) · Ui(t+1)

Ui(t)
, if j = Ji(t) and Uj(t) > Ui(t),

Wi,j(t), otherwise.
(13)

6. Set t 7→ t+ 1 and restart with step 1.

The recursion (13) means that, when the mobility choice of a friend is copied, the respective connection

to this friend is updated based on the relative utility gain or loss achieved by copying the friend’s choice. Note

that the weight Wi,j can change value also when agent i does not change the mobility type (namely if the

chosen friend Ji(t) uses the same mobility type as person i and Uj(t) > Ui(t)).

The rationale behind this updating scheme is that if a person’s utility is increased by copying somebody, it

becomesmore likely to copy this friend again and vice versa. This can be seen as a way of Baysian updating:

during the simulation, person i collects information about how useful it was to copy certain friends in terms

of utility optimisation. WeightsWi,j are used to quantify expectations about how beneficial it is to copy the

choice of friend j. In the beginning, all friends are expected to be equally useful to copy from, see the initial

weights Eq. (9). New information which is gathered during the simulation is used to update the person’s

expectations.
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2.3 Markov Property

Let

Y(t) := (M(t),B(t),W(t)) (14)

denote the combined state of the process at time t. The process (Y(t))t=0,1,... recursively defined by the

rules above is a time-homogeneous Markov process with possible states

y = (m,W ,B) ∈ MN × [0, 1]C×M × [0,∞)N×N =: Y. (15)

Its transition probabilities are determined by the probabilities qi,j(t) defined in Eq. (11) which in fact are

functions qi,j(y) of the whole system state y, as they depend on the weightsW(t) and on the utilities U(t)
which themselves are determined byM(t) and B(t), see Eq. (4).

More precisely, let F :=
∏N

i=1 F(i) denote the Cartesian product of the sets of friends. For each J ∈ F
there is a function fJ that maps Y onto itself and summarizes the steps 2-5 from the updating scheme. For

the transition probabilities of the Markov chain (Y(t))t=0,1,..., we obtain

Prob(Y(t+ 1) = y′|Y(t) = y) =
∑
J∈F

fJ (y)=y′

P (J |y), (16)

where

P (J |y) :=
∏
i∈I

qi,Ji(y) (17)

is the probability for the choice of friends J (t) = J ∈ F given Y(t) = y ∈ Y.

As for the sum in Eq. (16), we note that for agents i whose weights change from t to t + 1 on account

of updating, i.e. Wi,j(t + 1) 6= Wi,j(t) for some j ∈ Fi, the index Ji(t) of the chosen friend is uniquely

determined because there is equality Wi,j(t + 1) = Wi,j(t) for all other j 6= Ji(t). However, for those

agents i who do not update their mobility type and weights at time t (because the utility of the chosen friend

does not exceed their own), this uniqueness is not given. Thus, there can generally be several choices of

friends J (t) = J ∈ F that lead to the same state y′, and we need to sum their probabilities.

Skipping any of the components of the process Y(t) = (M(t),B(t),W(t)) would mean to loose the

Markov property: Because of the recursive equation (3) the utility functions depend on the past of the process,

just as the weights do, owing to (13). With these two, the transition probabilities depend on the past of the

process aswell. Hence the processesM(t) andX (m)
c (t), which are the components ofmain interest, are not

Markovian by themselves. They becomeMarkovian when artificially setting B(t) = 0 andW(t) = W(0) for

all times t, so by ignoring the bonus process and by skipping the update of weights. We note that the intrinsic

stochasticity of the dynamics solely originates from the random choice of a friend Ji(t), see Eq. (10). The

values of all other process components result from deterministic rules.

While this analysis has made the structure of the Markov process clear, the process itself is still too

complex for its dynamic features to be investigated in an analytic manner within this paper. In the following

section, we therefore examine the contribution of the components B(t) and W(t) to the dynamics using

numerical simulations, as is customary for agent-based models.
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Population map A Population map B

N = 360 persons on

C = 36 cells of which are

urban cells: 1, with 26 persons

rural cells: 13, in total 26 persons

intermediate: 22, in total 308 persons

N = 360 persons on

C = 36 cells of which are

urban cells: 9, in total 197 persons

rural cells: 27, in total 173 persons

intermediate: 0 cells

Figure 2: The different population distributions. For both maps the maximum population density per cell is 

26 and the minimum is 2. Cells with more than 14 inhabitants are called “urban”, and cells with less than 14 

“rural”; cells with 14 persons are neither urban nor rural but “intermediate” (see text for explanation).

3 Simulation results

In addition to the mobility choices M(t), the stochastic process Y(t) defined in Eq. (14)  contains the two 

components B(t), W(t) that convey the feedbacks of the agents’ decisions on the system and conserve 

the past dynamics of the system which thereby influence the present behaviour. In the following, we show 
simulation results focusing on the role of these two feedback processes:

1. The influence of the bonus process: As mentioned above, the bonus process B(t) can be interpreted

as infrastructure development in the mobility context. It is steadily updated according to Eq. (3) and

describes how a certain behaviour – in this case the usage of a certain mobility type – shapes the

system in a way that enforces this behaviour. In the mobility case this could be an extension of the

infrastructure for this type. We study the influence of this process by comparing the system’s behaviour

with and without this effect in Section 3.2.

2. The influence of the weight matrix process: Agents’ connections to their friends are re-weighted ac-

cording to Eq. (13) in every time step. This can be interpreted as social learning in the sense that the

person learnswhether it was useful or adverse to copy the behaviour of a certain friend and thusmakes

it more likely or unlikely to copy them again. The influence of this weight matrix processW(t) on the

dynamics of the system is studied by comparing the system’s behaviour with and without this effect,

see Section 3.3.

Before that, we give some more details about how simulations are set up and initialised.

9



3.1 Setup and Initialisation

The simulations shown in this paper are performed with the R-MoTMo version that can be downloaded at the

CoMSES model library (27). All simulations take place on a map of 6 × 6 pixels. Two different population

distributions are used, which are part of the published R-MoTMo code and shown in Figure 2. In both of

them, the maximum number of persons per cell is 26, and the minimum is 2. That means, that without

any infrastructure feedback, i.e. u
(m)
c (x, b) = û

(m)
c , see Section 2, for cells with less than 14 inhabitants car

usage has a higher utility (rural cells) and for cells withmore than 14 inhabitants public transport has a higher

utility (urban cells). In cells with 14 inhabitants both utility functions have the same value (intermediate cells),

see also Figure 1.

In the beginning of a simulation with R-MoTMo, persons are created and distributed as given by one of the

input maps. They are assigned randommobility choices. For each agent, the agent-specific set of friends of

size n is randomly drawn at initialization of the model, where the probabilities for being friends with persons

living close by is higher than for persons further away, as described in the ODD document given in (27).1 As

mentioned, the set of friends stays fixed throughout a simulation but the intensity of a friendship can change

according to (13). By construction, agent i is never friends with itself, so i /∈ F(i).
All simulations shown here are done withn = 15 friends per person. As all behaviour of interest is clearly

seen within the first 200 time steps, all simulations were run up to this point in time.

3.2 Coordination via Infrastructure Feedback

The infrastructure feedback is twofold: there is the bonus processB(t), given in Eq. (3). This process causes
a mobility type that is chosen more often to provide a higher utility to its users in the long run. On the other

hand, there is a immediate utility malus for mobility types the more they are used, as given in Eq. (6). Both

effects are local, i.e. they depend only on the amounts of users in the respective cell.

Population map A of Figure 2 looks a bit artificial but was created to be a balanced test case in the

sense that there are as many agents living in rural cells as in urban ones and the utilities for cars and public

transport are maximal or minimal for urban and rural cells, respectively (see Eq. (5)). Most persons live in the

intermediate area between rural and urban cells, where the exogenous part of the utility functions is equal

(see Figure 1), which means that without bonus and malus processes (infrastructure feedback) using either

of the two mobility types does not make a difference for the utility of persons living in these cells.

With infrastructure feedback, however, agents in the intermediate area tend to coordinate on onemobility

type. Simulations are found to typically end in one of two configurations: either car usage is dominant in all of

the intermediate area, or almost everybody there uses public transport. Typical simulation results for cellwise

car usage in both cases are shown in Figure 3: By the time t = 200, the intermediate area (i.e. the cells with

14 inhabitants) has become either mainly dominated by car use (a) or by the use of public transport (b). The

third graphic (c) shows a typical run without the infrastructure feedback, i.e. with u
(m)
c (x, b) = û

(m)
c . Here,

no coordination emerges.

The statistics of the dynamics can be found in Figure 4, where the simulation output for ensembles of 100

runs each are depicted for scenarios with and without infrastructure feedback. On the left, i.e. in Figure 4(a)

and (c), respectively, themean car usage per cell at time t = 200 is shown. On the right, i.e. in Figure 4(b) and

1We note that there is a non-zero probability for the network to split up into disconnected components. This probability will decrease

with increasing number n of friends per agent. For the value n = 15 chosen for the experiments of this Section, the probability of such

a split-up is very small and may be ignored.
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(a) (b) (c)

Figure 3: Influence of the infrastructure feedback: Exemplary final states. Car usage after 200 time steps

for simulations with population map A (see Figure 2) and n = 15 friends per person. (a) and (b) show

exemplary shares of car usages X (0)
c for all cells c for two different runs with infrastructure feedback. (c)

shows a typical case of car usage X (0)
c after 200 time steps without infrastructure feedback.

(d), the temporal development of the overall (i.e. the average over all cells) car usages for the 100 different

runs are depicted. (a) and (b) show simulations with infrastructure feedback (bonus process B, and malus

function as described above), whereas the simulations of (c) and (d) are performed without infrastructure

feedback, i.e. the utility functions (5) are set constant as u
(m)
c = û

(m)
c .

For the case with infrastructure feedback, in most cases (here more than 60% of the realizations) the

average car usage in the end was between 0 and 20%, which is e.g. the case in the exemplary run shown in

Figure 3(b), and almost all the others (around 35%) had a final car usage of between 80% and 100%, like the

run shown in Figure 3(a). We find that, in fact, with infrastructure feedback there is a strong coordination

on either of the two mobility types (roughly twice as much on public transport as on cars) while without

infrastructure feedback the usage of both types is always around 50%, as can bee seen in Figure 4(d). The

coordination also suggests that the (long-term) bonus process B(t), given in Eq. (3), dominates the (short-

term)malus process, given in Eq. (6), because contrary to the bonus process, themalus process would rather

incentivise not to coordinate. These simulation results indicate that an analysis of the asymptotic behaviour

of the Markov chain defined in Section 2 would be fruitful. In particular, it seems that the dynamics converge

in the long run to one of two fixed points: a map where all agents except those in the urban cell use cars, and

one where all agents but those in the rural cells use public transport. Such amathematical analysis, however,

goes beyond the scope of this paper.

The observed behaviour can be classified as path dependency as defined by Vergne and Durand (29). It

depends on the system’s history in the following way: it is triggered by contingent events (in this case, the

random social networks of the individuals living in intermediate areas and their random choices of friends to

copy); it possesses a self-enforcing component through the bonus process; and it results in a lock-in state.

For population map A, which has many intermediate cells, the coordination via the bonus process domi-

nates the simulation dynamic. For other population distributions with less intermediate cells thismechanism

plays a minor role. This is due to the fact that, already from the beginning on, one mobility type has a higher

utility than the other for all cells. In Figure 7 in the Appendix, the same simulations as in Figure 4 are shown

for population map B, as an example for this second scenario.
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(a) (b)

(c) (d)

Figure 4: Influence of the infrastructure feedback: Statistics. Simulations with infrastructure feedback

(bo-nus and malus processes): (a) Mean Xc
(0) 

(car usage per cell) after 200 time steps, (b) overall car 

us-age in the different simulation runs over time, see Section 3.2. Simulations without infrastructure feedback
(i.e. u(

c
m)

(x, b) = û(
c
m)

):  (c)  Mean Xc
(0) 

(car usage per cell)  after 200 time steps, (d)  overall car usage in the 

different simulation runs over time. The statistics result from 100 simulations per scenario, with 200 time 

steps and n = 15 friends per person, using population map A.

3.3 Learning by Weighting Links in the Social Network

In the model, the weight matrix process W(t) represents social learning of agents. After an agent copies a 

friend’s mobility choice the usefulness of this choice for the person is determined and the link to the respec-

tive friend is re-weighted accordingly, as given in Eq. (13).  This means that agents learn over time about how 

useful copying certain friends is in terms of utility optimisation; past experiences are used to strengthen or 

weaken the link to the respective friend in a recursive manner. 

    Figure 5 shows the effect of the weighting process for population map B. Based on an ensemble of 100 

runs with n = 15 friends per person, (a) and (c) show the mean share of car usage per cell, while in (b) and

(d) the mean utilities per cell are plotted. For (a) and (b) the weighting of friends as described in Section 2 

is used, whereas (c) and (d) are done without the weighting process, i.e. all non-zero entries of the matrix 

W(t) are kept constant at 1 (as they are initialised). Throughout large parts of the map, one can see that 

the scenario with social learning (by weighting of links in a recursive manner) indeed works better in terms 

of utility optimisation.

   Population map A exhibits a minor role for the weight matrix process, primarily because of the large 

number of individuals residing in intermediate cells and the resulting significance of coordinating individuals’ 

choices through infrastructure feedback, as discussed in Section 3.2. Simulations for population map A (with 

the same parameter values as before) can be found in Figure 8 in the Appendix.
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(a) (b)

(c) (d)

Figure 5: Influence of the weight matrix process: Statistics. Simulations for n = 15 friends per person 

using population map B, means over 100 runs, (a)  mean Xc
(0) 

(car usage per cell)  and (b)  mean utilities per 

cell, i.e. average over all inhabitants per cell. The second row shows the same simulations without weighting 

process, i.e. all non-zero entries of Wi,j (t) are constantly set to 1: (c)  mean Xc
(0) 

(car usage per cell)  and (d)  

mean utilities per cell.

4 Discussion

We have formulated the agent-based model R-MoTMo mathematically as a Markov process

(M(t), B(t), W(t))t=0,1,...

which has three components:

1. The decision processM(t) recording the mobility choices of the persons, which is a random process

with transition probabilities determined by the other process components.

2. The bonus processB(t) that is recursively defined and thus conserves the decision history and causes
a path dependency via infrastructure development.

3. The weight matrix process W(t) defining the time-dependent network of agents; agents recalculate

the weights recursively following a Bayesian updating rule.

The state space of the mobility decision process M(t) complies with the one found in mathematical

formulations of basic opinion dynamics models. However, to describe the model’s dynamics by defining the
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probabilities underlying the mobility choices, two further components are necessary. These are B(t) and 

W(t) which are related to the agents’ environment and the network between them, both co-evolving with

the agents’ decisions. By including the processes B(t) and W(t) which store the decision history, the path-

dependency of the dynamics is turned into memoryless state dependency in the sense of the Markov prop-

erty: The statistics of the process’ future dynamics solely depends on the present system state (M(t), B(t),  
W(t)), while being independent of the dynamics’ history.

How general are the components we have identified for ABMs of social systems, and can we relate them

to the elements others have proposed as fundamental for agent-based simulations of social systems? Re-

cently, Dilaver and Gilbert (7) developed a conceptual anatomy framework for agent-based social simulation.

The elements of this framework are ’agents’, ’social structure’, ’environment’, ’actions and interactions’, as

well as ’temporality’. In our work, the ’agents’ are the persons who take mobility decisions and evaluate their 

connections to other persons in a learning process. In the formulation of Section 2, agents are tracked by the 

index i in the processes M(t) and W(t). The matrix W(t) containing the connection strengths between any

two agents in the system corresponds to the (evolving) ’social structure’. The cells with their evolving utility 

values for the two mobility types correspond to the (evolving) ’environment’. The element ’actions and inter-

actions’ can be captured as the mobility process: ’actions’ in the form of decision making are here modelled

as a rather simple copying of another agent’s mobility choice. At the same time, they produce a two-fold ’in-

teraction’ both with the environment and with the social structure: the probabilities for choosing which agent

to copy depend on both the environment (given by B(t)) and the social structure (captured by W(t)), and the 

decisions taken, in turn, influence the updated values of these processes. Considering ’temporality’, Dilaver

and Gilbert point out both time and history as relevant concepts. In our framework, time is modelled as a sim-

ple period-based process given by a discrete-time Markov chain (without an empirical interpretation of what

a period represents). A building up of history occurs through the feedback mechanisms in the environment

and the network processes, that through their co-evolution with the agents’ actions create path-dependency

in the mobility decisions. In this regard, our model stands out against other mathematically formulated ABMs

(e.g., for opinion dynamics), which mostly do not take memory effects into account.

Although the components of our model can be related to the elements of social ABM identified by Dilaver

and Gilbert, our way of classifying the three components – decision process, infrastructure, and network –

differs fundamentally from their classification as ours is rather formal while they classify regarding content. If 

abstracted from the example of mobility decisions, we can classify two ”memory” processes that are needed

to make the system Markovian, depending on whether they operate through (local) fields or rather networks

of agents. Other socio-technical systems may have the same structural features in terms of fields and net-

works, but what is interpreted as ’social structure’ might not only be represented in a network process2. We 

think that comparing the different approaches of component identification can be fruitful. The formal and

the contentual role of elements are not completely arbitrary but there are probably strong correlations, e.g. 

between network component and social structure. Investigating these correlations will be the topic of further 

research, and this may also be a contribution of agent-based modelling to the agency-structure debate in the 

social sciences.

Another rather formal conceptual framework that our model’s structures can be related to has been pro-

posed by Laubichler and Renn (16). They introduce the concept of extended evolution to study cultural dy-

namics with the help of concepts from biological evolution theory, in particular, regulatory networks and niche
2Also in our case, the infrastructure development could be seen as influenced by a different part of ’social structure’ since it depends

upon political decisions.
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construction. Due to its co-evolutionary dynamics, our model can be interpreted in terms of this framework.

Figure 6 gives an overview of how an agent’s mobility decision interacts with the environment and vice versa.

The agent’s choice relies on the options at hand, specifically, the mobility choices with their respective char-

acteristics that are accessible at the agent’s location. Which of the possible options is chosen depends on

the agent’s social network and on the agent’s present utility as a consequence of the agent’s last choice. In

terms of Laubichler and Renn, the possible options available at that agent’s place and time can be seen as

the genomic sequence, and the agent’s social networks, that determines which of them is chosen, as the

regulatory network. All agents’ choices made at one time step influence the environment in a way that re-

sembles niche construction (e.g. 15; 20) in ecology. In other words, the individual decisions are externalised

such that they shape the environment outside of the agent in a lasting way (due to the bonus process). These

changes in the environment affect the elements that determine the agent’s decision, which can be viewed

as a process of internalisation. In our model this is done by the mechanisms of how the individual utilities

depend on the behaviour of all actors in the local environment of an agent.

Agent’s possible

mobility choices

Agent’s social network

Agent’s

mobility

decision

Shares of users

per cell and

per mobility type

→ new utilities

cellwise

aggregation

local utilities of

the mobility types

utility from

decision

individual utilities in

the agent’s network

Figure 6: Illustration of feedback mechanisms. An agent’s decision making process (solid lines) and its

interactions with the agent’s environment (dashed). See text for further description.

Studying socio-technical systems, especially in the context of societal challenges such as sustainability

transitions, may benefit from analogies to the framework of extended evolution. This is particularly rele-

vant because the emergence of innovations, whether they are technological or behavioral in nature, carries

substantial importance. To complement a perspective of statistical physics, that could focus on such transi-

tions as regime changes, an evolutionary perspective can address questions around adaptation to changing

environmental conditions (which may be caused by the populations under study). In particular, the role of

regulatory networks and whether or how they can trigger faster adaptation than the process associated with

evolutionary mutation of genes may deserve further investigation for a specific socio-technical system.
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5 Conclusion and Outlook

In summary, we have introduced the agent-based mobility demand model R-MoTMo and have shown how 

formulate it as a Markov chain. As the mobility decision process M(t) is not Markovian, it was necessary 

to extend the state space by including the processes B(t) and W(t), which account for the feedback mech-

anisms. These make the model more complex than, e.g., a classical voter model.

Since an analytic treatment of the Markov process is more difficult than for ”history-free” decision models, 

we have provided simulation results to investigate the impact of the process components B(t) and W(t) on 

the dynamics of the system, showing that both are essential in creating the model’s dynamics. We found 

that the ”infrastructure component” B(t) can introduce a coordination effect that results in path dependency 

in the system. Triggered by contingent events, the self-enforcement through the bonus process can cause 

the system to reach a lock-in state. The weight matrix component W(t) accounts for agents’ learning in the 

system which helps them to optimise their utilities over time.

We have then compared our model’s structure, made explicit in the Markov chain formulation, to two 

previous theoretical frameworks. As for the conceptual anatomy framework by Dilaver and Gilbert we found 

that we have the elements they describe as substantial for ABMs of social systems and can relate them 

to our components of the Markov process, but our classification of components is rather formal than con-

tentual and the relation of these three formal components to the contentual elements of Dilaver and Gilbert 

might differ in other models that still have the same mathematical structure. For the framework of extended 

evolution proposed by Laubichler and Renn we uncovered parallels with niche construction and regulatory 

networks that suggest potential benefits from this perspective for understanding the emergence of inno-

vation in socio-technical systems with similar structures. In fact, the same may hold for socio-economic 

and socio-ecological systems, or combinations thereof, with feedback effects that can be conceptualized as 

operating through (global or local) fields or network structures.

With this work, we have cast an agent-based model with two kinds of memory mechanism into the form 

of a Markov chain – a form that is well used for similar models without feedback effects, where it has been 

employed to better understand and analyse these systems’ dynamics, e.g. by calculating transition proba-

bilities. The analysis of the dynamics of our model in the present paper was still at the level of simulation 

output because the mathematical structure is rather complex, but a mathematical analysis of the Markov 

chain defined here is part of ongoing and future work by the authors. It will include, e.g., an analysis of fixed 

points of the model in different settings, and an analysis of initial configurations of the friendship network be-

tween agents. Such work shall further enhance the understanding and explainability of this model, R-MoTMo, 

and more generally, a model structure, that of agents taking decisions with environment- and network-based 

memory mechanisms. Those mechanisms underlay various complex socio-ecologic, socio-economic, or 

socio-technical systems, where feedbacks between decisions and environment are crucial, such as ques-

tions of sustainability, and more. The resulting form, a Markov chain with deterministic updates that encode 

the decision history into an extension of the state space, may hopefully be useful for a further analysis of 

these. Furthermore, working out the similarities (and probably differences) of the theory of these complex 

socio-technical systems with the theory of extended evolution can help to better understand change and 

adaptability of the former by looking for analogies for adaption mechanisms.

Complementary to the mathematical analysis of the complex systems underlying a given societal chal-

lenge, dialogues with the respective stakeholders are a useful element to come up with possible future sce-

narios. In order to accompany and interweave scientific knowledge with practical and experiential knowledge
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as well as preferences, interests, and values (21), new methods for this are being developed. One discussion 

format for such an transdisciplinary co-creation is the Decision Theatre3, and one of the main challenges in 

setting up a Decision Theatre is building agent-based models from scratch for each new case under study 

(31). The generalisable mathematical structure for a socio-technical system with memory mechanisms de-

fined here will be helpful for conceptualising such models in future work.
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Appendix

(a)

(b)

(c) (d)

Figure 7: Influence of the infrastructure feedback: Statistics. Simulations with infrastructure feedback

(bonus and malus processes): (a) Mean X (0)
c (car usage per cell) after 200 time steps, (b) overall car us-

age in the different simulation runs over time, see Section 3.2. Simulations without infrastructure feedback

(i.e. u
(m)
c (x, b) = û

(m)
c ): (c) MeanX (0)

c (car usage per cell) after 200 time steps, (d) overall car usage in the

different simulation runs over time. The statistics result from 100 simulations per scenario, with 200 time

steps andn = 15 friends per person, using populationmapB. Unlike as formapA (see Figure 4), coordination

via infrastructure feedback does not play a role.
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(a) (b)

(c) (d)

Figure 8: Influence of the weight matrix process: Statistics. Simulations forn = 15 friends per person using

population map A, means over 100 runs, (a) meanX (0)
c (car usage per cell) and (b) mean utilities per cell, i.e.

average over all inhabitants per cell. The second row shows the same simulationswithout weighting process,

i.e. all non-zero entries of Wi,j(t) are constantly set to 1: (c) mean X (0)
c (car usage per cell) and (d) mean

utilities per cell. For map A, the effect of the weight matrix process are small compared to the infrastructure

feedback processes.

22




