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Subjected to the tidal field of its companion, each component of a coalescing binary suffers a slow
change in its mass (tidal heating) and spin (tidal torquing) during the inspiral and merger. For black
holes, these changes are associated with their absorption of energy and angular momentum fluxes.
This effect modifies the inspiral rate of the binary, and consequently, the phase and amplitude of
its gravitational waveform. Numerical relativity waveforms contain these effects inherently, whereas
analytical approximants for the early inspiral phase have to include them manually in the energy
balance equation. In this work, we construct a frequency-domain gravitational waveform model that
incorporates the effects of tidal heating of black holes. This is achieved by recalibrating the inspiral
phase of the waveform model IMRPhenomD to incorporate the phase corrections for tidal heating. We
also include corrections to the amplitude, but add them directly to the inspiral amplitude model
of IMRPhenomD. We show that the new model is faithful, with less than 1% mismatch, against a set
of hybrid waveforms, except for one outlier that barely breaches this limit. The recalibrated model
shows mismatches of up to ∼ 16% with IMRPhenomD for high mass ratios and spins. Amplitude
corrections become less significant for higher mass ratios, whereas the phase corrections leave more
impact – suggesting that the former is practically irrelevant for gravitational wave data analysis
in Advanced LIGO (aLIGO, Virgo and KAGRA. Comparing with a set of 219 numerical relativity
waveforms, we find that the median of mismatches decreases by ∼ 4% in aLIGO zero-detuned
high power noise curve, and by ∼ 2% with a flat noise curve. This implies a modest but notable
improvement in waveform accuracy.

I. INTRODUCTION

The launch of gravitational wave (GW) astronomy has
had a stellar start, with the detection of over 90 com-
pact binary coalescences (CBCs) so far [1–3]. The fourth
(O4) observation run of the ground-based GW detectors
LIGO [4], Virgo [5] and KAGRA [6] are expected to de-
tect many more CBCs, which enables us to subject Gen-
eral Relativity (GR) to unprecedented tests. Such tests
demand high precision CBC waveforms. In the field of
GW data analysis, waveform models serve as templates
against which the real data are compared and estimates
of the source parameters are made by the matched fil-
tering technique [7] and Bayesian inference [8–10]. Since
a sizable subset of CBCs are high-mass binaries, which
have a good fraction of their signal power arriving from
the late-inspiral and merger parts, these tests benefit
from employing inspiral-merger-ringdown (IMR) wave-
forms. One needs to solve the full Einstein equations
numerically to extract gravitational waveforms predicted
by GR to meet the accuracy standard imperative for
describing the merger-ringdown parts of a CBC. How-
ever, such simulations of numerical relativity (NR) are
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of extreme computational cost, impeding the usage of
this scheme for creating long waveforms that span the
entire frequency range of GW detectors for intermedi-
ate to stellar-mass binaries. On the other hand, post-
Newtonian (PN) approximation (see, e.g., Ref. [11] and
the references therein) or the effective-one-body (EOB)
framework [12–14] describes the inspiral part in analyt-
ical forms, but fail to be reliably accurate in the late
inspiral to the merger regime.
Efforts to construct accurate IMR models have been

based on the EOB formalism with calibrations to NR
data (SEOBNR [13, 15, 16] and TEOBResumS [17–19] mod-
els), phenomenological waveform models built by com-
bining PN and NR waveforms [20–25], and more re-
cently, surrogate models [26–28]. The computational cost
of EOB models, however, is burdened by the need to
tackle the orbital dynamics through solving a complex
system of ordinary differential equations. Phenomeno-
logical models, in comparison, are equipped with closed-
form expressions for the phase and amplitude of the
waveforms for a given set of binary parameters, and
are much faster to evaluate. The latter models contain
PN-inspired phase and amplitude behaviors augmented
with higher-order terms calibrated against a set of “hy-
brid waveforms”. The hybrids are constructed by stitch-
ing either PN (e.g., in IMRPhenomC [21]) or EOB (e.g.
IMRPhenomD [24, 25], IMRPhenomXAS [23] for aligned-spin
cases) waveforms with NR ones at a suitable frequency,
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to allow smooth transitions of phase and amplitude from
the inspiral to the merger-ringdown regime. Utmost
care needs to be borne when producing complete IMR
waveforms by combining these parts, to limit introduc-
ing waveform systematics, which can reduce the effec-
tiveness of tests of GR. The increasing modeling errors
and computational cost of gravitational waveforms with
increasing mass ratio and spins [29] have inspired the
advent of reduced-order models (ROMs) and surrogate
models. By fitting interpolated decomposed waveform
data pieces over the binary parameter space, surrogate
models can significantly accelerate NR (e.g. [28, 30, 31])
or EOB waveforms (e.g. [32–34]), while maintaining high
accuracy within their parameter space of validity.

In phenomenological models for binary black holes
(BBHs), the inspiral waveform is usually constructed
with the “point-particle” approximation, which also acts
as a baseline for creating generic waveforms with tidal
effects arising from the finite size of the components, e.g.
for binary neutron stars (BNSs) [35, 36]. However, even
for black holes (BHs) there exists a finite-size effect that
needs to be consistently incorporated within a complete
BBH waveform model, namely, the absorption of energy
and angular momentum by their horizons. Due to their
causal structure, BHs in GR are perfect absorbers that
behave as dissipative systems [37, 38]. A significant fea-
ture of a BH is its horizon, which is a null surface and
a “one-way membrane” that does not allow energy to
escape outward. In a binary, a BH experiences tidal in-
teractions from its companion, which cause changes in
its mass, angular momentum, and horizon area. This
phenomenon is called tidal heating (TH) [39–43]. This
effect is weak but important in many respects. Recent
studies [44, 45] have found that the presence of TH can
be measurable, especially in the future era of GW de-
tectors with orders of magnitude higher signal-to-noise
ratios (SNRs) compared to the current ones. Combined
with the fact that TH is much more significant for BHs
than horizonless compact objects, this makes TH a viable
discriminator for horizons to identify BHs against the-
oretically possible exotic compact objects (ECOs) [46],
which can mimic BHs in their GW signals [47, 48].

In NR simulations, TH arises naturally due to the pres-
ence of the BH apparent horizons. While evolving the
binary, BH singularities are expunged from the compu-
tational domain by excision techniques or by the “moving
puncture” method. The properties of the apparent hori-
zons – the masses, spins, and the horizon areas – continue
to get impacted by the energy and angular momentum
fluxes throughout the binary evolution up to the merger.
Changes in BH masses and spins impact the inspiral rate
of the binary, leaving its imprint in the phase of GW
signals. Complete IMR waveforms created with NR data
for late inspiral and merger, then, would have incomplete
information about BBH systems if they are joined with
inspiral approximants devoid of the imprints of horizon
fluxes. Ignoring this effect may also lead to ambiguities
in the tests of GR from GW observations of CBCs, where

small deviations from GR predictions are probed under
the strong gravity conditions of a CBC. Lesser system-
atics will facilitate a more accurate evaluation of GR’s
validity in such cases.

In the EOB formalism, progress has been made to
include the effects of horizon absorption for nonspin-
ning binaries [49–51] and for aligned spins [52]. These
works use numerical evaluation of horizon fluxes using
a frequency-domain perturbative approach along stable
and unstable orbits in the test-mass limit. This test-
mass knowledge is then hybridized with lower-order an-
alytical information that is valid for comparable masses.
These calculations were implemented in the construc-
tion of TEOBResumS [17], an NR-informed EOB waveform
model which includes the horizon-absorption effects in a
PN-inspired resummed form. Alvi [41] has calculated,
under PN approximation, leading-order expressions of
mass and spin evolution of BBH systems. Alvi’s expres-
sions are explicitly valid for any mass ratio. A resummed
version of these expressions was used by Damour and Na-
gar [52] to describe them under the EOB framework.

In Phenomenological models, horizon absorption
was taken into account in the flux calculations of
IMRPhenomC [21], up to 2.5PN order. However, later
models with more accurate calibrations spanning larger
regions of the parameter space (e.g. IMRPhenomD or
IMRPhenomXAS) do not account for this effect explicitly
in their inspiral parts.

In this work, we construct a phenomenological BBH
waveform model with a consistent inclusion of TH ef-
fects, and study its contribution to an improvement in
waveform systematics. A complete BBH model, which
includes the phase and amplitude modifications for TH
from the early inspiral to the merger, not only provides
a comprehensive foundation but also helps to lay the
groundwork for a more general waveform model with the
horizon parameters, which can act as discriminators for
BHs from ECOs or NSs [44, 45].

We first describe some preliminaries and notations of
gravitational waveforms in Sec. II. Then in Sec. IIIA,
we build an inspiral model containing explicit correc-
tions due to TH at 2.5PN, 3.5PN, and 4PN orders in
their phase and amplitude. The point-particle baseline
for the inspiral waveform is based on an aligned-spin
EOB approximant. In Sec. III B, we describe the pub-
licly available NR waveforms of the SXS catalog [53] used
for merger and ringdown phases. In Sec. IV, we describe
the construction of new hybrid waveforms by stitching
together the TH-corrected inspiral and merger-ringdown
parts. Following IMRPhenomD (henceforth referred to as
PhenomD), we model the hybrids in the frequency domain
in Sec. V and calibrate the inspiral part with augmented
PN expressions, but against the new set of hybrid wave-
forms. Section VI discusses the faithfulness of the new
model, and in Sec. VII, we compare it with PhenomD and
NR data within the parameter range of calibration. We
conclude in Sec. VIII with discussions and future direc-
tions of this work.
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Throughout the article, we will use geometric units
by considering the gravitational constant (G) and the
speed of light in vacuum (c) set to unity, except while
calculating physical quantities.

II. WAVEFORM CONVENTIONS AND
NOTATION

We consider l = |m| = 2 spherical harmonic modes of
gravitational waves from coalescing binary black holes.
In the time domain, the complex GW strain can be writ-
ten as,

h2,2(Θ, t) = A(Θ, t)e−iϕ(Θ,t), (1)

where Θ is the parameter vector containing the param-
eters of the binary. The intrinsic parameters are the di-
mensionless spin vectors χ1,χ2 and the two masses m1

and m2. Since we are concerned with non-precessing bi-
naries only, the spin vectors have nonzero components
only along (or opposite to) the direction of the orbital
angular momentum. In terms of the normalized orbital
angular momentum L̂ and the dimensionful spin vectors
Si (i = 1, 2 for the two objects), the components of di-
mensionless spins can be expressed as

χi =
Si · L̂
m2

i

. (2)

We define the mass ratio as q = m1/m2 ⩾ 1, total
mass M = m1 + m2, and the symmetric mass ratio
η = m1m2/M

2.
The complex strain in Eqn. (1) can be constructed from

the plus and cross polarization states as

h(Θ, t) = h+(Θ, t)− ih×(Θ, t) . (3)

The Fourier transform of the complex strain is defined as

h̃(f) =

∫ ∞

−∞
h(t)e−i2πftdt , (4)

where f denotes frequency. For the non-eccentric wave-
forms that we use, f can be written as a monotonically
increasing function of time t until the merger.

In gravitational waveform modeling, the dimensionless
frequency Mf plays an important role, since the total
mass M acts as a scaling factor. For better readability,
we define F ≡Mf .

III. INPUT WAVEFORMS

A. Inspiral waveforms

1. Effective-one-body description of a compact binary
coalescence

In the effective-one-body approach to the two-body
problem in GR, originally developed by Buonanno and

Damour [12], the dynamics of two compact objects of
masses m1 and m2 and spins χ1 and χ2 is mapped
onto the dynamics of an effective particle of mass µ =
m1m2/(m1+m2) and spin χ∗ moving in the background
of a deformed Kerr geometry with mass M = m1 +m2

and spin χKerr. The spin mapping {χ1,χ2} → χ∗ and
the deformation of the Kerr background, parametrized
by the symmetric mass ratio η, implies that the test-
particle dynamics reproduces the PN-expanded dynam-
ics of the original two-body system. Free parameters
are introduced into the models that represent unknown,
higher-order PN terms, or additional physical effects
like corrections due to eccentricity. Such free parame-
ters are calibrated to NR simulations. With the EOB
system specified, its conservative dynamics can be de-
scribed by an EOB Hamiltonian [15, 16], while the non-
conservative dynamics is contained in a parametrized
radiation-reaction term that is inserted in the equations
of motion. This term sums over the outgoing GW modes
and is calibrated to reproduce NR simulations. The com-
bination of these two pieces describes the binary inspiral
through to the merger, at which point a ringdown wave-
form is attached to the inspiral-merger waveform. The
ringdown waveform is constructed as a linear superposi-
tion of the dominant quasinormal modes (QNMs) of the
Kerr BH formed at merger [52, 54], with the amplitude
and phase of each QNM mode determined by the process
of stitching the ringdown part with the inspiral-merger
parts.
For the purpose of creating hybrid waveforms in our

work, we choose SEOBNRv2 [16], an aligned-spin EOB ap-
proximant, as the point-particle baseline. More recent
versions of the SEOBNR family of waveforms are avail-
able [13] at present, but we create our model based on
the former one for a direct comparison with PhenomD.
We also mention here that for PhenomD, NR calibrations
of SEOBNRv2 were removed before creating hybrid wave-
forms, referred to as SEOBv2. In this work, however, we
use the original calibrated version of the EOBmodel since
in the hybrids, stitched at a frequency much lower than
the innermost stable circular orbit (ISCO), we expect lit-
tle to no NR information from the inspiral approximant
to be present.

2. Corrections for tidal heating of black holes

The early inspiral part of a CBC can be described by
the analytical formalism of post-Newtonian (PN) expan-
sions [11], under the approximation that the source is
slowly moving and weakly gravitating. In this formal-
ism, the evolution of the orbital phase Ψ(t) of a compact
binary is computed as a perturbative expansion in a small
parameter, typically taken to be the characteristic veloc-
ity v = (πMf)1/3. This analytical procedure demands
v ≪ 1, which makes it useful in the early inspiral phase
of a CBC.
An electrically neutral spinning black hole in GR –
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the Kerr black hole (KBH) – is stationary when it is
isolated. On the other hand, when a KBH is a member of
a binary, it feels its companion’s tidal field, which acts as
a non-axisymmetric perturbation [39]. This perturbation
causes changes in the mass, spin, and horizon area of the
KBH over time [41]. Since the KBH experiences the tidal
field of its orbiting companion, it absorbs (emits) energy
from (into) the orbit. The absorption part is present in
non-spinning BHs as well. Additionally, for a KBH, a
spin frequency higher than the angular frequency of the
tidal field slows down due to tidal interactions, which
in turn makes the KBH lose its rotational energy. The
slowing down of a rotating BH due to the gravitational
dissipation produced by exterior mass is analogous to the
slowing down of a rotating planet by viscous dissipation
due to tides raised by an exterior moon that increases its
internal thermal content - a phenomenon known as tidal
heating. Due to this similarity, the energy and angular
momentum flux in BBHs is also termed tidal heating [40].

During the early stages of the binary evolution, the
change in the orbital frequency due to emission of GWs
is much smaller than the orbital frequency itself. In this
adiabatic inspiral regime, loss of binding energy E(v) of
the two-body system with time equals the GW flux emit-
ted to future null infinity (F∞(v)) plus the energy flux
absorbed by the two BH horizons (FH(v)). So the energy
balance condition becomes

−dE(v)

dt
= F∞(v) + FH(v). (5)

Evolution of the orbital phase ϕ and the characteristic
velocity v, obtained from this equation, read

dϕ

dt
=
v3

M
,

dv

dt
= − F(v)

E′(v)
, (6)

where F(v) = F∞(v) + FH(v). These equations yield
a solution for the phase Ψ(f) of the frequency-domain

waveform h̃(f) = Ã(f)e−iΨ(f) [55]:

Ψ(f) = 2(tc/M)v3−2ϕc−π/4−
2

M

∫
(v3− v̄3)E

′(v̄)

F(v̄)
dv̄,

(7)
where E′(v) = dE(v)/dv .

The frequency-domain amplitude Ã(f) can be written
as1 [56]

Ã(f) = C 2ηM
3/2

dL
v

√
π

3

[
−E

′(v)

F(v)

]1/2
, (8)

where C is a constant that depends on the inclination of
the orbital plane with the line of sight, and dL denotes
the distance to the binary.

1 Note that we define E(v) as the total binding energy. Ref [56]
treats E(v) as the specific binding energy (binding energy per
unit mass), so the power of M in our treatment is different from
theirs in this particular equation.

Splitting F into F∞ and FH in Eq. (7) enables one to
write the frequency-domain phase in the form

Ψ(f) = ΨPP(f) + ΨTH(f), (9)

with ΨPP(f) being the GW phase under point parti-
cle (PP) approximation that corresponds to F∞, and
ΨTH(f) being the phase correction due to TH. The ab-
sorbed flux can be expressed as the sum of the rates of
mass increment [41] for the two BHs:

FH(v) =
32

5
η2
v15

4

2∑
i=1

(mi

M

)3 (
1 + 3χ2

i

)
×

{
−(L̂ · Ŝi)χi + 2

[
1 +

√
1− χ2

i

]
mi

M
v3
}
,

(10)

where the indices i = 1, 2 denote the two BHs, and Ŝi

and L̂ are the unit vectors along the directions of the ith
object’s spin and the orbital angular momentum, respec-
tively.
Using this expression, one can calculate the phase con-

tribution of tidal heating in gravitational waveforms of
BBHs to be [44, 45]

ΨTH =
3

128η

[
−10

3
H

(BBH)
eff5 log (v)

− 5

168
v2H

(BBH)
eff5 (952η + 995)

+
5

3
v3 log (v) (−4H

(BBH)
eff8 +H

(BBH)
eff5 ΨSO)

]
,

(11)

where the quantities H
(BBH)
eff5 and H

(BBH)
eff8 are defined as

H
(BBH)
eff5 ≡

2∑
i=1

(mi

M

)3 (
L̂ · Ŝi

)
χi

(
3χi

2 + 1
)
, (12a)

H
(BBH)
eff8 ≡ 4πH

(BBH)
eff5 +

2∑
i=1

(mi

M

)4 (
3χi

2 + 1
)

×
(√

1− χi
2 + 1

)
. (12b)

ΨSO is a “spin-orbit” term, given by

ΨSO =
73

3(1 + q)2

{
q2
(
L̂ · Ŝ1

)
χ1 +

(
L̂ · Ŝ2

)
χ2

}
+

15q

(1 + q)2

{(
L̂ · Ŝ1

)
χ1 +

(
L̂ · Ŝ2

)
χ2

}
.

(13)

We find the PN expansion of the total amplitude by

expanding [−E′(v)/F(v)]
1/2

in Eq. (8) in powers of v up
to v7, and separate the contribution due to TH:

Ã(f) = ÃPP(f) + ÃTH(f). (14)



5

ÃPP(f) is mentioned in Eq. (5.7) of Ref. [56], and we

get the expression for ÃTH(f) as

ÃTH(f) = C M5/6

dLπ2/3

√
5η

24
f−7/6

[
1

8
H

(BBH)
eff5 v5

+

(
1079

1792
+

103

192
η

)
H

(BBH)
eff5 v7

+
1

32

{
ÃSOH

(BBH)
eff5

−8
(
H

(BBH)
eff8 − πH

(BBH)
eff5

)}
v8
]
,

(15)

where ÃSO is the spin-orbit term

ÃSO =
179

6(1 + q)2

{
q2(L̂ · Ŝ1)χ1 + (L̂ · Ŝ2)χ2

}
+

35q

2(1 + q)2

{
(L̂ · Ŝ1)χ1 + (L̂ · Ŝ2)χ2

}
.

(16)

B. Numerical relativity waveforms for
merger-ringdown

As a BBH progresses towards the merger phase, the
BHs come so close to each other that the system becomes
too compact for the weak-gravity condition to hold. In
addition, their orbital velocities culminate to values com-
parable to c, breaching the slow-motion approximation.
The analytical PN results, with their highest order of
expansion available currently, become increasingly inac-
curate to describe the system evolving under such ex-
treme conditions. Starting from this late inspiral phase
to the merger and ringdown phase where the two BHs
merge and the final remnant BH settles to equilibrium,
one needs to solve the full Einstein equations numerically
for extracting GWs to conform to the accuracy standards
of the waveforms required for searches of GW signals or
their parameter estimation (PE). This is the field of NR,
which has seen exciting breakthroughs [57–59] in the
early 2000s, and great strides towards simulating merg-
ing black holes with different masses and spins [60–63].

We use NR data from the publicly available SXS cat-
alog [53], computed using the Spectral Einstein Code
(SpEC) [64, 65]. SpEC uses the excision techniques to
remove the BH singularity for extracting gravitational
waves from binary black hole systems. Unlike the PN
framework where the fluxes of energy and angular mo-
mentum absorbed by the BHs have to be considered ex-
plicitly in the energy balance equation, numerical simu-
lations of full Einstein equations capture this effect in-
herently. Scheel et al. [66] have demonstrated the slow
change in the BH masses and spins through the binaries’
temporal evolution in NR simulations with SpEC. They
track the apparent horizons as a function of time, and
at frequent time intervals, they measure both the surface
area and the spin of the horizons. The spin computation
has been carried out using the approximate Killing vec-
tor formalism [67]. The mass of the black hole is then

computed using Christodoulou’s formula [68],

M2 =M2
irr +

S2

4M2
irr

, (17)

where Mirr is the irreducible mass of the Kerr BH,

M2
irr =

1

16π

∫
H
dA. (18)

Here S is the (dimensionful) spin of the KBH and the
integration covers the total horizon area A.
During the evolution, each SXS NR waveform is ex-

tracted at a series of times on a set of concentric co-
ordinate spheres surrounding the binary, decomposed
in modes of spin-weighted spherical harmonic functions.
Then the waveforms are extrapolated to future null infin-
ity I +. The dataset of each SXS waveform contains sev-
eral gravitational waveform modes (l,m), and the orders
of extrapolation N = 2, 3, 4. A higher order of extrapola-
tion is preferred when accurate waveforms are needed in
the inspiral, and lower order extrapolation is preferred for
more accuracy at the merger-ringdown phase [53]. Since
we use these waveforms for constructing hybrids, we need
more accuracy for the merger-ringdown part, due to the
fact that some part of the inspiral has to be replaced by
the PN waveforms in the hybrids. We use 20 aligned-spin
non-eccentric BBH waveforms from SXS with 1 ⩽ q ⩽ 8
and −0.95 ⩽ χ1, χ2 ⩽ 0.85 for calibrating our model. We
choose (2, 2) modes, and the extrapolation order N = 2
for our purpose.

IV. HYBRID CONSTRUCTION

For constructing a hybrid, the NR waveform has to
be ‘stitched’ with the analytical inspiral waveform in a
frequency region where both the waveforms have suffi-
cient accuracy, which also demands that the morphology
of these waveforms do not deviate significantly from one
another. For PN waveforms, one conventionally chooses
ISCO of the binary to be the endmost point of validity.
The corresponding GW frequency fISCO is considered to
be the highest frequency for PN expansions. In our work,
we ensured that the frequency at the stitching region is
below this threshold for all the hybrids - which also en-
sures that the NR calibrations in SEOBNRv2 are minimally
present before the stitching starts.
While stitching at a frequency as low as possible (con-

sidering ISCO) should enable one to incorporate the max-
imum number of NR cycles into the hybrid, there are two
more factors that affect the choice of the stitching region:

• The initial NR data do not perfectly describe two
black holes in quasi-equilibrium. At the start of
each simulation, the geometry relaxes to equilib-
rium on the dynamical time-scale of the individual
BHs, changing the mass and spin of each BH by
a fractional amount of order 10−5, and emitting a
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# Simulation label q χ1 χ2 χPN Norb Fstitch

1 SXS:BBH:0156 1 −0.95 −0.95 −0.79 13 0.0057
2 SXS:BBH:0151 1 −0.6 −0.6 −0.5 15 0.0054
3 SXS:BBH:0001 1 0 0 0 28 0.0041
4 SXS:BBH:0152 1 0.6 0.6 0.5 23 0.0052
5 SXS:BBH:0153 1 0.85 0.85 0.7 25 0.0052
6 SXS:BBH:0234 2 −0.85 −0.85 −0.72 28 0.0037
7 SXS:BBH:0238 2 −0.5 −0.5 −0.43 32 0.0037
8 SXS:BBH:0169 2 0 0 0 16 0.0062
9 SXS:BBH:0253 2 0.5 0.5 0.43 29 0.0046
10 SXS:BBH:2131 2 0.85 0.85 0.72 25 0.0056
11 SXS:BBH:1936 4 −0.8 −0.8 −0.71 17 0.0057
12 SXS:BBH:1418 4 −0.4 −0.5 −0.37 67 0.005
13 SXS:BBH:0167 4 0 0 0 16 0.0071
14 SXS:BBH:1417 4 0.4 0.5 0.37 80 0.0057
15 SXS:BBH:1907 4 0 0.8 0.12 21 0.0062
16 SXS:BBH:1423 8 −0.6 −0.75 −0.57 18 0.0066
17 SXS:BBH:0064 8 −0.5 0 −0.43 19 0.0066
18 SXS:BBH:0063 8 0 0 0 26 0.0065
19 SXS:BBH:0065 8 0.5 0 0.43 34 0.0063
20 SXS:BBH:1426 8 0.48 0.75 0.47 26 0.0078

TABLE I. Hybrid waveforms used to calibrate the model. The first column lists the simulation IDs of the corresponding NR
data in the SXS catalog. The last column reports the dimensionless frequency at the midpoint of the stitching region.

(a) (b)

(c) (d)

FIG. 1. Hybrid waveforms for four different configurations in the parameter space of q, χ1, χ2. Inspiral waveforms are generated
by adding the phase and amplitude corrections due to TH to the SEOBNRv2 model, shown in blue. NR waveforms are shown in
orange, and the hybrid waveforms are shown in black dashed-dotted lines. The x and y axes denote time (in units of total mass)
and the real part of time-domain strain, h+(t) (in units of M/DL), respectively. The blue shaded areas denote the stitching
regions.

spurious pulse of gravitational radiation (often re-
ferred to as ‘junk radiation’).

• A robust hybrid should depend weakly on the small
changes to the stitching region. A monochromatic
signal would be completely degenerate under a shift
in the coalescence time tc and the coalescence phase
ϕc; this degeneracy is broken by the increase in fre-

quency with time. The start and end of the stitch-
ing interval should reflect enough change in the fre-
quency to break this degeneracy.

The first issue is addressed in our work by choosing
the stitching region beyond the specified relaxation time
for each NR simulation in the SXS catalog, the time in-
terval (in units of M) by which the junk radiation dies
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out. To address the second requirement, MacDonald et
al. [69] have recommended the stitching interval to sat-
isfy δω/ωm ⩾ 0.1, where ωm is the GW frequency at the
midpoint of the stitching interval, and δω is the change
in frequency over the interval. This choice ensures that
the residual oscillations in tc with changing ωm are below
1M . In our work, we perform the stitching over 4 GW
cycles, and we place the stitching region in a way to sat-
isfy this condition. In the literature, the construction of
hybrids has been performed both in time [20, 23, 24] and
frequency domains [21, 70]. In our work, we choose the
former, primarily because the NR waveforms are avail-
able in the time domain, and typically they have too few
numbers of GW cycles for a reliable Fourier transform.

In time domain, any two non-precessing binary wave-
forms hA(Θ, t) and hB(Θ, t), with the same set of intrin-
sic parameters Θ, only differ by a relative time shift (∆t)
and an overall constant phase difference (ϕ0):

hA(Θ, t) = eiϕ0hB(Θ, t+∆t).

In the region where we expect the PN and NR waveforms
to be morphologically similar, we can write

hPN(Θ, t) = eiϕ0hNR(Θ, t+∆t). (19)

However, in reality, hPN(Θ, t) and hNR(Θ, t) differ from
each other morphologically due to waveform systematics,
so Eq. (19) does not hold in general [69]. To generate a
hybrid waveform, then, one needs to find a suitable region
where PN and NR waveforms are approximately the same
and minimize the square of the difference between the
left-hand and right-hand sides in Eq. (19), by varying
∆t and ϕ0. Since the GW frequency of a CBC increases
with time, one can alternatively write the angular GW
frequency as a function of time (ω(t)) and minimize the
quantity

δ =

∫ t2

t1

(
ω(NR)(t)− ω(PN)(t+∆t)

)2

dt (20)

with respect to ∆t. Here t1 and t2 denote the start and
end of the stitching region.

We list the steps taken to construct the hybrids as
follows:

1. SEOBNRv2 is a time-domain waveform, and the
phase and amplitude corrections for TH are cal-
culated in the frequency domain. So, we have to
first convert the time-domain data to the Fourier
domain to apply the corrections. Since the time-
domain data is finite, we use a tapered window
function to minimize Gibbs artifacts, called the
Planck-taper window [69]:

w(x) =


0, x ⩽ x1[
ey(x) + 1

]−1
, x1 < x < x2

1, x2 ⩽ x ⩽ x3[
ez(x) + 1

]−1
, x3 < x < x4

0, x4 ⩽ x,

(21)

where y(x) = (x2−x1)/(x−x1)+(x2−x1)/(x−x2),
and z(x) = (x3−x4)/(x−x3)+ (x3−x4)/(x−x4).
The frequency-domain waveform, after correcting
for TH, is then converted back to the time domain
for hybridization.

2. NR data from the SXS catalog sample the GW
strain h(NR)(t) in non-uniform timesteps, with a
higher sampling rate in regions of higher GW fre-
quency. We resample the data with the coarsest
sampling rate by using cubic interpolation.

3. Having obtained h(PN)(t) and h(NR)(t), we mini-
mize the quantity δ defined in Eq. (20) with respect
to ∆t. Phase alignments are done at the temporal
midpoint of the stitching region, t = (t1 + t2)/2.

4. The hybrid waveform is then constructed as

h(Hyb)(t) = F(t)h(PN)(t)

+ [1−F(t)]eiϕ
′
0h(NR)(t+∆t′),

(22)

where ϕ′0 and ∆t′ are the phase offset at the mid-
point of the stitching region and the value of ∆t
that minimizes δ, respectively. F(t) is a blending
function defined by

F(t) =


1, t < t1
1
2

(
1 + cos π(t−t1)

t2−t1

)
, t1 ⩽ t ⩽ t2

0, t2 < t .

(23)

In the time domain hybrids, parts of the waveforms
at t < t1 are purely post-Newtonain, and for t > t2
the waveforms contain purely NR data. In between, the
blending function F(t) smoothly stitches the two wave-
forms together after proper alignment in phase and time.
Figure 1 shows four of the total twenty hybrids made

for calibrating the waveform model, at the extreme points
of the calibration parameter space. The blue shaded re-
gions correspond to the stitching intervals, t1 ⩽ t ⩽ t2.
In Table I, we list the NR data used to create the set
of hybrids for calibration. We report the simulation la-
bels of aligned-spin NR data from SXS, dimensionless
spin magnitudes for the two component BHs, the effec-
tive spin parameter used for modeling the inspiral (dis-
cussed in Sec. VC), the number of orbits present in the
NR data, and the value of dimensionless frequency Mf
at the midpoint of the stitching regions.
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V. MODELING THE HYBRIDS IN THE
FREQUENCY DOMAIN

We perform phenomenological parametrization of the
hybrid waveforms in the frequency domain. Template
waveforms in the frequency domain are of particular pref-
erence since the parametrization is easier, and also a
search using frequency-domain templates is computation-
ally inexpensive compared to one using time-domain tem-
plates. Our parametrization follows the construction of
PhenomD [24, 25] for modeling the phase and amplitude
of the frequency-domain hybrids.
PhenomD used uncalibrated SEOBNRv2 as the inspiral

approximant, while 19 NR waveforms extracted by SpEC
and BAM [71] codes were used for hybrid construc-
tion and calibration. The model was constructed in
the frequency domain by dividing the entire waveform
into three parts – inspiral, intermediate, and merger-
ringdown. This modular nature allows one to use a dif-
ferent inspiral model while keeping the merger and ring-
down intact. In that model, inspiral is defined to be the
region below F = 0.018. Merger and ringdown phases
are separated by identifying the ringdown frequencies of
different hybrids that are used to calibrate the model. In
PhenomD, the end of inspiral (F = 0.018) was chosen in
such a way that beyond that frequency, each of the hy-
brids contained purely NR data. The merger-ringdown
model of PhenomD, then, is a model of purely NR data,
which we do not need to recalibrate in this work. In fact,
as discussed in Ref. [24], the modular nature of PhenomD
allows independent modeling of the inspiral, intermedi-
ate, and merger-ringdown parts separately, without even
needing any hybrid waveform. The hybrid dataset, how-
ever, serves as a benchmark to compare the final model
with and provide long time-domain waveforms for better
frequency-domain modeling. Additionally, the hybrids
are created with a smooth transition of phase and am-
plitude by the stitching process, producing accurate val-
ues of the pseudo-PN parameters capturing higher-order
terms in frequency.

A. Inspiral phase model

The inspiral approximant used in the hybrid data is
SEOBNRv2 with corrections in phase and amplitude due to
tidal heating, as discussed earlier. Since the final model
is a phenomenological one, it requires ready-to-use an-
alytical forms for the phase and amplitude with extra
coefficients calibrated to the hybrid data. We write the
frequency-domain phase of a waveform in the inspiral as

ΨINS(F ; Θ) = ΨTF2(F ; Θ) + ΨTH(F ; Θ)

+
1

η

[
σ0 + σ1F +

3

4
σ2F

4/3

+
3

5
σ3F

5/3 +
1

2
σ4F

2

]
,

(24)

where ΨTF2(F ; Θ) and ΨTH(F ; Θ) are 3.5PN phase of
TaylorF2 (described in Appendix A) and the TH cor-
rection (Eq. (11)), respectively. σi (i = 0 − 4) are 5
phenomenological pseudo-PN parameters. The analyti-
cal ansatz in Eq. (24) is the same as in PhenomD inspiral
model. Since we want to leverage the modular nature of
PhenomD to concatenate its merger-ringdown model with
our own inspiral model, the end of the inspiral phase in
the current work needs to remain unchanged, which is
F = 0.018. We also note here that one can, in principle,
directly add the correction ΨTH(F ; Θ) to the PhenomD
inspiral phase (as is done for the amplitude, discussed in
Sec. VB), without any recalibration. However, since we
intend to avoid adding the correction to the NR informa-
tion present in the last few cycles of inspiral, recalibrating
the phase allows a smooth transition from PN to NR. To
find the parameter values corresponding to each hybrid
waveform, we fit the first derivative of the phase with
respect to F :

Ψ′
INS(F ; Θ) = Ψ′

TF2(F ; Θ) + Ψ′
TH(F ; Θ)

+
1

η

[
σ1 + σ2F

1/3

+σ3F
2/3 + σ4F

]
,

(25)

where Ψ′ = ∂Ψ/∂F . σ0 is determined by imposing C(1)

continuity in phase at the boundary between inspiral and
merger. The fits are performed over the frequency range
F ∈ [0.0035, 0.019], ending at a slightly higher frequency,
to reduce boundary effects at the interface and find ro-
bust fits for σi. For all the 20 hybrids used for cali-
bration, the stitching regions are placed within this fre-
quency range, which warrants that there is purely NR
data beyond F = 0.018.

B. Inspiral and intermediate amplitude model

To model the amplitude within the frequency range of
the inspiral, we build the inspiral amplitude model by
adding the correction due to TH, given by Eq. (15), to
the PhenomD amplitude:

ÃINS(F ) = ÃD(F ) + ÃTH(F ) . (26)

We do not recalibrate the amplitude pseudo-PN param-
eters of PhenomD, since the inspiral amplitude model
ends (at F = 0.014) before the phase model does (at
F = 0.018), and the amount of NR information is less
than that of phase. Moreover, we find that the effect
of the amplitude correction is significantly less than the
phase correction, diminishing the necessity of a recalibra-
tion.
At the interface of two frequency intervals modeled

separately, C(1) continuity on the amplitude cannot be
imposed in a straightforward manner. For the frequency-
domain phase, one has the freedom to tune the coales-
cence time tc and the coalescence phase ϕc to impose con-
tinuity of the phase and its derivative across an interface.
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(a) (b) (c) (d)

FIG. 2. Fits of σi calculated by the NonLinearModelFit module of Mathematica. The surfaces correspond to the 2D fits with
η and χPN as described in Eq. (30).

For amplitude, however, there is no such freedom. If the
amplitude is modeled separately in different frequency
regimes, a different strategy has to be followed. To en-
sure that the amplitude and its derivative are continuous
throughout the three phases, one needs a frequency inter-
val to fit a polynomial that satisfies these conditions at
the beginning and the end. This ‘intermediate’ interval is
defined to be F ∈ [0.014, Fpeak], where Fpeak ≡Mfpeak is
the frequency corresponding to the peak amplitude. For
F < 0.014, the amplitude is given by Eq. (26). In the
intermediate region, the amplitude is approximated as a
polynomial in f :

Ãint = A0

[
δ0 + δ1f + δ2f

2

+δ3f
3 + δ4f

4
]
.

(27)

Here A0 includes the leading order f−7/6 behaviour.
Evaluation of δi follows the steps of PhenomD, described
in Sec. V(C) of Ref [25]. We briefly summarize it here:

• Equation (27) has five parameters, requiring five
independent equations for unique solutions. Two
of them come from the C(1) continuity of Ãint with
ÃINS(f) at the beginning (F = 0.014), and two
from C(1) continuity with PhenomD amplitude at
Fpeak. The fifth equation appears from an addi-
tional condition that the polynomial coincides with
PhenomD amplitude at the mid-frequency (chosen as
a collocation point), F = (0.014 + Fpeak)/2.

• Solving the aforementioned set of equations, one
finds the form of Ãint which smoothly connects the
intermediate region with inspiral and merger.

• It is worth mentioning that while choosing more
collocation points would improve the model accu-
racy, it would also encumber the model with a
larger set of equations to solve. Keeping in mind
that amplitude errors are less consequential than
phase errors, we refrain from considering more col-
location points.

In Appendix B, we describe the evaluation of the peak
frequency fpeak and the ringdown frequency fRD as func-
tions of the BH masses and spins.

C. Correspondence between the phenomenological
and physical parameters

Our model has 4 phenomenological parameters corre-
sponding to the inspiral phase. These parameters play an
intermediate role in generating gravitational waveforms
of aligned-spin compact binaries. To generate waveforms
for arbitrary values of the masses and spins, one needs
to build a correspondence between the set of physical
parameters {η, χ1, χ2} and the set of phenomenological
parameters {σi}. The total mass M of the binary works
as a trivial scaling factor.
In PN expansions, the leading order contribution of

spin in the phase of the waveform appears as a function
of the combination

χPN = χeff − 38η

113
(χ1 + χ2), (28)

where

χeff =
m1χ1 +m2χ2

M
. (29)

In this model, χPN is used as a single spin parameter
to generate the phenomenological parameters. This “ef-
fective spin approximation” works well for aligned-spin
binaries, especially in the inspiral regime [25].
To establish the correspondence between physical and

phenomenological parameters, we fit σi obtained from
different hybrids with a polynomial of η (up to second
order) and the effective spin parameter χPN (up to third
order):

σi = λi00 + λi10η + (χPN − 1)(λi01 + λi11η + λi21η
2)

+ (χPN − 1)2(λi02 + λi12η + λi22η
2)

+ (χPN − 1)3(λi03 + λi13η + λi23η
2).
(30)
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FIG. 3. Phase, phase derivative, and phase difference between the hybrids (same as in Fig. 1), individual fits obtained from
Eq. (25), and the final model prediction. Top panels: Inspiral phase Ψ(Mf). Middle panels: −Ψ′(Mf) = −∂Ψ/∂(Mf) plotted
against Mf . Bottom panels: ∆ΨFit = (ΨHybrid −ΨFit), and ∆ΨModel = (ΨHybrid −ΨModel). All the plots are shown within the
inspiral frequency range, 0.0035 ⩽ Mf ⩽ 0.018.

(a) (b)

(c) (d)

FIG. 4. Rescaled amplitude of the full IMR waveforms as
functions of Mf . The blue shaded regions denote the inter-
mediate frequency range, 0.014 ⩽ Mf ⩽ Fpeak.

For each σi, this polynomial generates a set {λijk} to
build the correspondence between physical and phe-
nomenological parameter sets. Figure 2 shows the sur-
faces of σi as functions of {η, χPN} with the ansatz in
Eq. (30). These best-fit surfaces generate a constant set
of {λijk} which define the inspiral model, along with the
TaylorF2 phase and the TH correction. In Appendix C,
we list the coefficient values corresponding to each σi.

A schematic flowchart for generating the inspiral phase
model starting from the intrinsic binary parameters can
be described as:

{η, χ1, χ2}
Effective−−−−−→

spin
{η, χPN}

λi

−→ {σi} −→ Inspiral model.

D. Full IMR model

For the phase, we have separately modeled the fre-
quency region 0.0035 ⩽ F ⩽ 0.018, and we have the
phase model of PhenomD thereafter. For the amplitude,
we have a corrected model in the range F ⩽ 0.014, and
a polynomial function for 0.014 ⩽ F ⩽ Fpeak. This gives
us one interface for the phase and two interfaces for the
amplitude to impose C(1) continuity. For the amplitude,
however, C(1) continuity is ensured by the intermediate
polynomial itself. For the phase, we can vary tc and ϕc
of the inspiral phase. After imposing C(1) continuity, we
can generate the complete IMR phase and amplitude by
defining a step function

θ(f − f0) =

{
−1, f < f0
+1, f ⩾ f0 .

(31)

Using this function, one can define

θ±(f ; f0) =
1

2
[1± θ(f − f0)], (32)

so that the IMR phase can be written as

ΦIMR(F ) = ΦINS(F )θ
−(F ;F2) + θ+(F ;F2)ΦD(F ), (33)



11

where F2 = 0.018, and ΦD(F ) corresponds to the phase
model of PhenomD. ΦINS(F ) is given by Eq. (24).
The IMR amplitude model follows a similar treatment,

which can be expressed as

ÃIMR(F ) = ÃINS(F )θ
−(F ;F3)

+θ+(F ;F3)Ãint(F )θ
−(F ;F4) + θ+(F ;F4)ÃD(F ),

(34)

where F3 = 0.014, and F4 = Fpeak. ÃINS(F ) is the in-

spiral amplitude in Eq. (26), Ãint(F ) is the intermediate

amplitude defined in Eq. (27), and ÃD(F ) is the PhenomD
amplitude.

Finally, the plus and cross polarization states of the
complete frequency-domain waveform read,

h̃+(f) =ÃIMR(f)

(
1 + cos2 ι

2

)
× exp{−i(ΦIMR(f)− ϕ0 − 2πft0)},

(35)

and

h̃×(f) =− iÃIMR(f) cos ι

× exp{−i(ΦIMR(f)− ϕ0 − 2πft0)}.
(36)

Here ι is the angle of inclination of the binary plane to
the line of sight, ϕ0 and t0 carry the overall phase and
timeshift freedom of the complete waveform. We call the
final waveform model IMRPhenomD Horizon, and abbre-
viate it to PhenomD Horizon.

In Fig. 3, we show the inspiral phase Ψ(Mf), its deriva-
tive with respect to Mf , and the difference between the
phase of the hybrid data and the model, for the same
configurations as in Fig. 1. We show both the individ-
ual fits from the ansatz in Eq. (24) and the final model
prediction obtained from the best fit values of λijk from

Eq. (30). In Fig. 4, we show the inspiral and inter-
mediate amplitude, rescaled by the leading order factor
A0 = 1

π2/3

√
5η/24f−7/6. The intermediate regions are

shown in a blue shaded colour. We also show the ampli-
tude of PhenomD on the same plots.

VI. FAITHFULNESS OF THE MODEL

A phenomenological model, calibrated with a set of
“target hybrids”, should be compared with a larger set
of “test hybrids” to assess its accuracy. The test hy-
brids should contain both the target hybrids and a new
set of hybrids interspersed within the parameter space of
calibration. To study the model’s behavior beyond the
calibration range, test hybrids can be extended further in
the parameter space. How well the final model can pre-
dict these test hybrids is denoted by its effectualness and
faithfulness [20, 72]. A model is effectual if it is accurate
enough to predict a GW signal from the detector noise,
while to be faithful it also has to have enough accuracy
to estimate the binary parameters. A faithful model is
also effectual, but the converse may not be true. Given

# Simulation label q χ1 χ2

1 SXS:BBH:0159 1 −0.9 −0.9
2 SXS:BBH:0154 1 −0.8 −0.8
3 SXS:BBH:0148 1 −0.44 −0.44
4 SXS:BBH:0150 1 0.2 0.2
5 SXS:BBH:0170 1 0.44 0.44
6 SXS:BBH:0155 1 0.8 0.8
7 SXS:BBH:0160 1 0.9 0.9
8 SXS:BBH:0157 1 0.95 0.95
9 SXS:BBH:0014 1.5 −0.5 0
10 SXS:BBH:0008 1.5 0 0
11 SXS:BBH:0013 1.5 0.5 0
12 SXS:BBH:0046 3 −0.5 −0.5
13 SXS:BBH:0036 3 −0.5 0
14 SXS:BBH:0168 3 0 0
15 SXS:BBH:0031 3 0.5 0
16 SXS:BBH:0047 3 0.5 0.5
17 SXS:BBH:0056 5 0 0
18 SXS:BBH:0181 6 0 0
19 SXS:BBH:1424 6.465 −0.66 −0.8
20 SXS:BBH:0298 7 0 0

TABLE II. List of the extra hybrids created for validating the
model.

FIG. 5. Mismatches (%) between IMRPhenomD Horizon and
the hybrid waveforms (Table I and Table II) in aLIGO ZDHP
noise PSD with a lower cutoff of 10 Hz, as a function of the
total mass.

any two signals h(t) and g(t), buried in the noise n(t),
one can define a noise-weighted inner product

⟨h|g⟩ = 2

∫ ∞

0

h̃(f)g̃∗(f) + h̃∗(f)g̃(f)

Sn(f)
df , (37)

where h̃(f) is the Fourier transform of h(t) defined by

h̃(f) =

∫ ∞

−∞
h(t)e−2πiftdt , (38)
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and Sn(f) is the power spectral density (PSD) of the
noise.

Equipped with this definition of an inner product be-
tween two waveforms, one can define the match between
them by maximizing the inner product with respect to
the constant phase and timeshift freedom between the
waveforms h̃(f) and g̃(f), normalized by their individual
norms:

M = min
tc,ϕc

⟨h(λ)|g(λ′)⟩√
⟨h(λ)|h(λ)⟩ ⟨g(λ′)|g(λ′)⟩

. (39)

Here λ and λ′ denote the intrinsic parameters. The
mismatch, defined as 1 − M, quantifies how much the
waveform h̃(f) morphologically differs from g̃(f). The
faithfulness of a model is quantified by demanding that
the mismatches between the model and the validation
dataset (test hybrids) do not exceed a certain threshold.
For PhenomD, the threshold was 1%.
Since the total mass of the binary works as a scal-

ing factor for the gravitational waveforms, it defines how
many GW cycles are contained within the sensitive fre-
quency band of a detector. The lower the total mass,
the more time the binary spends in its inspiral phase,
resulting in a longer waveform given a lower cutoff for
the frequency. In Advanced LIGO, complete IMR mod-
els become important above a critical value ∼ 12M⊙ [73]
of the binary mass. To assess our model’s faithfulness,
we create a set of test hybrids that are long enough to
cover the sensitive frequency band of Advanced LIGO for
a total binary mass as low as 10M⊙. At 10 Hz, the di-
mensionless frequency corresponding to a 10M⊙ binary
is Mf ≈ 0.0005.

In Table II we list the extra test hybrids created for
assessing the model accuracy. Figure 5 shows the mis-
matches between the entire set of test hybrids (Table I
and Table II) against the BBH waveform model pre-
sented in this paper. We have used the Advanced LIGO
zero-detuned high power [74] (ZDHP) noise curve with
a lower frequency cutoff of 10 Hz, and upper cutoff of
Mf = 0.3. The mismatches are plotted against the total
binary mass. We find that the model accuracy is at par
with the accuracy standard of PhenomD, with almost all
the hybrids showing mismatches well below 1%, the ma-
jority of them having mismatches around 0.1% within the
mass range 10M⊙ ⩽ M ⩽ 100M⊙. The worst mismatch
we find is for the {q = 4, χ1 = 0, χ2 = 0.8} configuration,
which crosses the 1% level above ∼ 50M⊙, and reaches a
maximum of 1.21% at 70M⊙.

VII. MODEL COMPARISON

Figure 6 shows the mismatches between
PhenomD Horizon and PhenomD, keeping χ1 = χ2.
We explore the mismatches within the parameter space
q ∈ [1, 8] and χ1, χ2 ∈ [−0.9, 0.9], for six values of the bi-
nary mass, M/M⊙ ∈ [10, 20, 30, 40, 50, 60]. In Fig. 6(a),
we show the mismatches including only the phase

correction - i.e. using the recalibrated inspiral phase,
but keeping the IMR amplitude the same as PhenomD.
Since the phase correction due to TH written in Eq. (11)
is ∝ 1/η at the leading order, higher mismatches are
found for higher mass ratios, for a fixed value of the
spins. With increasing spins, mismatches rise due to the
increased significance of TH. The mismatch reaches a
maximum of ∼ 16% for 30M⊙ binaries with q ≳ 7 and
χ1 = χ2 ≳ 0.8, and a minimum of ∼ 10−5% for heavier
binaries. For M ⩽ 30M⊙, we see substantial regions of
the parameter space with mismatches between 1-10% for
spin magnitudes of |χ1| = |χ2| ≳ 0.5. For M > 30M⊙,
the 1% level is crossed only for q ≳ 4.
Figure 6(b) shows mismatches when only the ampli-

tude correction is added to the inspiral and the interme-
diate region is re-evaluated accordingly, but the phase is
kept the same as PhenomD. The mismatches, in this case,
are orders of magnitude less than the phase-corrected
model, and never exceed 0.001% within this parameter
space. This result also vindicates our choice of not recal-
ibrating the amplitude model, as discussed in Sec VB.
We also note from Eq. (15) that at the leading order,

ÃTH ∝ √
η, which implies that the TH corrections are

more significant for more symmetric masses. This is
in contrast to the behaviour of the phase correction,
and renders the amplitude correction ineffective for high
mass-ratio binaries with notable TH contribution in the
phase. Nevertheless, ÃTH still rises with increasing spins.
In Fig. 6(c), we use the complete IMRPhenomD Horizon

model, by including both the phase and amplitude cor-
rections. The contours of mismatches ⩾ 0.1% are almost
the same as in Fig. 6(a), but amplitude corrections ele-
vate them above 0.01% throughout other regions of the
parameter space. However, mismatches < 0.1% are be-
low the accuracy level of the model, for which we con-
sidered a 1% tolerance level of modeling errors (Fig. 5).
This suggests that including the amplitude correction in
the TH corrected model has negligible effect compared
to the phase correction in GW data analysis.
To demonstrate the improvement in accuracy that our

model introduces over PhenomD, we use 219 NR wave-
forms from the SXS catalog and compare them against
PhenomD and PhenomD Horizon separately by comput-
ing mismatches. In Fig. 7, we show the distributions
of the mismatches, by using the Advanced LIGO ZDHP
noise curve. We plot histograms of log10(1−M), where
(1−M) is the average mismatch in the binary mass range
12M⊙ ⩽ M ⩽ 100M⊙. The dashed lines show the me-
dians of the two histogram plots, where a slight overall
improvement is seen. The fractional shift in the medians
(denoted by an overbar), is

(1−M)PhenomD − (1−M)PhenomD Horizon

(1−M)PhenomD

≈ 0.04,

(40)
showing an improvement of ∼ 4%. Figure 8 shows similar
histograms with a flat noise curve. In this case, also we
see a shift in the median value towards lower mismatches,
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(a) (b) (c)

FIG. 6. Mismatches (%) between PhenomD Horizon and PhenomD. (a) Mismatches with only the phase correction but no
amplitude correction in PhenomD Horizon. (b) Mismatches with only the amplitude correction without any phase correction.
(c) Mismatches with corrections in both the phase and amplitude. The plots show that the dominant contributor to these
mismatches is the phase correction.

FIG. 7. Mismatches of 219 non-precessing noneccentric NR
waveforms from SXS with PhenomD Horizon and PhenomD, in
aLIGO ZDHP noise curve, averaged in the binary mass range
12− 100M⊙. The dashed lines show the median values of the
distributions.

with an improvement of ∼ 2%.

VIII. DISCUSSION AND FUTURE WORK

We have presented a phenomenological gravitational
waveform model for binary black holes that carries the
signatures of tidal heating of the holes explicitly through-
out the binary evolution, starting from the early inspiral
phase and ending at their merger. In the frequency do-
main, it contains corrections due to this effect both in
the phase and amplitude. The entire IMR model for the
phase is divided into two parts. The inspiral phase model,
defined by the frequency range 0.0035 ⩽ Mf ⩽ 0.018, is
a recalibrated version of IMRPhenomD [24, 25] to account

FIG. 8. Same as in Fig. 7, but with a flat noise curve.

for the modifications due to tidal heating. The merger-
ringdown parts, defined as Mf ⩾ 0.018 in terms of the
dimensionless frequency, is the same as PhenomD since
this region contains purely NR data, which inherently
incorporates the dephasing due to tidal heating. The am-
plitude corrections are added by dividing the model into
three parts. The inspiral model, with 0.0035 ⩽ Mf ⩽
0.014, is constructed by directly adding the correction
term to the amplitude model of PhenomD in this region.
The intermediate region, 0.014 ⩽ Mf ⩽ Mfpeak, fpeak
being the frequency corresponding to the peak amplitude,
is approximated as a polynomial in f and evaluated by
imposing C(1) continuity at the two ends and a colloca-
tion point at their mid-frequency. The amplitude model
is identical to PhenomD for f > fpeak. The final model
is calibrated within the range in the mass ratio q ∈ [1, 8]
and the effective spin parameter χPN ∈ [−0.79, 0.72].

We conducted a study of faithfulness, by calculating
mismatches between the model and a validation dataset
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of 40 hybrid waveforms constructed with tidal heating
included. We demonstrated that modeling errors do not
lead to mismatches higher than 1% (barring a single out-
lier), with most of the mismatch values lying around
0.1%. This standard of faithfulness is comparable to
PhenomD, which also considered a maximum tolerance
level of 1% mismatch.

How the new model differs from its parent model
PhenomD was assessed by calculating mismatches between
them within the calibration range of the intrinsic parame-
ter space, for binary masses ranging from 10M⊙ to 60M⊙.
Phase corrections in the inspiral result in mismatches
between these two models as high as ∼ 16%, whereas
amplitude corrections alone are unable to produce mis-
matches above ∼ 0.001%. With increasing mass asym-
metry, the impact of the phase correction increases, but
the amplitude correction becomes less effective. Com-
bined with the fact that the former has more significance
in GW searches and PE, this reciprocal nature of these
two correction terms leaves the latter mostly superfluous
for practical purposes.

We compared the model with a set of 219 NR wave-
forms from the SXS catalog [53], and show the mismatch
distribution along with the same for PhenomD, averaged
over the binary mass range 12M⊙ ⩽M ⩽ 100M⊙. With
the Advanced LIGO ZDHP noise curve, we see an im-
provement of ∼ 4% in the medians of the two distribu-
tions. With a flat noise curve, the improvement is rel-
atively modest, about 2%. These overall improvements
point towards a mild yet non-negligible increase in wave-
form accuracy.

Tidal heating of black holes, after all, is a weak ef-
fect in the context of comparable-mass binaries. Never-
theless, an absence of its signatures from the complete
waveform models can bias the estimated parameters of
a binary. Its absence can also mimic a deviation from
GR predictions, raising complications in tests of GR. We
leave these studies to future work. Additionally, tidal
heating has the important property of varying signifi-
cantly according to the nature of the component objects,
which makes it a potential discriminator for BHs from
other objects. However, to utilize the full power of TH
as a BH identifier, one needs to model the energy and

angular momentum fluxes down the BH horizons also in
the late inspiral regime described by NR, where the tidal
fields are the strongest. The feasibility and effectiveness
of modeling these quantities can be explored in future
studies, where the model presented in this work can be
used directly.

The current work, in its entirety, is based on the
frequency-domain waveform model IMRPhenomD. For this
reason, we perform all the comparisons of the model pre-
sented here with the said approximant only. More recent
and state-of-the-art phenomenological waveform models
are available currently, namely, the IMRPhenomX [23, 75]
family of waveforms. These waveforms are calibrated
with a much larger set of hybrid waveforms, and use
superior techniques like hierarchical modeling [76] to re-
duce modeling errors, and also to generate more accurate
waveforms with unequal spins. These models boast 1 to
2 orders of magnitude better faithfulness than PhenomD,
and a dramatic shift in the mismatch distribution against
NR waveforms towards lower values [23]. Including the
effects of TH in these models by recalibrating the inspiral
is beyond the scope of this work, which uses only publicly
available NR data from the SXS catalog. We leave them
as future possibilities.
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Appendix A: Post-Newtonian inspiral phase

We write the 3.5PN frequency-domain phase (without TH) as

ΨTF2(f) = 2πftc − ϕc −
π

4
+

3

128ηv5

7∑
n=0

ψ(n)v
n , (A1)

where v = (πMf)1/3.
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The coefficients {ψ(n)} (n=0-7) are given by [82–84],

ψ(0) = 1 , (A2)

ψ(1) = 0 , (A3)

ψ(2) =
3715

756
+

55

9
η , (A4)

ψ(3) = − 16π +
113

3
δχa +

(
113

3
− 76

3
η

)
χs , (A5)

ψ(4) =
15293365

508032
+

27145

504
η +

3085

72
η2 − 405

4
δχaχs +

(
−405

8
+ 200η

)
χ2
a +

(
−405

8
+

5

2
η

)
χ2
s , (A6)

ψ(5) =

[
38645π
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9
η −
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732985
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9
η2
)
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(
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+
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9
η
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]
(1 + 3 ln v) , (A7)

ψ(6) =
11583231236531

4694215680
− 640π2

3
− 6848

21
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(
−15737765635

3048192
+
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12
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+
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ψ(7) =
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+
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Here δ =
√
1− 4η, χs = (χ1 + χ2)/2, χa = (χ1 − χ2)/2. γE is the Euler’s constant, γE = 0.5772156 · · · .

Appendix B: Ringdown and peak frequency

The quasi-normal mode (QNM) frequency of a BH can be expressed in terms of its oscillatory (real) and damping
(imaginary) parts as,

fQNM = fRD − ifdamp . (B1)

fRD can be obtained from the fitting formula [85]

fRD =
1

2πMf

[
f1 + f2(1− χf )

f3
]
, (B2)

where Mf and χf are the mass and spin of the merger remnant BH. Evaluation of these quantities is described in

Appendix C of Ref [86]. For the dominant harmonic mode l = m = 2, the coefficients are given by, f1 = 1.5251, f2 =
−1.1568, f3 = 0.1292.
fdamp can be written as

fdamp =
fRD

2Q
, (B3)

where the quality factor Q can be expressed by the fitting formula

Q = q1 + q2(1− χf )
q3 . (B4)

For the l = m = 2 mode, q1 = 0.7, q2 = 1.4187, q3 = −0.499.
The frequency corresponding to the peak amplitude in the Fourier domain, fpeak, can then be obtained from the

phenomenological relation

fpeak =

∣∣∣∣∣fRD +
fdampγ3(

√
1− γ22 − 1)

γ2

∣∣∣∣∣ , (B5)
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γ2 and γ3 being two phenomenological parameters that can be evaluated for given values of {η, χ1, χ2} from the ansatz
in Eq. (30). The corresponding coefficients are given in Appendix C of Ref. [25].

Appendix C: Coefficients for the pseudo-PN parameters

σ1 σ2 σ3 σ4

λ00 1650.156 14056.472 −86832.697 146221.791

λ10 −3531.389 −75378.11 412796.518 −667838.551

λ01 −2661.071 137530.39 −623322.321 920614.957

λ11 15385.008 −944130.978 4.1416×106 −5.959×106

λ21 −219.668 1.7166×106 −7.1273×106 9.8223×106

λ02 −6845.194 169601.655 −737033.591 1.0493×106

λ12 38637.011 −1.2802×106 5.4343×106 −7.5726×106

λ22 −45127.308 2.648×106 −1.09142×107 1.4893×107

λ03 −2076.335 50611.846 −213200.291 288184.3

λ13 17433.08 −468141.986 1.9402×106 −2.641×106

λ23 −31696.712 1.10645×106 −4.5663×106 6.2489×106

TABLE III. Best-fit values of λi
jk parameters in Eq. (30) for the pseudo-PN parameters {σi} in the inspiral phase.

[1] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA),
GWTC-3: Compact Binary Coalescences Observed by
LIGO and Virgo During the Second Part of the Third
Observing Run, (2021), arXiv:2111.03606 [gr-qc].

[2] A. H. Nitz, S. Kumar, Y.-F. Wang, S. Kastha, S. Wu,
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